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Summary 

Non-cancerous stromal cells represent a highly diverse compartment of the tumour, yet their 

role across  tumour evolution remains unclear. We employed single-cell RNA sequencing to 

determine stromal adaptations in murine melanoma at different points of tumour 

development. Naive lymphocytes recruited from lymph nodes underwent activation and 

clonal expansion within the tumour, prior to PD1 and Lag3 expression, while tumour-

associated myeloid cells promoted the formation of a suppressive niche through cytokine 

secretion and inhibitory T cell interactions. We identified three temporally distinct cancer-

associated fibroblast (CAF) populations displaying unique signatures, and verified these in 

human datasets. In early tumours, immune CXCL12/CSF1 and complement -expressing 

CAFs supported recruitment of macrophages, whereas contractile CAFs became more 

prevalent in later tumours. This study highlights the complex interplay and increasing 

diversity among cells that co-evolve with the tumour, indicating that from early stages of 

development, stromal cells acquire the capacity to modulate the immune landscape towards 

suppression. 
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Introduction 
 
To aid their growth and development, malignant cells cultivate a supporting niche of ‘normal’ 

cells, known as the tumour stroma. This niche comprises non-immune cells such as 

fibroblasts, blood and lymphatic endothelial cells, as well as numerous immune populations1. 

In particular, the balance of anti- vs. pro-tumour leukocytes can dictate tumour fate2,3, andin 

many cases suppressive populations persist to support immune escape and prevent tumour 

clearance. While, immunotherapies such as anti-CTLA4, anti-PD1 and anti-PD-L1 show 

efficacy in a large number of melanoma patients, a significant proportion do not respond to 

this treatment4–7. Thus, there remains a critical need to uncover novel therapeutic targets. 

The numerous mechanisms through which stromal cells promote tumour growth, represent a 

wealth of opportunities for therapeutic intervention. However, the evolving tumour 

microenvironment is extremely dynamic, continually adapting to both soluble and mechanical 

cues which induce significant heterogeneity within the stromal compartment8. 

  

In particular, extensive heterogeneity has been reported within tumour fibroblast populations. 

Cancer associated fibroblasts (CAFs) are the most abundant non-immune stromal 

component, secreting growth factors, promoting angiogenesis, facilitating metastasis and 

regulating immune infiltrates9–15. Although they express typical fibroblast markers, such as 

fibroblast activation protein (FAP), platelet derived growth factor receptors α (PDGFRα) and 

β (PDGFRβ), podoplanin (PDPN), Thy-1 and α-smooth muscle actin (αSMA), no single 

marker universally identifies all CAFs within the tumour stroma16–18. To date, many studies 

rely on positive selection approaches, in which one or two markers are used to isolate CAFs 

for functional characterisation. Consequently, these findings likely reflect a sub-population of 

cells and may bias our perceptions of CAF function. It remains unclear whether fibroblast 

subpopulations with distinct roles are present in the tumour microenvironment. 

  

Current approaches lack the resolution to visualise the true extent of stromal heterogeneity 

and may mask rare populations, or cellular phenotypes, that could be critical for tumour 

survival. Therefore, we have employed single-cell RNA sequencing (scRNAseq) to profile 

both immune and non-immune stromal populations from the B16-F10 murine model of 

melanoma. Furthermore, cells were isolated from both primary tumours and draining lymph 

nodes, at different stages of tumour development, enabling a systems level interrogation of 

the melanoma microenvironment in real-time. Here, we identified the presence of a diverse 

immune landscape, in which the composition and phenotype of leukocytes change as the 

tumour evolves. In particular, effector T cells displaying signs of dysfunction, were detected 
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predominantly in late stage tumours. This work also highlighted significant heterogeneity 

within the CAF compartment of the primary tumour. Three distinct CAF populations were 

identified; immune, desmoplastic and contractile, each displaying unique functional and 

temporal characteristics key to the tumour. At early time points, the ‘immune’’ and 

‘desmoplastic’ populations dominated, yet at later stages, the third ‘contractile’ subset 

became more prevalent. Using a unique database of known ligand-receptor interactions, we 

investigated communication between different stromal populations to reveal complex 

interplay between the ‘immune’ CAF subset, macrophages and T-cells, which ultimately 

contributed to T-cell dysfunction. 

 

Results 

Identification of stromal populations within the developing tumour microenvironment 

 
Specific immune populations were enriched for, based on surface marker expression, and 

index sorted from tumours and lymph nodes at day 5, 8 and 11. Isolated single cells were 

then profiled using Smart-seq2 (Fig. 1a and Extended Data Fig. 1a). To avoid the biases 

associated with isolation of non-immune stroma, B16-F10 melanoma cells were injected into 

CAG-EGFP mice exhibiting widespread eGFP expression. This enabled a negative selection 

approach which did not rely upon expression of surface markers. Tumour and immune cells 

were removed by selecting GFP+ CD45- cells only, with the remaining stromal cells 

separated into two fractions, based on CD31 expression (Fig. 1a). CD31+ cells represented 

both blood and lymphatic endothelial cells, whereas CD31- cells were largely composed of 

fibroblasts. Graph-based clustering19 of more than 4600 cells that passed the computational 

quality control (see Methods and Extended Data Fig. 1b), confirmed that populations 

clustered together with the exception of endothelial cells from tumour and lymph node (Fig. 

1b, c and Extended Data Fig. 2). Within each annotated cluster, we could also identify site-

determined groupings, specific to either the tumour or lymph node derived cells (Fig. 1b). In 

particular T cells and dendritic cells exhibited differential clustering between tumour sites and 

lymph nodes. Moreover, in contrast to recent studies, our approach of sampling over multiple 

times points, at each site, enabled us to investigate temporal changes between sites and 

adaptation within each population (Fig. 1b).    

Dynamics of immune stroma  
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We first sought to delineate relationships within the specific innate immune populations 

isolated from tumour-associated tissues. Clusters corresponding to 

macrophages/monocytes, natural killer cells (NK), plasmacytoid DCs (pDC) and 

conventional DCs (cDCs), were identified based on known markers 

(Macrophages/Monocytes, Adgre1(F4-80); FcyR1, NK Ncr1; pDCs, Bst2, Siglech; cDCs, 

Itgax (Cd11c); Fig. 2a, b, c and Supplementary Table 1).  Moreover, multiple DC populations 

were observed that reflect the Cd11c+ cDC1 and Cd11c+Cd11b+ (Itgam) cDC2 phenotypes. 

cDC1 and cDC2 titles were assigned based on expression of known markers including 

Clec9a, Baft3 (cDC1), Cd11b and Sirpa (cDC2) (Fig. 2 c,b). Two further clusters that lacked 

lineage markers for adaptive immune cells, as well as ILCs, yet express low Cd11b and 

Cd11c, were termed migratory DCs due to expression of the DC transcription factor Baft3 

and upregulation of Ccr7. 

  

Each DC population further separated according to their location in either the tumour or 

draining lymph node (Fig. 2a). Consistent with the steady state, tumour cDC1 cells 

expressed the dermal DC marker Cd103 (Itgae), whereas the LN population express Cd8a, 

a marker of lymph node resident cDC1 populations. Cd11b+ MPs in the LN consisted of 

Adgre1+, Ccr2+ macrophages, as well as a Cd11c+ resident cDC2 population (Fig. 2b). 

Investigation into transcriptional phenotypes of myeloid cells revealed that cells located in 

the tumour, compared to the lymph node were more activated, yet also displayed 

immunosuppressive properties. Within tumour MPs, no clear delineation between an M1 or 

the pro-tumour M2 phenotype was observed, yet chemokines involved in T cell recruitment 

and suppressive mediators such as Cd274 (PDL1), Arg1, Ido1, Adora2a/b were expressed. 

Furthermore, while tumour DC populations displayed increased expression and a wider 

variety of co-stimulatory molecules, than their lymph node counterparts, they lack expression 

of cytokines required to induce durable T cell responses.  This is particularly relevant in 

regard to cDC1 cells, which can cross-present tumour antigen to cytotoxic T lymphocytes. 

Indeed, while both tumour and LN cDC1 cells upregulate genes involved in cross-

presentation pathway, including components of the proteasome (Tap1, Tap and Sec61), 

expression of these genes was higher in the tumour subset (Extended Data Fig. 3d). 

Although this may indicate that tumour cDC1 populations have increased potential to 

activate anti-tumour lymphocytes, tumour DCs also expressed immunosuppressive 

molecules such as Cd274 (PDL1), Pdcd1lg2 (PDL2) and Lgals9 (galectin-9), known to 

induce T cell exhaustion (Fig. 2d). Interestingly, across all myeloid populations, expression 

of immunosuppressive molecules increased at later time points, whereas co-stimulatory 

molecules were expressed consistently throughout tumour development. This indicates that 
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tumour resident myeloid populations are present and activated at early stages of tumour 

growth, yet become more suppressive as the tumour progresses. 

 
T cell populations from tumours and draining lymph nodes were transcriptionally distinct, 

clustering based upon their subtype, but also location (Fig. 3a). At the lymph node, T cells 

exhibited a more naive phenotype compared to those present at the primary  tumour (Fig. 

3b). While tumour resident CD4+ T cells were more activated, a significant proportion highly 

expressed Treg-associated genes at the tumour (Fig. 3b).  Similarly, within the CD8+ T cell 

compartment, those at the tumour were also more activated, expressing high levels of Ifng 

(IFNγ), Prf1 (perforin) and Gzmb (granzyme B). However, these cells were also less 

functional, as evident by expression of Pdcd1 (PD1), Lag3 and Tim3 (Fig. 3b). To identify 

transcriptional adaptations in CD8+ T cells, at different stages of tumour development, we 

performed pseudotime analysis that revealed a trajectory of gene expression associated with 

functional changes in these cells.  This confirmed that the majority of T cells within the lymph 

node were naive displaying high expression of Sell and Tcf7 (Fig. 3c and d). Arrival at the 

tumour corresponded with acquisition of activation signatures, including upregulation of Ifng 

(IFNγ) and Gzmb (Granzyme B). Furthermore, T cell receptor sequence analysis identified 

clonal expansion (Fig. 3c and d) specifically within tumours at later time points. This was 

accompanied by expression of the proliferation marker Mki67 and exhaustion markers 

Pdcd1, Lag3 and Tim3 (Fig. 3c and d). Interestingly, a subset of the potentially exhausted 

CD8+ T cells also showed expression of Entpd1 (CD39), which was recently identified as a 

marker to distinguish tumour-specific and bystander CD8+ T cells 20. Together, these results 

indicate that T cell recruitment from the LN is followed by activation and subsequent 

functional defects in situ. These functional defects correspond with the gain of 

immunosuppressive properties in myeloid populations at later time points, indicating that the 

immune stroma transitions from immunogenic to suppressive phenotypes. 

 

Non-immune stroma comprise three distinct functional populations  
 
As the non-immune stromal components are emerging as immune modulators, we also 

examined this compartment during tumour progression, focussing on the CAFs. Across all 

time points, we identified three distinct CAF populations referred to as CAF 1, 2 and 3 (Fig. 

4a). As expected, expression of commonly used CAF markers was extremely variable 

across the fibroblasts (Fig. 4e and Extended Data Fig. 6a), yet, expression of specific marker 

combinations correlated with individual clusters. CAF1 could be distinguished from CAF3 by 

its high levels of Pdpn, Pdgfrα and Cd34, while Acta2 (αSMA) was strongly expressed by the 
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latter population. However, CAF2 represents an intermediate population that was Pdpn+ 

Pdgfrα+ and displayed low expression of  Acta2 and Cd34 (Fig. 4e). 

  

Importantly, each cluster displayed distinct functional signatures (Fig. 4f,  Extended Data Fig. 

5c,d), indicating that fibroblast populations may have specific roles within the tumour 

microenvironment. CAF 1 (Pdpn+ Pdgfra+ Cd34high) upregulated genes involved recruitment 

and regulation of immune cells, including the cytokines Cxcl12, Csf1 and Ccl8, cytokine 

receptors Il6ra and Il6st, as well as components of the complement cascade C3, C2 and 

C4b. Thus, CAF1 may engage in immune cross-talk.  In contrast, CAF2 (Pdpn+ Pdgfra+ 

Cd34low) expressed genes encoding extracellular matrix (ECM) components including 

numerous collagen family members and Postn and Tnc. These ECM components are 

strongly associated with a fibrotic matrix, a feature common to developed tumours 21. Thus, it 

is possible that this CAF population drives the desmoplastic reaction associated with tumour 

development. CAF3 (Acta2high) was enriched for genes involved in regulation and 

rearrangement of the actin cytoskeleton. In particular, this cluster upregulated Rock1, Mlc2 

and Mlck, which are responsible for the contraction of actin stress fibres. Thus, CAF 3 likely 

represents a more contractile fibroblast subset. CAF3 also expressed some pericyte-

associated markers such as Cspg4 (Ng2), Mcam and Rgs5 (Extended Data Fig. 7a), leading 

us to consider whether this population may contain pericytes. The same markers were also 

observed in the Pdpn+ fibroblasts (FRCs) in the lymph nodes however, (Extended Data Fig. 

7b) indicating that, and consistent with previous reports, their expression is not limited to 

pericytes. Thus, to identify whether CAF3 represent a pericyte or fibroblast population, we 

examined expression of αSMA, Ng2 and Mcam in relation to the endothelial marker CD31. 

While these were observed surrounding vessels in adjacent skin, they were rarely 

associated with intratumoural vessels, but could be detected in peritumoural spindle-shaped 

cells  distinct from the vasculature (Extended Data Fig. 7 c-e).  

 

Our approach highlighted the dynamic nature of CAF populations within a developing 

tumour. Although each CAF population was detected throughout the time course, different 

clusters dominated at specific time points. Early day 5 tumours were primarily comprised of 

fibroblasts from the Pdpn+ Pdgfra+ CAF1 and 2, whereas the Acta2high CAF3 population was 

largely restricted to later stages, implying a selective enrichment in developed tumours. This 

enrichment may be supported, in part, by our observation of proliferation specifically within 

CAF2 and 3 (Fig. 4b). Proliferation of a subset of CAFs, within the tumour microenvironment, 

was confirmed by incorporation of the thymidine analogue, EdU (Extended Data Fig. 6c). 

Moreover, the majority of both mouse skin and human skin fibroblasts resembled the cells 

from CAF1 (Fig. 4e). Together, this data illustrates that the CAF compartment and its 
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associated functions are dynamic, adapting to localised cues and the changing needs of an 

evolving tumour.  

  

To validate the existence of these different populations in the tumour microenvironment, we 

first confirmed each subset based on their unique marker repertoire. Consistent with 

sequencing data, confocal imaging revealed that CAF markers PDPN and PDGFRα largely 

colocalised, while expression of αSMA was more distinct (Fig. 5a). The ‘immune’ CAF1 

marker CD34, colocalized with both PDPN and PDGFRα, indicating the presence of a 

CD34high subpopulation. Furthermore, a distinct CD34highαSMAlow CAF subset could be 

clearly distinguished (Fig. 5a). Although at the RNA level, PDPN+ PDGFRα+  CD34high CAFs 

are αSMA- (Extended Data Fig. 6a), we observed some colocalization between these four 

markers at the protein level. This may represent the intermediate PDPN+ PDGFRα+ CAF2 

population, which also expressed low levels of CD34 and αSMA.  

 

To examine the inflammatory phenotype associated with  the CAF1 population in more 

detail, we focused on two highly expressed immune modulatory factors, CXCL12 and CSF1. 

Using flow cytometry we identified each population using their differential expression of 

CD34 and αSMA. Tumour fibroblasts were identified using multiple CAF markers, after 

exclusion of other stromal populations (Extended Data Fig. 8a), and divided into CD34high 

αSMAlow (CAF1), CD34low αSMAlow (CAF2) and CD34low αSMAhigh (CAF3) subsets. Reflecting 

our sequencing data, this confirmed CXCL12 expression was highest in the CAF1 subset, 

followed by intermediate expression in CAF2 and low expression in CAF3 (Fig. 5b), this was 

further verified with RNAscope showing localization of CXCL12 and CD34+ at the RNA level 

in situ (Extended Data Fig. 6d). Confocal imaging also confirmed CD34+ CAFs as a source 

of CSF1 in the tumour stroma both at the protein (Fig. 5c) and RNA levels (Extended Data 

Fig. 6d). Having validated the presence of these functionally distinct populations, we next 

evaluated their prevalence at different stages of tumour development (Fig. 5e). This showed 

that, as a percentage of the total CAF population, the proportion of of CD34low αSMAhigh 

CAF3 subset was greater at day 11 compared to day 5. This data supports our earlier 

proposal of a dynamic fibroblast niche, which evolves alongside its malignant tumour core.  

 

Together, these data have identified the presence of distinct CAF populations that 

dynamically co-evolve with the tumour to support its changing requirements (Fig. 5g) and 

indicate that CAFs acquire the capacity to influence the tumour immune landscape from 

early stages of development. 
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Cross-talk between ‘immune’CAFs in infiltrating myeloid cells 

 
Next, we sought to elucidate the potential functional consequences of specific stromal 

populations to the ensuing immune response. Thus we focused on the early CAF1 “immune” 

population and examined the cross-talk with responsive immune populations recruited to the 

tumour. To systematically study interactions within the tumour microenvironment, we 

predicted cell-cell communication networks based on CellPhoneDB, a manually curated 

repository of ligands, receptors and their interactions integrated with a statistical framework 

to infer cell-cell communication networks from single cell transcriptomic data (Vento-Tormo, 

Efremova et al, Nature, in press). This approach highlighted likely interactions involved in 

angiogenesis, immune cell recruitment and immune modulation between stromal populations 

in the tumour (Fig. 6a, Supplementary Table 4).  

 

We identified CAF-immune interactions, for example between C3/CXCL12/CSF1-expressing 

CAFs enriched in early stages of tumour development, and macrophages positive for 

CXCR4, CSFR1, C3AR1 respectively (Fig. 6 a, b). IF imaging of tumour sections allowed us 

to correlate single cell data with location in situ. Indeed, at the protein level, both CSFR1+ 

and CXCR4+ macrophages were detected in close contact with CD34high fibroblasts in the 

tumour stroma (Fig. 6c). The combination of transcriptome profiling and cell-cell 

communication pipeline enabled us to assign these immune interactions specifically to the 

CAF1/2 subpopulations. Further chemokine-receptor interacting pairs, identified as 

statistically significant, occured between the immune CAF1 subpopulation, myeloid, Treg 

and CD8+ T cells (Fig. 6a). The recruited macrophages exhibited the capacity to both attract 

T cells, via specific cytokine-receptor signals such as CXCL10, and suppress their function 

through the PDL1-PD1 axis (Fig. 6a and d). Our approach highlighted additional cell-cell 

communications enriched between tumour infiltrating immune such as recruitment of NK 

cells through cDC1-cell derived chemokines receptors XCR122. Additionally, we found that 

the Tregs express high levels of Nt5e (CD73) and  Entpd1 (CD39, Fig. 6a and Fig. 3b), 

which act together to convert ATP to adenosine who release has been shown to dampen the 

immune system23. The adenosine receptors Adora2a and Adora2b were found upregulated 

on the migratory DCs and the macrophages respectively. 

 

Collectively, these findings provide new insights into the complex interplay among cells 

within the evolving tumour microenvironment (Fig. 6d), where multiple immunosuppressive 

mechanisms coexist within an increasingly heterogeneous stromal compartment. 
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Discussion 
 
It is becoming increasingly evident that non-malignant stromal cells such as endothelial cells, 

fibroblasts, and infiltrating immune cells found within a tumour, provide significant and varied 

supporting roles as disease progresses. The heterogeneity and dynamic nature of the 

tumour microenvironment can make identification of the roles of the different stromal 

components challenging. The emergence of scRNA-seq has enabled new insights into 

tumour biology not detectable by previous methods, and has been key to reveal the true 

degree intratumoural heterogeneity 24,25.  

 

In this study, we used a single-cell transcriptomic approach to characterise the stromal 

landscape within the evolving microenvironment. Our scRNA-seq analysis revealed the 

gradual development of a suppressive immune microenvironment and defined fibroblast 

subsets with distinct functional signatures. This approach also highlighted the complexity of 

cross-talk between the different stromal components as a tumour evolves. 

  

Both clinical studies and the success of immune checkpoint inhibitors have emphasised the 

importance of the immune system, particularly T cells and macrophages, in deciding tumour 

fate or response to therapy. While clinical studies have repeatedly demonstrated the 

presence of exhausted T cells with poor prognosis 2,3, the steps leading to this point and 

sites of activation are less clear.  Here we showed distinct gene profiles between sites, with 

lymph nodes acting as a source of naive T cells. Once at the tumour, pseudotime analysis 

illustrated the trajectory of T cell development within the evolving tumour microenvironment 

from naive, through clonal expansion and activation (enriched granzyme and IFN 

expression) phases, to upregulation of exhaustion markers in late tumours (PD1 and Lag3).  

A diverse repertoires of myeloid cells were observed within the tumour, and similar to T cells, 

tumour myeloid populations were more activated than in the lymph node displaying high 

levels of phagocytosis, antigen presenting and co-stimulatory associated genes. Once at the 

tumour however, an increase in the level of suppressive factors produced, likely in response 

to local cues, was detected. Many of these cues served to act upon infiltrating T cell 

populations to confound the suppressive environment already developing. Moreover, our 

dynamics data indicates that inhibitory signalling commenced in later phases of tumour 

development, coinciding with the emergence of T cell dysfunction.  

 

While infiltrating immune populations can have a profound effect on tumour fate, a growing 

body of evidence indicates that CAFs play a supporting role in the tumour 
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microenvironment26. To date, few studies have investigated whether fibroblast phenotypes 

change as the tumour develops. Our analysis revealed the existence of three CAF subsets 

which possess unique characteristics and temporal dynamics, indicative of distinct, 

specialized  roles. Based on their transcriptional signatures, these populations were termed 

“immune”, “desmoplastic” and “contractile”. The ‘immune’ CAF1 population, which was 

detected from early stages of tumour development, upregulated cytokines CSF1 and 

CXCL12, as well as complement components C3 and C4b, which are known to recruit and 

regulate immune cells. Conversely, the desmoplastic population upregulated ECM 

components and may be responsible for the production of a fibrotic matrix. Finally, the third 

population, dominated at later stages of tumour development in well-established lesions, 

expressed genes involved in the contraction of actin stress fibres, indicating a contractile 

phenotype.  

 

It is likely that the alteration in population dynamics is induced by concomitant changes in 

the developing tumour.  New environmental factors, such as nutrient availability and hypoxia 

arise, transforming the secretion profile of malignant cells. Furthermore, changes in the 

phenotype and function of the immune stroma, may add to the local cytokine milieu. 

Biophysical cues also likely contribute to adaptation of CAF populations. It has been 

reported that matrix rigidity is critical for the maintenance of CAF phenotypes 34, and that 

mechanical and soluble cues are required for the induction of αSMA expression 35,36. Thus it 

is likely that the combination of a stiff matrix, produced by ‘desmoplastic’ CAFs, and cytokine 

exposure, may upregulate αSMA expression and expansion of ‘contractile’ CAFs in later 

tumours. No single commonly applied marker identified all CAF subsets. Instead the 3 

populations were distinguished  based on their discrete expression of CAF marker 

combinations. While both ‘immune’ and ‘desmoplastic’ CAFs express PDPN and PDGFRα, 

the ‘immune’ population was distinguished based on its high expression of CD34. The 

‘contractile’ population is largely negative for these markers and instead  expresses αSMA.  

 

Interestingly, and consistent with other studies, this population also shared some common 

markers with pericytes, such as Ng2, Mcam and Rgs537. While this could imply pericyte 

contamination, CAF3 also produced matrix components such as Col1a1, Col1a2 (collagen1) 

Fn1 (fibronectin1) and Sparc. Although expression of these genes was lower in CAF3 

compared with the desmoplastic CAF2 population, production of these proteins is associated 

with a fibroblast phenotype. Pericytes are located on the surface of blood vessels where they 

provide structural support, as well as regulating endothelial cell phenotypes. Like fibroblasts, 

these cells represent a heterogeneous population that is difficult to distinguish by a specific 

marker.  While markers such as NG2 and RGS5 are often used to identify pericytes, their 
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expression is context-dependent, varying between tissues and during pathology 38. 

Furthermore, many markers, such as αSMA, PDGFRβ, Ng2 and Mcam are shared by both 

pericytes and activated myofibroblasts, making it difficult to distinguish one from the other 
39,40. This was reflected in our data, in which expression of multiple pericyte markers was 

observed in the CAF3 population as well as in PDPN+ lymph node FRCs. A similar 

phenomenon was reported in a subcutaneous model of breast cancer, in which expression 

of pericyte markers was also observed in FRC populations 41. Thus, the most robust method 

to differentiate between these cell types is to assess whether they are associated with 

endothelial vessels. In our melanoma model, we observed aSMA, NG2 and MCAM positive 

cells both associated with vessels and in more peripheral locations. However, the number of 

vessel associated pericytes was very small, as the majority of vessels were composed of 

endothelial cells alone. Consequently, CAF3 may embody a mixed population of 

mesenchymal cells, containing both pericytes and fibroblasts, that share similar surface 

marker expression and functional properties. Interestingly, the close relationship between 

these two cell types has led to the suggestion that pericytes may differentiate into activated 

myofibroblasts during pathology. In both liver and kidney fibrosis, as well as in tumour 

models, upon the initiation of fibrosis or during growth of malignant cells, pericytes dissociate 

from the endothelium and begin to express the markers such as αSMA and produce 

collagen 42–45. Therefore, it is possible that fibroblasts within CAF3 may arise from pericyte 

origins. Overall, this data highlights the limitations of using single marker approaches to 

isolate and characterise mesenchymal cells, which can lead to contamination and selection 

bias. 

 

Importantly, and relevant to the clinic, our murine data was mirrored in the setting of human 

melanoma, with shared patterns of CAF marker expression 24.  Here, CAFs expressing 

PDPN, PDGFRα and CD34 also clustered together, whereas those expressing αSMA were 

more distinct. Furthermore, these PDPN+PDGFRα+CD34+ CAFs displayed high expression 

of CXCL12. Other immunomodulators such as PD-1 ligands and, in particular, complement 

components were observed in both systems suggesting that the immune function of these 

populations  are a conserved feature and retained in human melanoma.  Although the CAF 

1/2 clusters were not as distinct as the mouse model, the cohort of CAFs was much smaller. 

This discrepancy can be explained by the fact that many of these patients had received 

immunotherapies prior to resection 24, and in light of the immunomodulatory capacity of 

these clusters, we cannot rule out an effect of treatment on the wider stromal landscape.  

 

Our findings also compliment recent investigations into CAF heterogeneity in a range of 

different solid cancers, each reporting a distinct αSMA+ fibroblast phenotype 25,46,47. 
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Moreover,  αSMA- fibroblasts highly expressing ECM components, similar to our 

‘desmoplastic’ population have been described in both colorectal and head and neck 

cancers 25,46.  Furthermore, in a preclinical model of pancreatic ductal adenocarcinoma 

(PDAC), another αSMA- CAF population was shown to display an inflammatory profile 47. 

Similarly, a subpopulation of CXCL12-secreting fibroblasts was reported in human breast 

cancer. However, in contrast to our results, a proportion of this CAF population was αSMA+ 
48. This suggests that the three populations we have identified may be a universal feature of 

the tumour stroma in a variety of cancer types. Subtle difference between the fibroblast 

populations reported, such as marker expression and the range of cytokines produced, likely 

reflect the local milieu of soluble and mechanical cues, as well as environmental pressures 

unique to the tumour type. 

 

Sequencing of paired immune and non-immune stroma provided the opportunity to 

investigate signalling between different stromal compartments. Using a recently reported 

database of receptor-ligand interactions, we were able to infer cross-talk between the 

‘immune’ CAF subset and Cd11b+ Cd11c- macrophages, via the CXCL12-CXCR4,CSF1-

CSF1R and C3-C3ar1 axes. While both of CXCL12 and CSF1 are reported to recruit 

macrophages to the tumour stroma and induce a suppressive phenotype, the role of the 

complement cascade in the tumour microenvironment is more ambiguous 29,49–52. 

Complement components are typically thought to aid immune clearance by increasing 

opsonization and phagocytosis, formation of the membrane attack complex and recruitment 

of multiple immune populations 53. However, in a malignant context, the complement 

cascade has been shown to promote tumorigenesis and induce immune suppression. In 

particular, complement components C3a and C5a and their cognate receptors C3AR1 and 

C5AR1 are linked with  recruitment of suppressive myeloid cells and T cell dysfunction 54–58. 

Interestingly, the CAF1 subset represented the greatest source of C3 in the primary tumour. 

This component acts upstream within the complement cascade, inducing the cleavage and 

activation of downstream factors. Thus, while CAF1 secreted C3 may recruit macrophages 

to the tumour stroma, C3 activation of complement components, such as C5a, may broadly 

suppress immune function.   

 

Thus, ‘immune’ CAFs may aid in the recruitment and polarisation of suppressive 

macrophage populations, which then further contribute to the development of immune 

privilege by suppressing T cell function. Furthermore, the CAF1 subpopulation may directly 

induce T cell dysfunction by activation of the complement cascade. This additional layer of 

immune regulation by CAFs is also consistent with recent studies in pre-clinical models of 

PDAC and melanoma, which suggested that blockade of either CXCL12-CCR4, CSF1-
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CSF1R or complement receptors, act to synergise with checkpoint inhibitors 57,32,59. With 

inhibitors targeting both CXCR4 and CSF1R, as well as numerous components of the 

complement cascade, currently in clinical trials (for example, CXCR4: AMD3100 and PF-

06747143, CSF1R: JNJ-40346527 and PLX5622, C3: APL-1 APL-2 ), enrichment of 

‘immune’ CAFs may highlight patients that would benefit from this treatment, in combination 

with checkpoint immunotherapies. 

 

In summary, we have demonstrated the power of scRNAseq to define the tumour stromal 

landscape, highlighting the dynamic and adaptive nature of both immune and non-immune 

stroma within an evolving tumour microenvironment, and revealedpotential cross-talk 

between these two compartments. We identified 3 CAF clusters with distinct functional and 

temporal features; the immune subset supporting recruitment and induction of an 

immunosuppressive macrophage phenotype providing an alternative, indirect mechanism to 

dampen T cell mediated anti-tumour immunity.  

References  

 

1. Turley, S. J., Cremasco, V. & Astarita, J. L. Immunological hallmarks of stromal cells in 

the tumour microenvironment. Nat. Rev. Immunol. 15, 669–682 (2015). 

2. Galon, J. et al. Type, density, and location of immune cells within human colorectal 

tumors predict clinical outcome. Science 313, 1960–1964 (2006). 

3. Sato, E. et al. Intraepithelial CD8+ tumor-infiltrating lymphocytes and a high 

CD8+/regulatory T cell ratio are associated with favorable prognosis in ovarian cancer. 

Proc. Natl. Acad. Sci. U. S. A. 102, 18538–18543 (2005). 

4. Hamid, O. et al. Safety and Tumor Responses with Lambrolizumab (Anti–PD-1) in 

Melanoma. N. Engl. J. Med. 369, 134–144 (2013). 

5. Topalian, S. L. et al. Safety, activity, and immune correlates of anti-PD-1 antibody in 

cancer. N. Engl. J. Med. 366, 2443–2454 (2012). 

6. Brahmer, J. R. et al. Safety and activity of anti-PD-L1 antibody in patients with advanced 

cancer. N. Engl. J. Med. 366, 2455–2465 (2012). 

7. Hodi, F. S. et al. Improved survival with ipilimumab in patients with metastatic 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 9, 2018. ; https://doi.org/10.1101/467225doi: bioRxiv preprint 

https://doi.org/10.1101/467225
http://creativecommons.org/licenses/by-nc-nd/4.0/


melanoma. N. Engl. J. Med. 363, 711–723 (2010). 

8. Junttila, M. R. & de Sauvage, F. J. Influence of tumour micro-environment heterogeneity 

on therapeutic response. Nature 501, 346–354 (2013). 

9. Jia, C.-C. et al. Cancer-associated fibroblasts from hepatocellular carcinoma promote 

malignant cell proliferation by HGF secretion. PLoS One 8, e63243 (2013). 

10. Orimo, A. et al. Stromal fibroblasts present in invasive human breast carcinomas 

promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. 

Cell 121, 335–348 (2005). 

11. Guo, X., Oshima, H., Kitmura, T., Taketo, M. M. & Oshima, M. Stromal fibroblasts 

activated by tumor cells promote angiogenesis in mouse gastric cancer. J. Biol. Chem. 

283, 19864–19871 (2008). 

12. Dumont, N. et al. Breast fibroblasts modulate early dissemination, tumorigenesis, and 

metastasis through alteration of extracellular matrix characteristics. Neoplasia 15, 249–

262 (2013). 

13. Gaggioli, C. et al. Fibroblast-led collective invasion of carcinoma cells with differing roles 

for RhoGTPases in leading and following cells. Nat. Cell Biol. 9, 1392–1400 (2007). 

14. Calon, A. et al. Dependency of colorectal cancer on a TGF-β-driven program in stromal 

cells for metastasis initiation. Cancer Cell 22, 571–584 (2012). 

15. Harper, J. & Sainson, R. C. A. Regulation of the anti-tumour immune response by 

cancer-associated fibroblasts. Semin. Cancer Biol. 25, 69–77 (2014). 

16. Cortez, E., Roswall, P. & Pietras, K. Functional subsets of mesenchymal cell types in 

the tumor microenvironment. Semin. Cancer Biol. 25, 3–9 (2014). 

17. Augsten, M. Cancer-associated fibroblasts as another polarized cell type of the tumor 

microenvironment. Front. Oncol. 4, 62 (2014). 

18. Roswall, P. & Pietras, K. Of mice and men: a comparative study of cancer-associated 

fibroblasts in mammary carcinoma. Ups. J. Med. Sci. 117, 196–201 (2012). 

19. Satija, R., Farrell, J. A., Gennert, D., Schier, A. F. & Regev, A. Spatial reconstruction of 

single-cell gene expression data. Nat. Biotechnol. 33, 495–502 (2015). 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 9, 2018. ; https://doi.org/10.1101/467225doi: bioRxiv preprint 

https://doi.org/10.1101/467225
http://creativecommons.org/licenses/by-nc-nd/4.0/


20. Simoni, Y. et al. Bystander CD8+ T cells are abundant and phenotypically distinct in 

human tumour infiltrates. Nature 557, 575–579 (2018). 

21. Bonnans, C., Chou, J. & Werb, Z. Remodelling the extracellular matrix in development 

and disease. Nat. Rev. Mol. Cell Biol. 15, 786–801 (2014). 

22. Böttcher, J. P. et al. NK Cells Stimulate Recruitment of cDC1 into the Tumor 

Microenvironment Promoting Cancer Immune Control. Cell 172, 1022–1037.e14 (2018). 

23. Vijayan, D., Young, A., Teng, M. W. L. & Smyth, M. J. Targeting immunosuppressive 

adenosine in cancer. Nat. Rev. Cancer 17, 709 (2017). 

24. Tirosh, I. et al. Dissecting the multicellular ecosystem of metastatic melanoma by single-

cell RNA-seq. Science 352, 189–196 (2016). 

25. Puram, S. V. et al. Single-Cell Transcriptomic Analysis of Primary and Metastatic Tumor 

Ecosystems in Head and Neck Cancer. Cell 171, 1611–1624.e24 (2017). 

26. Kalluri, R. The biology and function of fibroblasts in cancer. Nat. Rev. Cancer 16, 582–

598 (2016). 

27. Pickup, M. W. et al. Stromally derived lysyl oxidase promotes metastasis of transforming 

growth factor-β-deficient mouse mammary carcinomas. Cancer Res. 73, 5336–5346 

(2013). 

28. Hlatky, L., Tsionou, C., Hahnfeldt, P. & Coleman, C. N. Mammary fibroblasts may 

influence breast tumor angiogenesis via hypoxia-induced vascular endothelial growth 

factor up-regulation and protein expression. Cancer Res. 54, 6083–6086 (1994). 

29. Comito, G. et al. Cancer-associated fibroblasts and M2-polarized macrophages 

synergize during prostate carcinoma progression. Oncogene 33, 2423–2431 (2014). 

30. De Monte, L. et al. Intratumor T helper type 2 cell infiltrate correlates with cancer-

associated fibroblast thymic stromal lymphopoietin production and reduced survival in 

pancreatic cancer. J. Exp. Med. 208, 469–478 (2011). 

31. Li, T. et al. Hepatocellular carcinoma-associated fibroblasts trigger NK cell dysfunction 

via PGE2 and IDO. Cancer Lett. 318, 154–161 (2012). 

32. Feig, C. et al. Targeting CXCL12 from FAP-expressing carcinoma-associated fibroblasts 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 9, 2018. ; https://doi.org/10.1101/467225doi: bioRxiv preprint 

https://doi.org/10.1101/467225
http://creativecommons.org/licenses/by-nc-nd/4.0/


synergizes with anti-PD-L1 immunotherapy in pancreatic cancer. Proc. Natl. Acad. Sci. 

U. S. A. 110, 20212–20217 (2013). 

33. Özdemir, B. C. et al. Depletion of Carcinoma-Associated Fibroblasts and Fibrosis 

Induces Immunosuppression and Accelerates Pancreas Cancer with Reduced Survival. 

Cancer Cell 28, 831–833 (2015). 

34. Calvo, F. et al. Mechanotransduction and YAP-dependent matrix remodelling is required 

for the generation and maintenance of cancer-associated fibroblasts. Nat. Cell Biol. 15, 

637–646 (2013). 

35. Arora, P. D., Narani, N. & McCulloch, C. A. The compliance of collagen gels regulates 

transforming growth factor-beta induction of alpha-smooth muscle actin in fibroblasts. 

Am. J. Pathol. 154, 871–882 (1999). 

36. Li, Z. et al. Transforming growth factor-beta and substrate stiffness regulate portal 

fibroblast activation in culture. Hepatology 46, 1246–1256 (2007). 

37. Lambrechts, D. et al. Phenotype molding of stromal cells in the lung tumor 

microenvironment. Nat. Med. 24, 1277–1289 (2018). 

38. Thomas, H., Cowin, A. J. & Mills, S. J. The Importance of Pericytes in Healing: Wounds 

and other Pathologies. Int. J. Mol. Sci. 18, (2017). 

39. Sugimoto, H., Mundel, T. M., Kieran, M. W. & Kalluri, R. Identification of fibroblast 

heterogeneity in the tumor microenvironment. Cancer Biol. Ther. 5, 1640–1646 (2006). 

40. Zheng, B. et al. CD146 attenuation in cancer-associated fibroblasts promotes pancreatic 

cancer progression. Mol. Carcinog. 55, 1560–1572 (2016). 

41. Cremasco, V. et al. FAP delineates heterogeneous and functionally divergent stromal 

cells in immune-excluded breast tumors. Cancer Immunol Res (2018). 

doi:10.1158/2326-6066.CIR-18-0098 

42. Mederacke, I. et al. Fate tracing reveals hepatic stellate cells as dominant contributors 

to liver fibrosis independent of its aetiology. Nat. Commun. 4, 2823 (2013). 

43. Chen, Y.-T. et al. Platelet-derived growth factor receptor signaling activates pericyte–

myofibroblast transition in obstructive and post-ischemic kidney fibrosis. Kidney Int. 80, 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 9, 2018. ; https://doi.org/10.1101/467225doi: bioRxiv preprint 

https://doi.org/10.1101/467225
http://creativecommons.org/licenses/by-nc-nd/4.0/


1170–1181 (2011). 

44. Lin, S.-L., Kisseleva, T., Brenner, D. A. & Duffield, J. S. Pericytes and perivascular 

fibroblasts are the primary source of collagen-producing cells in obstructive fibrosis of 

the kidney. Am. J. Pathol. 173, 1617–1627 (2008). 

45. Hosaka, K. et al. Pericyte–fibroblast transition promotes tumor growth and metastasis. 

Proc. Natl. Acad. Sci. U. S. A. 201608384 (2016). 

46. Li, H. et al. Reference component analysis of single-cell transcriptomes elucidates 

cellular heterogeneity in human colorectal tumors. Nat. Genet. 49, 708–718 (2017). 

47. Öhlund, D. et al. Distinct populations of inflammatory fibroblasts and myofibroblasts in 

pancreatic cancer. J. Exp. Med. 214, 579–596 (2017). 

48. Costa, A. et al. Fibroblast Heterogeneity and Immunosuppressive Environment in 

Human Breast Cancer. Cancer Cell 33, 463–479.e10 (2018). 

49. Pixley, F. J. Macrophage Migration and Its Regulation by CSF-1. Int. J. Cell Biol. 2012, 

501962 (2012). 

50. Priceman, S. J. et al. Targeting distinct tumor-infiltrating myeloid cells by inhibiting CSF-

1 receptor: combating tumor evasion of antiangiogenic therapy. Blood 115, 1461–1471 

(2010). 

51. Fleetwood, A. J., Lawrence, T., Hamilton, J. A. & Cook, A. D. Granulocyte-macrophage 

colony-stimulating factor (CSF) and macrophage CSF-dependent macrophage 

phenotypes display differences in cytokine profiles and transcription factor activities: 

implications for CSF blockade in inflammation. J. Immunol. 178, 5245–5252 (2007). 

52. Pyonteck, S. M. et al. CSF-1R inhibition alters macrophage polarization and blocks 

glioma progression. Nat. Med. 19, 1264–1272 (2013). 

53. Reis, E. S., Mastellos, D. C., Ricklin, D., Mantovani, A. & Lambris, J. D. Complement in 

cancer: untangling an intricate relationship. Nat. Rev. Immunol. 18, 5–18 (2018). 

54. Markiewski, M. M. et al. Modulation of the antitumor immune response by complement. 

Nat. Immunol. 9, 1225–1235 (2008). 

55. Gunn, L. et al. Opposing roles for complement component C5a in tumor progression 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 9, 2018. ; https://doi.org/10.1101/467225doi: bioRxiv preprint 

https://doi.org/10.1101/467225
http://creativecommons.org/licenses/by-nc-nd/4.0/


and the tumor microenvironment. J. Immunol. 189, 2985–2994 (2012). 

56. Vadrevu, S. K. et al. Complement c5a receptor facilitates cancer metastasis by altering 

T-cell responses in the metastatic niche. Cancer Res. 74, 3454–3465 (2014). 

57. Nabizadeh, J. A. et al. The Complement C3a Receptor Contributes to Melanoma 

Tumorigenesis by Inhibiting Neutrophil and CD4+ T Cell Responses. J. Immunol. 196, 

4783–4792 (2016). 

58. Wang, Y. et al. Autocrine Complement Inhibits IL10-Dependent T-cell-Mediated 

Antitumor Immunity to Promote Tumor Progression. Cancer Discov. 6, 1022–1035 

(2016). 

59. Zhu, Y. et al. CSF1/CSF1R blockade reprograms tumor-infiltrating macrophages and 

improves response to T-cell checkpoint immunotherapy in pancreatic cancer models. 

Cancer Res. 74, 5057–5069 (2014). 

60. Picelli, S. et al. Full-length RNA-seq from single cells using Smart-seq2. Nat. Protoc. 9, 

171–181 (2014). 

61. Patro, R., Duggal, G., Love, M. I., Irizarry, R. A. & Kingsford, C. Salmon provides fast 

and bias-aware quantification of transcript expression. Nat. Methods 14, 417–419 

(2017). 

62. Qiu, X. et al. Reversed graph embedding resolves complex single-cell trajectories. Nat. 

Methods 14, 979–982 (2017). 

63. Stubbington, M. J. T. et al. T cell fate and clonality inference from single-cell 

transcriptomes. Nat. Methods 13, 329–332 (2016). 

64. Scialdone, A. et al. Computational assignment of cell-cycle stage from single-cell 

transcriptome data. Methods 85, 54–61 (2015). 

65. Zheng, G. X. Y. et al. Massively parallel digital transcriptional profiling of single cells. 

Nat. Commun. 8, 14049 (2017). 

66. Hagai, T. et al. Gene expression variability across cells and species shapes innate 

immunity. Nature (2018). doi:10.1038/s41586-018-0657-2 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 9, 2018. ; https://doi.org/10.1101/467225doi: bioRxiv preprint 

https://doi.org/10.1101/467225
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

Materials and Methods 
  
Mouse models 
 
Animals were housed in accordance with UK regulations and experiments were performed 

under project licences PPL 80/2574 or PPL P8837835. The C57BL/6 derived B16.F10 

melanoma cell line was purchased from American Type Culture Collection (ATCC) and 

cultured in Dulbecco’s Modified Eagle medium (DMEM, Life Technologies), supplemented 

with 1% Penstrep and 10% FBS. 2.5 x105 B16 cells were injected, subcutaneously, into the 

shoulders of either wild type (WT) C57BL/6 mice, or C57BL/6-Tg(CAG-

EGFP)131Osb/LeySopJ mice (Jackson Laboratory). After 5, 8 and 11 days animals were 

sacrificed and tissues collected for analysis. In addition, skin was also taken from non-

tumour bearing mice. 

 

Tissue Processing 
 
Tumours were mechanically dissociated and digested in 1mg/ml collagenase D (Roche), 

1mg/ml collagenase A (Roche) and 0.4mg/ml DNase (Roche) in PBS, at 37OC for 2hs. 

Lymph nodes were mechanically dissociated and digested with 1mg/ml collagenase A 

(Roche) and 0.4mg/ml DNase (Roche) in PBS, at 37OC. After 30 mins, Collagenase D 

(Roche) was added (final concentration of 1mg/ml) to lymph node samples and digestion 

was continued for a further 30 mins. EDTA was added to all samples to neutralise 

collagenase activity (final concentration (5mM) and digested tissues were passed through 

70μm filters (Flacon) ready for staining. 

 
Isolation of Single Cells 
 
Single cells were isolated from processed tissues using fluorescence-activated cell sorting 

(FACS). Once processed, samples were incubated with a fixable fluorescent viability stain 

(Life Technologies) for 20mins (diluted 1:1000 in PBS) prior to incubation with conjugated 

primary antibodies for 30 mins at 4OC. Antibodies were diluted in PBS 0.5% BSA according 

to table SX. Stained samples were index sorted, using the BD influx flow cytometer system, 

Single-cells were sorted in 2μl of Lysis Buffer (1:20 solution of RNase Inhibitor (Clontech, 
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cat. no. 2313A) in 0.2% v/v Triton X-100 (Sigma-Aldrich, cat. no. T9284)) in 96 well plates, 

spun down and immediately frozen at -80 degrees. 

 

Preparation of cDNA and sequencing 
 
Reverse transcription and cDNA pre-amplification were performed according to the 

SmartSeq2 protocol 60 to obtain mRNA libraries from single-cells. Oligo-dT primer, dNTPs 

(ThermoFisher, cat. no. 10319879) and an ERCC RNA Spike-In Mix (1:50,000,000 final 

dilution, Ambion, cat. no. 4456740) were then added. Reverse Transcription and PCR were 

performed as previously published 60, using 50U of SMARTScribe™ Reverse Transcriptase 

(Clontech, cat. no. 639538). cDNA libraries were prepared using the Nextera XT DNA 

Sample Preparation Kit (Illumina, cat. no. FC-131-1096), according to the protocol supplied 

by Fluidigm (PN 100-5950 B1). Single cell libraries were pooled, purified using AMPure XP 

beads (Beckman Coulter) and sequenced on an Illumina HiSeq 2500 aiming for and average 

depth of 1 Million reads/cell (paired-end 100-bp reads).  

 

Single-cell RNA sequencing analysis 
 
The SmartSeq2 data was quantified with Salmon61 (version 0.8.2), using the GENCODE 

mouse protein-coding transcript sequences. Transcript Per Million (TPM) values reported by 

Salmon were used for the quality control of the samples. In order to get the endogenous 

TPM values, we removed the ERCC's from the expression table and scaled the TPM's so 

that they sum to a million. Cells with less than 1500 detected genes and for which the total 

mitochondrial expression exceeded 20% were excluded from further analysis. Genes that 

were expressed in less than 3 cells were also removed.  

 

Downstream analysis such as, clustering based on SNN graph-based clustering, differential 

expression analysis and visualisation were performed using the Seurat package19 (version 

2.3.4) implemented in R. Clusters were identified using the community identification 

algorithm as implemented in the Seurat "FindClusters" function. Differential expression 

analysis was performed based on the Wilcoxon rank sum test. Clusters were annotated 

using canonical cell type markers. Two clusters of dDC2 in the tumour represented the same 

cell type and were therefore merged.  

 

Trajectory modelling and pseudotemporal ordering of cells was performed with the Monocle 

2 R-package62 (version 2.8.0). The most highly variable genes were used for ordering the 

cells. Potential doublets and contaminating melanocytes and keratinocytes were excluded. 
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We also removed a cluster for which the top markers were genes associated with 

dissociation-induced effects. 

 

To further identify subpopulations, we reanalysed the T cells, innate immune cells (myeloid 

and NK) and the CAFs separately, using the same workflow as described above. To account 

for the cell cycle heterogeneity in the T cell subsets. a cell cycle score was calculated for 

each cell and this score was then regressed out. We used the function “AddModuleScore” 

from Seurat and the list of G2M associated genes from Scaldoen et al. to calculate a cell 

cycle score for each cell. 

 

Gene Set Enrichment Analysis (GSEA) (software.broadinstitute.org/gsea/index.jsp) was 

performed on genes that were differentially expressed between clusters, with a p value < 

0.05. Overlap with canonical GO categories (CP:BIOCARTA, CP:KEGG, CP:REACTOME) 

was assessed and the False Discovery Rate (FDR) calculated. 

  

T-cell receptor (TCR)  analysis 
 
The TCR sequences for each single T cell were assembled using TraCeR63 which allowed 

the reconstruction of the TCRs from scRNA-seq data and their expression abundance 

(transcripts per million, TPM), as well as identification of the size, diversity and lineage 

relation of clonal subpopulations. In total, we detected 77 TCR sequences with at least one 

paired productive αβ or gamma-delta chain. Cells for which more than two recombinants 

were identified were excluded from further analysis.  

 

Cell cycle analysis 
 
The pair-based prediction method described by Scialdone et al64. and implemented in the R 

package scran was used to assign each cell a cell cycle stage. Briefly, using a training data, 

pairs of marker genes are identified such that the expression of the first gene in the training 

data is greater than the second in certain cell cycle stage but less than the second in all 

other stages. For each cell then, the method calculates the proportion of all marker pairs 

where the expression of the first gene is greater than the second in the test data. 

 

Putative interactions between cell types 
 
To enable a systematic analysis of cell-cell communication, we used CellPhoneDB (Vento-

Tormo, Efremova et al., Nature, in press). CellPhoneDB is a manual curated repository of 
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ligands, receptors and their interactions, integrated with a new statistical framework for 

inferring cell-cell communication networks from single cell transcriptome data. Briefly, in 

order to identify the most relevant interactions between cell types, we looked for the cell-type 

specific interactions between ligands and receptors. Only receptors and ligands expressed in 

more than 10% of the cells in the specific cluster were considered. We performed pairwise 

comparisons between all cell types. First, we randomly permuted the cluster labels of all 

cells 1000 times and determined the mean of the average receptor expression level of a 

cluster and the average ligand expression level of the interacting cluster. For each receptor-

ligand pair in each pairwise comparison between two cell types, this generated a null 

distribution. By calculating the proportion of the means which are "as or more extreme" than 

the actual mean, we obtained a p-value for the likelihood of cell type-specificity of a given 

receptor-ligand complex. We then prioritized interactions that are highly enriched between 

cell types based on the number of significant pairs and manually selected biologically 

relevant ones. For the multi-subunit heteromeric complexes, we required that all subunits of 

the complex are expressed (using a threshold of 10%), and therefore we used the member 

of the complex with the minimum average expression to perform the random shuffling. 

 

Mouse skin fibroblasts from healthy mice 
 
Skin samples from two 8-week old female C57BL/6 mice were processed, first by 

mechanical processing, followed by 2 h incubation with 0.5% collagenase B (Roche; 

11088815001). Cells were then counted and loaded on the 10x Chromium machine. 

Libraries were prepared following the Chromium Single Cell 3′ v2 Reagent Kit Manual65. 

Libraries were sequenced on an Illumina HiSeq 4000 instrument with 26 bp for read 1 and 

98 bp for read 2. 

Droplet-based sequencing data was aligned, filtered and quantified using the Cell Ranger 

Single-Cell Software Suite (version 2.2.0), against the mouse reference genome provided by 

Cell Ranger. The data was analysed using the pipeline described above. Only the clusters 

identified as fibroblasts (based on expression of Col1a1, Col1a2) were considered for 

comparison with the CAF clusters. 

 

Human skin fibroblasts 
 
scRNA-seq data was downloaded from ArrayExpress (E-MTAB-6831)66. CD45-negative 

cells from a digested skin sample were taken from a human female and processed in a 10X 

Chromium machine (10X Genomics). Droplet-based sequencing data was aligned, filtered 

and quantified using the Cell Ranger Single-Cell Software Suite (version 1.2.0), against the 
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GRCh38 human reference genome provided by Cell Ranger. The data was analysed using 

the pipeline described above. Only the clusters identified as fibroblasts (based on expression 

of COL1A1, COL1A2) were considered for comparison with the CAF clusters. 

 

Comparison of human and mouse skin fibroblasts with CAFs 
 
To compare the mouse and human skin fibroblasts with the CAFs, a logistic regression with 

L2-norm regularization and a multinomial learning approach (implemented by the scikit-learn 

function LogisticRegression) was trained on the CAF clusters, using the log-transformed 

normalized data. The model was used to predict the probabilities of each mouse and human 

skin cell belonging to each one of the CAF clusters (implemented by the predict_proba 

function).  

 

Flow Cytometry 
 

Following a 20min incubation with a fixable fluorescent viability stain (see isolation of single 

cells), cells were incubated with primary antibodies, against cell surface markers, for 30mins 

at 4oC. All primary antibodies were diluted according to table 1 in PBS 0.5% BSA. If 

required, fluorescently labelled streptavidin, diluted 1:300 in PBS 0.5%BSA, was added for a 

further 30mins. To stain for intracellular targets samples were fixed and permeabilized using 

the FOXP3 kit (eBioscence), according to manufacturer's instructions. Fixation and 

permeabilization was only performed once staining for surface markers was completed. For 

investigation of CXCL12 expression, samples were incubated with Brefeldin-A (BFA, 

Biolegend) prior to the staining process. Samples were incubated with BFA (1:1000 dilution) 

both during tissue processing and for a further 4hs in 10% FBS supplemented DMEM media 

(Life Technologies). Once staining was completed, samples were analysed using the BD 

LSR-Fortessa system. 

   

Target Species Company Clone Dilution 

CD45 APC-Cy7 Rat Biolegend 30-F11 1:300 

CD45 FITC Rat Biolegend 30-F11 1:300 

CD31 PE-Cy7 Rat eBioscience 390 1:300 
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PDPN APC Syrian Hamster 

  

Biolegend 8.1.1 1:300 

CD3e 488 Armenian 

Hamster 

Biolegend 145-2C1 1:300 

CD3e PE Armenian 

Hamster 

Biolegend 145-2C1 1:300 

CD4 PE-Cy7 Rat eBioscience GK1.5 1:300 

CD8 780 Rat eBioscience 53-6.7 1:300 

CD8 PE Rat eBioscience 53-6.7 1:300 

Lag3 Biotin Rat Biolegend C9B7W 1:300 

PD1 Rat Biolegend RMP1-30 1:300 

Ki67 Rat Biolegened 16A8 1:100 

IL-7Ra APC Rat Biolegend A7R34 1:300 

B220 488 Rat Biolegend RA3-6B2 1:300 

CD11b 647 Rat Biolegend M1/70 1:300 

CD11c PE-Cy7 Armenian 

Hamster 

Biolegend N418 1:300 

aSMA Mouse Thermo 

Fisher 

1A4 1:200 

PDGFRa Biotin Rat Biolegend APA5 1:300 

PDGFRb Biotin Rat Biolegend APB5 1:300 
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Thy1 APC-Cy7 Rat Biolegend 30-H12 

  

1:300 

CD34 APC Armenian 

Hamster 

Biolegend HM34 1:200 

CXCL12 PE Mouse R&D Systems MAB350 1:100 

Table 1. Conjugated Antibodies 

 

Immunofluorescence 
 
Collected tissues were embedded in OCT medium (VWR) and snap frozen on dry ice. 

Frozen tissues were sectioned into 10μm slices and stored at -80oC. Sections were air dried 

and fixed in 50:50 acetone (Fluka): methanol (Fisher), at -20oC for 2mins or 4% 

paraformaldehyde (PFA) for 10 minutes. If fixed with PFA, samples were permeabilized with 

0.1 % Triton for a further 10 minutes. After blocking for 1h at room temperature (RT) with 

blocking buffer (10% chicken serum and 2% Bovine Serum Albumin) in PBS, primary 

antibodies were applied overnight at 4OC or RT for 3hs. To visualise samples, secondary 

antibodies (Life Technologies), conjugated to either Alexa Fluor 488, 594 or 647, or 

fluorescently labelled streptavidin, were added for 2hs at RT. Samples were incubated with 

the nuclear stain 4',6-diamidino-2-phenylindole (DAPI) for 10 mins at 1μg/ml, before 

mounting with ProLong Gold (ThermoFisher) liquid mountant. Streptavidin and secondary 

antibodies were diluted 1:300 in blocking buffer and primary antibodies were diluted in 

blocking buffer according to Table 2. Confocal imaging was performed using the Zeiss LSM 

880 microscope and processed using the Zeiss Blue software. 

 

Target Species Company Clone Dilution 

PDPN Syrian Hamster Biolegend 8.1.1 1:100 

αSMA Rabbit abcam Polyclonal 1:50 

PDGFRα Goat R&D Systems Polyclonal 1:50 
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CD34 Rat eBioscience RAM34 1:50 

F4/80 Rat AbDserotech A3-1 1:100 

F4/80 488 Rat AbDserotech A3-1 1:20 

CXCR4 Rat R & D Systems 247506 1:50 

CSFR1 Sheep R & D Systems Polyclonal 1:50 

CXCL12 PE Mouse R & D Systems MAB350 1:50 

CSF1 Rabbit ABGENT Polyclonal 1:50 

NG2 Rabbit abcam Polyclonal 1:50 

CD31 Rat Biolegend MEC13.3 1:100 

 Table 2. Purified antibodies 

 
EdU Incorporation 
 
B16 melanomas were established in wt C57BL/6 mice as previously stated. Tumours were 
collected after 11 days and frozen in OCT medium for histology. Intraperitoneal injections of 
500μg/ml of 5-ethynyl-2’-deoxyuridine (EdU) were performed every 24hs, 4 days prior to 
culling. Sections were fixed at -20oC, in a mixture of acetone and methanol (50:50). After 
fixation, the EdU Click-it Alexa Fluor 647 kit (Invitrogen) was used to visualise incorporated 
EdU, according to the manufacturer's protocol. Following the click-it reaction, antibody 
staining was performed as previously stated. 
 
Data availability 
 
The raw sequencing data for the melanoma model has been deposited in ArrayExpress 
(experiment E-MTAB-7427) and the count table can be downloaded from 
https://www.ebi.ac.uk/gxa/sc/experiments/E-EHCA-2/Results. The mouse skin data from 
healthy mice was deposited in ArrayExpress (experiment E-MTAB-7417). 
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Main Figures 

 
Figure 1. Distinction of melanoma stromal populations with single-cell RNA-seq. a, 
Overview of experimental and sequencing workflow. b, tSNE visualisation of all cells 

sequenced with each cell colour coded for; cell type (left), site of origin (middle), time (right). 

c, Expression of marker genes for each cell type. NK, natural killer; migDC, migratory DC; 

DC LN, lymph node dendritic cell, cDC1/2, conventional dendritic cell; pDC, plasmacytoid 

DC; MAIT, Mucosal-associated invariant T cell; Endo lymph, lymphatic endothelial cell; Endo 

tumour, tumour endothelial cells; endo LN, lymph node endothelium; fibroblast LN, lymph 

node fibroblast. 

 

Figure 2. Myeloid cell clusters in the tumour exhibit suppressive characteristics. a, 
tSNE plot of individual myeloid cells colored by site (tumour, dark grey; lymph node, light 

grey) and clusters marked by coloured lines. b, Violin plots showing expression of selected 

surface marker genes within each cell cluster displayed as Log (TPM+1). c, tSNE plots 

showing expression of selected marker genes for macrophages and inflammatory and 

resident monocytes. d, Heatmap showing mean expression (Log(TPM+1)) of co-stimulatory 

and suppressive genes for the identified cell clusters. e, Heatmap showing relative 

expression (z-score) of co-stimulatory and suppressive genes in all innate immune cells over 

time. f, Schematic diagram of the costimulatory and inhibitory receptors/ligands expressed 
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on distinct myeloid subpopulations. migDC, migratory DC; DC LN, lymph node dendritic cell, 

cDC1/2, conventional dendritic cell; pDC, plasmacytoid DC; MP, mononuclear phagocyte. 

 

Figure 3. T cells recruited from lymph nodes are activated in situ. a, tSNE plot of 

individual T cells colored by site (tumour, dark grey; lymph node, light grey) and annotated 

subpopulations marked by coloured lines. b, Heatmap showing relative expression (z-score) 

of functional gene groups for cell clusters. c, Pseudotime analysis of CD8+ T cell gene 

trajectories coloured by site (left), clonal expansion (middle) and tumour stage (days, right), 

arrow indicates time direction. d, Expression of activation-associated genes along the 

inferred pseudotime coloured by site; lymph node (green), Tumour (blue). 

 

Figure 4.  Distinct fibroblast clusters identified in melanoma tumours. a, tSNE plot of 

sequenced fibroblasts from tumours coloured by their associated cluster (left) or by tumour 

time point (right) b, tSNE visualisation of the proliferation marker Mki67 in the CAFs. c, bar 

plot depicting the ratio of CAF populations at each time point examined where the size of 

each coloured bar is proportional to percentage of total CAFs each population represents. 

Data presented as mean ± SEM. * P<0.05 (Two way anova with Tukey post-hok test). d, 
Heatmap showing average expression (Log(TPM+1)) of typical CAF markers. e, Heatmap 

depicting logistic regression analysis of normal mouse skin, indicating which of the 3 CAF 

clusters these cells are most similar. f, Heatmap of gene ontology pathways for differentially 

expressed genes in each cluster; cytokine-chemokine receptor interactions, complement 

cascade, Extracellular matrix interactions and actin cytoskeleton. Columns represent 

individual cells, rows display z scores. 

 

Figure 5. Fibroblast subtypes in murine are mirrored in human disease a,  
Representative confocal images of PDPN, PDGFRα and αSMA in combination (left panel) or 

CD34 in combination with either PDPN PDGFRα or αSMA (right panel) in day 5 and day 11 

tumours. Dashed line indicates the tumour border. Scale bars 100μm. b, Verification of 

populations by flow cytometry. Representative plots depicting the method by which each 

population was distinguished, based on CD34 and αSMA expression (left panel) and a 

histogram showing intracellular CXCL12 expression in each population (middle). Fold 

change in mean fluorescence of normalised to the CD34high αSMAlow population at day 11 

(right), is also shown. c, Representative confocal image of CSF1 expression in αSMAlow 

CD34+ CAF populations in day 5 and day 11 tumours. Scale bars 20um.  d, Flow cytometry 

quantification of the proportion of each CAF population at day 5 and day 11 tumours, 

displayed as as the percentage of the total CAF population. e, Heatmap displays expression 

(z scores, blue to red) of key markers and cytokines across CAFs clusters identified in 
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human melanoma. f, Schematic diagram of the three CAF subpopulations. (a, c, d 

representative image from at least n=3 independent mice). (b) n=12 independent mice. (d) 

Day 5: n=9 tumours from 8 independent mice, Day 11: n=11 independent mice. Data 

presented as mean ± SEM. * P<0.05  as calculated using either a one way anova with 

Dunnett’s post-hok test (b) or Student’s T-test (d) 

 

Figure 6. Stromal crosstalk supports the development of an immune suppressive 
niche. a, Overview of selected statistically significant specific interactions between stromal 

subsets and other cell types using a cell-cell communication pipeline based on 

CellPhoneDB. Size indicates p-values and colour indicates the means of the receptor/ligand 

pairs between two clusters. b, Violin plots displaying expression of ligands Cxcl12, Csf1, C3 

and PDL1 and cognate receptors Cxcr4, Csf1r, C3ar1 and PD1 on respective stromal 

populations. c, Confocal images of representative tumour-tissue borders. CSFR1 or CXCR4 

expressing macrophages located proximally to CD34+ CAFs (green, F4/80; red, CXCR4 or 

CSF1R; white, podoplanin; blue CD34. Scale bars, 20um. d, Schematic diagram of the 

dynamic cross-talk identified within the tumour microenvironment. 

 

Extended Data Figures 
 
Extended Data Figure 1. Gating strategy and quality control of SS2 data. a, Gating 

strategy for index sorted cell populations. b, Quality control of the scRNA-seq dataset. 

Histograms show distribution of the cells from all cells that passed the computational quality 

control ordered by number of detected genes and mitochondrial gene expression content. 

 

Extended Data Figure 2. Marker genes. a, Heatmap showing relative expression (z-score) 

of the top 5 markers for each cluster presented in Fig. 1B. 

 

Extended Data Figure 3. Overview of the innate subpopulations. a, tSNE plots 

visualisation of expression of MHC class I and II genes in the innate immune 

subpopulations. b, Violin plots showing expression of selected cytokines for each innate 

immune subpopulation, known to induce T-cell responses. c, Heatmap of gene ontology 

pathways for differentially expressed genes in innate immune subpopulations; Antigen 

presentation and cytokine-chemokine receptor interactions. Columns represent individual 

cells, rows display z scores. d, Bar plot (-log FDR) depicting the top 20 gene ontology 

pathways upregulated in cDC1 cells, located in the tumour compared to the lymph node 
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(left). Heat map depicting genes in the Class 1 MHC  mediated antigen presentation 

pathway (right). Columns represent individual cells, rows display z scores. 

 

Extended Data Figure 4. Macrophage markers. a, tSNE plots showing expression of M1 

and M2 macrophage markers in the innate immune subpopulations. 

 

Extended Data Figure 5. a, Percentage of CD8+ T cells (displayed as percentage of total T 

cells) and percentage of Ki67+, Lag3+ and PD1+, T cells (displayed as a percentage of total 

CD8+ T cells), in tumours and lymph nodes isolated from skin, day 5 and day 11 tumour 

bearing or control mice. Data presented as mean ± SEM. * P<0.05  as calculated using 

either a one way anova with Tukey post-hok test, n=4 independent mice per time point. 

 

Extended Data Figure 6. Distinct CAF subpopulations identified in the melanoma 
mouse model. a, tSNE plots showing expression of typical CAF markers. b, Bar plot (-log 

FDR) depicting the top 50 gene ontology pathways upregulated in each CAF population. C, 

IF imaging of EdU incorporation in a subset of CAFs in day 11 tumours. Scale bars 50μm (c, 
d, Representative confocal images of CSF1 and CXCL12 mRNA transcripts in CD34+ 

PDGFRα+ fibroblasts of day 11 tumours following RNAscope in situ hybridization 

technology. Scale bars 20um. 

 

Extended Data Figure 7. a, Heatmap showing expression of canonical fibroblasts and 

pericytes markers in the CAFs. b, tSNE plots of all sequenced cells, showing expression of 

typical pericyte markers is also detected in PDPN+ lymph node fibroblasts. c and d, IF 

imaging showing ⍺SMA+ and NG2+ cells both distinct from (top panel) and associated with 

(middle panel) CD31+ blood vessels. Bottom panels show an abundance of CD31+ blood 

vessels that are not surrounded by pericytes. 

 
Extended Data Figure 8. CAF validation and human clustering. a, Gating strategy for 

flow cytometry characterization of CAFs. b, tSNE plots showing expression of CAF marker 

genes in the human melanoma dataset24. 

 

Supplementary Tables 
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Supplementary table 1. Differentially expressed genes amongst the innate immune 
system clusters. This table provides the differentially expressed genes between the innate 

immune subpopulations (q-value<0.1). 

 

Supplementary table 2. Pseudotime analysis of the CD8 T cells.  Genes identified as 

varying significantly along the CD8 T cells trajectory (q-value<0.1). 

 

Supplementary table 3. Differentially expressed genes amongst the three CAF 
clusters. This table provides the differentially expressed genes between the three CAF 

subpopulations (q-value<0.1). 

 

Supplementary table 4. List of interactions in the tumour infiltrating cells. This table 

provides the list of interaction pairs between clusters in Fig. 1B resulting from our cell-cell 

communication pipeline. Sheet 1 - p-values; Sheet 2 - mean expression of the average 

receptor expression level of a cluster and the average ligand expression level of the 

interacting cluster; Sheet 3 - mean expression of the significant interactions ranked by 

specificity (p-value < 0.05). 
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