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ABSTRACT  26 

Multi-omic techniques can offer a comprehensive overview of microbial communities at the 27 

gene, transcript and protein levels. However, to what extent these levels reflect in situ process 28 

rates is less clear, especially in highly complex habitats such as soils. Here we performed 29 

microcosm incubations using soil from a site with a history of agricultural management. 30 

Microcosms, amended with isotopically labelled ammonium and urea to simulate a fertilization 31 

event, showed nitrification (up to 4.1 ± 0.87 µg N-NO3
- g-1 dry soil d-1) and accumulation of N2O 32 

after 192 hours of incubation. Nitrification activity (NH4
+→NH2OH→NO2

-→NO3
-) was 33 

accompanied by a 6-fold increase in relative expression of the 16S rRNA gene (RNA/DNA) 34 

between 10 and 192 hours of incubation for ammonia-oxidizing bacteria (AOB) Nitrosomonas 35 

and Nitrosospira. In contrast, ammonia-oxidizing archaea (AOA) and complete ammonia 36 

oxidizer (comammox) nitrifiers showed stable gene expression during incubations but were 37 

generally more abundant (DNA level) than their Betaproteobacteria AOB counterparts. A strong 38 

relationship between nitrification activity and (mostly) betaproteobacterial ammonia 39 

monooxygenase (amoA; NH4
+→NH2OH) and nitrite oxidoreductase (nxrA; NO2

-→NO3
-) 40 

transcript abundances revealed that mRNA levels quantitatively reflected measured activity and 41 

were generally more sensitive than the DNA level in the microcosm incubations. Although 42 

peptides related to housekeeping proteins from nitrite-oxidizing microorganisms were detected, 43 

their abundance was not significantly correlated with activity, revealing that meta-proteomics 44 

provided only a qualitative assessment of activity. Altogether, these findings underscore the 45 

strengths and limitations of multi-omic approaches for assessing complex microbial 46 

communities and provide the molecular means to assess nitrification processes in soils. 47 

 48 

 49 

 50 
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IMPORTANCE  52 

Even though the use of omic approaches has expanded our knowledge of the diversity of 53 

microbial communities in natural and engineered systems, it is less clear how well the use of 54 

whole community DNA-, RNA- or protein-based approaches reflect microbial activities. To this 55 

end, we directly compared the different levels of molecular information (i.e., DNA, RNA or 56 

proteins) in order to assess which level best correlated with isotope-based measurements of 57 

nitrification activity in agricultural soils after fertilization. This work reveals the strengths as well 58 

as the associated limitations of metagenomic, metatranscriptomic, and metaproteomic 59 

approaches in serving as reliable proxies for examining microbial activities in highly diverse 60 

environments like soils.  61 

 62 
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INTRODUCTION 63 

Even though the central role of microbes in the cycling of nitrogen is recognized, the 64 

dynamics and controls of the interrelated microbial nitrogen pathways in agricultural soils are 65 

still poorly understood. This scarcity of information limits the development of more accurate, 66 

predictive models of nitrogen flux that encompasses the role of microbes in the generation and 67 

consumption of nitrogen substrates, as well as the emission of greenhouse gases, including 68 

nitrous oxide (N2O) (1). In agricultural soils receiving large inputs of nitrogen fertilizer, ammonia-69 

oxidizing bacteria (AOB), ammonia-oxidizing archaea (AOA) and nitrite-oxidizing bacteria (NOB) 70 

collectively are responsible for the conversion of ammonium to nitrate. In addition, the recent 71 

discovery of Nitrospira bacteria capable of complete oxidation of ammonia to nitrate 72 

(comammox) has revealed that the process of nitrification in natural environments might be 73 

carried out by a single taxon (2, 3). It has also been reported that nitrification is a major N2O 74 

source under low oxygen concentrations (4), although detailed mechanistic understanding is 75 

lacking (5). Alternatively, under anoxic conditions, nitrate (NO3
-) can be reduced to gaseous 76 

forms such as dinitrogen (N2), nitric oxide (NO) or N2O by denitrifying organisms and 77 

consequently be lost to the atmosphere. Despite the apparent importance of nitrification in the 78 

generation of N2O and NO3
-, the relative contributions of comammox, AOA, AOB and NOB 79 

populations in this process, especially during soil fertilization events, is less clear (6). Advancing 80 

this issue is essential for better prediction of the contributions of these microbial taxa to the 81 

nitrogen cycle and the modeling of the corresponding activities and products. High-throughput 82 

sequencing and proteomic approaches offer the means to characterize the nitrogen pathways in 83 

the environment. However, to what extent these omic approaches reflect process rates is still 84 

unclear. 85 

Although DNA, RNA, and protein abundances all reflect microbial potential and 86 

responses to environmental changes and thus, can be used to study nitrogen cycling in soils, 87 

each measurement generally offers different types of information. For instance, metagenomics 88 
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(DNA level) offers a comprehensive overview of the functional potential of microbial 89 

communities but does not generally reflect active community members or functions. Short-term 90 

microbial responses to external changes (e.g., nitrogen addition) can be tracked by analyzing 91 

the actively expressed genes (i.e., metatranscriptomics). For instance, the relationship between 92 

measured nitrification processes and the ammonia monooxygenase (amoA) transcripts have 93 

revealed differences between archaeal and bacterial activity in acidic soils (7). Proteomics 94 

provides a third level of molecular information much closer to the metabolic processes by 95 

reflecting synthesized enzymes that catalyze reactions. Although proteomics has been applied 96 

to only a limited number of natural microbial communities, the results have provided new 97 

insights about metabolic pathways and interdependencies among microbial groups [reviewed in 98 

(8)]. Furthermore, recent advances in metagenomics and metaproteomics techniques as well as 99 

integration with isotope-based technologies (e.g., NanoSIMS) have disentangled the role of 100 

previously elusive keystone microbial populations. The combined application of metagenomics 101 

and metaproteomics has provided new understanding of novel not yet cultured microorganisms 102 

participating in the cycling of sulfur, nitrogen, and carbon in the terrestrial subsurface (9).  103 

Only a few studies have examined how the above approaches correlate with process 104 

rates, especially in soil ecosystems that are characterized by low metabolic activity along with 105 

high microbial diversity and heterogeneity. Thus far, almost all studies have provided only 106 

qualitative results from applications of omics to soils (10). Quantitative results in a few recent 107 

reports have focused mostly on systems with reduced diversity or specific functions and taxa 108 

(as opposed to community-wide activities). For instance, metatranscriptomic approaches 109 

examining the degradation of the herbicide atrazine by Escherichia coli in bioreactors revealed a 110 

linear relationship between the measured enzymatic activity and the transcripts encoding the 111 

associated enzyme (11). Additionally, in microbial leaf litter decomposition incubations, cellulase 112 

and xylanase protein abundances were positively correlated with their corresponding enzymatic 113 

activities (12). On the other hand, even though the combination of multi-omic datasets provided 114 
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new insights into diversity and gene potential of microbial communities of permafrost 115 

ecosystems, the datasets were less predictive of measured process rates (13). Therefore, to 116 

what extent the omic measurements correlate with each other and with process rates in soils 117 

remain unclear. 118 

Toward closing this knowledge gap, we examined nitrogen-amended sandy soils 119 

obtained from a site with a history of agricultural management and application of synthetic 120 

nitrogen fertilizer. A prior year-round characterization of field samples from the same agricultural 121 

site revealed increased abundance of novel Thaumarchaeota and comammox nitrifiers, but the 122 

findings were limited to metagenomics (14). Here, our goal was to assess the strengths and 123 

limitations of multi-omics in detecting microbial activity by correlating measurements of DNA, 124 

RNA, and protein abundances with measured rates of nitrate formation and N2O production in 125 

soils incubated under controlled conditions in the laboratory. The results reveal that 126 

metatranscriptomic data best reflected the measured nitrification rates under the tested 127 

experimental conditions. 128 

 129 

RESULTS 130 

Nitrification activity in soil microcosms 131 

We first examined nitrification activity in nitrogen-amended microcosms with an 132 

equimolar mixture of NH4
+ and urea during an eight-day period by following NO3

- formation and 133 

NH4
+ disappearance. Based on the NH4

+ concentration patterns, urea quickly hydrolyzed to 134 

release NH4
+ within the first two days of incubation (Figure 1a). Specifically, the NH4

+ 135 

concentrations peaked at 48 hours of incubation (18.02 ± 1.5 µgN-NH4
+ g-1 dry soil) from urea 136 

hydrolysis, and decreased to 5.4 ± 2.5 µgN-NH4
+ g-1 dry soil by 192 hours of incubation due to 137 

nitrification. Nitrification activity increased five to eight days after the addition of the NH4
+ and 138 

urea mixture, reaching an average rate of 4.1 ± 0.87 µg N-NO3
- g-1 dry soil d-1 (n = 6) after 192 139 

hours of the incubation (Figure 1b). The NO3
- concentrations gradually increased from an initial 140 
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value of 0.81 ±0.28 µgN-NO3 g-1 dry soil to 1.91 ± 0.5 at 120 hours of incubation, and then 141 

increased at a faster rate to 15.06 ± 2.7 µgN-NO3
- g-1 dry soil at 192 hours of incubation (Figure 142 

1a). As a result of nitrification activity, pH values decreased across replicated nitrogen-amended 143 

microcosms during the incubation (Supplementary Table 1). In order to examine the generation 144 

of N2O possibly generated as a by-product of oxidation reactions during nitrification, we 145 

measured the production of N2O in nitrogen-amended incubations. Net N2O production rates in 146 

the incubation headspace increased from 0.08 ± 0.006 ng N-N2O g-1 dry soil d-1 after 24 hours to 147 

0.71 ± 0.57 ng N-N2O g-1 dry soil h-1 at the end of the incubations (Figure 1c). Control 148 

microcosms receiving only irrigation water (i.e., no nitrogen amendment) did not show net 149 

NH4
+oxidation. 150 

To evaluate possible differences between the use of NH4
+ or urea in the nitrifying 151 

activity, we determined 15NO3
- production rates using nitrogen stable isotopes in the 152 

microcosms. In general, 15NO3
- production was similar between 15NH4

+ and 15N-urea 153 

microcosms, although rates were higher after 10 and 48 hours of incubation (two tailed t-test, 154 

P<0.01) in 15NH4
+ and 15N-urea microcosms, respectively, but converged thereafter 155 

(Supplementary Figure 1). By the end of the incubations, approximately half of the added 15N 156 

was converted to 15N-NO3
- (49-55% for both labelled solutions/treatments), and only a small 157 

fraction converted to 15N-N2O (0.006-0.01%). The remaining added nitrogen was presumably 158 

converted to N2, assimilated into microbial biomass, or adsorbed to soil particles. 159 

 160 

Soil metagenomes and metatranscriptomes 161 

To explore the genetic potential of microbial communities in control and nitrogen-162 

amended microcosms, we examined the metagenomes and metatranscriptomes obtained from 163 

the incubated soils. Metagenomes ranged from 23.7 to 53.4 and metatranscriptomes from 10.1 164 

to 31.3 million short-reads per sample (Supplementary Tables 2 and 3). The estimated average 165 

coverage based on read redundancy using Nonpareil (15) ranged from 0.27 to 0.42 for the soil 166 
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metagenomes (values range from 0 to 1). The co-assembly of selected soil metagenomes 167 

generated 1.52 million contigs over 500 bp (assembly N50=1,176) and 1.56 million predicted 168 

protein-coding genes. 169 

A high fraction of ribosomal RNA was detected for all metatranscriptomes ranging from 170 

94% to 98% of the total sequences (Supplementary Table 4). No rRNA depletion step was 171 

performed during our metatranscriptomic protocol due to overall low total RNA yields from the 172 

soils. As expected based on the length of the rRNA genes, 23S rRNA/16S rRNA ratios ranged 173 

from 1.7 to 1.9, indicating adequate RNA quality. Bacterial 16S rRNA (16S) was the most 174 

abundant, ranging between 30.6% and 35.9% of total transcripts per sample. Archaeal 16S and 175 

eukaryotic 18S rRNA molecules were less abundant, with values ranging from 0.09% to 0.15% 176 

and 0.55 to 2.9%, respectively. 177 

 178 

Taxonomy of microbial soil populations based on 16S rRNA gene sequences 179 

The taxonomic composition and abundances of the main microbial groups determined 180 

from recovered 16S rRNA (16S) gene sequences (DNA level) from nitrogen-amended 181 

incubations, were generally stable during incubations. At the class taxonomic level, 182 

Actinobacteria, Betaproteobacteria, and Gammaproteobacteria were the most abundant groups 183 

in metagenomes, accounting for more than 57% of the total community in nitrogen-amended 184 

incubations (Supplementary Figure 2). The taxonomic composition derived from 185 

metatranscriptomes (cDNA reads) was also stable during the incubations but the abundances 186 

for main taxonomical groups were substantially different from the metagenomes. For instance, 187 

Betaproteobacteria, Gammaproteobacteria, and Flavobacteria were among the most abundant 188 

groups in cDNA samples, accounting for an average of 77.5% of the 16S transcripts. In 189 

agreement with our previous results based on field samples from the same agricultural site (14), 190 

bacterial and archaeal groups associated with the nitrification processes were comparatively 191 

less abundant than the aforementioned groups in both DNA and cDNA datasets. For instance, 192 
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known AOB and NOB genera such as Nitrosomonas and Nitrospira had average relative 193 

abundances of 0.01% and 1.6% of the total populations in the metagenomes from incubated 194 

soils. Additionally, the relative abundances of the AOA genera related to Nitrososphaera and 195 

Nitrosopumilus were 0.9% and 0.3% in the microcosm metagenomes. Similar low abundances 196 

were determined for known nitrifier genera in metatranscriptomes. Notably, 16S transcript 197 

abundances for AOB conspicuously increased during the incubation period (Supplementary 198 

Figure 3). In fact, relative 16S gene expression ratios (cDNA/DNA) for AOB and NOB belonging 199 

to Nitrosospira, Nitrosomonas and Nitrospira increased 3-,6-, and 14-fold between 10 and 192 200 

hours. In contrast, the 16S gene expression levels for the archaeal groups Nitrososphaera and 201 

Nitrosopumilus were stable during the same incubation period, although with a slight increase in 202 

relative expression at 48h of incubation (Supplementary Figure 3). 203 

 204 

Individual populations from microcosm metagenomes  205 

The assembly and binning of the soil metagenomes recovered 11 metagenome-206 

assembled genomes (MAGs) mostly representing Proteobacteria, Acidobacteria, Actinobacteria 207 

and Nitrospirae phyla. Most of the recovered MAGs represented novel genera (n=7) and 208 

species (n=5) when the taxonomic novelty was evaluated against 10,487 reference genomes 209 

(taxonomically classified at the species level) using genome-aggregate amino acid identity (AAI) 210 

thresholds for taxonomic rank delineation (16) (Supplementary Table 5). Given that none of the 211 

MAGs represented AOA, AOB, NOB, or comammox populations, we included MAGs obtained 212 

from a previous analysis of field samples from the same site (Havana county, Illinois, USA) and 213 

depth as the soil used in the soil microcosms in the present study (14). MAGs potentially 214 

involved in nitrification processes were likely missed in the microcosm metagenomes due to 215 

comparatively lower sequencing effort or because of sample heterogeneity (e.g., lower 216 

population abundance) but had relatively higher abundance in the previous field samples. The 217 

MAGs (designated with the letter F at the end of their name for Field metagenomes) consisted 218 
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of two complete ammonia oxidizer (comammox) Nitrospira MAGs (MAG021F and MAG017F) 219 

and five ammonia-oxidizing archaea MAGs representing the Thaumarchaeota lineages I.1b 220 

(MAG032F and MAG019F) and I.1a (MAG004F, MAG109F, and MAG001F) (Supplementary 221 

Figure 4b). The Nitrospira MAG007, obtained from the microcosm metagenomes, was closely 222 

related to previously described soil comammox (e.g., MAG017F) organisms, sharing 67.8% AAI 223 

(SD: 18% based on 2201 shared proteins). However, the MAG007 only encoded a 224 

hydroxylamine oxidoreductase (haoA) gene and lacked amoA and nxrA genes (Supplementary 225 

Figure 4b). Furthermore, the Nitrospira MAG007 formed an independent but related cluster to 226 

the soil comammox organisms when reconstructed phylogenies using concatenated single-copy 227 

genes were evaluated (Supplementary Figure 5). Thus, AAI values and phylogenetic 228 

reconstruction supported the affiliation of MAG007 to Nitrospira, but the lack of genes involved 229 

in ammonia and nitrite oxidation (possibly due to low sequencing coverage) made it 230 

inconclusive whether this taxon is involved in nitrification processes and might indicate 231 

divergence from previously described soil comammox organisms. 232 

Relative expression values of MAGs (measured as transcripts or reads per kilobase 233 

million, RPKM) were used as a proxy for comparing the response and metabolic activity among 234 

nitrifying bacteria and archaea during incubations. Even though expression values for most 235 

nitrifying MAGs belonging to Nitrospira and Thaumarchaeota were stable and relatively low, 236 

AOA MAGs 004F, 019F and comammox MAG017F, had, on average, the highest expression 237 

values throughout the incubations (Supplementary Figure 4a). For instance, the increase in 238 

expression values for AOA MAGs belonging to the I.1b clade, 004F and 032F, were 39% and 239 

50% after 48 hours of incubation (compared to expression levels at 10 hours incubation), 240 

respectively. In contrast, gene expression of comammox MAG017F and Nitrospira MAG007 241 

increased by 59% and 68% after 120 and 192 hours of incubation, respectively (Supplementary 242 

Figure 4a). Note that AOB and NOB were not included in the RPKM analysis due to lack of 243 

recovered MAGs representing these populations (see above). Nonetheless, a gene-based 244 
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approach allowed the analysis of changes in transcript abundances of genes involved in 245 

nitrification activity for AOB and NOB nitrifiers (see below).  246 

 247 

Quantification of nitrification genes in microcosms 248 

To further explore the microbial nitrification processes in incubated soils at the gene 249 

level, we specifically quantified gene fragments and transcripts directly involved in nitrification 250 

reactions. Relative expression values belonging to the gene encoding urease subunit c (ureC) 251 

were stable throughout the incubation but average abundances were relatively low compared to 252 

other nitrification genes (Figure 2a). The relative expression of the bacterial gene encoding 253 

ammonia monooxygenase subunit alpha (amoA) was 53.5-fold higher compared to the 254 

expression values at 10h of incubation. Most of the detected amoA transcripts (cDNA) were 255 

phylogenetically affiliated with Betaproteobacteria and corresponded to up to 90% of the total 256 

detected bacterial amoA transcripts at 192 hours of incubation (Figure 2a). Unlike 257 

betaproteobacterial amoA, abundance of transcripts belonging to comammox were stable 258 

throughout the incubation. Furthermore, transcripts belonging to comammox were more 259 

abundant compared to Betaproteobacteria amoA transcripts after 48 hours of incubation; 260 

however, at 192 hours of incubation, betaproteobacterial amoA DNA abundance increased 66-261 

fold, whereas comammox amoA gene fragments remained stable (Figure 2b). The latter results 262 

indicated that the comammox amoA may be more abundant under field conditions but 263 

betaproteobacterial amoA might show a faster response upon ammonia addition, which was 264 

also consistent with a previous study (14). Although the relative expression for the archaeal 265 

amoA was more stable throughout the incubation compared to its betaproteobacterial 266 

counterparts, a maximum expression was reached after 120 hours of incubation, suggesting 267 

that archaeal AmoA activity temporarily increased at later time points during the incubation. 268 

Archaeal amoA transcripts belonging to the group I.1b were ~7 times more abundant than their 269 

I.1a counterpart across the incubations (Figure 2b). Similar to amoA patterns, the relative 270 
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expression for the betaproteobacterial hydroxylamine oxidoreductase (haoA; NH2OH→NO2
-) 271 

steadily increased during the incubations, whereas comammox haoA transcripts represented 272 

the remaining smaller transcript fraction and were stable throughout the incubations (Figure 2b). 273 

Expression values for the nitrite oxidoreductase subunit alpha (nxrA; NO2
-→NO3

-) had a 12.4-274 

fold increase compared to the 10-hour time point, consistent with the patterns observed for the 275 

previous nitrification genes and NO3
- accumulation. Unexpectedly, expression values for nirK 276 

(NO2
-→NO) affiliated to Thaumarchaeota were higher compared to nirK transcripts assigned to 277 

the Nitrospira clade. In fact, Thaumarchaeota nirK transcripts had a 3.4-fold increase after 192 278 

hours of incubation relative to earlier sampling points, indicating that Thaumarchaeota might 279 

have been more active in the reduction of nitrite compared to other steps of nitrification. 280 

Specifically, there was a 3.4-fold increase for clade I.1b nirK transcripts during the 10 to 192 281 

hours of incubation period, whereas the abundance of transcripts from clade I.1a were stable 282 

throughout the incubations (Figure 2b). 283 

In summary, the metatranscriptomic profiles suggested that AOB, but not comammox, 284 

responded rapidly to the nitrogen amendment, whereas AOA followed with less pronounced 285 

transcriptome shifts. The response of AOB, and to a lesser extent AOA, was also reflected at 286 

the DNA level, albeit with a substantial time delay. For instance, shifts were observed early at 287 

the transcript level while at the DNA level, changes were mostly evident 192 hours after the start 288 

of incubation (Supplementary Figure 6a, b). These results were consistent across the individual 289 

nitrification steps and indicated that at least the AOB nitrifiers grew in response to nitrogen 290 

addition. 291 

 292 

A proteomic perspective in soil microcosms 293 

A metaproteomic analysis of the control and nitrogen-amended microcosms at 192 294 

hours of incubation detected a total of 2,892 and 1,629 non-redundant peptides, respectively. A 295 

total of 844 peptides were shared among control and nitrogen-amended incubations, whereas 296 
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2,048 and 785 were exclusively present in each microcosm, respectively. Most of peptides 297 

detected in control and nitrogen-amended incubations matched protein sequences predicted 298 

from metagenomic assemblies (89.4% and 88.2%, respectively) and the remaining fraction 299 

matched reference proteomes (Supplementary Table 6). The top 20 most abundant proteins in 300 

control and nitrogen-amended treatment microcosms were related to housekeeping and 301 

transport proteins whereas in the latter incubation, oxidoreductases for small carbon and alcohol 302 

molecules and ATP synthesis were among the most abundant proteins detected 303 

(Supplementary Table 7). The taxonomic affiliation, at the class level, for the most abundant 304 

annotated peptides belonged to Alphaproteobacteria, Betaprotebacteria, and Acidobacteria in 305 

control and nitrogen-amended incubations. Although there were major compositional changes 306 

for abundant groups such as Betaproteobacteria (40% decrease) and Gammaproteobacteria 307 

(50% decrease) (Figure 3a), increased abundance was detected for less abundant groups 308 

commonly associated with the nitrification process. For instance, close to a 2.2-fold increased 309 

abundance for nitrogen-amended incubations were detected for peptides belonging to 310 

Nitrospira. Detected peptides related to folding and synthesis were the most abundant and had 311 

similar abundances in the control and nitrogen-amended microcosms after 192 hours of 312 

incubation. However, the relative abundance of ATP synthases and transcription categories 313 

were higher in the nitrogen-amended samples relative to the control, presumably as a 314 

consequence of a higher microbial activity generated after the nitrogen input. On the other hand, 315 

heat-shock and degradation proteins were more abundant in the control incubation, probably 316 

reflecting a more prevailing dormant state for the microbial communities in these samples 317 

(Figure 3b). However, unlike the metagenomic and metatranscriptomic datasets, only some 318 

peptides involved in nitrification were identified using metaproteomics. For instance, the 319 

detected peptides directly involved in nitrification pathways corresponded to the nitrite 320 

oxidoreductase subunit B (NxrB), which had a 31.3% abundance increase in the nitrogen-321 

amended samples compared to the control. 322 
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 323 

DISCUSSION 324 

Using multi-omic approaches for examining process rates 325 

Measuring nitrification rates in incubated soils allowed us to evaluate the explanatory 326 

and predictive power of omic approaches in a highly diverse soil system. Despite all three omic 327 

approaches revealed increased abundance for target genes, transcripts and proteins related to 328 

nitrification pathways, they differed in temporal resolution and quantitative capabilities. For 329 

instance, the strongest agreement to the observed nitrification processes (i.e., ammonia or 330 

nitrite oxidation) was for the metatranscriptomic data within the first days of incubations (e.g., 331 

Figure 2b), whereas metagenomes lagged behind and only reflected the ongoing nitrification 332 

process after 192 hours of incubation (e.g., Supplementary Figure 6a, b). These data were 333 

presumably attributed to the fact that growth (e.g., at least a few replication cycles) should occur 334 

before metagenomics can reveal shifts in relative abundance over time. Note that microbial 335 

growth was not explicitly measured by our study to further corroborate the above conclusions 336 

and interpretations. Therefore, metagenomics could also reflect underlying microbial processes 337 

if the processes are ongoing for a period of time and are coupled with the growth of the 338 

corresponding organisms. In contrast, if the goal is to see immediate responses to a 339 

perturbation or the perturbation is short-lived (e.g., lasting a few hours), metatranscriptomic data 340 

will be preferable. We also observed that metatranscriptomes were as good as metagenomics, 341 

if not better, at reflecting microbial activity for nitrification processes even at later incubation time 342 

points. In contrast, the metaproteomes offered, at most, a qualitative glimpse at nitrification 343 

processes and were less definitive in identifying common nitrification markers. The latter was 344 

largely attributable to the computational challenges associated with proteomic data such as high 345 

peptide redundancy and the requirement of high-quality assemblies which are still challenging 346 

for highly complex soil metagenomes. Furthermore, many challenges remain for efficient 347 
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extraction of membrane proteins from low abundance organisms such as nitrifiers. Ultimately, 348 

these technical limitations could be reflected in a lower number of detected proteins compared 349 

to the number of metagenomic and metatranscriptomic reads recovered that encoded the 350 

proteins of interest. 351 

While shifts in 16S gene ratios (cDNA/DNA) were relatively small for AOA, the 16S and 352 

functional gene ratio shifts (e.g., amoA) for AOB/NOB were much more pronounced throughout 353 

the incubations (Supplementary Figure 3). Nonetheless, there were changes in transcript 354 

abundances for nitrification genes from both microbial groups in the microcosms (Figure 2). 355 

These results might reflect an active and growing state for AOB/NOB and mostly active AOA 356 

communities as observed before for agricultural soil microcosms (17). The differences observed 357 

between target gene abundances and 16S gene ratios from AOA could reflect a limitation of the 358 

latter data when used as a proxy for assessing microbial activity (18). However, more frequent 359 

sampling and incubations under different physicochemical conditions will be required for more 360 

robust conclusions to emerge on the exact relationship(s) between molecular level information 361 

and process rates. The results reported here provided an overview of this relationship for soils 362 

and are highly promising for the future.  363 

In terms of the ecological adaptation of the nitrifiers analyzed here, the Havana 364 

agricultural site has had a long history of cyclical seasonal inputs (e.g., fertilizers) that have 365 

shaped the structure of microbial communities in different soil layers. The AOA and AOB 366 

communities in the Havana site have legacy establishments at the 20-30 cm soil depth and are 367 

under relatively stable environmental conditions compared to the top soil layer (14). Thus, 368 

nitrogen amendments tested in our experiment and experimental conditions might not represent 369 

closely the conditions usually experienced by the examined AOA and AOB communities. The 370 

rapid response of AOB observed here might be a reflection of physiological adaptations of AOB 371 

to thrive under high nitrogen content as reported previously (17). In contrast, the low response 372 

observed for comammox and some AOA communities might reflect their limited physiological 373 
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capabilities to respond to high nitrogen concentrations (2, 3) that were assayed in our 374 

experimental setup. 375 

Previous authors have also found metatranscriptomic approaches to be better predictors 376 

of measured microbial activity (11) in controlled laboratory systems amended with exogenous 377 

organic compounds, but have been more limited in providing insights into the whole-microbial 378 

community response to the amendment. For instance, the changes in transcripts observed at 379 

early incubation points for specific lineages (e.g., comammox vs. betaproteobacterial amoA) 380 

suggested ongoing microbial activity that became evident only at the DNA level (relative 381 

abundance) at the last incubation point in the metagenomes (Figure 2b). Future incubation 382 

studies could shed light on the intrinsic differences between nitrifier (and denitrifier) communities 383 

by testing variables such as oxygen availability (i.e., water saturation) and different agricultural 384 

soil types. For instance, the incubation conditions used in our study deliberately promoted 385 

nitrification over denitrification processes and as a result, the N2O production was detected due 386 

to the former process. Consequently, nitric oxide (e.g., norB) and nitrous oxide reductases (e.g., 387 

nosZ) transcripts, which are responsible for N2O production and consumption during 388 

denitrification, respectively, were not detected in our metatranscriptomes datasets (i.e., 389 

abundance below detection limit). Also, the use of nitrification inhibitors could help to elucidate 390 

the origin of the measured N2O whether production was biotic or abiotic, for which our data are 391 

limited in predicting. Thus, the integration of in situ rates along with the microbial dynamics 392 

examined by metatranscriptomes and metagenomes could provide the means to better 393 

understand and predict nitrification and N2O emission in agricultural soils. 394 

New insights into nitrification pathways  395 

The metagenomic and metatranscriptomic datasets combined with phylogenetic 396 

approaches provided a closer examination of the poorly studied microbial diversity in agricultural 397 

soils. Assessing the individual gene level, as opposed to whole genome transcript level, 398 
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provided more robust results for relating population response to measured nitrification reactions, 399 

presumably due to higher sequence coverage (less noise). Even though a direct comparison at 400 

the genome level between AOB, NOB and comammox AOB was not possible due to the lack of 401 

recovered MAGs representing AOB and NOB populations, analysis of individual 16S and 402 

nitrogen cycling genes elucidated the importance of AOB and NOB in the microcosm 403 

experiments. Our results showed that even though betaproteobacterial amoA transcripts 404 

responded to the addition of ammonium and urea, the relative abundance of comammox amoA 405 

transcripts was stable (i.e., not responding to the nitrogen amendment), although comammox 406 

populations were relatively more abundant than AOB in the microcosms. This observation is 407 

consistent with previous metagenomic results from the same agricultural soil, where comammox 408 

amoA genes and the organisms encoding these genes represented the highest fraction of 409 

nitrifying bacteria (14). The differences between measured genes and transcripts indicated that 410 

the incubation conditions favored the activity of Betaproteobacteria over comammox nitrifying 411 

bacteria, suggesting ecophysiological differences among these taxa for the incubation 412 

conditions or added substrates compared to field conditions.  413 

 The sequencing of isolates and environmental AOA genomes has shown that even 414 

though they encode an AmoA protein, they lack a canonical hydroxylamine oxidation pathway 415 

(19). Previous studies have proposed that nitric oxide is essential for hydroxylamine oxidation to 416 

nitrite in archaea (20). The proposed mechanism involves oxidation of ammonium to 417 

hydroxylamine followed by oxidation to nitrite catalyzed by a putative Cu-protein that uses nitric 418 

oxide as co-reactant for the oxidation of hydroxylamine. Interestingly, nitric oxide has been 419 

proposed to be derived from the activity of the NirK enzyme present in all AOA sequenced 420 

genomes. Our results show that unlike AOA amoA or bacterial nirK transcripts, 421 

Thaumarchaeota nirK transcripts increased in abundance in the incubated soils, supporting the 422 

abovementioned hypothesis. Therefore, even though AOA amoA transcripts did not show clear 423 

changes in abundances compared to their bacterial counterparts, these results might be in 424 
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agreement with the previous hypothesis, and likely denote an unaccounted role for 425 

Thaumarchaeota nirK in nitrification in agricultural soils. 426 

Multi-omic limitations 427 

Soil samples are challenging to analyze not only because of their heterogeneous 428 

structure and chemical composition, but also because of the highly diverse microbial 429 

communities and slow growth kinetics. Despite the advancements presented here, there are still 430 

opportunities for further improvements. For instance, here we analyzed total RNA extractions 431 

from soils where ribosomal rRNA transcripts represented 94-98% of the total sample, limiting 432 

our study to a small fraction of transcripts related to functional genes. Current experimental 433 

approaches offer successful rRNA depletion for environmental samples, when RNA yields are 434 

not limiting (21). Additionally, all the results represented here provide only relative abundances 435 

for measured microbial markers. For instance, approaches such as qPCR or internal standards 436 

spiked into the DNA or cDNA library for sequencing (21) can strengthen and provide improved 437 

quantification compared to those presented here.  438 

Metaproteomics offered an additional layer of information for the microbial activity, but it 439 

was less comprehensive compared to metagenomes and metatranscriptomes. Even though our 440 

database for proteomic analyses included a high fraction of nitrification proteins predicted from 441 

these agricultural soils, only peptides belonging to the NxrB were detected. The results obtained 442 

were attributable, at least partially, to the low biomass, especially for the low abundance 443 

nitrifiers targeted here. Further, possible protein extraction biases due to the complexity of soil 444 

matrices as well as limited extraction of membrane proteins, such AmoA, might have also 445 

influenced the outcome of our efforts (22). Nonetheless, the abundances for several peptides 446 

belonging to housekeeping proteins of nitrifier organisms were increased during the incubation 447 

time, consistent with the results from metagenomic and metatranscriptomic approaches. 448 

Therefore, metaproteomics provided a qualitative confirmation of the underlying nitrification 449 
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processes ongoing during our incubations and of the responsible taxa. Alternative proteomic 450 

approaches focused on a preselected set of proteins (i.e., selected reaction monitoring or target 451 

proteomics) could be used to explore low abundance nitrification proteins. For instance, 452 

targeted proteomic approaches have been used to study proteins in low abundance involved in 453 

bioremediation pathways in highly-diverse environmental systems (23). Therefore, targeted 454 

proteomics might offer new opportunities for researchers interested in detecting low-abundance 455 

peptides and prediction of process rates in complex samples (24).  456 

The analyses of different omic levels obtained from the incubations showed a high 457 

correspondence between nitrification gene markers and nitrification process rates. The gene 458 

fragments and transcripts were mostly affiliated to novel nitrifier populations similar to those 459 

previously described in field soil metagenomes from the same agricultural site (14). Therefore, 460 

the gene and genome sequences reported here could facilitate future investigations of nitrogen 461 

cycling in agricultural fields; for instance, by applying qPCR assay targeting the key taxa and 462 

biomarker genes and transcripts. The combination of metagenomic and metatranscriptomic 463 

approaches used in our study provided a promising strategy for examining microbial activity in 464 

agricultural soil environments. Therefore, the findings presented here highlighted the potential of 465 

omics data to serve as reliable proxies for examining microbial processes in situ, especially in 466 

soils, which has been proven to be among the most challenging tasks for environmental studies. 467 

 468 

MATERIALS AND METHODS 469 

Soil Sampling 470 

Our study was focused on an agricultural plot located in the Havana County, Illinois, 471 

USA (lat 40.296, long 89.944; elevation, 150 m). The site is representative of the US Midwest 472 

and has a long history of conventionally managed corn and soybean crop rotation. In October 473 

2014, we collected ~2 kg of bulk soil from a 20-30 cm soil depth as previous results have shown 474 

significant presence of ammonia-oxidizing microorganisms in this layer (14).  475 
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 476 

Soil Incubations, Gas and Chemical Analyses 477 

Soil microcosms were established in triplicates, using ~120 g of soil (~8% moisture 478 

content) in 500 ml gas-tight canning jars equipped with gas sampling ports, and were sampled 479 

at six time points (0, 10, 24, 48, 120, and 192 hours). To set up the microcosms, 6 ml of 40 mM 480 

NH4Cl and 20 mM urea (80 mM N) in water used for irrigation at the site was added to two 481 

separate batches of 400 g of soil (Final concentration= 1.2 µmoles-N/g or 18.3 µg-N/g dry 482 

weight). Two stable isotope treatments were done, one for NH4Cl (50% 15N-NH4Cl and 50% 14N-483 

NH4Cl) and one for urea (50% 15N-NH2CONH2 and 50% 14N- NH2CONH2). The two treatments 484 

allowed for differentiating how the products of nitrification differed between urea and NH4Cl 485 

when both were present. After vigorously mixing, 120 g were dispensed into three separate 486 

microcosm jars and incubated in a dark growth chamber with diurnal temperature fluctuation of 487 

22-24 ºC as observed in Havana field soil at 20-30 cm during the spring fertilization period (early 488 

June). Triplicate microcosms each receiving 6 ml of filtered irrigation water (no nitrogen 489 

amendment) served as controls. After each sampling point, headspace gas was collected from 490 

closed jars and the N2O concentration was measured on a Shimadzu GC-2014 gas 491 

chromatograph (Columbia, MD) equipped with an electron capture detector. Jars were opened 492 

for soil sampling and to reestablish equilibration with atmospheric air before being resealed until 493 

the next sampling. Residual ammonium and nitrate in soil subsamples (20 g) were extracted in 494 

2 M KCL and the concentrations were determined using colorimetric analysis on a flow injection 495 

auto-analyzer (Lachat Instruments, Milwaukee, WI) (25). Soil pH (1:1 in water) and gravimetric 496 

water content were measured at each time point (Supplementary Table 1). 15N isotopic 497 

composition of N2O in collected jar headspace samples was determined using an IsoPrime 100 498 

isotope ratio mass spectrometer interfaced with an IsoPrime trace gas analyzer (Cheadle 499 

Hulme, UK) at the University of Illinois at Urbana-Champaign. The 15N atom % enrichment of 500 

the NO3
- pool was determined using acid trap diffusion (26) and analysis of the diffusion disks 501 
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on a Vario Micro Cube elemental analyzer (Elementar, Hanau, Germany) interfaced to an 502 

IsoPrime 100 continuous flow isotope ratio mass spectrometer (Cheadle Hulme, UK). 15NO3
-503 

 and 15N2O production rates were calculated from the change in 15NO3
- and 15N2O 504 

concentrations, respectively, from one time point to the following sampling time point. NO3
- and 505 

N2O production rates were estimated from the 15NO3
- and 15N2O production rates based on the 506 

mean 15N excess atom % of the NH4
+ source pool (27). No inhibitors of nitrogen cycle pathways 507 

were used in the incubations. 508 

 509 

Nucleic Acid Extractions 510 

DNA was extracted from ~0.5 g of soil using a modified phenol-chloroform and 511 

purification protocol as previously described (28). For RNA extraction, 2 gr of soil was preserved 512 

in LifeGuard (MoBio) and stored at -80C. A modified protocol derived from the PowerMax Soil 513 

DNA kit for extracting RNA was used for total RNA extractions (MoBio). TURBO DNAse 514 

(Ambion) was used to remove DNA according to the recommendations of the manufacturer. 515 

Nucleic acid extracts were quantified using Quant-it ds DNA HS and HS RNA assays 516 

(Invitrogen) according to the instructions of the manufacturer. RNA quality was assessed using 517 

Agilent RNA 6000 pico kit (Agilent Technologies) and samples having RNA integrity number 518 

(RIN) above 7 were used. 519 

 520 

Nucleic Acid Sequencing 521 

For metagenomes, dual-indexed DNA sequencing libraries were prepared using the 522 

Illumina Nextera XT DNA library prep kit according to manufacturer’s instructions, except that 523 

the protocol was terminated after isolation of cleaned amplified double stranded libraries. For 524 

metatranscriptomes, single-indexed cDNA sequencing libraries were prepared using ScriptSeq 525 

v2 protocol using ~25 ng of total RNA as input. All DNA and cDNA library concentrations were 526 
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determined by fluorescent quantification using a Qubit HS DNA kit and Qubit 2.0 fluorometer 527 

(ThermoFisher Scientific) according to manufacturer’s instructions and samples were run on a 528 

High Sensitivity DNA chip using the Bioanalyzer 2100 instrument (Agilent) to determine quality 529 

and average library insert sizes. An equimolar mixture of the libraries was sequenced on an 530 

Illumina HiSEQ 2500 instrument (School of Biological Sciences, Georgia Institute of 531 

Technology) for a rapid run of 300 cycles (2 x 150 bp paired end) using the HiSeq Rapid PE 532 

Cluster Kit v2 and HiSeq Rapid SBS Kit v2 (Illumina). Adapter trimming and demultiplexing of 533 

sequenced samples was carried out by the Illumina software, according to the 534 

recommendations of the manufacturer. 535 

 536 

Short-read Analyses 537 

Metagenomic and metatranscriptomic raw reads (FASTQ) for all samples were trimmed 538 

using SolexaQA (29) using a Phred score cutoff of 20 and minimum fragment length of 50 bp. 539 

Short-reads derived from metatranscriptomes were merged using PEAR using default 540 

parameters (30). Average coverage for each sequenced metagenome was determined by 541 

Nonpareil (15) using default settings except that 2,000 reads were used as query (-X option) 542 

(Supplementary Tables 3 and 4). 543 

Short-read sequences encoding 16S rRNA gene fragments were extracted from each 544 

metagenome and metatranscriptome by SortMeRNA (31) and their taxonomy was assigned 545 

using RDP classifier (cutoff 50) (32).  546 

To identify and quantify reads encoding specific protein sequences of interest, we used 547 

the previously published protein sequences as references (14) for the archaeal ammonia 548 

monooxygenase alpha subunit (AmoA), bacterial AmoA, hydroxylamine oxidase (HaoA), nitrite 549 

oxidoreductase alpha subunit (NxrA), nitrite reductase (NirK), nitric oxide reductase beta subunit 550 

(NorB), nitrous oxide (NosZ), nitrite reductase (NrfA) and DNA-directed RNA polymerase 551 

subunit beta (RpoB). Independent ROCker (33) models (length=125 bp) were subsequently built 552 
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based on these reference protein sequences with the exception of NarG and NxrA, where the 553 

sequences were combined into a single model. Trimmed short-reads from soil metagenomes 554 

were used as query for BLASTx searches (e-value 0.01) against the latter protein databases 555 

and outputs were filtered using the previously generated ROCker models. For metagenomes, 556 

target gene abundance in metagenomes was determined as genome equivalents by calculating 557 

the ratio between normalized target reads (number of reads matching divided by median protein 558 

length) and normalized RpoB reads (number of reads matching divided by median RpoB protein 559 

length), a universal single-copy gene. For metatranscriptomes, target transcripts abundance 560 

was calculated as reads per kilobase of transcript per million mapped reads (RPKM). Protein 561 

databases and ROCker models are available through http://enve-omics.ce.gatech.edu/. 562 

 563 

Assembly and Binning of Metagenomic Populations 564 

Short-read metagenomes from control and treatments (t=0,120 and 192 hours) were co-565 

assembled using IDBA_UD v1.1.1 (34) and binning was performed as previously described 566 

(14). Taxonomic classification and degree of novelty (novel species, genus, etc) of the MAGs 567 

were obtained from the Microbial Genomes Atlas (MiGA) webserver (35). MAG abundance was 568 

determined as the total length of all matching metagenomic or metatranscriptomic reads to the 569 

binned contigs from BLASTn searches (identity >=98% and fraction of read aligned >= 50%) 570 

divided by the metagenomic or metatranscriptomic sample sizes (in millions of reads) and the 571 

length of the bin genomes in Kbp (Kilo base pairs). Reads encoding rRNA sequences (such as 572 

5S, 5.8S, 16S, and 23S) were identified by SortMeRNA, and removed for non-rRNA analyses in 573 

order to avoid overestimating abundances. 574 

Phylogenetic reconstruction of MAGs was performed based on the concatenated 575 

alignment of universal single-copy proteins identified for each bin using the “HMM.essential.rb” 576 

script of the enveomics collection (36). For this, thirty bacterial proteins present in the 577 

corresponding bins MAGs were extracted and multiple alignments for each protein were 578 
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generated using ClustalΩ. Concatenated alignments without invariable sites were generated for 579 

archaeal and bacterial alignments using the script “Aln.cat.rb”. Phylogenetic reconstructions 580 

were determined using in RAxML v8.0.19 (-f a, -m PROTGAMMAAUTO, –N 100) and visualized 581 

in iTol. 582 

 N cycle protein sequences in the co-assembly and MAGs were detected using hidden 583 

Markov models obtained from FUNGENE (37), using HMMer (38). Detected target N cycle 584 

proteins were manually curated, when necessary, by assessing the presence of characteristic 585 

amino acid and phylogenetic congruency. 586 

 587 

Phylogenetic Trees and Placement of Short-reads 588 

To assess the phylogenetic affiliation of metagenomic or metatranscriptomic reads, reference 589 

and fully assembled protein sequences were aligned using ClustalΩ (39) with default 590 

parameters. Resulting alignments were used to build phylogenetic trees in RAxML v8.0.19 (40). 591 

Short-reads encoding the protein of interest were extracted from metagenomes or 592 

metatranscriptomes using ROCker (BLASTx) and placed in their corresponding phylogenetic 593 

tree using the methodology previously described (14). Quantification of the number of reads 594 

assigned to a specific clade (e.g., to distinguish between nxrA or narG reads) was done using 595 

the “JPlace.distances.rb” script, also available in the enveomics collection. To quantify nirK 596 

gene fragments assigned to specific clades, the same process as described above was 597 

repeated except that all reads detected by multiple ROCker models to previously described 598 

clades (41) (clades I+II, III and Thaumarchaeotea) were used. 599 

 600 

Shotgun Metaproteomics 601 

Approximately 10 g of soil were collected from the 192 hours control and 15N-602 

NH4
+ amended microcosms and stored at -80°C. Frozen soil (5 g) was thawed and suspended 603 

in lysis buffer and boiled for 15 minutes as described previously (42). The supernatant was 604 
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retained and amended with 100% chilled TCA to final concentration of 25% (vol/vol) and kept at 605 

-20°C overnight. Samples were centrifuged at 21,000 x g for 20 min and the protein pellets 606 

processed as described previously (43) and solubilized in 6 M guanidine buffer (6 M guanidine; 607 

10 mM dithiothreitol [DTT] in Tris-CaCl2 buffer (10 mM Tris; , pH 7.8) with 3 hr incubation at 608 

60°C. An aliquot of 25 µl/ sample was retained for protein estimation and the rest of the protein 609 

sample was digested, peptides desalted and solvent exchanged as described earlier (44). The 610 

amount of protein extracted from each sample was calculated using the RC/DC protein 611 

estimation kit (Bio-Rad Laboratories, Hercules, CA, USA) as per the manufacturer’s instructions. 612 

Bovine serum albumin (supplied with the kit) was used as standard for the assay. 613 

All chemicals were obtained from Sigma Chemical Co. (St. Louis, MO), unless specified 614 

otherwise. High performance liquid chromatography- (HPLC-) grade water and other solvents 615 

were obtained from Burdick & Jackson (Muskegon, MI), 99% formic acid was purchased from 616 

EM Science (Darmstadt, Germany) and sequencing-grade trypsin was acquired from Promega 617 

(Madison, WI).  618 

  619 

NanoLC-MS/MS Analysis.   620 

Peptides (75 ug) were loaded onto in-house prepared biphasic resin packed column 621 

[SCX (Luna, Phenomenex, Torrance, CA) and C18 (Aqua, Phenomenex, Torrance, CA)] as 622 

described earlier (44, 45) and subjected to an offline wash for 15  min as previously described 623 

(46). The sample column was aligned with an in-house C18 packed nanospray tip (New 624 

Objective, Woburn, MA) connected to a Proxeon (Odense, Denmark) nanospray source as 625 

previously detailed (46). Peptides were eluted and subjected to chromatographic separation and 626 

measurements via 24-hr Multi-Dimensional Protein Identification Technology (MuDPIT) 627 

approach as described earlier (44-46). Measurements were carried out using LTQ mass 628 

spectrometer (Thermo Fisher Scientific, Germany) coupled to the Ultimate 3000 HPLC system 629 
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(Dionex, USA) and operated in data dependent mode, via Thermo Xcalibur software V2.1.0 as 630 

described earlier (45). 631 

  For protein identification, the raw spectra from each run were searched against a custom 632 

database and was constructed using protein sequences predicted from metagenome 633 

assemblies obtained from the same soil and 20-30 cm depth (14), metagenome assemblies 634 

from incubations (Supplementary Table 2), and reference proteomes for 47 common soil 635 

organisms (Supplementary Table 5). These predicted proteins were used for constructing a 636 

database for metaproteomic searches (available through http:// http://enve-637 

omics.ce.gatech.edu/data/multiomics-soil). Database matching was done via Myrimatch v2.1 638 

algorithm (47) set to parameters described before (48) with minor modifications where static 639 

cysteine and dynamic oxidation modifications were not considered. Identification of at least two 640 

peptides per protein (one unique and one non-unique) sequence was a prerequisite for protein 641 

identifications. Common contaminant peptide sequences from trypsin and keratin were 642 

concatenated to the database. Reverse database sequences were also included in the 643 

database as decoy sequences to calculate false discovery rate (FDR). For data analysis, 644 

spectral counts of identified peptides was normalized as described before (49) to obtain the 645 

normalized spectral abundance factor (NSAF) and the NSAF values were multiplied by a 646 

constant number (100,000) for better visualization and referred to as normalized spectral counts 647 

(nSpc). The nSpc were used to compare expression of proteins across different samples and 648 

different time points. Detected proteins predicted from metagenomic assemblies were annotated 649 

using BLASTp (50) and UniProt database as reference (51) (downloaded in May of 2017). 650 

 651 

Accession numbers 652 

Raw metagenomic and metatranscriptomic soil datasets and MAGs are deposited in the 653 

European Nucleotide archive under study number PRJEB27434.  654 

 655 
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Figure Legends 664 

 665 

Figure 1. Nitrogen pools and fluxes in soil incubations amended with NH4
+ and urea. 666 

Mean NH4
+ and NO3

- concentrations (A), total NO3
- production rate (B), and total N2O production 667 

rate (C) for the nitrogen-amended and control (irrigation water only) microcosms at each 668 

incubation time point. Error bars represent the standard deviation from replicate samples (n=6 669 

for nitrogen-amended and n=3 for control). 670 

 671 

Figure 2. Nitrification genes in incubated soils. A. Relative expression ratios for each 672 

nitrification step in incubated soils were determined at 10, 48, 120, and 192 hours incubation. B 673 

and C show determined RPKM values for bacterial amoA (B), hao (C), thaumarchaeotal amoA 674 

(D), and nirK (E) transcripts from metatranscriptomes.  675 

 676 

Figure 3. Metaproteomic analyses of incubated soils at 192 hours of incubation. Panel A 677 

shows taxonomic affiliation (class) and abundance (average spectral counts) for peptides 678 

detected in control and N-amended incubations. Panel B shows summarized functional 679 

annotation of detected peptides using SEED functional categories. 680 
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