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Abstract — Evolution leaves heterogeneous patterns of nucleotide variation across the 23 

genome, with different loci subject to varying degrees of mutation, selection, and drift. 24 

Appropriately modelling this heterogeneity is important for reliable phylogenetic inference. 25 

One modelling approach in statistical phylogenetics is to apply independent models of 26 

molecular evolution to different groups of sites, where the groups are usually defined by 27 

locus, codon position, or combinations of the two. The potential impacts of partitioning data 28 

for the assignment of substitution models are well appreciated. Meanwhile, the treatment of 29 

branch lengths has received far less attention. In this study, we examined the effects of 30 

linking and unlinking branch-length parameters across loci. By analysing a range of empirical 31 

data sets, we find that the best-fitting model for phylogenetic inference is consistently one in 32 

which branch lengths are proportionally linked: gene trees have the same pattern of branch-33 

length variation, but with varying absolute tree lengths. This model provided a substantially 34 

better fit than those that either assumed identical branch lengths across gene trees or that 35 

allowed each gene tree to have its own distinct set of branch lengths. Using simulations, we 36 

show that the fit of the three different models of branch lengths varies with the length of the 37 

sequence alignment and with the number of taxa in the data set. Our findings suggest that a 38 

model with proportionally linked branch lengths across loci is likely to provide the best fit 39 

under the conditions that are most commonly seen in practice. In future work, improvements 40 

in fit might be afforded by models with levels of complexity intermediate to proportional and 41 

free branch lengths. The results of our study have implications for model selection, 42 

computational efficiency, and experimental design in phylogenomics. 43 

 44 

Keywords 45 

Substitution model, data partitioning, among-lineage rate variation, model selection, 46 

phylogenomics.  47 
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Molecular evolution is heterogeneous across the genome. This poses a challenge for 48 

statistical phylogenetic analyses of multilocus data sets, because they rely on explicit models 49 

of the evolutionary process (Sullivan and Joyce 2005). There has been considerable interest 50 

in the impact of model choice on estimates of evolutionary parameters, such as the tree 51 

topology and branch lengths (Steel 2005). For example, an important step in most 52 

phylogenetic analyses is choosing a substitution model that captures sufficient variation in 53 

the evolutionary process without overfitting the data (Sullivan and Joyce 2005). The task of 54 

selecting an appropriate phylogenetic model is especially complex for genome-scale data 55 

sets, because the number of potential model combinations becomes astronomical (Lanfear et 56 

al. 2012). Therefore, it would be highly beneficial to identify any general principles that can 57 

help to improve model fit and performance, while maintaining the tractability of 58 

computational analysis. 59 

In terms of model selection in phylogenetics, the models of nucleotide and amino acid 60 

substitution have received the largest amount of attention. Various methods have been 61 

proposed for identifying the best-fitting partitioning scheme for assigning substitution models 62 

to the different loci in the data set (e.g., Lanfear et al. 2012; Kalyaanamoorthy et al. 2017). 63 

One aspect of this process that is often overlooked, however, is deciding how to model 64 

variation in the pattern of branch lengths of the gene trees. These heterogeneities need to be 65 

considered carefully when comparing data-partitioning schemes for phylogenetic analysis. In 66 

our descriptions below, we assume that each locus is associated with a gene tree. We also 67 

assume that the topologies of these gene trees are identical across loci, such that they can 68 

only vary in their absolute length and the pattern of lengths of branches. 69 

The simplest model of branch lengths assumes that they are universally shared across 70 

loci (Fig. 1a). This model has a length parameter for each of the 2n-3 branches in the 71 

(unrooted) tree, where n is the number of taxa. However, the model is unlikely to be realistic 72 
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because it assumes that all loci have evolved at identical rates, which contradicts the 73 

overwhelming evidence of rate variation across the genome (Bromham and Penny 2003). 74 

Nonetheless, this is a widely used model of branch-length variation in molecular 75 

phylogenetics. We can generalize the model slightly by allowing loci to have proportionally 76 

linked branch lengths. In such a model, the branch lengths share proportionality across gene 77 

trees, with variation in the summed lengths of these gene trees permitted (Fig. 1b; Yang 78 

1996; Nylander et al. 2004). In other words, all of the gene trees share the same relative 79 

branch lengths, but have evolved at different absolute rates. For an unrooted tree, this model 80 

of branch lengths has (L-1)+(2n-3) parameters, comprising a set of 2n-3 branch lengths for an 81 

arbitrarily chosen gene tree and the L-1 relative rates of the remainder of the L loci. For each 82 

gene tree, the branch lengths can be obtained by multiplying the 2n-3 branch lengths of the 83 

‘reference’ gene tree by the relative rate at the locus in question. This pattern in branch 84 

lengths can be regarded as the additive outcome of lineage effects and gene effects (Gillespie 85 

1991; Muse and Gaut 1997). 86 

The third and most parameter-rich model of branch lengths allows each gene tree to 87 

have a distinct set of branch lengths (Fig. 1c). This model assumes unlinked branch lengths 88 

and has L·(2n-3) parameters. At first glance, this might seem to be the most realistic of the 89 

three models of branch lengths because we would expect different loci to evolve under 90 

varying degrees of selection and thus to have differing patterns of evolutionary rates across 91 

branches (Takahata 1987; Cutler 2000; Ho 2014). However, the number of parameters in the 92 

model increases rapidly with the number of loci, meaning that the model will have many 93 

parameters when applied to large, multilocus data sets. A biological mechanism that could 94 

give rise to this pattern is that in which selective constraints vary among genes and among 95 

lineages, known as gene-by-lineage interactions (Gillespie 1991; Muse and Gaut 1997). 96 
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The choice of branch-length model has the potential to affect the quality of 97 

phylogenetic inference (Marshall et al. 2006). However, the biological basis for choosing 98 

among the three models is not well understood. Some studies have suggested that loci vary 99 

little in terms of the patterns of branch lengths of their gene trees (Snir et al. 2012, 2014), but 100 

others have found evidence of substantial disparities (Bedford and Hartl 2008; Duchêne and 101 

Ho 2015). 102 

Here, we compare the statistical fit and performance of the three models of branch 103 

lengths in phylogenetic analyses of multilocus data sets. These models vary in terms of 104 

whether branch lengths are universally shared, proportionally linked, or unlinked across loci. 105 

We combine these models of branch lengths with different partitioning schemes for 106 

substitution models. Our analyses of eight multilocus data sets and two phylogenomic data 107 

sets show that the best fit is usually provided by a model with proportionally linked branch 108 

lengths across loci. We also present a simulation study in which we demonstrate that the fit of 109 

the three models of branch lengths depends on the size of the data set. 110 

 111 

 112 

FIGURE 1. Models of branch lengths across gene trees. A model with universally shared branch lengths assumes 113 

a single set of branch lengths across gene trees. This model has 2n-3 branch-length parameters, where n is the 114 

number of taxa. A model with proportionally linked branch lengths assumes that the proportionality of branch 115 

lengths is maintained across gene trees. Nonetheless, variation in the summed branch lengths (tree lengths) is 116 

permitted through a scaling parameter per gene tree. This model contains (L-1)+(2n-3) parameters, where L is 117 
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the number of loci (assuming one gene tree per locus). A model with unlinked branch lengths assumes an 118 

independent set of branch lengths per gene tree, so it has L·(2n-3) parameters. 119 

 120 

MATERIALS AND METHODS 121 

Phylogenetic Models Used for Analysis 122 

We analysed a range of multilocus data sets using seven different partitioning 123 

treatments for branch lengths and substitution models (Table 1). Branch lengths were 124 

assumed to be universally shared (treatments 1–3), proportionally linked (treatments 4 and 5), 125 

or unlinked (treatments 6 and 7) across loci. For each model of branch lengths, we considered 126 

three methods of partitioning the data and selected substitution models from 88 possible 127 

models in the GTR+I+Γ+F family of models specified by the command –m TEST in the IQ-128 

TREE software (Nguyen et al. 2015). First, we assumed a simple model in which all loci 129 

shared the same substitution model parameters and parameter values (treatment 1). Second, 130 

we used an automatic likelihood-based merging approach to select the partitioning scheme 131 

(treatments 2, 4, and 6 in Table 1; Lanfear et al. 2012; Kalyaanamoorthy et al. 2017). Third, 132 

we applied a partitioning scheme in which each locus has an independent substitution model 133 

(treatments 3, 5, and 7 in Table 1).  134 

In the treatments with automated model selection, the chosen partitioning scheme had 135 

the potential to match those in some of the other treatments. This could occur if the method 136 

selected the simplest model, in which all loci shared the same substitution model and the 137 

same set of branch lengths. On the other hand, the method could select the most complex 138 

model, in which each locus had its own substitution model and own set of branch lengths. 139 
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TABLE 1. Models of branch lengths across gene trees, compared using multilocus and phylogenomic data sets. 140 

 141 
Treatment number IQ-

TREE command 
Model of branch 

lengths 
Number of substitution 

models across loci 
Number of tree lengths 

across loci 
Number of branch-length 

patterns across loci 
Potential equivalence 

to other models 
(1) Not applicable Universally shared 1 1 1 – 
(2) -TESTMERGE -q Universally shared 1 ≤ x ≤ L 1 1 1, 3 
(3) -TEST -q Universally shared L 1 1 – 
(4) -TESTMERGE -spp Proportionally linked 1 ≤ x ≤ L 1 ≤ x ≤ L 1 1, 2, 5 
(5) -TEST -spp Proportionally linked L L 1 – 
(6) -TESTMERGE -sp Unlinked 1 ≤ x ≤ L 1 ≤ x ≤ L 1 ≤ x ≤ L 1, 2, 4, 7 
(7) -TEST -sp Unlinked L L L – 
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TABLE 2.  Data sets used for examining models of branch lengths across loci. 143 
 144 
Taxonomic 
group 

Common name Number 
of taxa 

Number 
of loci 

Number of sites Data type Study reference Data set reference (doi) 

Dytiscidae Diving beetles 38 3 2111 M,N Bergsten et al. (2013) 10.5061/dryad.s631d 
Dasypodidae Armadillos 13 5 6070 M,N Delsuc et al. (2003) 10.5061/dyad.1838 
Ensatina Salamanders 69 2 823 M Devitt et al. (2013) 10.5061/dryad.k9g50 
Muscidae Flies 39 3 1635 M,N Dsouli et al. (2011) 10.5061/dryad.9025 
Chironomidae Midges 74 4 2701 M,N Ekrem et al. (2010) 10.1016/j.ympev.2010.06.006 
Saxifragales Part of core 

eudicots 
40 5 9005 C,N Fishbein et al. (2001) 10.5061/dryad.684 

Nothophagus Beeches 51 6 5444 C,N Sauquet et al. (2012) 10.5061/dryad.qq106tm4 
 

Lycodon Wolf snakes 61 3 2697 M,N Siler et al. (2013) 10.5061/dryad.cp6gg 
Neornithes Modern birds 161–200 255 361–2316 (mean = 1524, 

median = 1636) 
N Prum et al. (2015) 10.5281/zenodo.28343 

 

Marsupialia Marsupials 35 1500 141–3660 (mean = 559.3, 
median = 429) 

N Duchêne et al. (2018) 10.5061/dryad.353q5 

M = mitochondrial; N = nuclear; C = chloroplast. 145 
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 146 

Multilocus and Phylogenomic Data 147 

We applied each of the seven treatments of branch lengths and substitution models to 148 

eight multilocus data sets that represented a diverse range of animals and plants. The data sets 149 

were taken from an existing curated compilation of data (Table 2; Kainer and Lanfear 2015), 150 

and each comprised nucleotide sequences from between two and six loci. The sequence 151 

alignments are available from Figshare (doi.org/10.6084/m9.figshare.991367).  152 

We also analysed two phylogenomic data sets that each comprised sequences from 153 

hundreds of loci (Table 2). The first data set consisted of sequences of a mixture of coding 154 

and non-coding regions from up to 200 bird species, representing all of the major extant 155 

lineages (Prum et al. 2015). The second data set comprised exon sequences from 35 156 

marsupials, representing 18 of the 22 extant families (Duchêne et al. 2018). Each exon was 157 

further partitioned by codon position. We randomly split the phylogenomic data into 158 

alignments of 15 loci each to gain insight into the variation within them and for 159 

computational efficiency. The bird data and marsupial data were thus split into 17 and 300 160 

smaller data sets, respectively. 161 

We analysed each data set using maximum likelihood in IQ-TREE v1.6.7 (Nguyen et 162 

al. 2015), under each of the seven treatments described above (Table 1). The fit of the seven 163 

models was compared using the Bayesian information criterion (BIC). Under each treatment, 164 

we also examined estimates of evolutionary parameters, including the sum of the inferred 165 

branch lengths (tree length) and the proportional contribution of internal branches to the tree 166 

length (stemminess; Fiala and Sokal 1985). For analyses of each data set, we computed the 167 

path-distance metric between trees (Steel and Penny 1993) in a pairwise fashion across 168 

models of branch lengths. For the two phylogenomic data sets, we also compared each 169 

topological estimate with the maximum-likelihood estimate from the total data set, as 170 
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reported in the original phylogenomic studies (Prum et al. 2015; Duchêne et al. 2018). We 171 

report comparisons across trees for each data set using multidimensional scaling of the 172 

pairwise distances between trees in two dimensions. The data sets, scripts used for analysis, 173 

and output files are available online (github.com/duchene/branch_length_models). 174 

 175 

Simulation Study 176 

We conducted a simulation study to test for an association between the fit of different 177 

models of branch lengths and the length of sequences and number of taxa in the data set. As 178 

sequence length increases, there is more information available to identify the underlying 179 

evolutionary model. Similarly, an increasing number of taxa provides more information about 180 

the possible distribution of branch lengths, although a model with unlinked branch lengths 181 

across loci will gain large numbers of additional parameters. To explore the patterns of model 182 

support across these variables, we simulated sequence evolution along trees with varying 183 

numbers of taxa (4, 8, 16, and 32) and per-locus sequence length (500, 1000, 2000, and 4000 184 

nucleotides). We started from symmetric time-trees with branch lengths of 10 million years 185 

(Myr). To convert these trees into phylograms, we multiplied the branch lengths (in time 186 

units) by branch rates drawn from a lognormal distribution using the R package NELSI (Ho 187 

et al. 2015). The scripts of the NELSI package are available online 188 

(github.com/sebastianduchene/NELSI), as are the scripts used for simulations and the output 189 

of our analyses (github.com/duchene/branch_length_models). 190 

Using the framework described above, we simulated sequence evolution to produce 191 

pairs of loci under three different models of branch lengths. In the first model, the two gene 192 

trees had unlinked branch lengths but shared the same sum of branch lengths (tree length). 193 

Each set of branch rates was drawn from a lognormal distribution with mean 0.01 194 

substitutions/site/Myr and log standard deviation of 0.2. In the second model, the two gene 195 
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trees had proportionally linked branch lengths. This involved the two trees having the same 196 

pattern of branch-length variation but different tree lengths. The substitution rates of the two 197 

loci were 0.01 and 0.011 substitutions/site/Myr, without any rate variation across branches. In 198 

the third and final model, the two gene trees had unlinked branch lengths with different tree 199 

lengths. In this case, the two sets of branch rates were drawn from distributions with means 200 

of 0.01 and 0.011 substitutions/site/Myr, both with a log standard deviation of 0.2. This 201 

scenario is expected to be the most realistic representation of the evolutionary process. After 202 

the branch rates had been assigned, they were multiplied by the branch lengths of the time-203 

trees. The resulting phylograms were used for our simulations of sequence evolution, which 204 

were performed using a Jukes-Cantor substitution model in the R package phangorn (Schliep 205 

2011). 206 

We generated 100 sets of branch rates and sequence alignments under each of the 48 207 

combinations of branch-length model, number of taxa, and per-locus sequence length. The 208 

sequence alignments were then analysed using IQ-TREE. We used the BIC to compare the fit 209 

of three models of branch lengths, in which branch lengths were universally shared, 210 

proportionally linked, or unlinked across loci. In all cases, we assigned a separate substitution 211 

model to each locus. These scenarios correspond to treatments 3, 5, and 7 in our analyses of 212 

empirical data (Table 1). We also calculated the tree lengths and stemminess for the inferred 213 

trees and compared these with the metrics computed from the trees used for simulations of 214 

sequence evolution. 215 

 216 

RESULTS 217 

Multilocus and Phylogenomic Data 218 

In our analyses of multilocus and phylogenomic data sets, we found that the simplest 219 

model of universally shared branch lengths (treatment 1) provided a generally poorer fit than 220 
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most other treatments (Fig. 2). As expected, this model also tended to have the lowest 221 

likelihood, and automatic model selection based on BIC rarely chose this model 222 

(Supplementary Fig. S1). For several data sets, including most of the multilocus data sets and 223 

the phylogenomic data set from birds, this model also led to longer terminal branches 224 

compared with the gene trees inferred using other models (Supplementary Fig. S1). In the 225 

case of some multilocus data sets, the simplest branch-length model also led to an estimate of 226 

the tree topology that was different from those obtained using the more complex models (Fig. 227 

3a, 3f, and 3g). 228 

 229 

 230 
 231 
FIGURE 2. Statistical fit of seven models of nucleotide substitution and branch lengths across loci. The top row 232 

shows the relative statistical support for each treatment, measured in terms of the difference in the Bayesian 233 

information criterion (BIC) score from the simplest treatment (treatment 1). The bottom row shows the rank of 234 

each treatment in terms of its BIC score, with 1 representing the best-fitting treatment and 7 representing the 235 

worst-fitting treatment. Results are shown for analyses of eight multilocus and two phylogenomic data sets. The 236 

phylogenomic data comprise 17 data sets from birds and 300 data sets from marsupials. Each of these data sets 237 

comprises nucleotide sequences from 15 loci. 238 

 239 

 240 
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 241 

 242 
FIGURE 3. Two-dimensional representations of the topological path-distance between the trees inferred using 243 

each of the seven models of branch lengths. Distances between trees are represented after performing 244 

dimensionality reduction using multi-dimensional scaling (MDS). Red points in panels i and j indicate the 245 

maximum-likelihood estimates from the phylogenomic studies that first reported the data sets from marsupials 246 

(i) and modern birds (j). 247 

 248 

A model with proportionally linked branch lengths (treatments 4 and 5) yielded the 249 

lowest BIC scores across the empirical data sets examined (Fig. 2). Specifically, the best-250 

fitting model was the one in which branch lengths were proportionally linked and in which 251 

selection of the partitioning scheme was automated (treatment 4; Table 1). In addition to 252 

yielding the lowest BIC scores, the model with proportionally linked branch lengths tended to 253 

produce gene trees that were comparatively short, but with intermediate stemminess and 254 

levels of branch support (Supplementary Fig. S1). The second-best statistical fit was provided 255 

by a model in which branch lengths are shared across all loci, but where a separate 256 

substitution model is assigned to each locus. 257 

The model with unlinked branch lengths across loci (treatment 7), which contained 258 

the largest number of parameters, consistently provided the poorest fit across all of the 259 

empirical data sets according to BIC scores (Fig. 2). Although this model had the highest 260 

likelihood (Supplementary Fig. S1), the penalty for its large number of parameters 261 
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outweighed its improvement in likelihood. Nevertheless, this parameter-rich model did not 262 

lead to particularly distinct topological inferences, nor to greater distances from the reference 263 

bird and marsupial topologies when compared with the other models of branch lengths (Fig. 264 

3). 265 

The poor performance of the most complex model of branch lengths is also evidenced 266 

by the fact that automatic model selection often chose the simplest model (universally shared 267 

branch lengths). For the bird phylogenomic data, analyses using the most complex model 268 

consistently led to a greater contribution of internal branches to total tree length, lower mean 269 

bootstrap support across nodes, and a greater range in bootstrap support values across nodes 270 

(Supplementary Fig. S1). 271 

 272 

Simulation Study 273 

In our analyses of sequence data generated by simulation, we found the expected 274 

pattern of an increasing preference for more parameter-rich models of branch lengths with 275 

increasing sequence length (Fig. 4). We also found that parameter-rich models were 276 

frequently selected when the data had increasing numbers of taxa. Regardless of the 277 

simulation conditions, a simple model with universally shared branch lengths was usually 278 

preferred when the sequences were very short (500 nucleotides) and when there were fewer 279 

than 32 taxa in the data set. 280 

Under our first simulation scenario, in which loci had evolved with unlinked branch 281 

lengths but with the same tree length, the correct model of branch lengths was only preferred 282 

when each locus was 4000 nucleotides in length (Fig. 4a). In the second simulation scenario, 283 

in which the gene trees of the two loci had linked branch lengths with different tree lengths, 284 

the correct model of proportionally linked branch lengths was preferred when the number of 285 

taxa was greater than four (Fig. 4b). Finally, in the third simulation scenario, in which the 286 
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two loci had gene trees with unlinked branch lengths and different tree lengths, the correct 287 

model with unlinked branch lengths was preferred when the loci were 4000 nucleotides in 288 

length (Fig. 4c). For shorter sequences and large numbers of taxa, a model with 289 

proportionally linked branch lengths was often chosen. 290 

 291 

 292 
 293 
FIGURE 4. Comparison of branch-length models for two-locus data sets generated by simulation under three 294 

scenarios: (a) different patterns of branch lengths but identical tree lengths across gene trees; (b) identical 295 

patterns of branch lengths but different tree lengths across gene trees; and (c) different patterns of branch 296 

lengths and different tree lengths across gene trees. Each pie chart shows the proportion of 100 replicates for 297 

which each of the three models of branch lengths was selected using the Bayesian information criterion. 298 

 299 

Across our simulation scenarios, we found branch-length estimates to be close to the 300 

true values (mean across loci), regardless of the model of branch lengths that was used for 301 

analysis (Supplementary Figs. S2–S3). For each scenario, the best-fitting model did not 302 

consistently lead to the most accurate estimates of branch lengths (Supplementary Figs. S4–303 

S5). Nonetheless, analysing the data using a model with universally shared branch lengths 304 

almost always yielded shorter gene trees, which often had short internal branches compared 305 

with the trees inferred using other models of branch lengths (Supplementary Figs. S6–S7). In 306 

addition to highly accurate estimates of branch lengths, the tree topology was estimated 307 

correctly in every analysis. These outcomes are likely to reflect the fact that we explored a 308 
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relatively narrow set of simulation parameters, despite this range being sufficient to produce 309 

variable impacts on model selection. 310 

 311 

DISCUSSION 312 

Our study has demonstrated that some degree of data partitioning is appropriate for 313 

improving model fit in phylogenetic analyses of multilocus data sets. In particular, our 314 

phylogenetic analyses of a range of empirical data sets showed that a model with 315 

proportionally linked branch lengths almost always provided the best fit. This outcome 316 

suggests that the dominant form of evolutionary rate variation that is being appropriately 317 

modelled is that across loci (i.e., gene effects), whereas the pattern of rate heterogeneity 318 

among branches does not vary enough across loci to warrant the use of a parameter-rich 319 

model with unlinked branch lengths. The model with proportionally linked branch lengths 320 

that was most often favoured in our analyses is available in several software packages (e.g., 321 

PhyML, Guindon et al. 2010; IQ-TREE, Nguyen et al. 2015), but not in others (RAxML, 322 

Stamatakis 2014). 323 

Our results are broadly consistent with those of previous studies that identified biases 324 

in phylogenetic inference caused by underparameterization of the substitution model (Yang 325 

1996; Lemmon and Moriarty 2004; Brandley et al. 2005; Revell et al. 2005; Marshall et al. 326 

2006; Kainer and Lanfear 2015). Nonetheless, we have also found that unlinking branch 327 

lengths across loci incurs a substantial cost by introducing large numbers of parameters, 328 

leading to poor model fit. Unlinking branch lengths across loci led to estimates of topology 329 

and branch lengths with greater uncertainty than did models with intermediate numbers of 330 

branch-length parameters.  331 

One way to identify an appropriate level of parameterization is to consider models of 332 

branch lengths with intermediate complexity to those considered here. For example, rather 333 
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than estimating a separate, unlinked set of branch lengths for each locus, one might consider 334 

a model in which an intermediate number of groups of unlinked branch lengths are estimated. 335 

Each group of branch lengths can then be applied to multiple loci with a rate multiplier (i.e., 336 

proportional branch lengths) for each locus in the set. Some existing programs allow the 337 

specification of such intermediate models (e.g., PhyML Guindon et al. 2010). However, an 338 

algorithm to optimize the number of groups of unlinked branch lengths and their assignment 339 

to loci remains unavailable. 340 

The results of our simulation study show that the most parameter-rich models are 341 

favoured only under certain conditions. Unlinking branch lengths across loci is an appropriate 342 

strategy only for data sets that comprise long sequences from moderate to large numbers of 343 

taxa (at least 32 taxa in our simulations). These large data sets contain the greatest amount of 344 

information about the distribution of rates across taxa. However, we would expect that a 345 

model with fully unlinked branch lengths would be strongly disfavoured for data sets with 346 

large numbers of loci, such as those encountered in phylogenomic studies.  347 

Our study provides some insights into the importance of accounting for heterogeneity 348 

in molecular evolution across the genome. Variation in patterns of branch lengths across loci, 349 

as modelled in treatments 6 and 7 in our analyses, are the product of interactions between 350 

gene effects and lineage effects (Gillespie 1991; Cutler 2000; Gaut et al. 2011). Given that 351 

this description of rate variation across loci is perhaps the most biologically plausible, it is 352 

striking that the performance of this model is consistently poor across a wide range of 353 

multilocus data sets. One explanation for this result is that drivers of rate heterogeneity across 354 

lineages (e.g., differences in generation time) are largely independent of drivers of rate 355 

heterogeneity across loci (e.g., selective constraints). However, a more likely reason for the 356 

rejection of unlinked branch lengths is that such a model can involve enormous numbers of 357 

parameters, especially when the data set contains a large number of loci. As observed in our 358 
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simulation study, this model is preferred only when each locus has a large number of 359 

nucleotide sites. 360 

The findings of our study have implications for the use of clock models in molecular 361 

dating. Clock models describe the pattern of rate variation across the phylogeny, with relaxed 362 

clocks allowing a distinct rate along each branch (Ho and Duchêne 2014). When a separate 363 

relaxed-clock model is assigned to each locus, the number of parameters grows rapidly. Some 364 

studies have indicated that the careful assignment of a small number of clock models to 365 

subsets of the data can yield substantial improvements in model fit (e.g., Ho and Lanfear 366 

2010; Duchêne and Ho 2014). However, the precision of divergence-time estimates is 367 

expected to improve with the number of loci (Zhu et al. 2015; Foster and Ho 2017; Angelis et 368 

al. 2018). Our results suggest that allowing different loci to share a single clock model is a 369 

reasonable approach, provided that the loci are allowed to have different relative rates. This 370 

approach is analogous to the model with proportionally linked branch lengths that has been 371 

considered here.  372 

One of the assumptions in our analyses is that all of the loci have gene trees with 373 

identical topologies. This excludes the possibility of gene-tree discordance caused by 374 

incomplete lineage sorting, hybridization, or introgression. Discordance among gene trees 375 

leads to statistical inconsistency in phylogenetic analyses of concatenated data sets (Kubatko 376 

et al. 2007), and should be explicitly considered where possible (Mirarab et al. 2016). 377 

Forcing incongruent gene trees to share the same topology leads to distortions in the 378 

estimates of branch lengths (Mendes and Hahn 2016). Under these conditions, we might 379 

expect to see greater support for unlinking branch lengths across loci. The effect of variation 380 

in the topological signal across loci on models of branch lengths will require further 381 

investigation. Nonetheless, our results suggest that the variation in rates across loci and 382 
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lineages will often be well approximated by a model with proportionally linked branch 383 

lengths in analyses of concatenated sequence data. 384 

 385 

CONCLUSIONS 386 

Our study has demonstrated the superior performance of phylogenetic models that 387 

proportionally link branch lengths across loci and that automate the process of selecting the 388 

data-partitioning scheme. Under- and overparameterization of the branch lengths across the 389 

gene trees can have negative impacts on phylogenetic analyses of multilocus data sets. For 390 

this reason, we recommend that proportionally linking branch lengths should be the default 391 

approach to analysing multilocus data sets. Our recommendations can be extended to 392 

phylogenomic data sets comprising large numbers of loci and taxa. Further examinations of 393 

the impact of branch-length models on divergence-time estimates, along with the effects of 394 

gene-tree discordance, are likely to be useful for improving the accuracy and precision of 395 

phylogenomic inferences. 396 
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