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Abstract 

Perception is the result of both expectation and sensory stimulation. This is reflected in placebo 

analgesia, where expecting low pain leads a painful stimulus to feel less painful. Yet it is maladaptive 

for a highly erroneous expectation to result in an unrealistically low pain experience. We hypothesised 

that in estimating the intensity of a painful stimulus which is preceded by a very discrepant 

expectation, the perception is influenced less by the expectation. We modelled the reported pain 

intensity as a function of the prediction error. We used linear mixed modelling on two independently 

collected pain cueing datasets, the second of which was preregistered (osf.io/5r6z7).  Reported pain 

intensities were best explained by a quartic polynomial model of the prediction error, indicating the 

influence of expectations on perceived pain decreased when pain was highly discrepant to 

expectation, suggesting that the size of prediction error has a functional role in pain perception. 
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Introduction  

The experience of pain results from the integration of the actual sensory reality with prior 

expectations about how the pain will feel. Expectations about an upcoming painful event shift the 

perceived intensity of pain closer to the expected intensity. For example, in placebo analgesia, 

expecting low pain decreases pain perception and associated brain activity (Colloca, Wager, 2004; 

Watson, El-Deredy, Vogt, & Jones, 2007; Sigaudo, & Benedetti, 2008; Tracey, 2010; Büchel, Geuter, 

Sprenger, & Eippert, 2014; Wager & Atlas, 2015). Likewise, expecting high pain increases the 

perceived intensity of pain, as in nocebo hyperalgesia (Blasini, Corsi, Klinger, & Colloca, 2017). 

Imagine having a calm picnic in the garden, when you are suddenly stung by a bee. You expected no 

pain at all, but are immediately overwhelmed by searing pain. This is an example for a large 

discrepancy between expectation and sensory evidence, termed prediction error (PE). Evidence 

clearly indicates that experiencing large PEs leads to learning over time (Li & McNally, 2014; 

McHugh, Barkus, Huber, Capitão, Lima, Lowry, & Bannerman, 2014; Vlaeyen, 2015). However, it is 

not clear whether the magnitude of the prediction error has any immediate functional role in the 

evaluation of a current stimulus. Although it is adaptive for expectations to modulate its perception 

(Jonas, Crawford, Colloca, Kaptchuk, Moseley, Miller, Kriston, Linde, & Meissner, 2015), failing to 

adjust perception based on the immediate sensory reality could lead to inaccurate, possibly 

hallucinatory perception, as described in theories of psychosis (Sterzer, Adams, Fletcher, Frith, 

Lawrie, Muckli, Petrovic, Uhlhaas, Voss, & Corlett, 2018). In non-psychotic individuals, when 

prediction error is high, it would be adaptive to decrease the influence of expectation on perception, or 

even ignore expectations altogether. Based on these considerations we hypothesised that there should 

an observable boundary to the modulation of pain perception by expectation when individuals are 

presented with increasingly discrepant sensory evidence. To test this hypothesis we delivered pain 

stimulus intensities that violated cued expectations to increasing degrees and tested the effect on the 

resulting pain intensity rating.  

We parametrically model the influence of cued intensity and stimulus intensity on pain rating, and 

predict that on Trials with highly unexpected pain stimulus intensities – and a large PE - the weight of 

cued intensity on pain intensity rating will decrease. The magnitude of PE was defined as the 

numerical discrepancy between cued intensity and stimulus intensity on a given Trial. The outcome 

variable is the difference between the stimulus intensity and the pain rating the participant gives, 

which we term subjective error, or PEsub. A small PEsub indicates a rating close to the actual stimulus 

intensity, whereas a large PEsub suggests the rating was influenced by factors other than the incoming 

stimulus intensity. PEsub provides a measure of how much pain intensity ratings were influenced by 

the cue on a Trial-by-Trial basis. A non-monotonic relationship between PE and PEsub could indicate 

that cued intensity influenced pain intensity rating up to a certain threshold, reflected in an increase in 
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PEsub, and that this influence decreased when stimulus intensity was highly unexpected, reflected in a 

decrease in PEsub. This would suggest that there is a ‘tipping point’ where pain stimulation intensity is 

so discrepant to expectation that the influence of expectations on perceived pain intensity decreases 

(Schematic figure 1). As Figure 1 shows, we tested for this in the context of pain that is greater than 

expected (positive PE, on the right side of the figure), as well as in the context of pain that is lower 

than expected (negative PE, on the left side of the figure). We further validated this prediction by 

collecting a second, independent dataset and repeating our analysis, and by implementing a second, 

more complex analysis examining possible changes in the effect of expectations throughout the course 

of the session. The second dataset and accompanying analysis were preregistered (osf.io/5r6z7). 
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Figure 1. Graphical representation of the hypothesised polynomial relationship between PE and 

PEsub. As the discrepancy between cued intensity and stimulus intensity (PE) increases (from the 

origin towards both extremes of the X axis), the discrepancy between stimulus intensity and pain 

intensity rating (PEsub) also increases, as expectations influence pain perception. The ‘tipping point’ 

(red marker) is reached where stimulus intensity is so unexpected that the influence of expectations 

begins to decrease. Positive PE, where pain was greater than expected, is plotted on the right side of 

the plot. For example, a PE of +2 would reflect a cued expectation of 2 on the NPS, but an actual 

stimulus intensity of 4 NPS (4 NPS – 2 NPS); as this is a small PE, the cued expectation influences 

perception, resulting in a perception of 3 NPS and a PEsub of -1 (3 NPS – 4 NPS). A PE of +5 would 

reflect the same cued intensity, 2 NPS, but an actual stimulus intensity of 7 NPS; as this is a large PE, 

beyond the perceptual ‘tipping point’, the influence of expectation on perceived pain is decreased, 

resulting in a perception of 6.5 NPS, and PEsub is decreased to -0.5 (6.5 NPS – 7 NPS). This 

hypothetical relationship is also plotted for pain that is lower than expected pain, associated with 

negative PE, on the left side of the plot. Across positive and negative PE Trials, the hypothesised 

relationship between PE and PEsub would be best expressed by a cubic polynomial. 
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Materials & Methods 

Participants 

For both Dataset 1 and 2, participants aged 18-35 were recruited via university advertisements. 

Participants received £15 compensation. Participants had normal or corrected-to-normal vision. They 

had no history of neurological or psychiatric conditions, had not taken analgesics on the day of the 

experiment, and did not have a history of chronic pain. Ethical approval was granted by the University 

of Manchester, where the study took place. For Dataset 1, 31 participants aged 18-35 (19 females, 

mean age 23 years), and for Dataset 2, 30 participants (15 females, mean age 21 years) were recruited 

into the study. For Dataset 1 we determined an appropriate sample size of 30 subjects by examining 

previous studies investigating the effect of expectation on electrical pain and more subtle effects such 

as the effect of certainty or subliminally presented cue on pain intensity rating, which typically recruit 

15-30 participants (Brown, Seymour, El-Deredy, & Jones, 2008; Colloca & Benedetti, 2006; Jensen, 

Kaptchuk, Kirsch, Raicek, Lindstrom, Berna, Gollub, Ingvar, & Kong, 2012). Sample size for Dataset 

2 was based on that of Dataset 1. The two studies only differed in terms of the experimenter collecting 

the data, and the room the data were collected in, which were nonetheless similar in shape, size and 

light level. They took place approximately 9 months apart.  

Apparatus 

Visual stimuli were presented on a desktop computer screen one metre away from the participant. 

Painful stimuli were electrical pulses delivered via a concentric electrode by a constant current 

stimulator (Digitimer DS5 2000, Digitimer Ltd., Welwyn Garden City, UK). The pulse width of the 

electrical stimulation was 5 milliseconds. All stimuli were controlled through a Matlab platform 

(Mathworks) which interfaced with the pain stimulator via a digital-to-analogue convertor 

(Multifunction I/O device, National instruments, Measurement House, Berkshire, UK). Participants 

submitted their intensity ratings of the pain using a keypad. 

Procedure  

Upon arrival to the lab, participants were briefed by the experimenter, who introduced the study as a 

straightforward test of pain perception. After providing consent, participants washed both hands with 

soap and water.  

Participants first underwent a pain calibration procedure on their left hand to determine their response 

to increasing electrical stimulus intensities. The first stimulus was at a low intensity which is below 

the threshold for pain perception in most people. The stimulus intensity increased in a ramping 

procedure up to a maximum of five volts. We used a 0-10 Numerical Pain Scale (NPS) to measure the 

pain intensity rating, where a pain intensity rating of NPS 2 was when the stimulus became “just 
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painful”, NPS 5 was “medium pain”, and NPS 8 was at the point where stimulus was “just tolerable”, 

replicating previous research (Atlas, Wielgosz, Whittington, & Wager, 2014). We repeated this 

procedure three times and computed the average stimulus intensities over these three repetitions 

corresponding to NPSs 2, 3, 4, 5, 6, 7 and 8.  Participants then underwent a pre-experiment test 

procedure: stimulus intensities corresponding to their pain intensity ratings NPS 2 to 8 were delivered 

in a pseudorandom order four times and participants were instructed to identify the intensity of each 

pulse. Participants had to correctly identify 75% of stimulus intensities to continue to the main 

experiment. If they did not achieve this in the test procedure, the intensities were adjusted (intensity 

was increased if participants rated the stimulus intensity as lower than in the pain calibration 

procedure, and vice versa), and the test repeated until participants correctly identified 75% of stimulus 

intensities. 

In the main experiment, participants were instructed that the cue predicted the stimulus intensity on 

each Trial. The cue was a number on the computer screen which depicted the intensity of upcoming 

stimulation (Figure 2), and then a stimulus intensity was delivered which either corresponded to the 

cued intensity or violated it at varying levels, in a partially reinforced cueing procedure (Table 1). 

Only the NPS 2 (“just painful”) and NPS 8 (“highest tolerable pain”) cues were followed by 

unexpected stimulus intensity (58% of Trials); all other pain cues were veridical (the cued intensity 

matched the stimulus intensity) (42% of Trials). The veridical Trials reinforced participant’s belief in 

the validity of the cues. 

Figure 2. Trial timeline. After viewing a fixation cross, participants viewed a number from 2 to 8 

which depicted the cued intensity for that Trial. After a blank screen, participants received the 

stimulus, followed by another blank screen. A rating screen was presented which prompted 

participants to rate the pain on a NPS scale.. 
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The cue depicted a cued intensity of NPS 2, 3, 4, 5, 6, 7 or 8 (figure 2 and table 1). In PE Trials, after 

presentation of the cued intensities 2 or 8, participants could actually receive any of the 2, 3, 4, 5, 6, 7 

or 8 of stimulus intensity. Thus a range of PEs could be elicited. Participants were instructed to rate 

the intensity of the stimulus and were not informed that the cues were discrepant. See table 1 for a 

summary of all Trials in the study.  

Table 1: A summary of all Trials  

Cued 

intensity 

Stimulus 

intensity 

PE Number of 

Trials 

2 2 0 5 

2 3 1 5 

2 4 2 5 

2 5 3 5 

2 6 4 5 

2 7 5 5 

2 8 6 5 

3 3 0 10 

4 4 0 10 

5 5 0 10 

6 6 0 10 

7 7 0 10 

8 8 0 5 

8 7 -1 5 

8 6 -2 5 

8 5 -3 5 

8 4 -4 5 

8 3 -5 5 

8 2 -6 5 

 

On each experimental Trial, participants viewed a fixation cross, a cue, and then a blank screen. The 

stimulus was delivered, and a screen was presented which prompted participants to numerically rate 

their perceived pain intensity on a 0-10 NPS using a keypad. There was no time limit on this response. 

See figure 2. 

Data analysis 

We aimed to test whether PEsub expressed a relationship with PE. We analysed pain intensity ratings 

to stimuli which had a cued intensity of NPS 2 (low pain) or NPS 8 (high pain). PE was calculated as 

the numerical difference between the cued intensity and the stimulus intensity on a given Trial, and so 

ranged from -6 (cue NPS 8 pain, deliver NPS 2 pain) to +6 (cue NPS 2 pain, deliver NPS 8 pain). This 

provided a measure of how discrepant the stimulus intensity was compared with expectation.  PEsub 

was calculated as the numerical difference between the stimulus intensity and the pain intensity rating 
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on a given Trial.  This provided a measure of how far expectations shifted the pain intensity rating 

away from the stimulus intensity.  

A cubic polynomial model was initially fitted to Dataset 1 to test our hypothesis of a non-monotonic 

relationship between PE and PEsub. To investigate whether Trial influenced the cubic relationship, we 

also implemented a more complex analysis where we included the effect of Trial and interaction 

between PE and Trial. In this more complex model we included a 4
th
 order term which was motivated 

by the observation that in some of the participants in Dataset 1, a quartic curve was expressed (Figure 

6, Supplementary Materials). Then we collected a second, independent dataset, to test whether the 

predicted relationship would be replicated. 

Basic Model 

The following cubic polynomial model was initially fitted to analyse the relationship between PE and 

PEsub: 

PEsub𝑖𝑗 = 𝛽0 + 𝛽1PE𝑖𝑗 + 𝛽2PE𝑖𝑗
2 + 𝛽3PE𝑖𝑗

3 + 𝜀𝑖𝑗  , 𝑖 = 1,… ,𝑚;  𝑗 = 1,… , 𝑛𝑖 

where PEsub𝑖𝑗 corresponds to PEsub for the 𝑗𝑡ℎ observation of the 𝑖𝑡ℎ participant, PE𝑖𝑗 is PE for the 𝑗𝑡ℎ 

observation of the 𝑖𝑡ℎ participant, 𝑚 is the number of participants in study and 𝑛𝑖 is the number of 

Trials for the 𝑖𝑡ℎ participant. We also assume that 𝜀𝑖 = (𝜀𝑖1, … , 𝜀𝑖𝑛𝑖)
𝑇
 ~ 𝑁𝑛𝑖(0, 𝜎

2𝐼𝑛𝑖), with unknown 

variance 𝜎2, that is one residual variance for each participant and for each trial. 

Akaike’s Information Criteria (AIC) and Bayesian Information Criteria (BIC) values were calculated 

for each model to allow for model comparison. 

To further investigate any effect of Trial in the data which could influence the cubic relationship and 

account for the more subtle relationship seen in Dataset 1 (figure 4), we next implemented a more 

complex analysis which included a 4
th
 order term and the effect of Trial and interaction between PE 

and Trial. The inclusion of trial was motivated by the observation that sensitivity to painful 

stimulation can vary over time (Bingel, Schoell, Herken, Büchel, & May, 2007). In support of this, in 

Dataset 1, across all Trials, Trial number negatively correlated with pain intensity rating, suggesting 

that pain intensity rating habituated over time (B = -.002, SE = .001, p=0.03, 95% CI =-.004, -.0003). 

Furthermore, experiencing PEs could, over time, change participant’s association between the cue and 

the pain outcome (Li & McNally, 2014; McHugh, Barkus, Huber, Capitão, Lima, Lowry, & 

Bannerman, 2014; Vlaeyen, 2015). Because including these effects resulted in a complex model, the 

second dataset and accompanying analysis were preregistered (osf.io/5r6z7).  
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Complex model 

The following linear mixed effects model was fitted to analyse the relationship between PE and PEsub: 

PEsub𝑖𝑗 = 𝛽0 + 𝛽1PE𝑖𝑗 + 𝛽2𝑇𝑖𝑗 + 𝛽3PE𝑖𝑗
2 + 𝛽4PE𝑖𝑗

3 + 𝛽5PE𝑖𝑗
4 + 𝛽6PE𝑖𝑗𝑇𝑖𝑗 + 𝛽7PE𝑖𝑗

2 𝑇𝑖𝑗 + 𝛽8PE𝑖𝑗
3 𝑇𝑖𝑗

+ 𝛽9PE𝑖𝑗
4 𝑇𝑖𝑗 + 𝑏1𝑖 + 𝑏2𝑖PE𝑖𝑗 + 𝜀𝑖𝑗  , 𝑖 = 1,… ,𝑚;  𝑗 = 1,… , 𝑛𝑖 

Notation here is similar to the basic model; additionally, we denote 𝑇𝑖𝑗 as the Trial number for the 𝑗𝑡ℎ 

observation of the 𝑖𝑡ℎ participant and, 𝑏1𝑖 and 𝑏2𝑖 as the random intercept and random slope for PE. 

The model includes polynomial terms in PE up to 4𝑡ℎ order, a linear effect for Trial and all two-way 

interactions between the PE polynomial terms and Trial. Interactions can be interpreted as changes in 

the overall relationship between PE and PEsub in different Trials. To see the effect of Trial more 

clearly, we can rearrange the model above in the following way:  

PEsub𝑖𝑗 = (𝛽0 + 𝛽2𝑇𝑖𝑗)⏞        
𝛼0

+ (𝛽1 + 𝛽6𝑇𝑖𝑗)⏞        
𝛼1

PE𝑖𝑗 + (𝛽3 + 𝛽7𝑇𝑖𝑗)⏞        
𝛼2

PE𝑖𝑗
2 + (𝛽4 + 𝛽8𝑇𝑖𝑗)⏞        

𝛼3

PE𝑖𝑗
3

+ (𝛽5 + 𝛽9𝑇𝑖𝑗)⏞        
𝛼4

PE𝑖𝑗
4 + 𝑏1𝑖 + 𝑏2𝑖PE𝑖𝑗 + 𝜀𝑖𝑗   

This shows that as the Trial number (𝑇𝑖𝑗) increases, the coefficients of the polynomial PE terms 

𝛼0, 𝛼1, 𝛼2, 𝛼3, 𝛼4 increase (decrease) if 𝛽2, 𝛽6, 𝛽7, 𝛽8, 𝛽9 are positive (negative). The above 

formulation also indicates that the random intercept 𝑏1𝑖 accounts for differences in the intercept 𝛼0 

(this is the value of PEsub when PE=0) for each participant, whereas the random slope 𝑏2𝑖 allows a 

different linear effect of PE, i.e. 𝛼1 + 𝑏2𝑖, for each participant. The following assumptions are made 

about the random intercept and random slope for PE, as well as the measurement errors: 

𝑏𝑖 = (𝑏1𝑖 , 𝑏2𝑖)
𝑇 ~ 𝑁2(0, 𝐺)   and   𝜀𝑖 = (𝜀𝑖1, … , 𝜀𝑖𝑛𝑖)

𝑇
 ~ 𝑁𝑛𝑖(0, 𝑅), 

where 𝐺 and 𝑅 are unknown covariance matrices. 

AIC and BIC values were calculated for each model to allow for model comparison 

Results  

The plot of averaged pain ratings from Dataset 1 suggested that as stimulus intensity increased, pain 

intensity rating increased (figure 3). As expected, a stimulus preceded by a level 2 cue (black) was 

rated as lower than the same intensity stimulus preceded by a level 8 cue (grey).   
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Figure 3. Average influence of cued intensity and stimulus intensity on NPS rating, showing that a 

cue predicting low intensity pain (Cue 2) decreases the perceived intensity of a painful stimulus 

compared to baseline (veridical cue), and a cue predicting high intensity pain (Cue 8) increases the 

perceived intensity compared to baseline. Error bars represent the standard error of the mean.  

The results from fitting the basic model indicate that all the terms are significant, suggesting that the 

cubic polynomial in PE fits the data well (table 2). The coefficients, particularly for the PE
2
 and PE

3
 

terms, are small in magnitude, which is expected as some of the values attained by PE
2
 and PE

3
 are 

rather large (e.g. at the boundary PE
3
 = 6

3
) and the model aims to model the average PEsub over the PE 

range. 

Table 2: Results of the basic models fitted in Dataset 1 and 2 

Polynomial mixed model: PEsub 

 Dataset 1 Dataset 2 

Predictor Estimate SE P-value* Estimate SE P-value* 

Intercept -.13 .04 .003 -.44 .05 < .0001 

PE -.33 .02 <.0001 -.27 .02 <.001 

PE
2
 -.01 .002 <.0001 -.01 .002 <.001 

PE
3
 .002 .001 

 

.0003 .004 .001 <.0001 

AIC 7794.981 7639.873 

BIC 7823.44 7668.121 

Log-likelihood -3892.491 -3814.936 

*marginal p-values 
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Figure 4 shows the curves of the relationship between PE and PEsub. In Dataset 1 (left plot), the curve 

reflects the predicted cubic relationship between PE and PEsub, where as PE increases (in either 

negative or positive direction), PEsub also increases, but at the higher levels of PE, PEsub decreases. 

Although the shape of the curve supports our hypothesis of a ‘tipping point’, at high magnitude of 

positive PE the effect was subtle, which brought the robustness of this relationship into question. We 

thus collected a second, independent dataset to test whether the predicted relationship would be 

replicated (Dataset 2, right plot). As can be seen in this plot, the second dataset more clearly reflects 

the cubic relationship, suggesting the effect is robust and supporting our hypothesis of a ‘tipping 

point’ at high levels of PE. 

 

Figure 4: Initial fitted models per dataset, both of which show a cubic relationship between PE and 

PEsub,. This relationship is particularly clear in Dataset 2. 

Complex model  

Preliminary analysis of the complex model indicated that the quartic term in PE should be included 

alongside the cubic term (Supplementary Materials). This is also supported by figure 6 

(Supplementary Materials). The figure indicates that for some individuals in Dataset 1, e.g. 

participants 25 and 6, the relationship is described by a cubic polynomial, whereas for other 

individuals, such as participants 11, 14 and 28, a quartic polynomial is appropriate. Once the saturated 

model was selected, the models without random effects, with just random intercept, and with both 

random intercept and random slope were compared using the maximum likelihood test to identify 

which random effects were needed in the model. The results verified that both the random intercept 

and random slope should be included in the model (Supplementary Materials). 
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Table 3 summarises the results of the complex model fitted on Datasets 1 and 2. Both sets of results 

suggest that a quartic model in PE, with an effect for Trial and some interactions between Trial and 

PE are needed to describe the relationship between PE and PEsub. Figure 5 visualises the relationship 

between PE and PEsub based on this model, at different levels of Trial, for Datasets 1 and 2. Figure 5 

also reflects some subtle differences in the effect of Trial between the two datasets. In Dataset 2, the 

‘tipping point’ is most pronounced at the beginning of the study session and becomes less pronounced 

over the course of the task. At the beginning of the study session (Trial 1) the curve’s polynomial 

cubic shape is more pronounced and clearly supports our hypothesis about the presence of a “tipping 

point” in response to both positive and negative PE. As participants progress through the task to Trial 

60, the curve retains its earlier shape (though less pronounced). At Trial 120 (the final Trial), the 

curve appears more linear, which suggests that that the relationship between PE and PEsub weakened at 

the end of the experiment, indicating that the ‘tipping point’ effect decreased over the course of the 

task. The curve also moves closer to PEsub=0, which suggests that the influence of expectation on 

average decreased over the task. Dataset 1 shows the same pattern of results in the negative PE 

condition but a slightly different effect of Trial in the positive PE condition. Here, the ‘tipping point’ 

is least pronounced at the beginning of the study session (Trial 1). Progressing to Trial 60, the curve 

increases, and by Trial 120, it is most pronounced.  

Table 3: Results of the complex models fitted in Dataset 1 and 2 

Polynomial mixed model: PEsub 

 Dataset 1 Dataset 2 

Predictor Estimate SE P-value* Estimate SE P-value* 

Intercept .05 .14 .01 -.19 .15 <.0001 

PE -.39 .046 <.0001 -.43 .05 <.0001 

Trial -.005 .0013 <.0001 -.003 .0015 .0016 

PE
2
 .045 .015 <.0001 -.02 .015 <.0001 

PE
3 

.002 .001 <.0001 .007 .001 <.0001 

PE
4
 -.002 .0004 <.0001 .00007 .0004 .0326 

PExTrial .0008 .0005 <.0001 .0028 .0006 <.0001 

PE
2
xTrial .0003 .0002 .11 -.0001 .0002 .17 

PE
3
xTrial .00001 .00002 .61 -.00006 .00002 .0028 

PE
4
xTrial .00001 .000006 .03 .000006 .000006 .30 

AIC 7019.382 7018.041 

BIC 7099.065 7097.137 

Log-likelihood -3495.691 -3495.021 

*Sequential p-values 
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Figure 5: Polynomial relationship between PE and PEsub per dataset; Trial 1 (red solid curve), Trial 

60 (blue dashed curve), Trial 120 (green dotted curve) 

Table 3 shows that the two datasets agree that the main effects as well as the interactions between PE 

and Trial should be included in the model, and that the interaction between PE
2 

and Trial is not 

significant. However, there is no agreement whether the interactions between the higher order 

polynomial terms (PE
3
 and PE

4
) and Trial are significant, which suggests that the change in the effects 

pain expectations had on perception during the course of the experimental session was slightly 

different in the two studies.  

It is also possible to explore how well the model captures individuals’ behaviours, by plotting the 

smooth trajectories for each participant. In Dataset 1 (obtained using the fitted values; Figure 6, 

Supplementary Materials). In general, the models (black line) fit the data well. However, for some 

individuals in Dataset 1, such as participants 6 and 12, the smooth trajectory based on the fitted values 

seems to ignore the more extreme PEsub values, thus producing a flatter trajectory. See figure 7 

(Supplementary Materials) for these plots for Dataset 2, where a similar pattern of results is shown. 

Discussion  

We report an investigation into the influence of expectation (cued pain intensity), incoming sensory 

information (actual pain stimulus intensity) and the discrepancy between them (PE magnitude) on 

perceived pain. This is the first study to systematically vary pain PE magnitude and test the influence 

on the resulting pain perception. Results overall indicate that a non-monotonic polynomial describes 

the relationship between PE and PEsub, which suggests that when stimulus intensity was highly 

discrepant to cued intensity, pain intensity ratings were less influenced by the cued intensity. This 

supports our preregistered hypothesis that there is a ‘tipping point’ or a boundary to the influence of 
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expectations on pain perception. These results extend our understanding of the relationship between 

expectation and perception, because they suggest that during immediate, online perception, there is a 

boundary effect on expectation’s influence on perception. 

In order to test our hypothesis about the relationship between PE and PEsub, we fitted a linear model, 

allowing for polynomial terms in PE to capture a ‘tipping point’ where PEsub decreased when absolute 

PE increased. We first implemented a basic model testing for the hypothesised cubic relationship 

between PE and PEsub. In Dataset 1 the result of the model supported our hypothesis, but for positive 

PEs (where pain was higher than expected) the effect was significant but small. To further examine 

whether this was a true effect, we collected a second, independent Dataset 2. The basic model in 

Dataset 2 replicated Dataset 1, now with equally pronounced cubic relationship between both positive 

and negative PEs and PEsub. 

We also implemented a more complex model where we investigated the effect of Trial on the ‘tipping 

point’ as well as putative individual differences. This was motivated by the observation that 

sensitivity to painful stimulation can vary over time, and by our own result showing a negative 

correlation between Trial and pain intensity ratings (Bingel, Schoell, Herken, Büchel, & May, 2007; 

Li & McNally, 2014; McHugh, Barkus, Huber, Capitão, Lima, Lowry, & Bannerman, 2014; Vlaeyen, 

2015). It was also motivated by our own and others’ findings that the experience of pain is strongly 

affected by individual differences such as optimism, anxiety, suggestibility, and reward 

responsiveness ( Pascalis, Chiaradia, & Carotenuto, 2002; Geers, Helfer, Kosbab, Weiland, & Landry, 

2005; Scott, Stohler, Egnatuk, Wang, Koeppe, & Zubieta, 2007; Morton, Watson, El-Deredy, & 

Jones, 2009; Schweinhardt, Seminowicz, Jaeger, Duncan, & Bushnell, 2009). This is in line with 

previous work showing pain expectation effects are best modelled by considering individual variation 

in pain expectation (Hoskin, Berzuini, Guo, & Talmi, 2018). This more complex analysis was 

preregistered prior to the collection of Dataset 2 (osf.io/5r6z7). With this more complex model we 

found that the boundary effects became less important over time in all conditions other than in the 

positive PE condition of Dataset 1. In this condition particularly, they became more pronounced later 

in the task.  This suggests that participants became more sensitive to high magnitude PE later in the 

task. The fact that this appeared only in the positive PE condition of Dataset 1 but not in Dataset 2 

suggests that boundary effects when pain is higher than expected are perhaps more influenced by 

individual differences. For example, the trajectory of placebo responses is sensitive to individual 

personality traits such as dispositional optimism (Morton, Watson, El-Deredy, & Jones, 2009). It is 

possible that by chance there was a higher proportion of optimists, or of some other unobserved 

individual trait, in Dataset 1 compared to Dataset 2, which influenced the trajectory of responses to 

higher-than-expected pain. Our modelling approach afforded a quantification of boundary effects at 

the individual level, to enable future work to explore the predictive power of individual personality 

traits on the relationship of PE vs PEsub.   
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There is a wealth of evidence for prediction error-driven updating of individual’s internal models over 

time (O’Doherty, Dayan, Friston, Critchley, & Dolan, 2003; Seymour, O’Doherty, Dayan, 

Koltzenburg, Jones, Dolan, Friston, & Frackowiak, 2004; Moutoussis, Bentall, Williams, & Dayan, 

2008; Mcglone, Olausson, Boyle, Jones-Gotman, Dancer, Guest, & Essick, 2012). Indeed, unexpected 

sensory input leads to increased neural activity which resembles a PE signal (Delgado, Li, Schiller, & 

Phelps, 2008; Talmi, Atkinson, & El-Deredy, 2013; McHugh, Barkus, Huber, Capitão, Lima, Lowry, 

& Bannerman, 2014; Geuter, Boll, Eippert, & Büchel, 2017; Hird, El-Deredy, Jones, & Talmi, 2018). 

It has been previously proposed that pain perception reflects the precision-weighted average of 

expectation and sensation (Colloca & Benedetti, 2006; Colloca, Sigaudo, & Benedetti, 2008; Yeung, 

Colagiuri, Lovibond, & Colloca, 2014). Here, instead of looking for changes over time, we test for a 

role of PE on a dynamic moment-by-moment basis. We show that prediction error modulates the 

weight of expectation on “online” momentary perception.  

A putative pathway for the boundary effects of expectations that we observed could be the 

periaqueductal gray-rostral ventral medulla-spinal cord (PAG-RVM-SC). The neural expression of PE 

has been captured in the PAG, and the PAG-RVM-SC has been identified as a potential pathway for 

the influence of expectations on perception, where endogenous opioids in this pathway signal the 

influence of top-down expectations (Büchel, Geuter, Sprenger, & Eippert, 2014). In the context of our 

results, the difference between cued intensity and stimulus intensity could be calculated in the PAG. 

When the stimulus intensity is highly discrepant to the cued intensity and the influence of 

expectations is decreased, this may be expressed in altered ascending signalling of pain from the PAG 

(Hosobuchi, Adams, & Linchitz, 1977; Johansen, Tarpley, LeDoux, & Blair, 2010; Ritter, Franz, 

Dietrich, Miltner, & Weiss, 2013; Büchel, Geuter, Sprenger, & Eippert, 2014).  Future studies could 

repeat this study using fMRI to test whether the non-monotonic relationship we observed between PE 

and PEsub is visible in the PAG. 

There are three limitations to this study. First, we induced expectations of both high and low pain. The 

experience of expecting high pain is affectively different to expecting a low pain. For example, 

expecting low pain may decrease anxiety, whereas expecting high pain may increase anxiety, and 

anxiety is known to influence the perceived intensity of pain which could interact with the effect of 

expectation (Wager, 2005). Expecting high pain could also increase attention to the stimulus intensity; 

attention also modulates responses to pain (Miron, Duncan, & Bushnell, 1989; Bantick et al., 2002; 

Brooks, Nurmikko, Bimson, Singh, & Roberts, 2002). Future studies could repeat the study while 

recording anxiety and attention to pain to test whether they influence the effects of pain expectations 

reported here. Second, here stimulus intensity was varied to elicit different levels of PE. A higher 

stimulus intensity is likely to be more salient, and thus have more importance assigned to it which 

could increase its influence on perceived pain (Borsook, Edwards, Elman, Becerra, & Levine, 2013). 

It would be useful to measure the effect of pain intensity cues from low pain intensity up to high pain 
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intensity and all intermediates steps, whilst maintaining a constant level of stimulus intensity, to test 

the effect of PE on ratings and remove the variable of pain intensity. Third, predictive coding argues 

that the influence of expectation on perceived pain is also modulated by the certainty (the inverse 

variability) of the pain stimulus intensity (Brown, Seymour, Boyle, El-Deredy, & Jones, 2008; Brown, 

Seymour, El-Deredy, & Jones, 2008; Tabor, Thacker, Moseley, & Kording, 2017; Tabor & Burr, 

2019). A potential change in certainty of the cued expectation over the course of the task could relate 

to the different effects of Trial observed in the positive PE condition between Dataset 1 and Dataset 2. 

To conclude, we explored boundary effects of expectation in pain perception, and validated our 

results in two independently collected datasets, the second of which was preregistered (osf.io/5r6z7). 

We show that when pain is very different to what was expected, perception moves closer to the pain 

stimulus intensity, especially when pain is much lower than expected. Pain perception is 

bewilderingly variable and pain is an important subjective experience which affects all individuals to 

varying degrees (Diatchenko, Slade, Nackley, Bhalang, Sigurdsson, Belfer, Goldman, Xu, Shabalina, 

Shagin, Max, Makarov, & Maixner, 2005). Chronic pain in particular is a prevalent debilitating 

experience with great personal and socioeconomic costs. The economic cost of chronic pain is greater 

than most other conditions, and it causes suffering and significantly reduces quality of life, linked to 

issues in mental health, sleep, physical and cognitive functioning (Phillips, 2009). Treatment for 

chronic pain is often ineffective and associated with undesirable side-effects (Furlan, Sandoval, 

Mailis-Gagnon, & Tunks, 2006; Benyamin, Trescot, Datta, Buenaventura, Adlaka, Sehgal, Glaser, & 

Vallejo, 2008; Juurlink & Dhalla, 2012; Franklin, 2014). There is a clear need for more precise 

models of pain perception to inform treatment, particularly to inform non-drug interventions. Our 

results provide insight into the influence of the relationship between prior expectation and sensory 

evidence on pain perception in real time, and bring us closer to a quantitative mathematical model of 

pain. Furthermore, in the clinic, it is usual to give reassurance about a painful or unpleasant 

experience. Our results indicate that reassurance that is completely discrepant with ensuing painful or 

unpleasant events may not always be useful for a patient.  
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Supplementary Materials 

Before fitting the complex model, we carried out a preliminary analysis to assess which fixed effects 

to include in the model, to determine the “saturated model”. After visual inspection of figure 6, we 

checked to check whether a quartic term in PE would also be useful in describing its relationship to 

PEsub, as some of the participants in Dataset 1 exhibited a quartic curve. We formally tested the 

significance of the quartic term by comparing the cubic PE model (basic model) with a quartic PE 

model through a hypothesis test. The F-test confirmed that the quartic term was significant (p-value 

<0.01). Adding the Trial and interaction terms in both the basic and quartic polynomial models and 

repeating the test further verified the significance of the quartic term (p-value <0.01).  

Based on the saturated model, we then continued our preliminary analysis by exploring which random 

effects we needed to include in the model. Figure 6 suggested that perhaps both a random intercept 

and random slope in PE would be necessary. This is because both the intercept and the linearity for 

each curve seem to vary across participants; compare for example participants 13 and 17. A likelihood 

ratio test was used to compare the saturated models without any random effects, with just random 

intercept and with both a random intercept and random slope, and the results confirmed that the latter 

model was the best (p-value <0.01).  

 

 

Figure 6: Smooth trajectories illustrating the relationship between PE and PEsub for each subject in 

Dataset 1, based on the fitted values (black dashed) and based on the data (solid curves) 
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Figure 7: Smooth trajectories illustrating the relationship between PE and PEsub for each subject in 

dataset 2, based on the fitted values (black dashed) and based on the data (solid curves) 
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Figure 8: Diagnostic plots for the quartic polynomial model for Dataset 1 (left column) and Dataset 2 

(right column). The boxplots show the residuals are centered around 0; the plot of fitted values vs 

residuals shows the residuals are spread around 0 evenly (no distinguishing pattern); the qq-plots 

show that the Normality assumption for both random effects and residuals is reasonable. 

The results of the complex model (table 3) show that the estimates of PE, PE
3
 and Trial are similar 

across datasets in terms of their sign and magnitude. This is important because these estimates reflect 

two key features of the relationship between PE and PEsub,. First, at the beginning of the study (i.e. 

when Trial number is small), the effect of the polynomial terms dominates that of the interaction 
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terms (because the size of the main effects coefficients is larger). Therefore, the negative sign (and 

size) of the linear PE term and the positive sign (and size) of the cubic PE term, ensure the tipping 

point for negative PE appears where it should be (as hypothesised in figure 1). Second, as Trial 

number increases, the negative sign of the Trial term indicates that the value attained by PEsub 

corresponding to PE = 0 shifts downwards over the course of the task. The size of the Trial term also 

determines how fast this shift occurs as Trial number increases. This is better visualised in Figure 3 

which shows that for Trial 120 (green curve), the point at which the curve intersects the PEsub axis is 

lower compared to Trial 1 (red curve) or Trial 60 (blue curve).  
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