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Abstract 
Path integration is a vital function in navigation: it enables the continuous 
tracking of one's position in space by integrating self-motion cues. Path 
integration abilities vary across individuals but tend to deteriorate in old age. 
The specific causes of path integration errors, however, remain poorly 
characterized. Here, we combined tests of path integration performance with 
a novel analysis based on the Langevin diffusion equation, which allowed us 
to decompose errors into distinct causes that can corrupt path integration 
computations. Across age groups, the dominant errors were due to noise and 
a bias in speed estimation. Noise-driven errors accumulated with travel 
distance not elapsed time, suggesting that the dominant noise originates in 
the velocity input rather than within the integrator. Age-related declines were 
traced primarily to a growth in this unbiased noise. Together, these findings 
shed light on the contributors to path integration error and the mechanisms 
underlying age-related navigational deficits. 
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Introduction 
Spatial navigation is a complex behavior that combines many computations, 
including the storage and recall of information, the integration of information from 
multiple sensory and non-sensory brain areas, planning, prediction, and decision 
making. A vital component of navigation-related computations is path integration – 
the integration over time of a self-motion estimate, in the strict sense of vector 
calculus, to maintain an updated estimate of one's position and orientation while 
moving through space. 

Self-motion estimates themselves derive from a sophisticated pooling over multiple 
sensory modalities, and rely on proprioceptive and vestibular information, visual optic 
flow signals (i.e., the pattern of apparent motion of objects, surfaces and edges), as 
well as motor efference copies that are produced during movement (Etienne & 
Jeffery, 2004). After being processed in their respective low-level sensory systems, 
these cues are integrated in brainstem nuclei as well as cortical structures (area 
MST) to allow an overall estimation of angular and linear movement velocity (Bassett 
& Taube, 2001; Biazoli et al., 2006; Angelaki & Cullen, 2008; Britten, 2008; Clark et 
al., 2012; Cullen, 2012; Butler & Taube, 2015). The integration of these cues is an 
error-prone process, and previous studies have demonstrated that path integration 
abilities therefore vary largely across individuals (Loomis et al., 1993; Klatzky et al., 
1999; Chrastil et al., 2017). However, we have only a limited understanding of the 
specific sources of error that may corrupt path integration computations. In this work, 
we obtain quantitative measurements of path integration performance in subjects of 
different ages and develop and apply a method to decompose the observed path 
integration errors into components that can shed light on the mechanisms that 
underlie the observed errors (cf. Brunton et al., 2013). 

A circuit that functions as a path integrator for two-dimensional space must do the 
following: take as input the given two-dimensional velocity signal; remember the 
previous integrated state; increment the previous integrated state by adding to it a 
quantity proportional to the instantaneous velocity input. There are thus several 
natural sources of error: First, the velocity estimate might be wrong, with systematic 
bias or unbiased noise. Second, the integrator might remember its past states in a 
leaky way, so that there is a decay of information over time. Third, the velocity input-
based increments might be summed with a scaling or gain prefactor that differs from 
the value required to match the instantaneous displacement. Fourth, the integrator 
might itself be noisy.  

These errors accrue over the course of a spatial movement trajectory, and the net 
localization error at path's end will depend on the details of the trajectory. Thus, 
properly modeling and decomposing these errors requires iteration of a temporal 
dynamics, a statistical model that incorporates these dynamics, and sufficiently rich 
and varied spatial trajectories in the input data. One final error arises when a 
downstream neural circuit or the human experimenter attempt to obtain a readout or 
report of the internal state of the integrator.  

Our goal in the present work is not only to understand the contributors to path 
integration error, but also to reveal sources of age-related degradation in navigation 
performance. Specifically, aging has deleterious effects on path integration ability, 
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with declines in the triangle completion task (Loomis et al., 1993) – a standard assay 
of path integration performance (Allen et al., 2004; Mahmood et al., 2009; Adamo et 
al., 2012; Harris & Wolbers, 2012). Older adults are less accurate in reproducing 
travel distances or rotations (Mahmood et al., 2009; Adamo et al., 2012; Harris & 
Wolbers, 2012), and they exhibit worse path integration performance even if 
additional landmark information is available (Harris & Wolbers, 2012; Bates & 
Wolbers, 2014). Despite the sizeable body of research on losses in path integration 
performance with age, little is known about which specific aspects of the path 
integration computation or process are most affected in old age. 

To address this important question, we combine an immersive virtual reality path 
integration experiment with a novel mathematical approach to reveal the sources of 
path integration error. We characterize the different contributors to error across 
subjects, and study group differences between young and older adults. 

Results 
Young and older adults experienced a virtual reality environment from a first-person 
perspective via a head-mounted display (HMD). When participants moved in the real 
world, their movements were translated into movements (i.e., changes in location 
and viewing orientation) in the virtual environment, allowing them to walk around 
within the virtual world and use both body-based and visual self-motion cues to 
estimate their changing location. 

For the path integration task, subjects were asked to track their own position and 
orientation as they were guided through this environment along pre-defined but 
unmarked curved paths (Figure 1). Each path had four intermediate stopping points, 
at which participants were asked to stop and report their estimate of the direct 
distance and direction to the path’s starting point.  

Most participants showed a characteristic increase in path integration error over the 
course of their trajectories (Figure 2A). We first pooled path integration errors across 
individuals, separately for the group of young and older adults, and evaluated 
whether participants’ performance in the path integration task was better than 
random guessing. Indeed, estimates of location were highly correlated with true 
location (Figure 2B; r = 0.64 to 0.94, all p < 0.00001) while shuffled responses 
across trials (corresponding to different trajectories) per stopping point exhibited 
much larger squared errors (Figure 2C). 

Dynamical model of errors 

Next, we built and fit a temporally-resolved computational model of participants’ 
responses to disentangle different sources of path integration error. Path integration 
was modeled as a continuous updating of an internal location estimate by an 
integrator receiving a time-varying velocity estimate. The process was assumed to 
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be corrupted over time by the following error sources: under- or overestimation of 
velocity (velocity gain bias), leaky integration of the velocity signal (memory decay or 
leak), an additive location bias (additive bias, AB), and ongoing zero-mean Gaussian 
additive noise (accumulating noise, AN), which accumulates and could be 
interpreted as originating in either the velocity input to the integrator or within the 
integrator. In our default “full model”, the accumulating noise is naturally interpreted 
as driven by the velocity input, as it accumulates during the trajectory and in 
proportion to travel distance, but does not accumulate during stopping points. In an 
alternative formulation that we tested, the noise accumulates over time instead of 
travel distance (i.e. it also accumulates during stopping points), and thus would be 
more naturally interpreted as internal to the integrator (as described in more detail 
below). In addition, we assumed that the participants’ reports of distance and angle 
to the starting point are imperfect and corrupted by reporting noise (RN), with 
angular and radial components.  

Model parameters per participant were obtained by the best fit across all paths and 
trials (Supplementary Figure S1). The model captured not only the magnitude of 
errors averaged across paths (Figure 3A), but also predicted with high accuracy the 
full, time-resolved, signed errors at different portions of the several individual paths 
(Figure 3B).  

We then quantified the support for the detailed structure of the full model by 
comparing it to other variants with fewer parameters or different noise models (i.e., 
ongoing noise that accumulated over time instead of travel distance, or a noise that 
remained constant instead of accumulating). We considered reporting noise that was 
proportional in magnitude to the reported variable, or constant in magnitude, or 
absent (Figure 3C). Model comparisons were carried out using both Bayesian 
Information Criterion (BIC) and leave-one-out cross-validation (LOOCV), which 
penalize overly rich models that do not improve prediction performance (see 
Methods section for more details about different model variants and BIC/LOOCV 
model comparisons).  

The full model was highly favored (“very strong” evidence in support, or 
Δ𝐵𝐼𝐶 (Δ𝐿𝑂𝑂𝐶𝑉) ≫ 10) relative to alternatives, including models with no reporting 
noise (Full-AN+CN-AB-RN, Full-RN) or non-accumulating (constant) noise (Full-
AN+CN-AB-RN, Full-AN+CN), consistently across both age groups (Young: Full vs. 
Full-AN+CN-AB-RN, Δ𝐵𝐼𝐶 = 36303, ΔLOOCV = 34743; Full vs. Full-RN, Δ𝐵𝐼𝐶 =
27103, ΔLOOCV = 26089; Full vs. Full-AN+CN: Δ𝐵𝐼𝐶 = 2035, ΔLOOCV = 2021; Old: 
Full vs. Full-AN+CN-AB-RN, Δ𝐵𝐼𝐶 = 30731, ΔLOOCV = 32124; Full vs. Full-RN, 
Δ𝐵𝐼𝐶 = 22579, ΔLOOCV = 23577; Full vs. Full-AN+CN: Δ𝐵𝐼𝐶 = 1963, ΔLOOCV =
1957). Specifically, the full model outcompeted the Full-AN+CN-AB-RN variant, 
which – with non-accumulating noise, no additive bias in integration, no reporting 
noise, but biased and leaky velocity integration – is the closest analogue to a leading 
existing model of human path integration performance (Lappe et al., 2007, 2011).  

The full model was also much better supported than the alternatives when 
parameters were fit individually for each participant, even after accounting for the 
much larger number of parameters than fitting a common set of model parameters 
by age group (Supplementary Figure S4; Young: Δ𝐵𝐼𝐶 = 7412, Old: Δ𝐵𝐼𝐶 = 5367). 
However, the relative preference for an additive bias in the integrator was 
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inconclusive, and depended on both the comparison method (BIC and LOOCV) and 
subject group (Supplementary Figure S3).  

We next sought to quantify whether accumulating noise in the integrator is better 
explained by ongoing noise as a function of travel distance or elapsed time. In 
principle, the former would be a movement-dependent noise that is likely to arise 
from external velocity inputs to a neural integrator, while the latter is likely to arise 
within the integrator, due for instance to noise within the grid cell circuit in entorhinal 
cortex (Hafting et al., 2005; Burak & Fiete, 2009). We therefore compared the full 
model, which assumes the accumulated noise scales with traveled distance, with the 
“time model” variant that assumes a scaling with elapsed time, and found much 
stronger support for the full model across both subject groups (Figure 4A and 
Methods; Young: Δ𝐵𝐼𝐶 = 194, ΔLOOCV = 222; Old: Δ𝐵𝐼𝐶 = 525, Δ𝐿𝑂𝑂𝐶𝑉 = 533).  

More directly, we compared total error on trajectories in which subjects stopped 
versus did not stop at intermediate stopping points. Participants completed 48 paths 
in total, out of which 18 involved a stop only at the endpoint; in the remaining 30 
paths, subjects also stopped at three intermediate stopping points to report the 
distance and angle to the starting point (see Methods section for more details). Since 
the different paths had very similar total length (17.7 ± 0.1 meters, mean ± SD), the 
total travel distances were similar over stopping and non-stopping trajectories, but 
the travel times differed substantially (88.7 ± 12.4 seconds versus 35.2 ± 3.9 
seconds, mean ± SD). Nevertheless, path integration errors were very similar for 
stopping and non-stopping trajectories (Figure 4B), indicating that errors were 
mainly determined by the traveled distance instead of elapsed time, and therefore 
suggesting that the dominant source of accumulating noise is in the velocity inputs 
rather than within the integrator. 

Moreover, given that paths had similar total lengths, the time-scaling model would 
predict a negative correlation between walking speed and path integration error: 
walking faster permits faster completion of the trajectory. However, we found little 
evidence for such negative correlation in the data (Figure 4C). 

We next used the full model to assess the relative importance of the different 
sources of error during the task. To do so, we calculated the relative influence of 
each bias and noise parameter on the predicted square error (see Methods section 
for more details). We found the largest influence on total squared error to be from 
accumulating unbiased noise (50-55%) and the velocity gain bias (25-26%), followed 
by radial (14-15%) and angular (12-13%) reporting noise (Figure 3D). In contrast, 
the influence of both additive bias and memory leak were very small (< 3%), 
suggesting that the integrator itself is well-tuned to eliminate leak and internal bias 
and that the errors are due to velocity misestimation, with contributions from both an 
unbiased ongoing noise and a biased multiplicative gain in estimating speed.  

Note that the result that the largest contribution to the error in the full model is from 
accumulating noise (Figure 3D) does not contradict the result that the introduction of 
reporting noise causes the largest increase in model fit (Figure 3C). Intuitively, 
Figure 3C can be interpreted as a measure of 'error shape', namely how different 
sources of error grow with traveled distance and distance to the starting point, while 
Figure 3D measures 'error size' in the context of the full model. In models without 
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reporting noise, all errors have to be fit by a single noise source of incorrect shape, 
which causes the large discrepancy in Figure 3C. 

Age-related differences in path integration  

Older adults performed less well in the path integration task compared to young 
adults. Absolute path integration errors were significantly higher in older adults by 
the first stopping point, and continued to be higher at all subsequent stopping points 
along the path (Figure 5A; stopping point #1: p = 0.016; #2: p = 0.004; #3: p = 
0.005; #4: p = 0.005). Moreover, incremental path integration errors or the gain in 
error between adjacent stopping points (pooled over all stopping points; see 
Methods section for more details) were significantly higher for older relative to young 
adults (Figure 5B; p = 0.001). 

To determine the underlying reason for the differential performance of older and 
young adults, we fit our computational model parameters individually across 
subjects, and then compared the extracted parameters between age groups. Older 
adults had a significantly larger additive bias (p = 0.001), a significantly larger 
amount of accumulating noise (p = 0.018), and greater memory leak (p = 0.035) than 
young adults (Figure 5C). However, some of these parameters had only a small 
overall contribution to the total error; comparing each parameter’s contribution to 
overall path integration error between age groups revealed that only the 
accumulating noise (p = 0.012) had a significantly higher contribution to error in older 
relative to young adults (Figure 5D), suggesting that velocity estimation degrades in 
relatively unbiased ways, to become noisier in older relative to young humans.  

Discussion 
We used a novel immersive virtual reality path integration task in which young and 
older adults tracked their own pose (position and orientation) using visual and body-
based motion cues while travelling along sinuous paths. Simultaneously, we 
developed a powerful analysis approach based on stochastic differential equations 
(the Langevin equation) to decompose path integration errors into temporally 
resolved gain, leak, bias, and noise terms and to estimate, on a trial-to-trial basis at 
different times along the path, how these different sources of error contribute to the 
location estimation error. In addition to sources of accumulating error, the analysis 
also included the possibility of errors in the generation of an explicit report of an 
internal estimate of the displacement vector, as subjects are asked to provide (at 
each stopping point). We performed mathematical inference of model parameters 
using an approach based on the Extended Kalman Filter. Disentangling the different 
sources of error allowed us to compare their influence on path integration errors 
across participants and between age groups. 

A central assumption of our analysis is that observers track and use self-motion cues 
to continuously update their internal estimates of pose. However, path integration 
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performance can also rely on a “configural strategy”, in which participants store the 
configuration of a path (i.e. segment lengths and turn angles) and only compute a 
homing response when required (Wiener et al., 2011). This strategy is often 
observed when the outbound path can be easily segmented into turns and distances 
– such as in the popular triangle completion task – and it can induce systematic 
biases such as a tendency to regularize turns and distances to canonical values 
(e.g., isosceles triangles or right-angle turns; Sadalla & Montello, 1989). To eliminate 
these confounds, we used irregularly shaped sinuous paths, in which translations 
and rotations were combined into curved trajectories. In addition, we asked subjects 
to report their internal estimates of the homing vector at intermediate stopping points. 
These strategies strongly encourage participants to continuously update their 
displacement estimates based on motion cues over the task.  

Previous work by others including Lappe and colleagues (2007, 2011) examined 
distance misestimation when subjects indicated the magnitude of their displacement 
along straight or veering outbound paths, reporting that subjects systematically 
underestimate longer displacements. By contrast, we find that the dominant error in 
estimating two-dimensional displacement vectors comes from unbiased noise; 
systematic biases in leak and velocity gain contribute only modestly to total error. 
There are at least two ways in which the setups differ: First, the studies use different 
models to decompose error. All observed errors in Lappe et al. were projected onto 
two terms, the degree of leak in integration and the gain in velocity estimation. Our 
model included these terms but also allowed for accumulating noise and reporting 
errors, permitting richer possible interpretations of the possible contributors to the 
total error. To address whether the richer model is justified by the data, we 
performed Bayesian model comparison and cross-validation, and showed that the 
richer model exhibits better performance on unseen data than the simpler one. Thus, 
it is implausible that subjects exhibit substantial biases in velocity gain that are not 
discovered by the analysis model. Second, the subjects in Lappe et al. (2007, 2011) 
have access only to optic flow for motion estimation, while subjects in our study 
additionally have access to richer, body-based motion cues including vestibular 
signals. In rodent studies, when motion cues are less rich (passive transport on 
trolleys; head-fixed animals in virtual environments), displacements are 
underestimated, similar to the finding in Lappe et al., suggesting that a decreased 
availability of sensory motion cues in Lappe et al. may account for the dominant 
contribution of a velocity estimation bias in their findings. 

Previous work (e.g., Petzschner & Glasauer, 2011; Petzschner et al., 2015) has 
considered the possibility that subjects learn and subsequently exploit information 
about regularities in the tasks they must perform. In a Bayesian interpretation, this 
information can be incorporated into prior assumptions or biases on the values that 
variables and parameters can take. Subjects have likely not performed the tasks we 
designed enough times to form useful priors to improve task performance over naive 
path integration, and the tasks have little repeatable or regular structure to be 
exploited. Nevertheless, the ability of our analysis method to isolate different sources 
of error and their impact on individual path integration performance can make it 
possible for future studies to investigate the existence or learning of biases, including 
ones related to a priori assumptions about the structure of the world.  
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Our discovery that path integration errors in (both young and old) human subjects 
are mainly explained by an unbiased noise – resulting in a random diffusion of the 
estimated locations away from their true values – suggests that both velocity 
estimation and integration are well-tuned to be fairly unbiased processes, i.e. that 
velocity is estimated with a gain near unity, and that integration is largely non-leaky. 
The unbiased noise must arise at some stage along the path integration process, 
and thus could in principle arise within the integrator (Compte et al., 2000; Brody et 
al., 2003; Boucheny et al., 2005; Wu et al., 2008; Burak & Fiete, 2009, 2012) or in 
the velocity inputs delivered to it. Given the large body of research suggesting that 
grid cells may be the neuronal substrates of path integration (Hafting et al., 2005; 
Fuhs & Touretzky, 2006; McNaughton et al., 2006; Burgess et al., 2007; Guanella et 
al., 2007; Hasselmo, 2008; Burak & Fiete, 2009; Gil et al., 2018; Stangl et al., 2018) 
noise within the path integrator might correspond to stochastic processes in the 
neurons or synapses of the grid cell system. Noise in the velocity input is likely to 
have a more diffuse origin in the sensing and sensory processing systems that 
extract velocity estimates from diverse sensory cues across the visual, vestibular, 
and proprioceptive pathways (Angelaki & Hess, 2005; Angelaki & Cullen, 2008; 
Laurens & Angelaki, 2011). 

To refine our understanding of the source of noise in the integration pathway, we 
compared the default version of our model, in which the unbiased path integration 
noise accumulates with the travel distance along a trajectory, with a model variant 
with time-scaling of this noise. Direct comparisons between these two models 
showed that internal path integration noise mainly scales with traveled distance 
rather than elapsed time. This finding suggests that the main part of the 
accumulating noise in the path integrated location estimate stems not from noise 
intrinsic to the path integrator, which would tend to accumulate over time regardless 
of input, but from the sensing or sensory processing systems that compute self-
motion estimates, and whose estimates must be noisy. Together with similar findings 
in non-spatial (Kiani et al., 2013) and spatial evidence accumulation tasks (Pinto et 
al., 2018), these results suggest an emerging principle in the neurobiology of 
integrators: that the dominant source of noise in the output of neural integrators is in 
the inputs rather than within the integrator circuit.  

The present work also shows that path integration performance is reduced in older 
as compared to young adults, in line with previous studies (Mahmood et al., 2009; 
Adamo et al., 2012; Harris & Wolbers, 2012; Bates & Wolbers, 2014). Further, we 
were able to determine the dominant sources of error in older subjects and thus 
determine which of the sources of error already found in young subjects is most 
magnified as subjects age. Comparing the components of error in young and older 
adults revealed a significantly higher magnitude of unbiased noise in path integration 
computations of older adults, while other sources of error were not significantly 
different between age groups. In other words, the biggest source of error in young 
adults – accumulating unbiased noise likely arising from imperfect velocity estimation 
but possibly with some additional contributions of noise internal to the integrator – is 
further magnified in aging adults, while the smaller sources of error are not 
significantly compromised with age. Notably, older adults do not appear, at least in 
our experimental setup, to acquire major additional biases in their speed estimates 
or become substantially more inaccurate in their reporting of their internal location 
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estimates. Rather, the most fragile part of the path integration process in younger 
subjects is most affected with aging.  

What could potentially cause increased accumulating noise in older adults? Recent 
evidence from neuroimaging studies indicates that signatures of grid-cell-like activity 
in human entorhinal cortex are reduced in old age, and this reduction is associated 
with larger path integration errors (Stangl et al., 2018). Certain aspects of the 
vestibular system also deteriorate with age (for a review, see Allen et al., 2016), and 
vestibular loss affects path integration performance (Glasauer et al., 2002; Xie et al., 
2017). These findings support the possibility that an increase in noise on a neuronal 
level, possibly from a loss of the signal-to-noise ratio from degrading circuitry in the 
grid cell or the vestibular system may be responsible for deficient computations of 
pose in old age. Alternatively, deficient processing of proprioceptive or optic flow 
information in cortical and sub-cortical structures could be responsible for noisy 
inputs to the path integration circuit in older adults. It therefore remains an important 
goal for future studies to determine which specific factors underlie increased internal 
noise in older adults' path integration computations. 

Together, we have shown here that path integration error in both young and older 
adults is mainly caused by accumulating unbiased noise, whereas other error 
sources contribute only modestly to total error. Moreover, we found that this noise is 
further magnified in older adults, and therefore accounts for the majority of age-
related path integration deficits. Given the importance of path integration 
computations for spatial navigation, these findings not only advance our 
understanding of the specific contributors to path integration error, but may also shed 
light on the mechanisms that underlie navigational decline in old age. 

Methods 

Participants 

62 healthy humans took part in this study. They had no reported history of 
neurological or psychiatric disease and no reported motor deficits during normal 
walking or standing. All participants reported right-handedness and had normal or 
corrected-to-normal eyesight. 

Informed consent was obtained from all participants in writing before the 
measurements, and the experiment received approval from the Ethics Committee of 
the University of Magdeburg. 

Prior to the study, all participants underwent the Montreal Cognitive Assessment 
(MoCA) screening tool for mild cognitive impairment (Nasreddine et al., 2005). Six 
older adults who did not exceed a MoCA cut-off score of 23 (following Luis et al., 
2009) were excluded from the study and did not participate in any further 
measurements. Consequently, the data of the remaining 56 participants was used 
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for data analyses: The group of young adults consisted of 30 participants (15 
woman, 15 men) aged between 19 and 26 years (M = 22.0, SD = 2.0 years), 
whereas the group of older adults consisted of 26 participants (13 woman, 13 men) 
aged between 62 and 78 years (M = 69.0, SD = 4.6 years). 

Path integration task 

Each participant's path integration performance was measured using a behavioral 
path integration task, in which they had to track their own position during movement 
along pre-defined sinuous paths. 

In commonly used path integration tasks for humans, such as the triangle completion 
task (Fujita et al., 1993; Harris & Wolbers, 2012), participants traverse a path and 
only estimate the distance and direction to the starting location at the end of the 
path. In the current study, we used a task in which participants were asked at four 
different points along the path to estimate the distance and direction to the path's 
starting point (Figure 1A). Multiple distance and direction judgments per path were 
used for three reasons: First, it results in a larger number of data points (i.e., 
participant responses) in a similar amount of time, enabling a more reliable 
estimation of path integration errors. Second, it allows us to characterize the 
accumulation of the path integration error along longer and more complex paths. 
Third, responses from multiple points along the path can allow for a more precise 
estimation of path integration errors. Specifically, when complex paths are used, a 
participant may become disorientated in some trials as they move along the path, 
and the chances of this occurring increase with the distance traversed. When only 
one response is collected at the end of the path, as per the traditional triangle 
completion task, the participant’s estimate would be random and not provide a valid 
quantification of path integration performance. In contrast, our task samples from 
multiple points along the path meaning that, even if the participant has become 
disorientated at the path’s end point, there are still other data points earlier in the 
path that provide more accurate estimates of path integration performance. 

Prior to the task, participants received written information about the task, and 
completed several practice paths. Participants donned a head-mounted display 
(HMD; Oculus Rift Development Kit 2, Oculus VR LLC, www.oculus.com), so that 
they could not see anything outside the HMD. During the task, participants wore 
earmuffs in order to prevent them from hearing any background sounds. 
Furthermore, they were instructed to immediately inform the experimenter if they 
noticed any external cues that could help them to orient during the task (such as 
hearing, seeing, feeling or smelling something). 

During the task, participants held a wooden stick and were guided by the 
experimenter along a path (Figure 1B). At each of four stopping points along the 
path, the distance to the starting point had to be estimated verbally in meters and 
centimeters, and participants turned their body on the spot to indicate the orientation 
to the starting point, which was measured by the built-in gyrometer of the HMD. 
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Via the HMD, participants saw a virtual environment, which consisted of a ground 
plane and distant landmark cues (Figure 1C). The ground plane was designed to 
provide optic flow information during movement, but did not contain any fixed 
reference points or landmark cues. The distal landmarks were rendered at infinity, so 
that participants could use them only to determine their heading direction but not 
their position or any distance information. The exact position of a participant was 
tracked throughout the task using the Vicon Motion Tracking System with 12 
cameras of type T10 (Vicon, Oxford, UK). The participant's viewpoint within the 
virtual environment was constantly updated depending on their actual position and 
movement, so that participants could actively walk around in the virtual environment. 
Consequently, in order to keep track of their own position relative to the path's 
starting point, participants could use both body-based and visual self-motion cues to 
perform the path integration task. Specifically, body-based self-motion cues included 
proprioceptive and vestibular representations, as well as motor efference copies that 
are produced during movement, whereas visual self-motion cues included optic flow 
information from the virtual environment and directional information from the 
environment’s distal landmarks (Etienne & Jeffery, 2004).  

There were 10 different pre-defined paths (Figure 1D). Coordinates for each path 
were defined as follows: First, a 4-legged path was created that comprised four 
distances and three turning angles between them. Each distance was either 2, 3.5, 
5, or 6.5 meters, and each angle was either 55, 80, or 105 degrees to the left or to 
the right. Various combinations of distances and angles were used, that fit into a 
rectangular area of approximately 10 x 8 meters (given by the tracking area and size 
of the room in which the experiment took place). On the basis of these 4-legged 
paths, we then created curved paths without corners by using the cscvn-function of 
MATLAB's curve fitting toolbox to calculate a natural interpolated cubic spline curve 
passing through the turning points of the 4-legged path. 

Six paths comprised a mixture of left and right turns, respectively (see Figure 1D, 
path numbers 1 to 6). Two additional paths (path numbers 7 and 9) only comprised 
right turns or left turns, respectively, and these two paths were present also in their 
mirrored version (i.e., the path that had only left turns was present also in its mirrored 
version comprising only right turns, and vice-versa). Directions (left vs. right) of the 
three turning angles per path were counter-balanced between the different paths. 

Critically, the experimenters ensured that participants did not see the real physical 
dimensions of the testing room and the paths before and during the experiment, by 
guiding the participants into the room only after they had donned the HMD. 

Participants completed the path integration task in three blocks. Within each block, 
participants performed each of the 10 paths one time and, in addition, they 
performed the paths 1 to 6 (the ones which had both left and right turns) another 
time without stopping at the first three stopping points but only at the end of the path 
(i.e., only at stopping point 4). Consequently, each participant performed 16 paths 
per block. The order of paths was pseudo-randomized, but the same order was used 
for all participants. There were always at least three different paths between repeats 
of the same path. The virtual environment was different in each block (see Figure 
1C) and the order of environments was randomized across participants. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 12, 2018. ; https://doi.org/10.1101/466870doi: bioRxiv preprint 

https://doi.org/10.1101/466870
http://creativecommons.org/licenses/by-nc-nd/4.0/


 13 

After the 4th and after the 12th path of each block, participants completed three so-
called “standardization paths”, which were needed for data analysis in order to 
correct each participant’s distance estimate for their ability in verbally reporting 
distances using meter/centimeter units (see Methods section on "Calculation of path 
integration errors"). The procedure during a standardization path was similar as 
during a normal path, but a standardization path had only one start point and one 
stopping point, which were connected by a straight line, and participants had to 
estimate the distance between starting and stopping point. Three different distances 
had to be estimated in the following order: 10 meters, 2 meters, 6 meters. Moreover, 
there were short breaks in the middle of each block and between blocks. Figure 1E 
gives an overview over the procedure for each block. 

After completing the task, participants filled out a form in which they were asked 
whether they noticed any external cues that could have helped them to orient during 
the task (such as hearing, seeing, feeling or smelling something), but no participant 
reported such confounding sources of information. Further, all participants were 
asked whether they had recognized that some paths were repetitions of each other, 
but no participant did. 

The path integration task was developed using the WorldViz Vizard 5.1 Virtual 
Reality Software (WorldViz LLC, www.worldviz.com). 

Calculation of path integration errors 

At every stopping point of a path, participants had to estimate the distance to the 
path's starting point verbally in meters and centimeters. Converting an internal 
estimate of location to a verbal estimate is known to be biased (Izard & Dehaene, 
2008). Here we assume that the bias is multiplicative. To measure the bias, we ask 
subjects to walk on straight standardization paths of length 2m, 6m and 10m and to 
report verbally the distance to the starting point. The correction factor for the bias is 
then given by:  

𝑓𝑐𝑜𝑟𝑟  =
𝑑𝑐𝑜𝑟𝑟𝑒𝑐𝑡

𝑑𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒
 

where 𝑑𝑐𝑜𝑟𝑟𝑒𝑐𝑡 is the correct distance of the standardization path (2m, 6m, or 10m, 

respectively), 𝑑𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 is the responded distance, and 𝑓𝑐𝑜𝑟𝑟 is the resulting correction 

factor. For each participant, this led to three different correction factors, one each for 
shorter (derived from the 2m standardization path), middle (derived from the 6m 
standardization path) and longer distances (derived from the 10m standardization 
path). These factors were used to standardize the distance estimates this participant 
reported at normal paths: Whenever the participant’s response distance of a normal 
path was between 0m and 4m, the response was multiplied with the correction factor 
for shorter distances, whereas response distances between 4m and 8m were 
multiplied with the correction factor for middle distances, and response distances 
larger than 8m were multiplied with the correction factor for longer distances. 
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This standardization procedure was done for each block-half separately, in order to 
ensure that standardization was performed using an up-to-date correction factor that 
also accounts for potential temporal changes of a participant’s perception of 
meter/centimeter units that might occur over the course of the experiment: 
Responses for the first half of each block (1st path to 8th path) were standardized 
using correction factors from the first set of standardization paths (i.e., carried out 
after the 4th path of a block), whereas responses for the second half of each block 
(9th path to 16th path) were standardized using correction factors from the second 
set of standardization paths (i.e., carried out after the 12th path of a block). 

At each stopping point, the responded distance (multiplied with the respective 
correction factor 𝑓𝑐𝑜𝑟𝑟) and orientation was used to calculate the “presumed starting 
point”. The x and y coordinates of the presumed starting point according to the 
participant's response were calculated by: 

𝑥𝑝𝑟𝑒𝑠𝑢𝑚𝑒𝑑 =  𝑥𝑠𝑡𝑜𝑝 + 𝑑𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝑖𝑧𝑒𝑑 ∗ cos(𝑜𝑟𝑖𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒) 

𝑦𝑝𝑟𝑒𝑠𝑢𝑚𝑒𝑑 =  𝑦𝑠𝑡𝑜𝑝 + 𝑑𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝑖𝑧𝑒𝑑 ∗ sin(𝑜𝑟𝑖𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒) 

where 𝑑𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝑖𝑧𝑒𝑑 is the standardized response distance, and 𝑜𝑟𝑖𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒  is the 

responded orientation. 𝑥𝑠𝑡𝑜𝑝 and 𝑦𝑠𝑡𝑜𝑝 are coordinates of the stopping point, 

𝑥𝑝𝑟𝑒𝑠𝑢𝑚𝑒𝑑 and 𝑦𝑝𝑟𝑒𝑠𝑢𝑚𝑒𝑑  are the resulting coordinates of the presumed starting point. 

To calculate the so-called "absolute" path integration error 𝐸𝑟𝑟𝑎𝑏𝑠, we then calculated 
the Euclidean distance between the presumed starting point and the path’s correct 
starting point by: 

𝐸𝑟𝑟𝑎𝑏𝑠 = √(𝑥𝑝𝑟𝑒𝑠𝑢𝑚𝑒𝑑 − 𝑥𝑜𝑟𝑖𝑔𝑖𝑛)
2

+ (𝑦𝑝𝑟𝑒𝑠𝑢𝑚𝑒𝑑 − 𝑦𝑜𝑟𝑖𝑔𝑖𝑛)
2
 

where 𝑥𝑜𝑟𝑖𝑔𝑖𝑛 and 𝑦𝑜𝑟𝑖𝑔𝑖𝑛 are the x and y coordinates of the path's correct starting 

point. According to this method, each absolute path integration error reflects the 
error that occurred between the path’s starting point and the respective stopping 
point (i.e., at stopping point 1 it reflects the error between the starting point and 
stopping point 1; at stopping point 2 it reflects the error between the starting point 
and stopping point 2; and so on). Accumulation of this error measure (i.e., absolute 
path integration errors) across all available stopping points, however, would lead to 
an overrepresentation of errors that occurred on early path segments (because 
these errors would be included for both earlier and later stopping points). 

In order to allow for accumulation of path integration errors across stopping points, 
we therefore also used an alternative method to calculate the so-called "incremental" 
path integration error 𝐸𝑟𝑟𝑖𝑛𝑐. For a given stopping point, the Euclidean distance 
between the presumed starting point (according to the participant's response at this 
respective stopping point) and the previously presumed starting point (according to 
the response at the previous stopping point) was calculated by: 

𝐸𝑟𝑟𝑖𝑛𝑐 = √(𝑥𝑝𝑟𝑒𝑠𝑢𝑚𝑒𝑑 − 𝑥𝑝𝑟𝑒𝑣𝑃𝑟𝑒𝑠𝑢𝑚𝑒𝑑)
2

+ (𝑦𝑝𝑟𝑒𝑠𝑢𝑚𝑒𝑑 − 𝑦𝑝𝑟𝑒𝑣𝑃𝑟𝑒𝑠𝑢𝑚𝑒𝑑)
2
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where 𝑥𝑝𝑟𝑒𝑣𝑃𝑟𝑒𝑠𝑢𝑚𝑒𝑑  and 𝑦𝑝𝑟𝑒𝑣𝑃𝑟𝑒𝑠𝑢𝑚𝑒𝑑 are the x and y coordinates of the previously 

presumed starting point (according to the response at the previous stopping point). 
Note that the previously presumed starting point at stopping point 1 is the correct 
starting point of the path (i.e., 𝑥𝑝𝑟𝑒𝑣𝑃𝑟𝑒𝑠𝑢𝑚𝑒𝑑  =  𝑥𝑜𝑟𝑖𝑔𝑖𝑛 and 𝑦𝑝𝑟𝑒𝑣𝑃𝑟𝑒𝑠𝑢𝑚𝑒𝑑  =  𝑦𝑜𝑟𝑖𝑔𝑖𝑛). 

Consequently, this measure of the path integration error reflects only the incremental 
error that occurred on the latest path segment before the stopping point, but does 
not include the error that occurred on earlier segments of the same path. More 
specifically, at stopping point 1 it reflects the error that occurred between the starting 
point and stopping point 1, at stopping point 2 it reflects the error that occurred 
between stopping point 1 and stopping point 2 (not including the error between the 
starting point and stopping point 1), and so on. This method of calculating the path 
integration error allows, for each individual participant, to aggregate all error 
measures from all available stopping points, because each incremental path 
integration error measure includes only the incremental (i.e., unique) error 
contribution of one path segment. 

Computational modeling 

The computational model we use differs from previous models of path integration 
error (e.g., Lappe et al., 2007, 2011) in several ways: First, we use time-resolved 
models in which moment-by-moment errors during a trajectory can interact with the 
moment-by-moment unfolding of the trajectory, and detailed, signed errors can be 
predicted over time. The richer model allows us to distinguish a large number of 
sources of noise and bias, and take into account reporting errors in which subjects 
are only able to report an imperfect representation of their internal location 
estimates. Unlike previous models that fit path-integration biases using trial-
averaged data by minimizing the mean square error (Lappe et al., 2007, 2011), we 
model both biases and variances using a well-defined log-likelihood. This approach 
has several advantages: We can fit a more heterogeneous dataset where each 
trajectory is only repeated a few times, location estimates are weighted inversely 
proportional to the model-predicted variance (mainly influenced by the traveled 
distance), making the fit less biased and more data-efficient, and the log-likelihood 
allows a systematic model-comparison using cross-validation and the Bayesian 
Information Criterion (BIC). 

Throughout this section we use bold-faced letters to refer to two-dimensional 
vectors. We assume that any participant continuously updates an internal, two-
dimensional estimate 𝒙(𝑡) of their location 𝒙(𝑡) using an estimated walking velocity 
𝒗(𝑡). The update process is compromised by memory decay β, velocity gain α, 
additive bias 𝐛, and Gaussian noise 𝛏(t) with standard deviation σ0 (where 𝛏(t) is 

normally-distributed Gaussian noise) according to the following diffusion Langevin 
equation: 

Eq. (1) 

d�̂�(t)

dt
= −β�̂�(t) + α𝐯(t) + 𝐛 + σ0𝛏(t)  

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 12, 2018. ; https://doi.org/10.1101/466870doi: bioRxiv preprint 

https://doi.org/10.1101/466870
http://creativecommons.org/licenses/by-nc-nd/4.0/


 16 

The parameters can be interpreted as follows: 

• Memory decay or leak β: If β = 0, then �̂�(t) is the non-forgetful or perfect 
integral of the right-hand-side of the equation. If β > 0, then �̂�(t) will have 
forgotten about inputs 𝐯(t − τ) with τ ≫ 1/β, thus the process is referred to as 

“leaky integration”.  

• Multiplicative velocity gain or bias α: A value α > 1 corresponds to a 
systematic overestimation of displacement given velocity  𝐯(t), while a value 
α < 1 corresponds to an underestimate. Correct displacement estimation 
occurs when α = 1. 

• Additive bias (AB) 𝐛: Specifies the bias direction along which the location 
estimate is pulled over time. Zero bias corresponds to 𝐛 = 0.  

• Accumulating noise (AN) that is unbiased and additive with standard deviation 
σ0: This noise can be interpreted to originate from a noisy integrator, a noisy 

velocity estimate input, or a mixture of both, depending on whether it adds up 
over time regardless of travel speed or if it scales with speed. Non-noisy 
velocity estimation and integration occur when σ0 = 0. 

In our “full model”, we assume that the noise accumulates during displacements and 
thus grows in proportion to the travel distance. Therefore, the instantaneous value of 
σ0 is taken to be proportional to the square root of the instantaneous velocity 
magnitude (speed) |𝐯(t)|. We consider variants in which this noise instead 
accumulates with elapsed time, independent of speed (see Methods section on 
"Model fitting, Extended Kalman Filter (EKF), and Bayesian model comparison" for 
more details). In a different variant, with constant noise (CN), noise does not 
accumulate at all but an overall unbiased Gaussian noise term whose total variance 
by the end of the trajectory does not scale with travel distance or time is added to the 
model estimate (see below). Within the accumulating noise models, the choice of an 
accumulating noise that scales with travel distance that we use in the full model, is 
better supported by our data (see Results section and Figure 4A).  

Within the full model, we additionally assume that the subjects’ reports of estimated 
distance and angle to the starting point are corrupted by reporting noise (RN) 
(Schmidt et al., 1979; Jones et al., 2002; Faisal et al., 2008; Izard & Dehaene, 2008). 
Given an internally estimated distance d and angle φ, we assume that the reported 

distances d̂ and angles φ̂ are given by: 

 

Eq. (2) 

d̂ = exp(log(d) + σdηd) 

φ̂ = φ + σφηφ 

where σd and σφ are standard deviations of distance and angular noise, ηd is 

normally-distributed distance noise, and ηφ is normally-distributed angular noise. 

The parameterization of the distance reporting noise is chosen such that for fixed σd, 

the magnitude of the reporting error |d̂ − d| increases approximately linearly with d 

“proportional or Weber-like reporting noise” (RN), in line with Weber’s law (Oberlin, 
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1936; Gaydos, 1958; Cornsweet & Teller, 1965; Fechner, 1966; Indow & Stevens, 
1966; Izard & Dehaene, 2008). We find empirically that this Weber’s law-type 
parameterization of the distance reporting error captures the data better than a linear 
parameterization, which we refer to as “constant reporting noise” (CRN) (see Results 
section and Figure 3C). 

Model fitting, Extended Kalman Filter (EKF), and 
Bayesian model comparison 

Participants report their location estimates only at stopping points after moving along 
path segments. Before we can fit our model parameters to those estimates we first 
need to integrate the stochastic differential equation (1) along segments, a 
calculation that can be performed analytically because eq. (1) describes an Ornstein-
Uhlenbeck process (Uhlenbeck & Ornstein, 1930; Pavliotis, 2014). Assuming that 
participants walk along a trajectory segment for time t with constant velocity 𝐯, the 
conditional distribution of the internal location estimate 𝒙𝑠+1 at the stopping point s +
1 given the estimate at the previous stopping point 𝒙𝑠 is given by the Gaussian 
distribution: 

p(𝒙𝑠+1|𝒙𝑠) = 𝒩(𝒙𝑠+1|𝛍s+1, σs+1
2 I2) 

where I2 is the two-dimensional unity matrix and mean 𝛍s+1 and variance σs+1
2  are 

given by: 

Eq. (3) 

𝛍s+1 = 𝒙𝑠e−βt +
α𝐯 + 𝐛

β
(1 − e−βt)  

σs+1
2 =

σ0
2

2β
(1 − e−2βt) 

This update equation for the distribution of internal estimates can also be expressed 
in terms of the true length |Δ𝐱| of the trajectory segment: 

Eq. (4) 

𝛍s+1 = 𝒙𝑠e−β̃|Δ𝐱| + (α
Δ𝐱

|Δ𝐱|
+ �̃�)

1

β̃
(1 − e−β̃|Δ𝐱|)  

σs+1
2 =

σ̃0
2

2β̃
(1 − e−2β̃|Δ𝐱|) 

where we have rescaled three of the original parameters by the magnitude of the 
walking velocity |𝐯|: 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 12, 2018. ; https://doi.org/10.1101/466870doi: bioRxiv preprint 

https://doi.org/10.1101/466870
http://creativecommons.org/licenses/by-nc-nd/4.0/


 18 

Eq. (5) 

β̃ =
β

|𝐯|
          �̃� =

𝐛

|𝐯|
          σ̃0

2 =
σ0

2

|𝐯|
 

Equations (3) and (4) are equivalent if the walking velocity |𝐯| is truly constant across 

trajectory segments and trials. If the walking velocity does vary, holding the 
transformed parameters (5) fixed assumes that the path integration error of the 
internal location estimate mainly depends on the traveled distance, whereas the 
original model (3) assumes that the path integration error mainly depends on the 
elapsed walking time. In what follows, we will choose the distance model and hold 
the transformed parameters (5) fixed, in line with previous modeling of human path 
integration (Lappe et al., 2007, 2011). We also explicitly test that the distance model 
is better supported by the data than the time model (see Results section and Figure 
4A). 

Fitting model without reporting noise (Full-RN) 

Here we explain how the parameters 𝜃 = (𝛽, 𝛼, �̃�, �̃�0
2) related to integration and  𝜅 =

(𝜎𝑑
2, 𝜎𝜙

2) related to reporting were fit to participants’ performance by maximizing the 

likelihood. For simplicity, consider first a model without the reporting noise 
parameters 𝜅. In this case the internal location estimate 𝒙𝑠 can be directly expressed 

in terms of participants’ report of the distance �̂� and angle φ̂ to the starting point 

𝐱start of the current walking trajectory: 

 

Eq. (6) 

 �̂�s = (
�̂� cos(φ̂)

�̂� sin(φ̂)
) +𝐱start  

Without loss of generality we will set 𝐱start = 0. The log-likelihood of the data 

averaged over trials is given by: 

Eq. (7) 

LLκ=0(θ) = 〈∑ log p(𝒙𝑠+1|𝒙𝑠

3

s=0

; θ)〉𝑡𝑟𝑖𝑎𝑙𝑠 = 〈∑ log 𝒩(𝒙𝑠+1| 𝛍s+1(�̂�𝑠

3

s=0

, θ), σs+1
2 (θ))〉𝑡𝑟𝑖𝑎𝑙𝑠  

where 𝛍s+1(�̂�𝑠, θ) and σs+1
2 (θ) are given by the expressions in eq. (4). We then fit θ 

to the data by maximizing the log-likelihood numerically: 

Eq. (8) 

θML = argmaxθLLκ=0(θ)  
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Fitting model with reporting noise: the full model (Full) 

With reporting noise, the expression for the log-likelihood as a function of Θ = (θ, κ) 

is more involved, since the relationship between the reported estimates �̂� and φ̂ and 
the internal location estimate 𝒙𝑠 is both stochastic and non-linear. We can 

nevertheless make progress by rephrasing the problem in terms of the well-studied 
Extended Kalman Filter (EKF), a framework that permits calculation of the log-
likelihood by locally linearizing the non-linearities (Thrun et al., 2005). The EKF 
framework encompasses a stochastic state transition of a hidden variable 𝒙𝑠 whose 

distribution can be inferred using a noisy observation zs: 

Eq. (9) 

𝒙𝑠+1 = f(𝒙𝑠) + Σ𝑥

1
2𝛏𝒙

 

𝐳s+1 = h(𝒙𝑠+1) + Σ𝑧

1
2𝛏𝒛 

where f and h are arbitrary non-linear functions and Σx and Σz are covariance 
matrices of Gaussian-distributed noise. In our case the state transition is linear in 𝒙𝑠 

and is given as before by eq. (4): 

Eq. (10) 

f(𝒙𝑠) = 𝛍s+1(�̂�𝑠) = 𝒙𝑠e−β̃|Δ𝐱| + (α
Δ𝐱

|Δ𝐱|
+ b̃)

1

β̃
(1 − e−β̃|Δ𝐱|)  

Σx = σs+1
2 I2 =

σ̃0
2

2β̃
(1 − e−2β̃|Δ𝐱|)I2 

To derive the non-linear observation function we need to find a coordinate 
transformation such that in the transformed frame the noise is added linearly. 
According to eq. (2), the noise is added linearly in log-polar coordinates. The 
observation function h(𝒙𝑠+1) therefore corresponds to the transformation from 
cartesian to log-polar coordinates: 

Eq. (11) 

h(𝒙𝑠+1) = (
𝑑(𝒙𝑠+1)

φ(𝒙𝑠+1)
) = (

𝑙𝑜𝑔|𝒙𝑠+1|

𝑎𝑡𝑎𝑛2((�̂�𝑠+1)2, (𝒙𝑠+1)1)
)  

Σz = (
σd

2 0

0 σφ
2 ) 

and the observation 𝐳s+1 is related to the reports �̂� and φ̂ by: 

Eq. (12) 

𝐳s+1 = (
𝑙𝑜𝑔 �̂� 

φ̂
)  
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The EKF framework permits the calculation of two important distributions using 
Gaussian approximations: the posterior distribution of the hidden variable 𝒙𝑠+1 given 
the observations 𝐳1 to 𝐳s  (predictive distribution), and the posterior distribution of 

𝒙𝑠+1 given 𝐳1 to 𝐳s+1 (updated distribution). We denote the mean and covariance of 
these posterior distributions as 

Eq. (13) 

p(𝒙𝑠+1|𝐳1, … , 𝐳s) = 𝒩(𝒙𝑠+1|𝛍s+1|s, 𝑃𝑠+1|𝑠)      (predictive distribution)  

p(𝒙𝑠+1|𝐳1, . . . , 𝐳s+1)  =  𝒩(𝒙𝑠+1|𝛍s+1|s+1, 𝑃𝑠+1|𝑠+1)    (updated distribution) 

Mean and covariance of both distributions can be calculated recursively over 
stopping points using the standard EKF update equations (Thrun et al., 2005): 

Eq. (14) 

𝛍𝑠+1|𝑠 = f(𝛍𝑠|𝑠)  

𝑃𝑠+1|𝑠 = F𝑠+1𝑃𝑠|𝑠𝐹𝑠+1
𝑇 + Σ𝑥 

Ss+1 = 𝐻𝑠+1𝑃𝑠+1|𝑠𝐻𝑠+1
𝑇 + Σz 

Ks+1 = 𝑃𝑠+1|𝑠𝐻𝑠+1
𝑇 𝑆𝑠+1

−1  

𝛍𝑠+1|𝑠+1 = 𝛍𝑠+1|𝑠 + Ks+1(𝐳s+1  −  ℎ(𝛍𝑠+1|𝑠)) 

𝑃𝑠+1|𝑠+1  =  (𝐼2  −  Ks+1𝐻𝑠+1)𝑃𝑠+1|𝑠 

where the matrices F𝑠+1 and 𝐻𝑠+1 are the Jacobian matrices of transition and 

observation function evaluated at the previous updated mean 𝛍𝑠|𝑠 and predictive 

mean 𝛍𝑠+1|𝑠 respectively: 

Eq. (15) 

Fs+1 =
∂f(𝒙)

∂𝒙
|

𝐱=𝛍𝑠|𝑠

= e−β̃|Δ𝐱|𝐼2  

Hs+1 =
∂h(𝒙)

∂𝐱
|

𝐱=𝛍𝑠+1|𝑠

=
1

|𝛍𝑠+1|𝑠|2
 (

μ𝑠+1|𝑠,1 μ𝑠+1|𝑠,2

−μ𝑠+1|𝑠,2 μ𝑠+1|𝑠,1
) 

At the starting point (s = 0), we initialize 𝛍𝑠=0|𝑠=0 = 𝐱start = 0 and 𝑃𝑠=0|𝑠=0 = 0. Next, 

we calculate the predicted distribution of the next measurement 𝐳s+1 given the 

previous measurements 𝐳1 to 𝐳s by integrating out the internal estimate 𝒙𝑠+1: 

Eq. (16) 

p(𝐳s+1|𝐳1, … , 𝐳s) = ∫ 𝑑 𝒙𝑠+1𝑝(𝐳s+1|𝒙𝑠+1)𝑝(𝒙𝑠+1|𝐳1, … , 𝐳s)  

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 12, 2018. ; https://doi.org/10.1101/466870doi: bioRxiv preprint 

https://doi.org/10.1101/466870
http://creativecommons.org/licenses/by-nc-nd/4.0/


 21 

= ∫ 𝑑𝒙𝑠+1  𝒩(𝐳s+1|ℎ(𝒙𝑠+1), Σz)𝒩(𝒙𝑠+1|𝛍s+1|s, 𝑃𝑠+1|𝑠) 

≈ ∫ 𝑑𝒙𝑠+1  𝒩(𝐳s+1|ℎ(𝛍s+1|s) + Hs+1(�̂�𝑠+1 − 𝛍s+1|s), Σz)𝒩(𝒙𝑠+1|𝛍s+1|s, 𝑃𝑠+1|𝑠) 

= 𝒩(𝐳s+1|ℎ(𝛍s+1|s), Ss+1) 

where we have used the linearization approximation of the EKF at the 3rd line. This 
allows us to express the full log-likelihood as: 

Eq. (17) 

LL(Θ) = 〈∑ log p(𝐳s+1|𝐳1, … , 𝐳s

3

s=0

; Θ)〉𝑡𝑟𝑖𝑎𝑙𝑠  

where the dependency on the parameters Θ is introduced through f, its Jacobian 

Fs+1, Σ𝑥 and Σz. In analogy to (8), we find the maximum likelihood (ML) estimate for 

Θ by numerically maximizing the log-likelihood: 

ΘML = argmaxΘLL(Θ) 

Numerical parameter optimization was performed using the fminunc-function of 
MATLAB's optimization toolbox. 

Incorporating trials without participant responses at intermediate 
stopping points 

For a fraction of the trials, a response is not collected at intermediate stopping 
points, but only at the end of the trajectory. For these trials the observations 𝐳s+1 are 
missing for s ∈ {0,1,2} and therefore the EKF update equations (14) need to be 
adapted. This can be achieved using the infinite observation noise limit Σz  →∞, 

under which the predicted and updated posterior distributions become identical: 

𝛍𝑠+1|𝑠 = f(𝛍𝑠|𝑠)  

𝑃𝑠+1|𝑠 = F𝑠+1𝑃𝑠|𝑠𝐹𝑠+1
𝑇 + Σ𝑥 

𝛍𝑠+1|𝑠+1 = 𝛍𝑠+1|𝑠 

𝑃𝑠+1|𝑠+1  =  𝑃𝑠+1|𝑠 

For s = 3, the observation at the last stopping point 𝐳s+1 is defined, and eq. (14) can 
be used as usual.  
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Model predictions 

We simulated participants’ responses by sampling 100 repetitions of model 
trajectories for each participant and trial from eq. (9) given the fitted parameters 
Θ = ΘML and the trajectory parameters Δ𝐱 for each segment. Each repetition 

generates stochastic observations d̂model and φ̂model via eq. (12) that can be 
analyzed analogously to the actual data. The model prediction for the square error is 
calculated by averaging the square error of the simulated data over trials and 
repetitions. The model prediction for the bias on individual trials is calculated by 
averaging the simulated data over repetitions. 

Model variants 

Full model without additive bias, no reporting noise (Full-AB-RN): The non-zero 

parameters in this model are memory decay 𝛽, multiplicative velocity gain 𝛼 and 

noise �̃�0
2. The additive bias (AB) �̃� and reporting noise (RN) parameters 𝜅 =

(𝜎𝑑
2, 𝜎𝜙

2) are set to zero. The log-likelihood is computed using eq. (7) instead of eq. 

(17).  

Full model, no reporting noise (Full-RN): This model has non-zero parameters 

𝜃 = (𝛽, 𝛼, �̃�, �̃�0
2) but the reporting noise parameters 𝜅 = (𝜎𝑑

2, 𝜎𝜙
2) are set to zero. The 

log-likelihood is computed using eq. (7) instead of eq. (17). 

Non-accumulating noise, no reporting error (Full-AN+CN-AB-RN, Full-AN+CN-
RN): These models assume that the total amount of noise is independent of 

distance, time, and stopping points, and the reporting noise parameters 𝜅 = (𝜎𝑑
2, 𝜎𝜙

2) 

are set to zero. The fitting procedure for the non-noise (bias) parameters is 
equivalent to minimizing the square error in predicting the mean location estimates 
averaged over trials with similarly shaped trajectories. We replace Eq. (4) by: 

𝛍s+1 = 𝛍𝑠e−β̃|Δ𝐱| + (α
Δ𝐱

|Δ𝐱|
+ �̃�)

1

β̃
(1 − e−β̃|Δ𝐱|)  

σs+1
2 = σ̃0

2 

Note that 𝛍s+1 depends on the previous predicted mean 𝛍𝑠 instead of the measured 
internal estimate 𝒙𝑠 as in eq. (4). Correspondingly the conditional distribution of each 
internal location estimate does not depend on the estimate at the previous stopping 
point, so that p(𝒙𝑠+1|�̂�𝑠+1) = 𝑝(𝒙𝑠). Maximizing the log-likelihood in eq. (7) 
corresponds to uniformly minimizing the square error across stopping points: 

LLκ=0(θ) = 〈∑ log p(𝒙𝑠+1

3

s=0

; θ)〉𝑡𝑟𝑖𝑎𝑙𝑠 = 〈∑ log 𝒩(𝒙𝑠+1| 𝛍s+1(

3

s=0

θ), σs+1
2 (θ))〉𝑡𝑟𝑖𝑎𝑙𝑠 

= 〈− ∑
1

2σ̃0
2 

3

s=0

(𝒙𝑠+1 − 𝛍s+1(θ))
2

−
1

2
𝑙𝑜𝑔(2πσ̃0

2)〉𝑡𝑟𝑖𝑎𝑙𝑠 
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We fit two versions of the constant or non-accumulating noise model, one without 

any additive bias (�̃� = 0; Full-AN+CN-AB-RN), and one with an additive bias (�̃� can 
vary; Full-AN+CN-RN). The model without additive bias (Full-AN+CN-AB-RN) is the 
closest match to the model proposed in Lappe et al. (2007, 2011), as it contains leak 
and bias. 

Non-accumulating noise with reporting noise (Full-AN+CN): As above, this 
variant assumes that the unbiased noise is independent rather than accumulating 
over time or distance, but does include reporting noise with non-zero reporting noise 

parameters  𝜅 = (𝜎𝑑
2, 𝜎𝜙

2), with Weber-like structure in which the reporting noise is 

proportional to the magnitude of the reported variable. This model can be fit using a 
few adjustments from the full model.  

As there is no accumulating noise that induces correlations across stopping points, 
observations 𝐳1, … , 𝐳s at previous stopping points are uninformative for the next 

location estimate 𝒙𝑠+1, and both predictive and updated distribution in eq. (13) are 
equal to the prior distribution: 

p(𝒙𝑠+1|𝐳1, … , 𝐳s) = p(𝒙𝑠+1|𝐳1, . . . , 𝐳s+1)  = p(𝒙𝑠+1) = 𝒩(𝒙𝑠+1|𝛍s+1, Σ𝑥)   

Consequently, there is no need to distinguish between predictive and updated mean 
and variance parameters. Instead, eq. (14) is replaced by: 

𝛍𝑠+1 = f(𝛍𝑠) = 𝛍𝑠𝑒−β̃|Δ𝒙|  +  (α 
Δ𝒙

|Δ𝒙|
+ �̃�)

1

β̃
(1 − 𝑒−β̃|Δ𝒙|)  

Ss+1 = 𝐻𝑠+1Σ𝑥𝐻𝑠+1
𝑇 + Σz 

where 

Σx = σ̃0
2I2 

Σz = (
σd

2 0

0 σφ
2 ) 

Hs+1 =
∂h(𝒙)

∂𝐱
|

𝐱=𝛍𝑠+1

=
1

|𝛍𝑠+1|2
 (

μ𝑠+1,1 μ𝑠+1,2

−μ𝑠+1,2 μ𝑠+1,1
) 

The log-likelihood is approximated as 

LL(Θ) = 〈∑ log p(𝐳s+1

3

s=0

; Θ)〉𝑡𝑟𝑖𝑎𝑙𝑠  = 〈∑ log 𝒩(𝐳s+1|ℎ(𝛍s+1), Ss+1)

3

s=0

〉𝑡𝑟𝑖𝑎𝑙𝑠 

Model with constant reporting noise (Full-RN+CRN): This model is the same as 
the full model (eq. (10)), except that the reporting error is drawn from a distribution of 
constant size, instead of being Weber-like (proportional to the reported quantity). 
Thus, eq. (2) is replaced by: 
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Eq. (18) 

d̂ = d + σdηd  

φ̂ = φ + σφηφ 

The model can be fit in the same way as the full model, when reporting noise is 
proportional to the internal estimate, except that noise is added linearly in polar 
coordinates instead of log-polar coordinates. Specifically, the first component of the 

observation 𝐳s defined as the reported distance d̂ instead of its logarithm log(d̂), so 
that eq. (12) is replaced by: 

Eq. (19) 

𝐳s+1 = (
 �̂� 
φ̂

)  

and we replace the observation function h(𝒙𝑠+1) in eq. (11) by the transformation 
from cartesian to polar coordinates: 

Eq. (20) 

h(𝒙𝑠+1) = (
𝑑(𝒙𝑠+1)

φ(𝒙𝑠+1)
) = (

|𝒙𝑠+1|

𝑎𝑡𝑎𝑛2((�̂�𝑠+1)2, (𝒙𝑠+1)1)
)  

and the Jacobian Hs+1 in eq. (15) by: 

Hs+1 =
∂h(𝒙)

∂𝐱
|

𝐱=𝛍𝑠+1|𝑠

=
1

|𝛍𝑠+1|𝑠|2
 (

μ𝑠+1|𝑠,1|𝛍𝑠+1|𝑠| μ𝑠+1|𝑠,2|𝛍𝑠+1|𝑠|
−μ𝑠+1|𝑠,2 μ𝑠+1|𝑠,1

) 

The rest of the calculation of the log-likelihood function is exactly the same as for the 
full model. 

Fitting by age group: For this analysis, instead of fitting model parameters 
individually for each participant, participants in each age group are constrained to 
have the same model parameters. 

Full model with time accumulation (ongoing noise is proportional to elapsed 
time rather than displacement; same reporting noise model as for the full 
model): This model assumes that the mean and variance of the internal location 
estimate is determined by the elapsed time of each trajectory segment, eq. (3), 
instead of the distance of each trajectory segment, eq. (4). In the case of zero leak, 
the time model predicts that the variance of the internal location estimate increases 
proportionally to elapsed time instead of traveled distance. 

To fit the time model we replace eq. (10) by: 

Eq. (21) 

f(𝒙𝑠) = 𝛍s+1(�̂�𝑠) = 𝒙𝑠e−βΔt + (α
Δ𝐱

Δt
+ 𝐛)

1

β
(1 − e−βΔt)  
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Σx = σs+1
2 I2 =

σ0
2

2β
(1 − e−2βΔt)I2 

where Δt is the elapsed time of each trajectory segment. In addition, the Jacobian of 

the transition function Fs+1 in eq. (15) is replaced by: 

Fs+1 =
∂f(𝒙)

∂𝒙
|

𝐱=𝛍𝑠|𝑠

= e−βΔt𝐼2 

For trials without intermediate stopping points, only the total elapsed time of the 
trajectory, but not the elapsed time Δt of individual segments was recorded. For 

these trials we estimated Δt by linear interpolation using the traveled distance |Δ𝐱| 
and assuming a constant walking speed. 

The observation function h(𝒙𝑠+1) and its Jacobian Hs+1 are identical to the standard 
Weber reporting noise model as specified in eq. (11) and eq. (15) respectively. 

Model comparison using Bayesian Information Criterion and leave-
one-out cross-validation 

The Bayesian Information Criterion (BIC) is a scheme to compare models with 
different numbers of parameters: Models with lower BIC are preferred over models 
with higher BIC, and large BIC differences between models (ΔBIC  ≫ 10) can be 
interpreted as “very strong” evidence against the model with lower BIC (Raftery, 
1995; Konishi & Kitagawa, 2008). The BIC corrects for the higher expressibility of 
models with larger number of parameters using an additive compensation term. The 
formula for the BIC is given by: 

BIC =  −2 LL(Θ𝑀𝐿)  +  log(n)k 

where n is the number of observations and k is the number of parameters. The 
number of parameters for different models is given by: 

Model 
Number of 
parameters k 

Full model, individually fit, young adults 7 x n = 210 

Full model, individually fit, older adults 7 x n = 182 

Full model, group-level fit 7 

Full-AB-RN, Full-AN+CN-AB-RN, individually fit, young adults 3 x n = 90 

Full-AB-RN, Full-AN+CN-AB-RN, individually fit, older adults 3 x n = 78 

Full-RN, Full-AN+CN-RN, individually fit, young adults 5 x n = 150 

Full-RN, Full-AN+CN-RN, individually fit, older adults 5 x n = 130 

Full-AN+CN, individually fit, older adults 7 x n = 210 

Full-AN+CN, individually fit, young adults 7 x n = 182 

Full-RN+CRN, individually fit, young adults 7 x n = 210 

Full-RN+CRN, individually fit, older adults 7 x n = 182 

Full model with time accumulation, individually fit, young adults 7 x n = 210 

Full model with time accumulation, older adults 7 x n = 182 
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In addition to BIC, we compare models using leave-one-out cross-validation 
(LOOCV). Given T trajectories for each model and subject, we train the model 
parameters on a training dataset of T − 1 trajectories, evaluate it on the held-out test 

trajectory and average the result over the T distinct training-test splits. To allow 
numerical comparison with BIC we use as evaluation measure twice the negative 
log-likelihood: 

LOOCV = −
2

T
∑ LLk(ΘML

−k )

T

k=1

 

where LLk is the log-likelihood corresponding to the k-th trajectory, and ΘML
−k  are the 

ML parameters on the training set excluding the k-th trajectory. 

Relative influence of model parameters on predicted square error 

The detailed computational model allows us to measure the influence of each type of 
bias and noise parameter on the square error predicted by the model. For each 
parameter type we calculated a reduced square error that is generated by setting 
this parameter type to its ideal value corresponding to unbiased, noiseless 
integration, while keeping the remaining parameters at their ML estimates: 
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The relative influence of each reduced error in percent is then calculated as: 

infli = 100
error2(ΘML) − errori

2

error2(ΘML)
 

Note that the relative influence can be negative if the reduced square error is larger 
than the square error of the full model. This can be true in particular for the memory 

leak parameter 𝛽: For example, a memory leak value 𝛽𝑀𝐿 < 1 that draws location 
estimates towards the starting point can partly compensate for a velocity bias 𝛼𝑀𝐿 >

1 that draws location estimates away from the starting point. Setting 𝛽 = 1 when 
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𝛼𝑀𝐿 > 1 can therefore lead to a larger “reduced” square error and a negative relative 
influence. 

Also note that due to the nonlinearity of the model, the relative influences do not 
have to sum to 100%. 
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Figures 
 

 

Figure 1: Path integration task. 

A: Example path, viewed from a top-down perspective. Participants began at the starting point (green 
dot) and then walked along the path (curved black line). There were four stopping points (red dots) along 
each path; at these points, participants were asked to report their estimate of the direct distance and 
angle to the path’s starting point (gray arrows). 
B: During the experiment, participants saw a virtual environment from first-person perspective via a 
head-mounted display (HMD). All movements in the real world were tracked with a motion tracking 
system and translated to movements (i.e., changes in location and viewing orientation) in the virtual 
environment, so that participants could walk around and perform the task in the virtual environment. 
Participants held a wooden stick and were guided by the experimenter along a path. At each stopping 
point, the direct distance to the starting point had to be estimated verbally in meters and centimeters, and 
participants turned their body on the spot to indicate the orientation to the starting point. 
C: The three different virtual environments (left panel) used in the path integration task. Each 
environment comprised a ground plane and distant landmark cues. As these landmark cues were 
rendered at infinity, they can facilitate the determination of heading direction, but do not allow 
participants to determine their position or distance information. One tile of each environment's ground 
plane is shown in the right panel. These tiles were textured to provide optic flow during movement, but 
were seamless (no visible border between adjacent tiles) and provided no fixed cues with positional 
information. Across environments, the ground planes differed only in color.  
D: Overview of the 10 different paths used in the experiment. Each path contained three turns, and turn 
directions (i.e., left “L” and right “R” turns) were counter-balanced between paths.  
E: Each participant performed three blocks of the path integration task. Each block consisted of 16 paths 
(paths #1-10, and paths #1-6 repeated without intermediate stopping at stopping points 1-3) in pseudo-
randomized order. In addition, after the 4th and 12th path of each block, participants performed so-called 
"standardization-paths" (i.e., straight lines with a length of 2m, 6m, and 10m), which were used during 
data analysis to correct for each participant’s abilities in verbally reporting distances using 
meter/centimeter units. Finally, there were short breaks between blocks and in the middle of each block. 
See Methods for more details. 
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Figure 2: Path integration performance across both age groups. 

A: Absolute path integration errors over four stopping points for young and older adults. Average errors 
per stopping point are shown for each participant separately by blue (young adults) and orange (older 
adults) dots, connected with lines between stopping points. 
B: Each participant’s location estimate (y-axis) versus their true location (x-axis) at each of the four 
stopping points (columns), separately for x-coordinates (top row) and y-coordinates (bottom row). Plots 
show data from all participants and all paths. The diagonal (dashed line) indicates perfect response 
(estimated location = true location). All correlation coefficients are statistically significant (all p < 
0.00001). All units are meters.  
C: Absolute path integration errors of young and older adults versus errors with shuffled responses. It is 
evident that the mean absolute path integration error of both groups (solid lines) is much lower than the 
errors obtained from shuffling each participant’s responses across trials. Error bars indicate group mean 
± SEM. 
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Figure 3: Computational modeling results. 

(Figure Legend on next page) 
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Figure Legend (Figure 3) 
A: Path integration errors, averaged across all trials, of one example participant from each of the two age 
groups (error bars), and model fits (solid lines). Error bars represent variability (SEM) over trials. Data 
and fits for all individual participants and average fits by age group are in Supplementary Figure S2. 
B: Measured single-trial path integration error vectors versus error vectors predicted by the model. 
Predicted position is computed individually per subject per trajectory; datapoints show the per-trajectory 
predicted position, averaged across subjects of the same age group on the same trajectory and trial (to 
reduce scatter). Error bars represent the variability (SEM) at a single trial across participants (trial order 
was identical across participants). The dashed black (diagonal) line indicates perfect prediction; solid 
lines represent the best-fitting linear regression fit of the datapoints. All units are meters. 
C: Model comparison: negative log-likelihood scores using LOOCV between models, with higher bars 
indicating a poorer model fit. *** denotes “very strong” evidence against the model relative to the full 
model (𝛥𝐵𝐼𝐶 (𝛥𝐿𝑂𝑂𝐶𝑉) ≫ 10; see also Methods section and Supplementary Figure S3). Key to model 

names: The full model ("Full") is our default, with ongoing “accumulating noise” (AN) that is proportional 
to the length of the travelled path, nonzero additive bias (AB) and velocity gain bias parameters, and 
reporting noise (RN) that is proportional to the magnitude of the reported variable. CN refers to when the 
non-reporting portion of the noise is constant rather than accumulating. CRN refers to when the reporting 
noise is constant (rather than proportional to the magnitude of the reported variable). +/- refers to the 
addition/removal of that contribution to the model, respectively.  
D: Impact of different model parameters on the predicted path integration error. Relative influence 
measures the predicted reduction in square error by setting a parameter to its ideal value corresponding 
to noiseless and unbiased integration. Note that due to the nonlinearity of the model, the relative 
influences do not have to sum to 100%, and that a parameter’s relative influence can be negative if the 
reduced square error is larger than the square error of the full model (see Methods section for more 
details). Ongoing noise, whose effect is cumulative and proportional to travelled distance, has the largest 
relative influence.  
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Figure 4: Time- vs distance-scaling of accumulating noise. 

A: Model comparison using LOOCV between the full model with accumulated error proportional to total 
travel distance versus total time in trajectory. For both age groups, the full model is better supported by 
the data. Higher bars indicate poorer model-fit. *** denotes “very strong” evidence against the model with 
poorer fit (𝛥𝐵𝐼𝐶 (𝛥𝐿𝑂𝑂𝐶𝑉) ≫ 10; see Methods and Supplementary Figure S5). 

B: Average path integration error at the last stopping point, in trials with and without intermediate 
stopping points. The path integration error is very similar even though trials with stopping take much 
more time, indicating that the path integration error mainly scales with distance rather than time. Error 
bars indicate SEM. 
C: Walking velocity versus path integration error for trials with and without stopping and for both age 
groups. 
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Figure 5: Path integration in older versus young adults. 

A: On average, older adults showed a higher absolute path integration error than young adults at all 
stopping points. Blue and orange lines indicate group mean ± SEM. 
B: The incremental path integration error (i.e., the additional contribution to the path integration error for 
each segment between adjacent stopping points), averaged across stopping points, was higher for older 
than young adults. 
C: Model parameter values, averaged over participants of the same age group. Parameter values for 
leak, accumulating unbiased noise, and additive bias were significantly higher in older relative to young 
adults. Individual parameter values for single subjects are shown in Supplementary Figure S1. 
D: Each model parameter’s contribution to the absolute square error, averaged over participants of the 
same age group. Only the accumulating unbiased noise resulted in a significant difference in error 
contribution between age groups. A parameter’s contribution is calculated by measuring the reduction in 
square error when setting the parameter to its ideal value corresponding to unbiased, noiseless 
integration (see Methods). 

Error bars indicate SEM. * denotes a significant difference between age groups (p < 0.05) in a one-sided 
permutation test with 10000 permutations. 
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Supplementary information 
 

 

Supplementary Figure S1: Individual parameter values for single subjects 

Model parameter fit of the full model, shown for each subject individually. Blue bars indicate young 
subjects, orange bars indicate older subjects. Subject ordering is identical across plots. 
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Supplementary Figure S2: Path integration errors of young and older adults versus errors 
predicted by the model 

Top panel: Path integration errors of each individual participant (black error bars) versus errors 
predicted by the model (solid lines) using each participant’s individual model parameters. 
Bottom panel: Mean path integration errors per age group (error bars) versus errors predicted by the 
computational model (solid lines). In order to calculate group-level model predictions, participants in each 
age group are constrained to have the same model parameters, instead of fitting model parameters 
individually for each participant. 

Error bars indicate mean ± SEM. 
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Supplementary Figure S3: Comparison between model variants using BIC and LOOCV. 

Comparison between full model without additive bias, no reporting noise (Full-AB-RN); full model with 
constant instead of accumulating noise, no additive bias, no reporting noise (Full-AN+CN-AB-RN); full 
model without reporting noise (Full-RN); full model with constant instead of accumulating noise, no 
reporting noise (Full-AN+CN-RN); full model with constant reporting noise (Full-RN+CRN); full model 
with constant instead of accumulating noise (Full-AN+CN); and the default full modell (Full). For both age 
groups, the full model was best supported by the data. Higher bars indicate poorer model-fit. More 
details about different model variants and BIC/LOOCV model comparisons are provided in the Methods 
section. 
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Supplementary Figure S4: Comparison between group-level and individual models. 

Model comparison using BIC between models that were fitted at the group level and models that were 
fitted individually for each participant. For both age groups, the model with individual parameters per 
participant (i.e., the full model) was best supported by the data. Higher bars indicate lower model-fit. *** 
denotes “very strong” evidence against the model with lower model-fit (𝛥𝐵𝐼𝐶  ≫ 10). More details about 

different model variants and BIC model comparisons are provided in the Methods section. 
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Supplementary Figure S5: Comparison between “time model” and “distance model” variant using 
BIC. 

Model comparison using BIC between a model with time-scaling of the internal path integration error and 
the full model with distance-scaling. For both age groups, the full model is better supported by the data. 
Higher bars indicate lower model-fit. *** denotes “very strong” evidence against the model with lower 
model-fit (𝛥𝐵𝐼𝐶  ≫ 10). More details about different model variants and BIC model comparisons are 

provided in the Methods section. 
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