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Abstract  

Perception of sensory stimulation is influenced by numerous psychological variables. One example is 

placebo analgesia, where expecting low pain causes a painful stimulus to feel less painful. Yet, 

because pain evolved to signal threats to survival, it should be maladaptive for highly-erroneous 

expectations to yield unrealistic pain experiences. Therefore, we hypothesised that a cue followed by 

a highly discrepant stimulus intensity, which generates a large prediction error, will have a weaker 

influence on the perception of that stimulus. To test this hypothesis we collected two independent 

pain-cueing datasets. The second dataset and the analysis plan were preregistered (osf.io/5r6z7). 

Regression modelling revealed that reported pain intensities were best explained by a quartic 

polynomial model of the prediction error. The results indicated that the influence of cues on perceived 

pain decreased when stimulus intensity was very different from expectations, suggesting that 

prediction error size has an immediate functional role in pain perception. 
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Introduction  

The experience of pain results from both sensory input and psychological variables such as 

personality traits and anxiety level 
1–5

. One important psychological variable is how intense one 

expects that imminent pain might feel. Expectations about a painful event shift the perceived intensity 

of pain closer to the expected intensity. For example, in placebo analgesia, expecting low pain 

decreases pain perception and associated brain activity 
6–11

. Likewise, expecting high pain increases 

the perceived intensity of pain, as in nocebo hyperalgesia 
12

. 

Imagine having a calm picnic in the garden, when you are suddenly stung by a wasp. Although you 

had no reason to expect any pain before being stung, you immediately feel searing pain. The 

discrepancy between prior pain expectations, which in this example were null, and the sensory 

evidence, here the bodily response to the venom in the sting, is termed pain prediction error (PE). It is 

not clear whether the size of that prediction error has any immediate functional role in how pain is 

perceived. It seems clearly adaptive for expectations to modulate sensory perception to some extent 

13,14. Available evidence indicates that experiencing large PEs leads to learning over time 
15,16. 

However, failing to adjust perception based on the immediate sensory reality could lead to inaccurate, 

possibly hallucinatory perception, as described in recent theories of psychosis 
17

. Therefore, when 

prediction error is high, it may make sense for perception to be influenced more strongly by the 

sensory input. In the example of the wasp sting, the most adaptive response would be for your prior 

expectation: “calm picnic” to have less impact on pain perception than the sensory input: “painful 

wasp sting!”  

Based on these considerations we hypothesised that there should be an observable boundary to the 

modulation of pain perception by expectation. We hypothesized that when individuals are presented 

with increasingly discrepant sensory evidence – and increasingly large prediction error – the influence 

of expectation on perception will decrease. To test this hypothesis we delivered pain stimulus 

intensities that violated cued expectations to increasing degrees and tested the effect on the resulting 

pain intensity rating. Our hypothesis would be supported if the influence of cued pain intensity on 

pain intensity rating decreased on trials with a large PE, namely, those with highly unexpected pain 

stimulus intensities. This would also support our hypothesis that PE has a functional role in pain 

perception. 

In two experiments, we varied the cued intensity and the stimulus intensity of a painful stimulus 

across trials, and measured pain ratings. The experiments were conducted on independent samples by 

different experimenters; the second experiment was pre-registered (osf.io/5r6z7). On a given trial, PE 

was defined as the numerical difference between cued intensity and stimulus intensity. For example, 

when the cue signalled that the pain would be a 2 on a 1-10 pain scale, and the stimulus intensity was 
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4 on the same scale, the PE on that trial was +2 (PE is depicted on the X axis in figure 1). The 

outcome variable (the Y axis in figure 1) was the numerical difference between the stimulus intensity 

and the pain rating the participant gave on that trial, which we term subjective error, or PEsub. In this 

example, if the participant was biased by the cue, and rated the stimulus not as a 4 but slightly lower, 

as a 3, the PEsub would be -1. Therefore, PEsub measures how much pain intensity ratings were 

influenced by the cue on a Trial-by-Trial basis, both when pain is greater than expected - as in placebo 

analgesia (positive PE, on the right side of figure 1), as well when pain that is lower than expected - as 

in nocebo hyperalgesia (negative PE, on the left side of figure 1). In both cases, a small absolute PEsub 

indicates pain experience close to the actual stimulus intensity, whereas a large absolute PEsub 

suggests that the pain experience was influenced by factors other than the incoming stimulus intensity. 

The predicted relationship between PE and PEsub are depicted schematically in Figure 1. Our 

hypothesis would be supported if we observe a ‘tipping point’ where pain stimulus intensity is so 

discrepant to expectation that the influence of expectations on perceived pain intensity decreases. We 

predicted that this would occur both when PE was positive and when it was negative, namely, in both 

the ‘placebo’ and the ‘nocebo’ conditions of the two experiments.  

First, we analysed the relationship between cued intensity and pain intensity ratings in Dataset1 to 

check that our pain cueing manipulation had the desired effect. Second, we used regression modelling 

to evaluate the relationship between PE and PEsub. A cubic polynomial model was fitted to Dataset 1 

to test our hypothesis of a non-monotonic relationship between PE and PEsub for both positive and 

negative PE. Such a non-monotonic relationship would indicate that cued intensity influenced pain 

intensity rating up to a certain threshold (the ‘tipping point’), reflected in an increase in PEsub, and that 

this influence decreased when stimulus intensity was highly unexpected (high absolute PE), reflected 

in a decrease in PEsub. Third, we developed a more complex model to explore additional effects in the 

dataset. Motivated by findings that expectations of low pain, as in placebo analgesia, are more easily 

extinguished and are more sensitive to sensory evidence than expectations of high pain, as in nocebo 

hyperalgesia
8,18–20

, the more complex model included a quartic term to uncover any differences in the 

effect of expectations on pain that depended on the sign of the PE. The model also examined whether 

the effects of expectations changed throughout the course of the experiment, for example due to 

learning, habituation, sensitisation, or fatigue. In this model we also tested for individual variation in 

the relationship between PE and PEsub. Finally, to validate our conclusions, we pre-registered the 

experimental design and the analysis plan, and collected a second, independent Dataset 2, to which we 

applied the same two models.   
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Illustration of the hypothesised ‘tipping point’ 

 

Figure 1. 

Results  

Manipulation check: Effect of cued intensity on pain rating 

We first assessed the extent to which cued intensity and stimulus intensity influenced pain intensity 

ratings. Figure 2 plots averaged pain ratings from Dataset 1 as a function of stimulus intensity. The 

plot suggests, unsurprisingly, that pain ratings increased when stimulus intensity increased. As 

expected, a stimulus preceded by a level 2 cue (black) was rated as lower than the same intensity 

stimulus preceded by a level 8 cue (grey). We analysed this relationship with a regression model 

(table 1). The model explained around 58% of the variation in pain ratings. The results (table 1) 

indicated that stimulus intensity, cued intensity and the interaction between them were all significant 

predictors of pain intensity ratings. As cued intensity and stimulus intensity increased, so did pain 

intensity rating, but the larger beta value for the effect of stimulus intensity (β ̂̂=0.63) than cued 
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intensity (β ̂̂=0.23) indicated that the influence of the former were greater. The significant interaction 

term also indicated that the effects of cued intensity increased as the stimulus intensity increased, and 

vice versa. These results indicate that cued intensity had the desired influence on pain ratings.  

The results also showed that trial was a significant predictor of pain rating. The significant interaction 

between cued intensity and trial indicated that the effect of the cues on pain ratings changed 

throughout the course of the experiment. The interaction of trial and stimulus intensity did not 

significantly predict pain rating. These results motivated us to explore the effects of Trial further, as 

described under ‘complex model’, below.  

 

Figure 2.  

Relationship between PE and PEsub 

Basic model  

We next tested whether the modulation of pain rating by cue was influenced by PE, the difference 

between cued and stimulus intensity (table 2). We predicted that when stimulus intensity is 

moderately different from the cued intensity, namely when PE size is moderate, PEsubj would be the 

largest, as shown around the middle of both the positive and negative X axes on figure 1. We also 

predicted that when stimulus intensity resembled expectation, and, more controversially, when it was 

very different from expectation – namely when PE was either small or large – PEsub would decrease, 
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as shown furthest from the axes origin in figure 1. A cubic polynomial describes this predicted 

relationship between PE and PEsub.  

The results from fitting the cubic polynomial fixed-effect model (henceforth, ‘basic’ model) to 

Dataset 1 indicate that all the terms are significant (table 2). Note that the magnitudes of the estimates 

for polynomial terms should not be compared directly, because they are on different scales: PE takes 

values between 0-6, whereas the values taken by PE
2
 and PE

3
 range between 0-36 and 0-216 

respectively. Therefore, the lower magnitude of the beta estimates for the PE
2
 and, crucially, the PE

3
 

terms, compared to the estimates for the PE term does not reflect the magnitude of their contribution 

to explained variance. Adjusted R
2
 values for the models fitted on both Datasets indicate that the basic 

model accounts for 31% of variance of Dataset 1, and 17% of variance for dataset 2 (table 3), 

suggesting that there is scope to develop a more extensive model to account for additional variance. 

Figure 3 shows the curves of the relationship between PE and PEsub. In Dataset 1the curve reflects the 

predicted cubic relationship between PE and PEsub: as PE increases (in either a negative or positive 

direction), PEsub also increases, but at the higher levels of PE (most negative or most positive), PEsub 

decreases. This mirrors the relationship we hypothesised, depicted in figure 1. Although these results 

support our hypothesis of a ‘tipping point’ at high size of positive PE, the ‘tipping point’ effect was 

subtle. Its modest magnitude brought the robustness of this relationship into question. We thus pre-

registered the experimental design and the model, collected a second, independent dataset (Dataset 2), 

and applied the same model to it, to test whether the predicted relationship would be replicated. As 

can be seen in figure 3, the second Dataset more clearly reflects the cubic relationship, suggesting that 

the effect is robust and supporting our hypothesis of a ‘tipping point’ at high levels of absolute PE.  
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Relationship between PE and PEsub in Dataset 1 and 2: all trials 

 

Figure 3. 

Complex model   

The basic model confirmed our hypothesised cubic relationship between PE and PEsub.  However, it is 

important to acknowledge that there were some key variables in the experiment which it did not 

account for. These were putative differences in the impact of receiving pain that is higher, compared 

to lower, than expected
18–21

; potential change in pain perception or in the effect of expectation over 

time during the course of the experimental session; and variation between individuals in the 

relationship between PE and PEsub. To address these differences we applied a more complex model to 

the two Datasets. Crucially, the complex model was developed on Dataset 1, preregistered before 

collecting Dataset 2, and applied to Dataset 2 without any alterations. 

We began by adding a 4
th
 order quartic term (PE

4
) in the model to reveal differences in the 

relationship between PE and PEsub between the positive and negative PE conditions. The statistical 

motivation to include this term was explored in a preliminary analysis of Dataset 1, which indicated 

that the quartic term should be included alongside the cubic term (Supplementary Materials online). 

Supplementary Figure S1 online indicates that for some individuals in Dataset 1, e.g. participants 11, 

14 and 28, a quartic polynomial is appropriate. We therefore included polynomial PE terms up to the 

4
th
 order.  

Theoretical models of the influence of expectation on perception refers to the instantaneous perceptual 

response to a sensory stimulus
10,22

. However, it is important to note that responses to a cue could 

change over the course of the experimental session due to factors such as fatigue, habituation or 
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learning 
23–28

. Furthermore, experiencing PEs could, over time, change participant’s association 

between the cue and the pain outcome 
15,16,29

.  To investigate changes in the relationship between PE 

and PEsub over time we also included Trial as a predictor, as well as its interaction with the polynomial 

PE terms. Henceforth, we refer to the resulting quartic polynomial model that included the effects of 

Trial as the ‘complex’ model. Note that Trial effects on the relationship between PE and PEsub can 

stem from one or more of the factors mentioned above.  

The relationship between PE and PEsub is likely to vary between individuals. We investigated the 

importance of individual differences by comparing versions of the quartic polynomial model that 

included the effect of Trial in order to identify which random effects were needed in the model. Using 

the likelihood ratio test, we compared a model without random effects, with just the random intercept, 

and with both random intercept and random slope of the polynomial PE terms. The results verified 

that both the random intercept and random slope for the linear PE term should be included 

(Supplementary Materials online). The addition of random slopes in PE
2
, PE

3
 and PE

4
 did not offer 

significant improvements to the model. 

Table 4 summarises the results of the complex model, fitted on Datasets 1 and 2. Both sets of results 

suggest that a quartic model in PE, with an effect for Trial and some interactions between Trial and 

PE are needed to describe the relationship between PE and PEsub. The presence of the quartic term 

indicates a difference in the relationship between PE and PEsub between the positive and negative PE 

conditions. Figure 4 visualises the relationship between PE and PEsub based on this model, at different 

levels of Trial, for Datasets 1 and 2. 

While the main effects as well as the interactions between PE and Trial were significant in both 

datasets, and in neither was the interaction between PE
2 
and Trial significant, there was no agreement 

across datasets as to the significance of the interactions between the higher order polynomial terms 

(PE
3
 and PE

4
) and Trial. This suggests that the change in the effects pain expectations had on 

perception during the course of the experimental session was slightly different in the two Datasets. 

Figure 4 reflects some subtle differences in the effect of Trial between the two datasets. In Dataset 2, 

the ‘tipping point’ is most pronounced at the beginning of the experimental session and becomes less 

pronounced over the course of the task. At the beginning of the experimental session (Trial 1, red 

solid curve) the curve’s polynomial cubic shape is more pronounced and clearly supports our 

hypothesis about the presence of a “tipping point” in response to both positive and negative PE. As 

participants progress through the task to Trial 60, the curve retains its earlier shape (though less 

pronounced). At Trial 120 (the final Trial, green dotted curve), the curve appears more linear, which 

suggests that that the relationship between PE and PEsub weakened at the end of the experiment, 

indicating that the ‘tipping point’ effect decreased over the course of the task. The curve also moves 

closer to PEsub= 0, which suggests that the influence of expectation on average decreased over the 
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task. Dataset 1 shows the same pattern of results in the negative PE condition but a slightly different 

effect of Trial in the positive PE condition. Here, the ‘tipping point’ is least pronounced at the 

beginning of the study session (Trial 1). Progressing to Trial 60 (blue dashed curve), the curve 

becomes more pronounced, and is most pronounced by Trial 120. These results indicate that there is 

some variation in how the significant ‘tipping point’ effect is expressed between the two datasets 

when PE is positive, namely, when pain is greater than expected.  

Relationship between PE and PEsub in Dataset 1 and 2:  Trial 1 (red solid curve), Trial 60 (blue 

dashed curve), Trial 120 (green dotted curve) 

 

Figure 4. 

The importance of variation between participants is evident in the comparison of marginal and 

conditional R
2
. The marginal R

2
 denotes the variation in the data explained only by the fixed effects of 

the model, whereas the conditional R
2
 denotes the variation explained by both the fixed and the 

random effects of the model
30

. The marginal R
2
 values indicate that the fixed effects in the complex 

model account for 33% (19%) of the total variation in dataset 1(2) and not surprisingly these values 

are similar to the R
2
 values of the basic model (which only includes fixed effects). The conditional R

2
 

values indicate that the fixed and random effects account for 55% (42%) of the total variation in 

dataset 1(2), providing evidence in support of the complex over the basic model (table 5). The 

presence of a significant random intercept in the model indicates that each individual’s PEsub varied 

significantly when PE was zero, namely, in response to veridical cues. This interpretation is supported 

by the visualisation of individual intercepts in Supplementary figures S1 and S2, which varies 

between individuals.  
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It is also possible to explore how well the model captures individuals’ behaviours, by visualising the 

curves for each participant in Dataset 1 (Supplementary Figure S1 online). In general, the model-fitted 

values (black line) capture the data well. However, for some individuals in Dataset 1, such as 

participants 6 and 12, the curve based on the fitted values seems to ignore the more extreme PEsub 

values, thus producing a flatter curve. A similar pattern of results was observed for Dataset 2 

(Supplementary Figure S2 online). This indicates that whilst some individuals expressed a quartic 

relationship between PE and PEsub, other participants expressed a more linear relationship. 

Discussion  

We aimed to test for a ‘tipping point’ or a boundary effect on the influence of expectation on pain 

perception. We hypothesized a non-monotonic relationship between how discrepant the intensity of a 

painful stimulus is from expectation (PE), and the influence of expectation on pain perception (PEsub). 

This is the first study to systematically vary the size of pain PE and test the influence on the resulting 

pain perception. Specifically, we predicted that the expectation would influence on perception most 

strongly when stimulus intensity was moderately different from the expected intensity, when PE was 

moderate in size (the middle of the scale in figure 1 in either the positive or negative direction). 

Controversially, we also predicted that its effect would decrease when stimulus intensity was highly 

discrepant from the expected intensity, when PE was at its highest (furthest from the origin of figure 1 

in either positive or negative direction). Our preregistered hypothesis was implemented in a cubic 

polynomial regression model where PE predicted PEsub. Across two independent datasets, the results 

confirmed our hypothesis. Returning to the example of a garden picnic, this suggests that a highly 

unexpected wasp sting would mean that the expectation of a pain-free picnic would give way to the 

immediate sensory data. These results extend our understanding of the relationship between 

expectation and perception, because they suggest that there is a limit to expectation’s influence on 

immediate perception. 

In order to test our hypothesis about the relationship between PE and PEsub, where beyond a certain 

threshold absolute PEsub decreased when absolute PE increased, we first fitted a regression model, 

referred to as the ‘basic’ model, which included cubic polynomial terms in PE. In Dataset 1 the result 

of the model supported our hypothesis. However, for positive PEs (where pain was higher than 

expected) the effect was small despite being significant. To further examine whether this was a true 

effect, we collected a second, independent Dataset 2 and repeated the same model. The basic model in 

Dataset 2 replicated Dataset 1, now with an equally pronounced cubic relationship between both 

positive and negative PEs and PEsub. 

We also implemented a more complex model which crucially allowed us to test for three potential 

sources of variation in the data. First, we included a quartic term in the model to account for potential 

differences between the positive and negative PE condition. Second, the complex model allowed us to 
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investigate the effect of Trial and interactions between Trial and the effect of cued intensity on pain 

rating. Third, the complex model allowed us to explore whether individual variation on the ‘tipping 

point’ was significant by testing for random as well as fixed effects. This analysis, referred to as the 

‘complex’ model, too was preregistered prior to the collection of Dataset 2 (osf.io/5r6z7). We review 

findings relevant to each one of these elements below.  

Our positive PE condition is comparable to a placebo manipulation (expect low pain) and our negative 

PE condition is comparable to a nocebo manipulation (expect high pain) 
31

. We hypothesized a 

quadratic relationship between PE and PEsubj within each of these conditions, separately when PE is 

positive or negative, as described in figure 1. We combined these two quadratic relationships to a 

single model with a cubic term in the basic model.  Notably, there was no reason to hypothesise that 

the quadratic relationship between PE and PEsubj was of equal magnitude in the ‘placebo’ (positive 

PE) or ‘nocebo’ (negative PE) direction; the quartic term in the complex model allowed us to capture 

differences between these conditions. Previous work suggests that such differences are entirely likely. 

Nocebo responses are stronger, more difficult to extinguish and less sensitive to sensory evidence than 

placebo responses
8,18–20

. For example, nocebo effects are equal in magnitude in response to either 

verbal suggestions or a conditioning procedure, whereas a conditioning procedure produces a greater 

placebo response than verbal suggestions alone
8
. Nocebo responses are persistent and difficult to 

extinguish whereas placebo responses are easier to extinguish 
18,20

. Nocebo responses have been 

shown to be significantly stronger than placebo responses in a subliminal pain conditioning 

procedure, and this finding was related to the higher salience of nocebo cues 
19

. Placebo and nocebo 

responses are also associated with different neurotransmitters; placebo responses are associated with 

the release of dopamine and endogenous opioids, whereas nocebo responses are associated with the 

release of cholecystokinin
32–34

.  

The main difference in result between the positive and negative condition here was that boundary 

effects were less consistent in the positive PE condition, in the sense that they depended on Trial in 

Dataset 1 but not Dataset 2. This did not happen in the negative PE ‘nocebo’ condition. It is plausible 

that because expectations of low pain are more easily extinguished and more sensitive to sensory 

evidence
18–21

, the corresponding positive PE condition was more vulnerable to an unmeasured 

variable than the negative PE condition. Future research on the boundary effects of expectations 

should investigate the correlates of Trial, such as sensitisation, habituation, fatigue and learning. The 

difference between the two datasets also hints at potential differences between the samples, perhaps 

due to individual differences that were not measured or analysed in the present work. One variable, 

for example, could be individual personality traits. The trajectory of placebo responses is sensitive to 

dispositional optimism 
4
.  It is possible that by chance there was a higher proportion of optimists, or of 

some other unobserved individual trait, in Dataset 1 compared to Dataset 2, which influenced their 

learning from higher-than-expected pain. Our modelling approach afforded a quantification of 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted April 27, 2019. ; https://doi.org/10.1101/467738doi: bioRxiv preprint 

file:///C:/Users/mbrxsdt4/AppData/Local/Microsoft/Windows/Temporary%20Internet%20Files/Content.Outlook/W2YO8ECI/osf.io/5r6z7
https://doi.org/10.1101/467738


13 
 

boundary effects at the individual level, to enable future work to explore the predictive power of 

individual personality traits on the relationship of PE vs PEsub. 

The complex model revealed that the effect of cue changed over the course of the experimental 

session. Indeed, changes over time could be the source of the differing average relationships between 

PE and PEsub between certain participants (Supplementary figures S1 and S2 online). Our interest in 

how perception changes across the experimental session was motivated by the observation that 

sensitivity to painful stimulation can vary over time 
15,16,28,29

. The computational mechanism driving 

this change still needs to be worked out. Current perspectives on the perceptual mechanism behind 

expectation effects 
10,35–38

 suggest that an agent maintains multiple potential hypotheses about the 

cause of a sensory input, and selects the one which best represents the incoming sensory information 

at any given time. In our results, it is possible that through the experience they had over the course of 

the task, the weight participants assigned to competing hypotheses about the causes of sensory input 

began to shift, resulting in a change in the magnitude of boundary effects. Future work should model 

this process computationally to elucidate the mechanism behind it.  

Our interest in individual differences was motivated by our own and others’ findings that the 

experience of pain is strongly affected by other psychological variables such as optimism, anxiety, 

suggestibility, and reward responsiveness 
1–5

. It was important to consider individual differences here 

especially because we previously showed that they account for variation in pain expectation effects on 

pain experience 
22

. The complex mixed model was a significantly better fit than the basic fixed model 

and this was supported by the higher R
2
 for the complex model when both fixed and random effects 

were considered. The presence of a significant random intercept in the complex model indicates some 

change in response to the painful stimulus between individuals when the pain stimulus intensity 

matched the cued intensity (PE=0). It is possible that some participants did not rate the stimulus 

intensity the same as they had rated it in the calibration session due to a time-sensitive factor such as 

habituation or sensitisation
23–28

.  

Our results only provide behavioural evidence for a role of prediction error in pain and we do not 

claim to elucidate the neural mechanism of the ‘tipping point’. There are many putative neural 

mechanism behind the influence of expectation on pain perception 
39–42

. One pathway which could be 

responsible for the boundary effects of expectations was proposed within an influential review of 

placebo analgesia and expectation, in the context of predictive coding theory of pain perception
10

. 

This was namely the periaqueductal gray-rostral ventral medulla-spinal cord (PAG-RVM-SC). The 

neural expression of PE has been captured in the PAG, and the PAG-RVM-SC has been identified as 

a potential pathway for the influence of expectations on perception, where endogenous opioids in this 

pathway signal the influence of top-down expectations 
10

. In the context of our results, the difference 

between cued intensity and stimulus intensity could be calculated in the PAG. When the stimulus 
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intensity is very different to the cued intensity and the influence of expectations is decreased, this may 

be expressed in altered signalling from the PAG 
10,43–45

.  Future studies could repeat this study using 

fMRI to test whether the non-monotonic relationship we observed between PE and PEsub is visible in 

the PAG. 

There are some limitations to this study. First, we induced expectations of both high and low pain. 

The experience of expecting high pain is affectively different to expecting a low pain. For example, 

expecting low pain may decrease anxiety, whereas expecting high pain may increase anxiety, and 

anxiety is known to influence the perceived intensity of pain which could interact with the effect of 

expectation 
46

. Expecting high pain increases attention to the stimulus intensity, and attention also 

modulates responses to pain 
47–50

. Future studies could repeat the study while recording anxiety and 

attention to pain to test whether they influence the effects of pain expectations reported here. Second, 

we did not explicitly record participant’s expectations. This was intended to avoid interfering with the 

effect of cue by arousing suspicion in participants that the cues were not veridical, and is a typical 

method used in pain expectation studies
8,51–53

. We instead inferred expectations from the significant 

effect of cued intensity on pain intensity rating (table 1). A more serious limitation is that by varying 

stimulus intensity here, in order to elicit different levels of PE, we also varied its salience. A higher 

stimulus intensity is likely to be more salient, and thus have more importance assigned to it which 

could increase its influence on perceived pain 
54

. It would be useful to replicate this study by varying 

pain intensity cues whilst maintaining a constant level of stimulus intensity, to eliminate the 

possibility that pain intensity, and, by reference, pain salience explained results that were attributed 

here to PE. Finally, in contemporary theories of perception,  the influence of expectation on perceived 

pain is also modulated by the certainty (the inverse variability) of the pain stimulus intensity 

10,35,37,55,56
. A potential change in certainty of the cued expectation over the course of the task could 

relate to the different effects of Trial observed in the positive PE condition between Dataset 1 and 

Dataset 2.  

 

To conclude, we explored boundary effects of expectation in pain perception, and validated our 

results in two independently collected datasets, the second of which was preregistered (osf.io/5r6z7). 

We show that when pain is very different to what was expected, perception moves closer to the pain 

stimulus intensity, especially when pain is much lower than expected. Pain perception is 

bewilderingly variable and pain is an important subjective experience which affects all individuals to 

varying degrees 
57

. Chronic pain in particular is a prevalent debilitating experience with great personal 

and socioeconomic costs. The economic cost of chronic pain is greater than most other conditions, 

and it causes suffering and significantly reduces quality of life, linked to issues in mental health, 

sleep, physical and cognitive functioning 
58

. Treatment for chronic pain is often ineffective and 

associated with undesirable side-effects 
59–62

. There is a clear need for more precise models of pain 
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perception to inform treatment, particularly to inform non-drug interventions. Our results provide 

insight into the influence of the relationship between prior expectation and sensory evidence on pain 

perception in real time, and bring us closer to a quantitative mathematical model of pain. Furthermore, 

in the clinic, it is usual to give reassurance about a painful or unpleasant experience. Our results 

indicate that reassurance that is completely discrepant with ensuing painful or unpleasant events may 

not always be useful for a patient.  

Methods 

Participants 

For both Dataset 1 and 2, participants aged 18-35 were recruited via university advertisements. 

Participants received £15 compensation. Participants had normal or corrected-to-normal vision. They 

had no history of neurological or psychiatric conditions, had not taken analgesics on the day of the 

experiment, and did not have a history of chronic pain. Ethical approval was granted by the University 

of Manchester, where the study took place. All methods were carried out in accordance with the Code 

of Ethics of the World Medical Association (Declaration of Helsinki). Informed consent was obtained 

from all subjects. For Dataset 1, 31 participants aged 18-35 (19 females, mean age 23 years), and for 

Dataset 2, 30 participants (15 females, mean age 21 years) were recruited into the study. For Dataset 1 

we determined an appropriate sample size of 30 subjects by examining previous studies investigating 

the effect of expectation on electrical pain and more subtle effects such as the effect of certainty or 

subliminally presented cue on pain intensity rating, which typically recruit 15-30 participants (Brown, 

Seymour, El-Deredy, & Jones, 2008; Colloca & Benedetti, 2006; Jensen, Kaptchuk, Kirsch, Raicek, 

Lindstrom, Berna, Gollub, Ingvar, & Kong, 2012). Sample size for Dataset 2 was based on that of 

Dataset 1. The two studies only differed in terms of the experimenter collecting the data, and the room 

the data were collected in, which were nonetheless similar in shape, size and light level. They took 

place approximately 9 months apart.  

Apparatus 

Visual stimuli were presented on a desktop computer screen one metre away from the participant. 

Painful stimuli were electrical pulses delivered via a concentric electrode by a constant current 

stimulator (Digitimer DS5 2000, Digitimer Ltd., Welwyn Garden City, UK). The pulse width of the 

electrical stimulation was 5 milliseconds. All stimuli were controlled through a Matlab platform 

(Mathworks) which interfaced with the pain stimulator via a digital-to-analogue convertor 

(Multifunction I/O device, National instruments, Measurement House, Berkshire, UK). Participants 

submitted their intensity ratings of the pain using a keypad. 
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Procedure  

Upon arrival to the lab, participants were briefed by the experimenter, who introduced the study as a 

test of pain perception. After providing consent, participants washed both hands with soap and water 

and the concentric electrode was attached to the back of the participant’s hand where it remained for 

the remainder of the session. 

Participants first underwent a pain calibration procedure on their left hand to determine their response 

to increasing electrical stimulus intensities. The first stimulus was at a low intensity which is below 

the threshold for pain perception in most people. The stimulus intensity increased in a ramping 

procedure up to a maximum of five volts. We used a 0-10 Numerical Pain Scale (NPS) to measure the 

pain intensity rating, where a pain intensity rating of NPS 2 was when the stimulus became “just 

painful”, NPS 5 was “medium pain”, and NPS 8 was at the point where stimulus was “just tolerable”, 

replicating previous research 
65

. We repeated this procedure three times and computed the average 

stimulus intensities over these three repetitions corresponding to NPSs 2, 3, 4, 5, 6, 7 and 8.  

Participants then underwent a pre-experiment test procedure: stimulus intensities corresponding to 

their pain intensity ratings NPS 2 to 8 were delivered in a pseudo-randomised order four times and 

participants were instructed to identify the intensity of each pulse. Participants had to correctly 

identify 75% of stimulus intensities to continue to the main experiment. If they did not achieve this in 

the test procedure, the intensities were adjusted (intensity was increased if participants rated the 

stimulus intensity as lower than in the pain calibration procedure, and vice versa), and the test 

repeated until participants correctly identified 75% of stimulus intensities. 

In the main experiment, participants were instructed that the cue predicted the stimulus intensity on 

each Trial. The cue was a number on the computer screen which depicted the intensity of the 

upcoming stimulus (Figure 5), and then a stimulus intensity was delivered which either corresponded 

to the cued intensity or violated it at varying levels, in a partially reinforced cueing procedure. The 

number of trials in each condition is detailed in Table 6. Most of the NPS 2 (“just painful”) and NPS 8 

(“highest tolerable pain”) cues were followed by unexpected stimulus intensity (50% of all trials); all 

other pain cues were veridical, i.e. where the cued intensity matched the stimulus intensity (50% of 

Trials). The veridical trials reinforced participant’s belief in the validity of the cues. 

The cue depicted a cued intensity of NPS 2, 3, 4, 5, 6, 7 or 8 (figure 5 and table 6 for a summary of all 

trials in the study). In trials where PE was greater than 0, after presentation of the cued intensities 2 or 

8, participants could actually receive any of the 2, 3, 4, 5, 6, 7 or 8 of stimulus intensity with the same 

probability. Thus a range of PEs could be elicited. Participants were instructed to rate the intensity of 

the stimulus and were not informed that the cues were discrepant. Trials were randomised across 

participants. 
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On each experimental trial, participants viewed a fixation cross, a cue, and then a blank screen. The 

stimulus was delivered, and a screen was presented which prompted participants to numerically rate 

their perceived pain intensity on a 0-10 NPS using a keypad. There was no time limit on this response. 

See figure 5. 

Trial timeline 

Figure 5.  

Data analysis 

Manipulation check: Effect of cued intensity on pain rating  

 

In this first model we assessed the extent to which cued intensity and stimulus intensity influenced 

pain intensity rating using a fixed effects model (table 1), which included the main effects for stimulus 

intensity, cued intensity and Trial, along with all two-way interactions between the main effects.  

 

Relationship between PE and PEsub 

Basic Model 

We aimed to test whether PEsub could be expressed as a function of PE. We analysed pain intensity 

ratings to stimuli which had a cued intensity of NPS 2 (low pain) or NPS 8 (high pain). PE was 

calculated as the numerical difference between the cued intensity and the stimulus intensity on a given 

trial, and so ranged from -6 (cue NPS 8 pain, deliver NPS 2 pain) to +6 (cue NPS 2 pain, deliver NPS 

8 pain). This provided a measure of how discrepant the stimulus intensity was compared with 

expectation. PEsub was calculated as the numerical difference between the stimulus intensity and the 
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pain intensity rating on a given Trial, and so ranged, in principle, from -8 (stimulus NPS 8 pain, rate 

NPS 0 pain) to +8 (stimulus delivered NPS 2 pain, rated NPS 10 pain). In practice, PEsub ranged from 

-7 to 8. This provided a measure of how far expectations shifted the pain intensity rating away from 

the stimulus intensity. We predicted a non-monotonic relationship between PE and PEsub in line with 

our hypothesis of a boundary on the effect of expectation on pain perception.  

The following cubic polynomial model was initially fitted to analyse the relationship between PE and 

PEsub: 

Equation 1 

PEsub𝑖𝑗 = 𝛽0 + 𝛽1PE𝑖𝑗 + 𝛽2PE𝑖𝑗
2 + 𝛽3PE𝑖𝑗

3 + 𝜀𝑖𝑗  , 𝑖 = 1,… ,𝑚;  𝑗 = 1,… , 𝑛𝑖 

where PEsub𝑖𝑗 corresponds to PEsub for the 𝑗𝑡ℎ observation of the 𝑖𝑡ℎ participant, PE𝑖𝑗 is PE for the 𝑗𝑡ℎ 

observation of the 𝑖𝑡ℎ participant, 𝑚 is the number of participants in study and 𝑛𝑖 is the number of 

Trials for the 𝑖𝑡ℎ participant. We also assume that the errors 𝜀𝑖 = (𝜀𝑖1, … , 𝜀𝑖𝑛𝑖)
𝑇
 ~ 𝑁𝑛𝑖(0, 𝜎

2𝐼𝑛𝑖), with 

unknown variance 𝜎2,  

Akaike’s Information Criteria (AIC) and Bayesian Information Criteria (BIC) 
66

values were 

calculated for each model to allow for model comparison. 

Complex model 

To investigate several other potential predictors, which could influence the cubic relationship between 

PE and PEsub and account for the more subtle relationship seen in Dataset 1 (figure 3), we 

implemented a more complex model. This model included a quartic term, which could reveal whether 

the effect of pain expectations varied as a function of the direction of the difference between cued 

pain intensity and stimulus intensity. The quartic term allowed the ‘tipping point’ effect to have a 

different magnitude in the conditions with negative PE (pain lower than expected) and the positive PE 

(pain higher than expected).  

The complex model includes polynomial terms in PE up to 4𝑡ℎ order, a linear effect for Trial and all 

two-way interactions between the PE polynomial terms and Trial. The model was a mixed-effects 

model so it also allowed us to account for individual variation between subjects. Because including 

these effects resulted in a complex model, the second dataset and accompanying analysis were 

preregistered (osf.io/5r6z7).  

The following linear mixed effects model with polynomial PE effects was fitted to analyse the 

relationship between PE and PEsub, as shown in equation (2): 

Equation 2 
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PEsub𝑖𝑗 = 𝛽0 + 𝛽1PE𝑖𝑗 + 𝛽2𝑇𝑖𝑗 + 𝛽3PE𝑖𝑗
2 + 𝛽4PE𝑖𝑗

3 + 𝛽5PE𝑖𝑗
4 + 𝛽6PE𝑖𝑗𝑇𝑖𝑗 + 𝛽7PE𝑖𝑗

2 𝑇𝑖𝑗 + 𝛽8PE𝑖𝑗
3 𝑇𝑖𝑗

+ 𝛽9PE𝑖𝑗
4 𝑇𝑖𝑗 + 𝑏1𝑖 + 𝑏2𝑖PE𝑖𝑗 + 𝜀𝑖𝑗  , 𝑖 = 1,… ,𝑚;  𝑗 = 1,… , 𝑛𝑖 

Notation here is similar to those used in equation 1; additionally, we denote 𝑇𝑖𝑗 as the Trial number 

for the 𝑗𝑡ℎ observation of the 𝑖𝑡ℎ participant, 𝑏1𝑖 as the random intercept, and 𝑏2𝑖 as the random slope 

for PE.  Interactions with Trial can be interpreted as changes in the overall relationship between PE 

and PEsub in different Trials. To see the effect of Trial more clearly, we can rearrange the model above 

in the following way, as shown in equation (3):  

Equation 3 

PEsub𝑖𝑗 = (𝛽0 + 𝛽2𝑇𝑖𝑗)⏞        
𝛼0

+ (𝛽1 + 𝛽6𝑇𝑖𝑗)⏞        
𝛼1

PE𝑖𝑗 + (𝛽3 + 𝛽7𝑇𝑖𝑗)⏞        
𝛼2

PE𝑖𝑗
2 + (𝛽4 + 𝛽8𝑇𝑖𝑗)⏞        

𝛼3

PE𝑖𝑗
3

+ (𝛽5 + 𝛽9𝑇𝑖𝑗)⏞        
𝛼4

PE𝑖𝑗
4 + 𝑏1𝑖 + 𝑏2𝑖PE𝑖𝑗 + 𝜀𝑖𝑗   

This shows that as the Trial number (𝑇𝑖𝑗) increases, the betas of the polynomial PE terms 

𝛼0, 𝛼1, 𝛼2, 𝛼3, 𝛼4 increase (decrease) if 𝛽2, 𝛽6, 𝛽7, 𝛽8, 𝛽9 are positive (negative). The above 

formulation also indicates that the random intercept 𝑏1𝑖 accounts for differences in the intercept 𝛼0 

(this is the value of PEsub when PE=0) for each participant, whereas the random slope 𝑏2𝑖 allows a 

different linear effect of PE, i.e. 𝛼1 + 𝑏2𝑖, for each participant. The following assumptions are made 

about the random intercept and random slope for PE, as well as the measurement errors: 

𝑏𝑖 = (𝑏1𝑖, 𝑏2𝑖)
𝑇 ~ 𝑁2(0, 𝐺)   and   𝜀𝑖 = (𝜀𝑖1, … , 𝜀𝑖𝑛𝑖)

𝑇
 ~ 𝑁𝑛𝑖(0, 𝑅), 

where 𝐺 and 𝑅 are unknown covariance matrices. 

AIC and BIC values were calculated for each model to allow for model comparison. 
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Figure legends 

Figure 1. Graphical representation of the hypothesised polynomial relationship between PE and 

PEsub. As the discrepancy between cued intensity and stimulus intensity (PE) increases (from the 

origin towards both extremes of the X axis), the discrepancy between stimulus intensity and pain 

intensity rating (PEsub) also increases, as expectations influence pain perception. The ‘tipping point’ 

(red marker) is reached where stimulus intensity is so unexpected that the influence of expectations 

begins to decrease. Positive PE, where pain was greater than expected, is plotted on the right side of 

the plot. For example, a PE of +2 would reflect a cued expectation of 2 on the NPS, but an actual 

stimulus intensity of 4 NPS (4 NPS – 2 NPS); as this is a small PE, the cued expectation influences 

perception, resulting in a perception of 3 NPS and a PEsub of -1 (3 NPS – 4 NPS). A PE of +5 would 

reflect the same cued intensity, 2 NPS, but an actual stimulus intensity of 7 NPS; as this is a large PE, 

beyond the perceptual ‘tipping point’, the influence of expectation on perceived pain is decreased, 

resulting in a perception of 6.5 NPS, and PEsub is decreased to -0.5 (6.5 NPS – 7 NPS). This 

hypothetical relationship is also plotted for pain that is lower than expected, associated with negative 

PE, on the left side of the plot. Across positive and negative PE Trials, the hypothesised relationship 

between PE and PEsub would be best expressed by a cubic polynomial. 

Figure 2. Average influence of cued intensity and stimulus intensity on NPS rating. A cue predicting 

low intensity pain (Cue 2) decreases the perceived intensity of a painful stimulus compared to 

baseline (veridical cue), and a cue predicting high intensity pain (Cue 8) increases the perceived 

intensity compared to baseline. Error bars represent the standard error of the mean.  

Figure 3. Initial fitted models per dataset, both of which show a cubic relationship between PE and 

PEsub,. This relationship is particularly clear in Dataset 2. 

Figure 4. Polynomial relationship between PE and PEsub per dataset; Trial 1 (red solid curve), Trial 

60 (blue dashed curve), Trial 120 (green dotted curve) 

Figure 5. Trial timeline. After viewing a fixation cross, participants viewed a number from 2 to 8 

which depicted the cued intensity for that Trial. After a blank screen, participants received the 

stimulus, followed by another blank screen. A rating screen was presented which prompted 

participants to rate the pain on a NPS scale. 
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Tables 

Table 1: Results of the fixed effects model on Dataset 1, assessing the extent to which stimulus 

intensity, cued intensity and trial influenced pain intensity rating 

Predictor 𝛃̂ SE Sequential P value    

Intercept 0.13 0.24 0.578030 

Stimulus intensity 0.65 0.04 < 2.2e-16  

Cued intensity 0.23 0.03 < 2.2e-16  

Trial 0.001 0.002 3.142e-08  

Stimulus intensity x Cued 

intensity 

0.02 0.01 0.0005855  

Stimulus intensity x Trial -0.00004 0.0004 0.9801648 

Cued intensity x Trial -0.001 0.0003 0.0001496  

Residual standard error 1.426 (2183 df) 

Multiple R-squared 0.58 

Adjusted R-squared 0.58 

F-statistic 502.5 (6 & 2183 df) < 2.2e-16 

Predictor: the predictor variable entered into the model; β̂: the estimated beta coefficient; SE: standard 

error of 𝛃̂; t:; Sequential p-value are used to assess the significance of a particular predictor in the 

model. Sequential p-values are more appropriate to use when interaction terms are involved because 

their calculation considers the other variables included in the model. 
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Table 2: Results of the basic models fitted in Dataset 1 and 2 

Polynomial model: PEsub 

 Dataset 1 Dataset 2 

Predictor 𝛃̂ SE Marginal P-value* 𝛃̂ SE Marginal P-value* 

Intercept -.13 .04 .003 -.44 .05 < .0001 

PE -.33 .02 <.0001 -.27 .02 <.001 

PE
2
 -.01 .002 <.0001 -.01 .002 <.001 

PE
3
 .002 .001 

 

.0003 .004 .001 <.0001 

AIC 7794.981 7639.873 

BIC 7823.44 7668.121 

Log-likelihood -3892.491 -3814.936 

Predictor: the predictor variable entered into the basic model; β̂: the estimated beta coefficient; SE: 

standard error of β̂; Marginal P-values are used to assess the significance of a particular predictor in 

the presence of no other predictors in the model.  
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Table 3: Multiple and adjusted R
2
 values for the basic model for Datasets 1 & 2 

 Dataset 1 Dataset 2 

Multiple R
2
 0.31 0.18 

Adjusted R
2
 0.31 0.17 

The multiple R
2
 explains the percentage of variance explained by the model. The adjusted R

2
 

penalises R so that it does not automatically increase with the addition of more predictors to the model 

but only increases with the addition of variables that increase the explained variance by a significant 

amount.  
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Table 4: Results of the complex models fitted in Dataset 1 and 2 

Polynomial mixed model: PEsub 

 Dataset 1 Dataset 2 

Predictor 𝛃̂ SE Sequential P-value* 𝛃̂ SE Sequential P-value* 

Intercept .05 .14 .01 -.19 .15 <.0001 

PE -.39 .046 <.0001 -.43 .05 <.0001 

Trial -.005 .0013 <.0001 -.003 .0015 .0016 

PE
2
 .045 .015 <.0001 -.02 .015 <.0001 

PE
3 

.002 .001 <.0001 .007 .001 <.0001 

PE
4
 -.002 .0004 <.0001 .00007 .0004 .0326 

PExTrial .0008 .0005 <.0001 .0028 .0006 <.0001 

PE
2
xTrial .0003 .0002 .11 -.0001 .0002 .17 

PE
3
xTrial .00001 .00002 .61 -.00006 .00002 .003 

PE
4
xTrial .00001 .000006 .03 .000006 .000006 .30 

AIC 7019.382 7018.041 

BIC 7099.065 7097.137 

Log-likelihood -3495.691 -3495.021 

Predictor: the predictor variable entered into the complex model; β̂: the estimated beta coefficient; SE: 

standard error of β̂; Sequential P-value indicates whether a predictor variable significantly predicts the 

data or not. Sequential P-values are more appropriate to use when interaction terms are involved 

because their calculation considers the other variables included in the model. 
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Table 5: Marginal and Conditional R
2
 values for the complex model for Datasets 1 & 2 

 Dataset 1 Dataset 2 

Marginal R
2
 0.33 0.19 

Conditional R
2
 0.55 0.42 

The marginal R
2
 denotes the variation explained only by the fixed effects whereas the conditional R

2
 

denotes the variation explained by both fixed and random effects. 
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Table 6: A summary of all Trials  

Cued 

intensity 

Stimulus 

intensity 

PE Number of 

Trials 

2 2 0 5 

2 3 1 5 

2 4 2 5 

2 5 3 5 

2 6 4 5 

2 7 5 5 

2 8 6 5 

3 3 0 10 

4 4 0 10 

5 5 0 10 

6 6 0 10 

7 7 0 10 

8 8 0 5 

8 7 -1 5 

8 6 -2 5 

8 5 -3 5 

8 4 -4 5 

8 3 -5 5 

8 2 -6 5 

Cued intensity: the level of pain stimulus intensity communicated by the visual numerical cue prior to 

the painful stimulus; stimulus intensity: the true intensity of the stimulus, as rated in the pain 

calibration procedure; PE: prediction error (stimulus intensity – cued intensity); number of trials: 

number of trials for that condition in the experimental session. 
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Data availability  

The datasets generated during and/or analysed during the current study are available from the 

corresponding author on reasonable request. 
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