1 Evolutionary dynamics of carbapenem-resistant Acinetobacter baumannii

2 circulating in Chilean hospitals

3

3	
4	Andrés Opazo-Capurro ^{a,b} #, Iván San Martín ^a , Mario Quezada-Aguiluz ^a , Felipe
5	Morales ^{a,c} , Mariana Domínguez-Yévenes ^a , Celia A. Lima ^a , Fernanda Esposito ^d , Louise
6	Cerdeira ^d , Helia Bello-Toledo ^a , Nilton Lincopan ^{d,e} , Gerardo González-Rocha ^{a,b} #.
7	
8	^a Laboratorio de Investigación en Agentes Antibacterianos (LIAA-UdeC), Departamento de
9	Microbiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Chile
10	^b Millennium Nucleus for Collaborative Research on Bacterial Resistance (MICROB-R)
11	^c Departamento de Farmacia, Facultad de Farmacia, Universidad de Concepción, Chile.
12	^d Department of Clinical Analysis, School of Pharmacy, University of São Paulo, São Paulo,
13	Brazil
14	^e Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo,
15	São Paulo, Brazil
16	
17	Running Head: Carbapenem-resistant A. baumannii in Chilean Hospitals
18	
19	
20	
21	#Address correspondence to: A. Opazo-Capurro, andopazo@udec.cl and G. González-
22	Rocha, ggonzal@udec.cl
23	

1

24 ABSTRACT

25	We analyze the evolutionary dynamics of ninety carbapenem-resistant Acinetobacter
26	baumannii (CRAB) isolates collected between 1990 and 2015 in Chile. CRAB were
27	identified at first in an isolate collected in 2005, which harbored the ISAba1-bla _{OXA-69}
28	arrangement. Later, OXA-58- and OXA-23-producing A. baumannii strains emerged in
29	2007 and 2009, respectively. This phenomenon was associated with variations in the
30	epidemiology of OXA-type carbapenemases, linked to nosocomial lineages belonging to
31	ST109 (CC1), ST162 (CC79), ST15 (CC15) and ST318 (CC15).
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	

47 Carbapenem-resistant Acinetobacter baumannii (CRAB) has been deemed a critical-48 priority pathogen by the World Health Organization (WHO) (1). It is normally involved in infections acquired in the intensive care units (ICUs), and is commonly resistant to several 49 antibiotics, including carbapenems (2). Accordingly, OXA-type carbapenemases (OTCs) 50 are the main resistance mechanism to carbapenems in A. baumannii (3). While OXA-51-51 52 like carbapenemases are chromosomally encoded, the remaining OTCs (OXA-23-like, -24-53 like, -58-like and -143-like) are frequently plasmid encoded (4, 5). OXA-51-like enzymes can mediate resistance to carbapenems if they are overexpressed when the ISAba1 element 54 is present upstream of the *bla*_{OXA-51-like} gene (6). CRAB outbreaks are commonly associated 55 to the three predominant clonal complexes (CCs) CC109/1, CC118/2 and CC187/3 56 57 (University of Oxford/Institute Pasteur MLST schemes) (7). Although, the clonal complex CC113/CC79 has been predominant in South America; CC104/CC15, CC110/ST25 and 58 59 CC109/CC1 are also present in this region (8).

60 The aim of this study was to investigate the evolutionary dynamics of CRAB in61 Chilean hospitals, where this pathogen has an endemic status.

Ninety non-repetitive *A. baumannii* isolates recovered between 1990 and 2015 were included. They were collected in hospitals from nine different cities throughout Chile, in which the greatest distance between two cities is 2,433 km, representing over 50% of the length of the country.

Antibiotic susceptibility tests were performed to carbapenems, cephalosporins, aminoglycosides, ampicillin/sulbactam, piperacillin/tazobactam, ciprofloxacin, and tetracycline (9). Imipenem (IPM) and meropenem (MEM) MICs were determined following the CLSI guidelines (9). Colistin-resistance was screened using the

3

70 SuperPolymyxin media (10). Multidrug-resistant (MDR), extensively-drug resistant (XDR)

and pandrug-resistant (PDR) phenotypes were defined as previously described (11, 12).

Genetic relatedness was determined by pulsed-field gel electrophoresis (PFGE) as described earlier (13). Groups with at least three genetically related isolates (>87% similarity) were designated as major PFGE clusters (14). Single-locus $bla_{OXA-51-like}$ sequence-based typing (SBT) was carried out as described previously (15). Isolates representative of the main PFGE clusters were subjected to whole-genome sequencing (WGS), and sequence types (STs) were determined (Pasteur's scheme) as published earlier (16).

OTCs genes were screened by multiplex-PCR (17), whereas $bla_{OXA-51-like}$ alleles were investigated by PCR and sequencing. IS*Aba1-bla*_{OXA-51-like} array was examined by conventional PCR (18). CarbAcinetoNP test was performed on all carbapenem nonsusceptible isolates that were negative for bla_{OXA} genes (19).

The comprised isolates were grouped into three different periods: P1 (1990-1999, 83 n=27), P2 (2000-2009, n=30), and P3 (2010-2015, n=33). Consequently, carbapenem 84 resistance was confirmed in 56 (62%) isolates, being identified for the first time in 2005 in 85 a strain (A329, P2) carrying the ISAba1-bla_{OXA-69} array (Figure 1). XDR, MDR or PDR 86 profiles were displayed by 51 (57%), 28 (31%) and 3 (3%) isolates, respectively. 87 Furthermore, 65 (72%) isolates were non-susceptible to amikacin, whereas 64 (71%) were 88 non-susceptible to gentamicin. Additionally, 32 (36%) isolates exhibited resistance to 89 90 ampicillin-sulbactam, and 4 (3.6%) were colistin-resistant.

Further, *bla*_{OXA-58} (30%) and *bla*_{OXA-23} (30%) genes were more prevalent and were
associated with highest carbapenems MICs (Figure 1). The ISA*ba1-bla*_{OXA-219} array was
observed in 14 of 56 (25%) CRAB isolates. In this regard, OXA-58-producing isolates

seems to have emerged in 2007, whereas ISAba1-OXA-219 and OXA-23 producers arose
in 2009, being disseminated among different hospitals.

As expected, no OTC producers were identified in P1. Otherwise, eleven OXA-58-,
seven OXA-23-, and four ISAba1-bla_{OXA-51}-like-positive CRAB isolates were detected in
P2 (Figure 1). In P3, a change in the molecular epidemiology of circulating OTCs was
observed, where OXA-23 producers (n= 11) were predominant, followed by OXA-51-like
(associated with ISAba1, n= 15)- and OXA-58 (n= 4)-positive isolates (Figure 1).
Interestingly, the CRAB isolate A223 was negative for both CarbAcinetoNP and OTCs
PCR. Thus carbapenem-resistance could be mediated by a different mechanism (2).

Four major clusters (I – IV) were identified by PFGE (Figure 1). Cluster I included four carbapenem-susceptible isolates from P1, while cluster II comprised CRABs from 2015 that harbored the OXA-23-like (n=3) and ISAba1-bla_{OXA-219} array (n=5), which were collected from two hospitals separated by >1000 km (Figure 1). Cluster III contained three CRABs carrying $bla_{OXA-23-like}$ genes and the OXA-51-like variants OXA-51 and OXA-69. Finally, cluster IV included three isolates from three different cities, comprising a single OXA-58-like-producing CRAB (Figure 1). Four isolates were non-typeable.

Fifteen bla_{OXA-51} -like variants were identified from SBT, where most prevalent alleles were OXA-51 (n= 21), OXA-67 (n= 20) and OXA-219 (n= 18) (Figure 1). They are not associated to the three predominant international clones (ICs). Furthermore, isolates from PFGE cluster I corresponded to ST109, whereas those from clusters II and III belonged to ST15 and ST162, respectively (Figure 1). In cluster IV, two isolates from P1 belonged to ST109, whereas a single isolate (A462) from P3 corresponded to ST318, which is part of the CC15. In Chile, CRAB has been responsible for about 26% of ventilator-associated pneumonia (VAP) in hospitalized adults (20), whereas carbapenem-resistance rates are above 66% (21). Our results reveal the evolutionary dynamics of CRAB in the country, focusing on the major carbapenem resistance genes and lineages circulating in hospital settings in a period of 25 years.

Worryingly, XDR isolates were predominant in our collection, including resistance to aminoglycosides and ampicillin/sulbactam, in concordance with previous reports in the country (22). Although the rate of colistin resistance was 3.6%, this percentage is higher than the previously published in 2012 (1.4%) (22), representing an alarming increase to be considered CRAB has been increasing lately worldwide, and our results reveal that initially in Chile it was related to the IS*Aba1-bla*_{OXA-69} array identified in 2005, where ISs play an essential role in the regulation of this resistance (23).

129 Concerning to acquired OTCs, OXA-58-like-producing isolates seem to have emerged in 2007, whereas OXA-23-like producers arose later (3, 24). Significantly, after 130 2010 a new change in the molecular epidemiology of circulating OTCs was observed, 131 132 where OXA-23 producers have been predominant and widely disseminated along the 133 country. Additionally, we detected the replacement of certain carbapenem-susceptible 134 clones present in P1, by carbapenem-resistant linages that began to emerge in the late 2000s. SBT revealed that the CRAB isolates were not related to the major ICs (I-III). The 135 main OXA-51-like variants present were OXA-219, OXA-67 and OXA-51. Of these, 136 137 OXA-51 has been associated with the CC15 (15), previously detected in Europe, Pakistan and South America, which is considered as a high-risk clone (25). In South America, this 138 CC is categorized as epidemic in Brazil (26), which suggests the dissemination of resistant 139 140 clones through the region. Otherwise, OXA-67 and OXA-219 are related to less prevalent

ICs (15). Interestingly, OXA-219 was originally identified in 2012 from a single isolate
from Chile, being related to the worldwide (WW) clone 4 (27), associated to the ISAba1-*bla*_{OXA-219} array. These results suggest the presence of an endemic lineage (WW4, OXA219) coexisting with a regional lineage (ST15) in Chile (8, 28), which has been described in
Brazil (29) and Ecuador (28).
Other identified lineages included ST109 (CC1), ST162 (CC79), and ST318

146 Other identified lineages included S1109 (CC1), S1162 (CC79), and S1318 147 (CC15). ST109 has been originally identified in Sweden (30), whereas ST162 and ST318 148 have been described in Brazil (29, 31). These findings reaffirm that the major lineages 149 present in the region are different to those globally spread (8). However, ICII and III have 150 been lately identified in Peru (32), which might have an important impact on the local 151 epidemiology.

In conclusion, our study provides data about evolutionary dynamics of CRAB circulating in Chilean hospitals, which were linked to particular lineages as well as to the emergence of specific OTCs, whereas colistin resistance deserves an urgent attention to strengthen surveillance.

- 156
- 157
- 158
- 159
- 160
- 161
- 162
- 163
- 164

165

166 ACKNOWLEDGMENTS

167	The authors want to thank to the National Fund for Scientific and Technological
168	Development (FONDECYT) for supporting this study. The authors also want to thank the
169	microbiologists of the hospitals and medical centers who kindly provided the isolates
170	including in this project. N.L. is a research grant fellow of Conselho Nacional de
171	Desenvolvimento Científico (CNPq 312249/2017-9). This work was partially presented at
172	the American Society for Microbiology (ASM) Microbe 2016 meeting, Boston, USA.
173	
174	CONFLICT OF INTEREST STATEMENT
175	None to declare.
176	
177	FUNDING SOURCE.
178	This work was supported through funds granted by the National Fund for Scientific and
179	Technological Development (FONDECYT) of Chile (project N°3150286), the Universidad
180	de Concepción (project ENLACE-VRID N°216.036.044-1.0), Fundação de Amparo à
181	Pesquisa do Estado de São Paulo, Brazil (FAPESP 2016/08593-9) and Conselho Nacional
182	de Desenvolvimento Científico, Brazil (CNPq 462042/2014-6).
183	
184	
185	
186	
187	

189

190 **REFERENCES.**

- 191 1. World Health Organization (WHO). 2017. Global priority list of antibiotic-resistant
- bacteria to guide research, discovery, and development of new antibiotics.
- 1932.Peleg AY, Seifert H, Paterson DL. 2008. Acinetobacter baumannii: emergence of a
- 194 successful pathogen. Clin Microbiol Rev 21:538–82.
- 195 3. Opazo A, Domínguez M, Bello H, Amyes SGB, González-Rocha G. 2012. OXA-
- 196 type carbapenemases in *Acinetobacter baumannii* in South America. J Infect Dev
- 197 Ctries 6:311–6.
- 198 4. Evans BA, Amyes SGB. 2014. OXA β -lactamases. Clin Microbiol Rev 27:241–263.
- Evans BA, Hamouda A, Amyes SGB. 2013. The rise of carbapenem-resistant *Acinetobacter baumannii*. Curr Pharm Des 19:223–38.
- 201 6. Turton JF, Ward ME, Woodford N, Kaufmann ME, Pike R, Livermore DM, Pitt TL.
- 202 2006. The role of ISAba1 in expression of OXA carbapenemase genes in
- 203 *Acinetobacter baumannii*. FEMS Microbiol Lett 258:72–7.
- 204 7. Martins N, Picão RC, Cerqueira-Alves M, Uehara A, Barbosa LC, Riley LW,
- 205 Moreira BM. 2016. A new trilocus sequence-based multiplex-PCR to detect major
- 206 *Acinetobacter baumannii* clones. Infect Genet Evol 42:41–45.
- 8. Higgins PG, Dammhayn C, Hackel M, Seifert H. 2010. Global spread of
- 208 carbapenem-resistant Acinetobacter baumannii. J Antimicrob Chemother 65:233–
- 209 238.
- 210 9. Clinical and Laboratory Standards Institute. 2017. CLSI. Performance Standards for
- Antimicrobial Susceptibility Testing. 27th ed. CLSI supplement M100. Wayne, PA:
- 212 Clinical and Laboratory Standards Institute; 2017.

213	10.	Nordmann P, Jayol A, Poirel L. 2016. A universal screening culture medium for
214		polymyxin-resistant Gram-negative bacteria. J Cyst Fibros 15:1395–1399.
215	11.	Vikas Manchanda, Sinha Sanchaita NS. 2010. Multidrug Resistant Acinetobacter. J
216		Glob Infect Dis 291–304.
217	12.	Magiorakos A-P, Srinivasan A, Carey RB, Carmeli Y, Falagas ME, Giske CG,
218		Harbarth S, Hindler JF, Kahlmeter G, Olsson-Liljequist B, Paterson DL, Rice LB,
219		Stelling J, Struelens MJ, Vatopoulos A, Weber JT, Monnet DL. 2012. Multidrug-
220		resistant, extensively drug-resistant and pandrug-resistant bacteria: an international
221		expert proposal for interim standard definitions for acquired resistance. Clin
222		Microbiol Infect 18:268–81.
223	13.	Seifert H, Dolzani L, Bressan R, van der Reijden T, van Strijen B, Stefanik D,
224		Heersma H, Dijkshoorn L. 2005. Standardization and interlaboratory reproducibility
225		assessment of pulsed-field gel electrophoresis-generated fingerprints of
226		Acinetobacter baumannii. J Clin Microbiol 43:4328–35.
227	14.	Al-Sultan AA, Evans BA, Aboulmagd E, Al-Qahtani AA, Bohol MFF, Al-Ahdal
228		MN, Opazo AF, Amyes SGB. 2015. Dissemination of multiple carbapenem-resistant
229		clones of Acinetobacter baumannii in the Eastern District of Saudi Arabia. Front
230		Microbiol 6:1–7.
231	15.	Pournaras S, Gogou V, Giannouli M, Dimitroulia E, Dafopoulou K, Tsakris A,
232		Zarrilli R. 2014. Single-locus-sequence-based typing of <i>bla</i> _{OXA-51-like} genes for rapid
233		assignment of Acinetobacter baumannii clinical isolates to international clonal
234		lineages. J Clin Microbiol 52:1653–7.
235	16.	Larsen M V., Cosentino S, Rasmussen S, Friis C, Hasman H, Marvig RL, Jelsbak L,
236		Sicheritz-Pontén T, Ussery DW, Aarestrup FM, Lund O. 2012. Multilocus sequence

237		typing of total-genome-sequenced bacteria. J Clin Microbiol 50:1355–1361.
238	17.	Higgins PG, Lehmann M, Seifert H. 2010. Inclusion of OXA-143 primers in a
239		multiplex polymerase chain reaction (PCR) for genes encoding prevalent OXA
240		carbapenemases in Acinetobacter spp. Int J Antimicrob Agents 35:305.
241	18.	Ruiz M, Marti S, Fernandez-Cuenca F, Pascual A, Vila J. 2007. Prevalence of
242		IS(Aba1) in epidemiologically unrelated Acinetobacter baumannii clinical isolates.
243		FEMS Microbiol Lett 274:63–6.
244	19.	Dortet L, Poirel L, Errera C, Nordmann P. 2014. CarbAcineto NP test for rapid
245		detection of carbapenemase- producing Acinetobacter spp. J Clin Microbiol
246		52:2359–2364.
247	20.	Otaíza F, Orsini M, Pohlenz M, Sepúlveda D. 2014. Informe de Vigilancia de
248		Infecciones Asociadas a la Atención en Salud 2014. Ministerio de Salud,
249		Departamento de Calidada y Formación programa Control IAAS 54–56.
250	21.	Instituto de Salud Publica de Chile (ISPCH). 2015. Boletín de resistencia
251		antimicrobiana. Programa Control Infecciones Asociadas a la atención en salud.
252	22.	Cifuentes M, Silva F, García P, Bello H, Briceño I, Calvo M, Labarca J. 2014.
253		Susceptibilidad Antimicrobiana en Chile 2012. Rev Chil Infectología 31:123–130.
254	23.	Perez F, Hujer AM, Hujer KM, Decker BK, Rather PN, Bonomo RA. 2007. Global
255		challenge of multidrug-resistant Acinetobacter baumannii. Antimicrob Agents
256		Chemother.
257	24.	Rodríguez CH, Nastro M, Famiglietti A. 2018. Carbapenemases in Acinetobacter
258		baumannii. Review of their dissemination in Latin America. Rev Argent Microbiol
259		13:30178–5.
260	25.	Karah N, Sundsfjord A, Towner K, Samuelsen Ø. 2012. Insights into the global

261	molecular e	pidemiology	of carbapenem	non-susceptible	clones of Acinetobacter

- *baumannii*. Drug Resist Updat 15:237–247.
- 263 26. Pagano M, Rocha L, Sampaio JLM, Martins AF, Barth AL. 2017. Emergence of
- 264 OXA-72-producing Acinetobacter baumannii Belonging to High-Risk Clones (CC15
- and CC79) in Different Brazilian States. Infect Control Hosp Epidemiol 38:252–254.
- 266 27. Zander E, Nemec A, Seifert H, Higgins PG. 2012. Association between β-lactamase-
- 267 encoding bla(OXA-51) variants and DiversiLab rep-PCR-based typing of
- 268 Acinetobacter baumannii isolates. J Clin Microbiol 50:1900–4.
- 269 28. Rodriguez CH, Balderrama N, Nastro M, Nuñez T, Castro G, Magne R, Ugarte T,
- 270 Valenzuela N, Roach F, Mota MI, Burger N, Velazquez G, Ortellado-Canese J,
- 271 Bruni G, Pandolfo C, Bastyas N, Famiglietti A. 2016. Molecular epidemiology of
- 272 carbapenem-resistant *Acinetobacter baumannii* in South America. J Med Microbiol
 273 65:1088–1091.
- 274 29. Chagas TPG, Carvalho KR, de Oliveira Santos IC, Carvalho-Assef APDA, Asensi
- 275 MD. 2014. Characterization of carbapenem-resistant *Acinetobacter baumannii* in
- 276 Brazil (2008-2011): Countrywide spread of OXA-23-producing clones (CC15 and

277 CC79). Diagn Microbiol Infect Dis 79:468–472.

- 27830.Hamidian M, Nigro SJ, Hall RM. 2017. Problems with the Oxford multilocus
- 279 sequence typing scheme for *Acinetobacter baumannii*: Do sequence type 92 (ST92)
- and ST109 exist? J Clin Microbiol 55:2287–2289.
- 281 31. Camargo CH, Tiba MR, Saes MR, Mahnic De Vasconcellos F, Fernando L, Santos
- D, Romero EC, De D, Garcia O. 2016. Population Structure Analysis of
- 283 Carbapenem-Resistant *Acinetobacter baumannii* Clinical Isolates from Brazil
- 284 Reveals Predominance of Clonal Complexes 1, 15, and 79. Antimicrob Agents

285	Chemother	60:2545-47.

- 286 32. Levy-blitchtein S, Roca I, Plasencia-rebata S, Vicente-taboada W, Velásquez-pomar
- J, Muñoz L, Moreno-morales J, Pons MJ, Valle-mendoza J, Vila J. 2018. Emergence
- and spread of carbapenem- resistant *Acinetobacter baumannii* international clones II
- and III in Lima , Peru. Emerg Microbes Infect 7:119.

290

1 Figure 1. Dendrogram generated after restriction with ApaI enzyme for 86/90 typed A.

- 2 baumannii isolates. The black dotted line represents 87% similarity. I to IV denote the
- 3 major PFGE groups characterized according to the criteria described in the manuscript.
- 4 MDR: multidrug-resistant; XDR: extensively-drug resistant; PDR: pandrug-resistant; OTC:
- 5 OXA-type carbapenemase; ST: Sequence type; COL: colistin. Isolates typified by MLST.

Аба	Apal b × . ;	bioRxiv preprint doi: https://do not.certified by peer review)	ni.org/10.1101/46	der, who	o ha s grai	nted bioRxi	verieense to	ersplay the pro-	eprinti	holder for this	preprint (whi	ch was Viteble ^{col}
			<u> </u>	Aumder a A254	2009-BY-N 2009	Santiago	International 0XA-67	CXA-58-like	PDR XDR	16 32	a 16	R S
				A343	2005	Sanuago Talcahuano	OXA-55	OXA-98-like	ADR	32 0.5	2	5
			i I	A539	2015	Temuco	OXA-219	ISAba1-OXA-51-like	XDR	16	18	5
			i	A281	2008	Santiago	OXA-67	OXA-58-like	XDR	16	8	\$
		i	<u>. </u>	A90-59 A90-33	1990 1990	Sentingo Valparaiso	OXA-400 OXA-111		MÓR	1 0.125	7 0.25	8 9
				A408	2012	Temuco	OXA-106	OXA-23-lika	XDR	16	16	3
			<u> </u>	A407	2012	Temuce	OXA-106	OXA-23-like	XDR	16	16	9
			Ļ	A235	2008	Santiago	OXA-67	OXA-58-like	XDR	16	4	8
			¦	A233 A559	2008 2015	Santiago La Sausan	OXA-57 OXA-59	OXA-55-like OXA-23-like	XDR XDR	16 32	5 64	5 S
				A380	2015	La Serena Sontiogo	OXA-87	OXA-58-like	XDR	18	8	3
		_	<u>; </u>	A231	2008	Santiago	OXA-51	OXA-58-like	XDR	16	ß	3
				A93-05	1993	Concepción	OXA-400		MDR	1	2	3
			 	A97-02 A90-103	1997 1990	Concepción Tolor	0XA-67 0XA-86		MDR	2 0.25	2	ŝ
			1	A90-105 A90-47	1990	Taica Sentiago	OXA-50 OXA-57		MDR MDR	0.25	1	\$ \$
Π	1		·	A93-03 🔴	1993	Concepción	OXA-87		MDR	0.5	1	8
	•		;ſ── ╹ ────	A97-08	1997	Grincapolun	QXA-87		MDR	0.25	1	ន
	ST109		┥└────	A93-78	1993	Talca	OXA-67		MDR	0.5	1	9
4				A97-11 🌑 A417	1897 2012	Concepción Santiago	OXA-400 OXA-67	OXA-58-like	MDR PDR	0.25	8	S R
			;C	A418	2012	Santiago	OXA-57	OXA-55-like	XDR	16	4	R
		∥		A560	2015	La Serenz	OXA-51	OXA-23-like	XDR	64	128	5
				A554	2015	La Serena Sentrere	OXA-51	OXA-23-like	XDR	32	16 8	S
			1	A419 A93-76	2012 1993	Santiago Talas	OXA-219 OXA-258	ISAba1-OXA-51-like	XDR	8 0.25	•	R
			<u> </u>	A535	2014	Los Angeles	OXA-219	ISAba1-QXA-51-like	XDR	8	8	9
				A9D-67	1990	Temuco	OXA-400			0.5	1	3
			<u>.</u>	A90-68	1990	Temuco	OXA-400		MDR	0.25	1	9
			1	A93-02 A97-08	1993 1997	Cancepción Cancepción	OXA-400 OXA-400		MDR MDR	1	1	5 5
			·	A232	2008	Santiago	OXA-67	OXA-58-like	XDR	a	4	s
				A362	2007	Santiogo	OXA-219	ISAba1-OXA-51-like	XOR	18	32	з
+			·	A331	2006	Taleahuane	OXA-69	ISAba1-OXA-51-like	XDR	16	4	3
			i I	A546 🌑 A545	2015 2015	Temuco Temuco	OXA-219 OXA-219	ISAba1-OXA-51-ike ISAba1-OXA-51-ike	XDR XDR	4 8	9 5	9 5
	11			A543	2015	Temuco	OXA-219	ISAba1-OXA-51-like	XDR	8	8	s
1	ST15		┢────┤└──	A542	2015	Temuco	OXA-219	ISAba1-OXA-51-like	XDR	4	4	5
11				A541 🌰	2015	Temuco	OXA-219	ISAbs1-OXA-51-like	XDR	18	16	8
				A562 💭	2015 2015	La Serena La Serena	OXA-51 OXA-51	OXA-23-like OXA-23-like	XOR XDR	32 32	16 16	9
				A556	2015	La Serena	OXA-61	OXA-23-like	XDR	32	32	s
T				A93-79	1993	Taica	OXA-71		MDR	0.5	2	\$
			1	A93-80	1993	Taica	OXA-71	-	MDR	1	1	5
			<u> </u>	A369 A353	2009 2009	Temuco Temuco	OXA-51 OXA-219	OXA-23-like ISAba1-OXA-51-like	XDR XDR	64 8	32 8	\$ \$
				A341	2005	Talsahuano	OXA-59		NDR	4	4	8
Г			·	A356 🌰	2009	Temuce	OXA-51	OXA-23-like	XDR	64	32	3
		ST162	∦	A352 🌰 A355	2009	Татисе	OXA-69	OXA-23-like	XDR	64	32	9
Щ-	+	+		A350 A360	2009	Temuco	OXA-51 OXA-51	OXA-23-like OXA-58-like	XDR XDR	32	32	5 5
		┥└───┤└───	;L	A367	2007	Santiago	OXA-51	OXA-58-like	XDR	15	16	s
			<u> </u> 	A361	2007	Santiago	OXA 61	OXA 52 like	XDR	18	125	S
			!	A544	2016	Temuco	OXA-219	ISAba1-OXA-51-like	XDR	4	4	8
			· · · · · · · · · · · · · · · · · · ·	A93-91 A549	1984 2015	Santiago Santiago	OXA-217 OXA-51		MDR	0.125 1	1	3
	-		;	A354	2009	Temuco	OXA-132	OXA-23-like	XDR	32	32	3
			<u> </u>	A364	2007	Santiago	OXA-51	OXA-58-like	XDR	16	4	6
		— I · · · · · · · · · · · · · · · · · ·	!	A357 A551	2009	Temuco Sections	OXA-51	OXA-23-like	XDR XDR	32 64	32 32	\$ 5
				A551 A463	2015 2011	Sentiago Santiago	OXA-51 OXA-51	OXA-23-like OXA-23-like	XDR	64 64	32	8 5
			i	A222	2006	Tajaahuano	QXA-65		MOR	1	2	9
	Ц		i	A336	2005	Talcahuano	OXA 65		MDR	1	2	3
			<u> </u>	A552 A90-26	2015	Santiago Concención	OXA-120 OXA-58			1 0.25	1	5 6
				A90-25 A209	1990 2001	Concepción Iquique	OXA-58 OXA-37		MDR	2	1 2	5 5
			i	A223	2008	Tainahuano	OXA-59		XDR	18	16	s
			ī	A329	2005	Tolcahuano	OXA-65	ISAba1-OXA-51-like	XDR	18	32	5
			<u> </u>	A93-75 A90-44	1993 1990	Talca Talca	OXA-87 OXA-400		MDR MDR	0.125	1	s s
			r	A93-72	1993	Taica Taica	OXA-400		MDR	0.25	1	3
			<u> </u>	A547	2015	Temuco	OXA-219	ISAba1-OXA-51-like	XDR	8	4	\$
			L	A564	2015	La Serens	OXA-51	OXA-58-like	XDR	32	8	5
			<u> </u>	A550 A563	2015 2016	Santiago La Serena	OXA-219 OXA-51	ISAba1-OXA-51-like OXA-23-like	XDR XDR	8 32	5 16	5 S
				A93 01	2018 1993	La screna Concepción	OXA 87	and a second and the last	MDR	0.5	1	\$ \$
r		ST162 + ST318	i	A90-41 🌰	1990	Vaiparaiso	OXA-57		MOR	1	1	2
	IV		; 	A93-04	1993	Concepción	OXA-67		MDR	1	1	s
			•	A462 A93-08	2011 1993	Santiago Concepción	OXA-219 OXA-67	OXA-58-like	XDR MDR	16 0.5	9 1	9 \$
		<u> </u>	·	A93-08 A540	2015	Cancepcion Temuco	OXA-37 OXA-219	ISAbs1-OXA-51-like	XDR	0.5 8	4	8 8
			;L	A535	2014	Los Angeles	OXA-219	ISAba1-OXA-51-like	XDR	e.	8	s
			; ;	A534	2014	Los Angeles	OXA-219	ISAba1-OXA-51-lke	XDR	8	8	3
			·	A538	2014	Los Angeles	QXA-219	ISAba1-QXA-S1-like	XDR	a	9	3