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Abstract 

The age of large-scale genome-wide association studies (GWAS) has provided us with an 

unprecedented opportunity to evaluate the genetic liability of complex disease using 

polygenic risk scores (PRS). In this study, we have analysed 162 PRS (P<5x10-05) 

derived from GWAS and 551 heritable traits from the UK Biobank study (N=334,398). 

Findings can be investigated using a web application (http://mrcieu.mrsoftware.org/

PRS_atlas/), which we envisage will help uncover both known and novel mechanisms 

which contribute towards disease susceptibility.  

 

To demonstrate this, we have investigated the results from a phenome-wide evaluation 

of schizophrenia genetic liability. Amongst findings were inverse associations with 

measures of cognitive function which extensive follow-up analyses using Mendelian 

randomization (MR) provided evidence of a causal relationship. We have also 

investigated the effect of multiple risk factors on disease using mediation and 

multivariable MR frameworks. Our atlas provides a resource for future endeavours 

seeking to unravel the causal determinants of complex disease.  
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Introduction 

Developing our understanding of how modifiable social, behavioural and physiological 

factors influence risk of disease is of vital importance to improve effective medical 

treatment and preventative interventions1. Genetic factors may also contribute 

substantially to disease susceptibility, as demonstrated by recent large-scale genome-

wide association studies (GWAS) which have uncovered thousands of trait-associated 

single nucleotide polymorphisms (SNPs) throughout the human genome. However, 

typically the magnitude of effect and variance explained by one of these common 

genetic variants is small2. Polygenic risk scores (PRS), commonly defined as the sum of 

trait-associated SNPs weighted by their effect sizes, harness findings from GWAS to 

provide an overall measure of an individual’s genetic liability to develop disease3. 

Although early applications of PRS were found to be underwhelming in terms of disease 

prediction4, breakthroughs in the scale of GWAS and accessibility to biobank scale 

datasets have considerably improved their performance5, 6. As such, they hold 

considerable potential to improve early disease prognosis and treatment plan 

formulation7.  

 

Along with the emerging utility of PRS to predict disease, they have also been previously 

used to evaluate putative causal relationships8, 9. For example, instead of using a 

coronary heart disease (CHD) PRS to predict incidence of this disease, studies have 

investigated whether scores for known risk factors, such cholesterol and lipid levels10, 

are also strongly associated with CHD incidence. One such approach in this paradigm is 

Mendelian randomization (MR), a method by which genetic variants are leveraged as 

instrumental variables to investigate causal relationships between modifiable risk 
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factors and disease outcomes11, 12. MR is typically limited to using SNPs which survive 

conventional GWAS corrections (i.e. P<5x10-08), which may lack statistical power if 

these variants do not explain a large proportion of trait variance13. In contrast, PRS 

derived using a more lenient threshold (e.g. P<5x10-05) can help recover some of this 

missing heritability due to a larger number of SNPs being included. This may help 

improve detection rates for causal relationships, which can be particularly useful when 

evaluating associations between genetic liability for a given trait and hundreds of 

diverse health outcomes. Such endeavours are commonly referred to as phenome-wide 

association studies14, 15, 16 17. 

 

To investigate this we undertook a preliminary simulation study to compare the 

performance of using a PRS to detect causal relationships with a popular MR approach 

(the inverse variance weighted (IVW) method18) (Figure 1). Results indicated that, 

although using a PRS provides higher statistical power, it also suffers from substantive 

false positive rates due to horizontal pleiotropy, the phenomenon whereby a gene 

influences multiple traits via independent biological pathways12. SNPs which are known 

to be pleiotropic with large effects on different and diverse traits have been found to 

distort findings from PRS analyses19. As a consequence, findings from phenome-wide 

association studies using a PRS may be useful in terms of highlighting putative causal 

associations, although robust evaluations are necessary to investigate results. We 

therefore propose that investigating whether PRS associations are robust to various 

sensitivity analyses developed in the field of MR are necessary to discern whether they 

represent causal relationships. To facilitate such future analyses, an accessible resource 

to evaluate associations between disease genetic liability and complex traits from 

across the human phenome should prove to be of considerable value. 
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In this study, we have constructed 162 different PRS (based on P<5x10-05) using 

findings from large-scale GWAS and evaluated their association with 551 traits in up to 

334,398 individuals enrolled in the UK Biobank study20, 21. To disseminate these 

findings, we have developed a web application to examine and visualise this derived 

atlas of associations. We have also undertaken follow-up analyses to demonstrate the 

usefulness of this resource to help identify putative causal relationships. Firstly, we 

have interpreted findings from a hypothesis-free scan of associations between the 

schizophrenia PRS and each of the 551 traits. We demonstrate that amongst these 

findings are associations which may likely reflect underlying causal relationships. We 

have also showcased the utility of evaluating the association between all 162 PRS and a 

single outcome using our atlas. Using gout susceptibility as an example, we demonstrate 

how recently developed methodology (mediation MR and multivariable MR) can be 

applied to evaluate the effects of multiple risk factors on disease risk. 
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Results 

An atlas of polygenic risk score associations across the human phenome  

Overall, we undertook 89,262 tests to investigate the association between 162 different 

PRS derived from GWAS (Supplementary Table 1) and 551 complex traits from the UK 

Biobank study (Supplementary Table 2). PRS were constructed using independent SNPs 

for each GWAS (P<5x10-05) based on r2 < 0.001 using genotype data from European 

individuals (CEU) from phase 3 (version 5) of the 1000 Genomes project22. As opposed 

to the conventional GWAS cut-off of P<5x10-08, the threshold of P<5x10-05 was selected 

to incorporate additional SNPs into scores which may explain additional heritability for 

GWAS traits. Furthermore, this allowed us to create PRS for traits which had no SNPs 

surviving conventional GWAS corrections, as well as increasing the number of SNPs 

used in scores for traits with only a small number of GWAS hits. Of the 162 GWAS we 

identified, 11 reported that they included UK Biobank participants in their analysis. As 

this may lead to overfitting, the PRS for these 11 traits were not weighted to reduce this 

source of bias. In case they are still useful for follow-up analyses despite overlapping 

with UK Biobank, these scores have been clearly flagged in Supplementary Table 1 by 

being allocated to the ‘unweighted’ subcategory. 

 

In this study we have only interpreted findings from associations with PRS derived 

using the P<5x10-05 threshold. However, analyses have been repeated using scores 

derived using the conventional GWAS threshold of P<5x10-08 for future studies that 

wish to evaluate these results. Complex traits from the UK Biobank study were selected 

based on P<0.05 from previously undertaken heritability analyses within this study23. 

This threshold was chosen as a heuristic to highlight associations worth pursuing in 
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further detail. A web app to query and visualise these results can be found at 

http://mrcieu.mrsoftware.org/PRS_atlas/. 

 

Stratifying the UK Biobank sample into deciles based on their PRS supported previous 

findings in the literature demonstrating the ability of PRS to predict risk of disease. For 

example, comparing the highest and lowest deciles of the coronary heart disease (CHD) 

PRS found that individuals had increased odds of 3.64 to develop this disease (based on 

the ICD10 code ‘I25’). Combining this PRS with scores for established causal risk factors 

for CHD suggested that they can help improve polygenic prediction (namely low density 

lipoprotein (LDL) cholesterol and myocardial infarction), although integrating any 

associated scores in a hypothesis-free manner may hinder prediction (Supplementary 

Figure 1). This could potentially be attributed to the increase in variance incorporated 

into prediction analyses from scores that do not directly influence CHD, or alternatively 

may indicate that they are spurious associations. Amongst other findings, we observed 

that participants had increased odds of 2.43 in terms of obtaining a University or 

College degree when comparing top and bottom deciles for the years of schooling PRS. 

Other noteworthy examples included a 3.48 fold increase in odds of taking atorvastatin 

as medication when comparing the extreme deciles for the LDL PRS. We also observed 

that participants in the highest decile for the ulcerative colitis PRS had increased odds of 

5.36 in terms of developing this disease in comparison to those in the lowest decile 

(based on the ICD10 code ‘K51’). 
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Uncovering known and novel findings by conducting a phenome-wide evaluation of 

associations 

To demonstrate the value of this atlas of results, we have investigated some of the 

strongest associations detected between the schizophrenia PRS and all 551 complex 

traits analysed in the UK Biobank study (Figure 2, Supplementary Table 3). Associations 

within our atlas could potentially be identified due to underlying epidemiological 

relationships, although there are various other possible explanations such as a shared 

genetic aetiology between traits. To investigate this for our associations with the 

schizophrenia PRS, we have used various methods in two-sample MR as an example of 

how future studies could evaluate findings from our atlas. For these analyses we only 

used SNPs with P<5x10-08 as instrumental variables to reduce the likelihood of weak 

instrument bias in our analysis24. Our systematic approach involved the following: 

 

1. As an initial evaluation, we investigated evidence of association using the inverse 

variance weighted (IVW)18 method and derived Cochran’s Q statistic25 as an 

indicator of potential heterogeneity. Weak evidence of association in this 

analysis suggests that a causal effect is unlikely. 

2. If the IVW method provides strong evidence of association but in the presence of 

heterogeneity, we suggest undertaking two additional MR analyses using the 

weighted mode26 and weighed median27 methods. If there is a lack of strong 

evidence in both of these analyses then associations are unlikely to be causal. 

3. As a sensitivity analysis, repeat steps 1 and 2 but only using SNPs as instruments 

which are not filtered out by applying the MR directionality test28. We also 

recommend evaluating the MR-Egger intercept term29 to discern whether 

estimates may be biased by directional pleiotropic effects. 
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The top association with the schizophrenia PRS suggests that individuals with high 

schizophrenia genetic liability have increased odds of seeing a psychiatrist at some 

point in their lives due to nerves, anxiety, tension of depression (OR=1.09 per standard 

deviation increase in PRS, 95% CI=1.08 to 1.10, P=1.55x10-50). The schizophrenia PRS 

was also strongly associated with various neurological traits, such as neuroticism 

(Beta=0.066, SE=0.006, P=8.17x10-27), being ‘tense or highly strung’ (OR=1.07, 95% 

CI=1.07 to 1.08, P=2.25x10-47) and self-reported depression (OR=1.07, 95% CI=1.06 to 

1.08, P=4.91x10-18). 

 

We identified strong evidence that schizophrenia genetic liability influences this set of 

neurological traits (Supplementary Table 4), except for self-reported depression where 

strong evidence was only detected using the inverse variance weighted (IVW) method 

(Beta=0.004, SE=0.001, P=0.009). There was also no strong evidence of directional 

horizontal pleiotropy for these results based on the MR Egger intercept term and 

associations were detected after repeating analyses after applying MR directionality 

filtering. 

 

Along with using MR to investigate the effect of PRS traits on outcomes, we recommend 

investigating the converse direction of effect where possible (also known as ‘bi-

directional’ MR30). Undertaking this analysis detected suggested that neuroticism 

influences schizophrenia risk. (Supplementary Table 5), although we detected evidence 

of directional horizontal pleiotropy based on the MR Egger intercept term (Beta=0.043, 

SE=0.018, P=0.018). After applying MR directionality filtering, we also identified 

evidence of association between being ‘tense or highly strung’ and schizophrenia risk. 
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Therefore, the most parsimonious explanation for these findings could be that they have 

been observed due to a shared genetic aetiology between schizophrenia and other 

neurological traits. This is also likely to be a plausible explanation for other associations 

within our atlas. In particular, caution is advised when interpreting findings between 

autoimmune traits which are known to be influenced by highly correlated genes 

residing in the HLA region of the genome31. Although these findings could still be of 

interest in terms of genetic correlations between traits, they may not reflect underlying 

causal relationships32. 

 

Amongst other findings, there were associations which suggested individuals with high 

schizophrenia genetic liability had a lower fluid intelligence score (Beta=-0.083, 

SE=0.006, P=1.49x10-39). We also observed evidence that these individuals performed 

worse than others in an assessment of cognitive function concerning memorising pairs 

of cards (Beta=0.020, SE=0.002, P=6.66x10-34 for ‘number of incorrect matches’). 

Follow-up MR analyses provided evidence from multiple methods that schizophrenia 

genetic liability influences both of these outcomes (Supplementary Table 6). These 

results were robust to sensitivity analyses using MR directionality filtering and MR 

Egger intercepts did not indicate that findings were prone to directional horizontal 

pleiotropy. In contrast, there was a weak evidence of a causal effect in the opposite 

direction for these associations, in particularly after applying MR directionality filtering 

(Supplementary Table 7). We also conducted a leave-one out analysis which suggested 

that no individual SNPs were responsible for driving observed effects (Supplementary 

Figures 2 & 3). Taken together, these analyses support evidence that schizophrenia 

genetic liability may lead to reduced cognitive function. 
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Elsewhere, there were associations indicating that participants with a high 

schizophrenia PRS were more likely to be unsuccessful when attempting to quit 

smoking (Beta=0.028, SE=0.003, P=3.87x10-22) and, accordingly reduced odds of being a 

past smoker (OR=0.97, 95% CI=0.97 to 0.98, P=9.71x10-17). We observed strong 

evidence of association that schizophrenia genetic liability influences these outcomes 

(Supplementary Table 8), whereas the converse direction of effect provided weak 

evidence of an effect (Supplementary Table 9). However, the ‘number of unsuccessful 

smoking attempts’ outcome could only be instrumented using a single variant which 

limits our ability to investigate this effect. Moreover, a recent study has uncovered a 

large number of SNPs robustly associated with smoking cessation and provided 

evidence of a bi-directional relationship between smoking and schizophrenia using 

MR33. Leave-one out analyses suggested that no individual SNP was responsible for 

driving observed associations (Supplementary Figures 4 & 5).  

 

We also observed a strong inverse association between the schizophrenia PRS and 

various anthropometric traits. However, evaluating the relationship between 

schizophrenia and body mass index (BMI) provided weak evidence of a causal effect in 

both directions (Supplementary Tables 10 & 11). This result reinforces our 

recommendation that all findings within our atlas require in-depth evaluation to 

discern whether they represent potential causal associations. 
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Elucidating risk factors which may play a mediating role along the causal pathway to 

disease  

Another strength of our atlas is that findings can be evaluated by selecting an outcome 

of interest and evaluating which of the 162 PRS are most strong associated with it. 

Doing so may motivate future endeavours to investigate the effect of multiple risk 

factors on disease risk. As a demonstration of this, we have evaluated the associations 

between all PRS and self-reported gout in the UK Biobank study (Supplementary Table 

12). In this analysis, there was strong evidence of association using the PRS for gout 

itself (OR=1.16, 95% CI=1.13 to 1.19), although we also observed a much larger 

magnitude of effect using the urate PRS (OR=1.75, 95% CI=1.72 to 1.78). This result is 

likely representative of other findings within our atlas, where the PRS for the disease of 

interest may not always necessarily be the best polygenic predictor of it.  

 

A receiver operating characteristic plot (Supplementary Figure 6) illustrates this point, 

where the area under curve for the gout PRS was 0.54 in comparison to the urate PRS 

which had a value of 0.65. This may be attributed to gout being a binary outcome 

heavily influenced by the number of cases analysed in its corresponding GWAS 

(N=2,115). In comparison, urate is a continuous trait measured in all participants for its 

respective GWAS (N=110,347). After urate, the next strongest positive associations with 

self-reported gout were triglycerides (TG) and body mass index (BMI) (OR=1.14, 95% 

CI=1.11 to 1.16 and OR=1.09, 95% CI=1.06 to 1.12 respectively). However, it is unclear 

whether these risk factors influence gout risk independently of one and other or if they 

reside on the same causal pathway to disease. 
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We investigated this by firstly using an MR mediation framework34 which involved 

evaluating bi-directional relationships for each risk factor in turn. As before, only SNPs 

with P<5x10-08 for each PRS were used as instrumental variables in MR analyses. There 

was strong evidence that BMI had a causal effect on each other trait in turn (TG, urate 

and gout), where effect estimates appeared to be consistent between different MR 

methods (Supplementary Table 13). Repeating this analysis for TG as our exposure 

provided evidence of a causal effect on urate and gout risk, but not BMI (Supplementary 

Table 14). We then modelled urate as our exposure variable, which suggested that 

increased urate positively influences gout risk, although there was weak evidence of an 

effect on either BMI or TG (Supplementary Table 15). In all analyses there was no 

strong evidence of horizontal pleiotropy based on the MR-Egger intercept terms and 

findings were robust to sensitivity analyses using MR directionality filtering 

(Supplementary Tables 13-15). We also undertook leave-one out analyses which found 

that no single SNP was driving observed effects (Supplementary Figures 7-10). In 

conclusion, as illustrated in Figure 2a, findings from the mediation MR analysis suggests 

that BMI influences TG levels (Figure 3a (1)), which has an effect of urate (Figure 3a 

(2)), and this subsequently influences gout risk (Figure 3a (3)). Using the effect 

estimates from our IVW analysis, we estimated that 77% of the overall effect of BMI on 

gout risk (Figure 3a (4)) is mediated through this causal pathway. 

 

We also used a related approach to investigate the effect of these multiple risk factors 

on gout susceptibility, known as multivariable MR35. In this analysis genetic instruments 

for all exposures (i.e. BMI, TG and urate) are modelled simultaneously to investigate 

whether these risk factors influence our outcome (i.e. gout) independently of one and 

other. We observed the effects of BMI and TG on gout risk attenuate when analysed in 
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the same model as urate (Supplementary Table 16). Furthermore, in subsequent 

analyses we applied multivariable MR to investigate each pairwise combination of these 

risk factors on gout risk. There was evidence of an attenuation of the effect of BMI on 

gout risk when accounting for either the TG or urate effect (Supplementary Table 17 & 

18). We also observed the effect of TG on gout risk attenuate when accounting for urate 

levels (Supplementary Table 19). These findings therefore support the same direction of 

effect observed using the mediation framework (Figure 3b). 
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Discussion 

In this study we have developed an atlas of associations between PRS and complex 

traits across the human phenome. Along with contributing to mounting evidence that 

PRS can be valuable in predicting later life disease outcomes, we have provided 

examples of how this resource can be harnessed to help identify potential risk factors in 

disease which warrant further investigation. We envisage that the inferences we have 

made in this study are just the beginning of potential findings which can be uncovered 

using such catalogues of associations. Multiple lines of evidence from robust follow-up 

studies of putative causal risk factors will help improve our understanding of disease 

susceptibility36. 

 

Large-scale biobank datasets provide an unparalleled opportunity to undertake 

hypothesis-free causal inference. Such efforts can help identify evidence supporting 

established causal relationships, as well as potentially implicating novel ones12, 37. We 

have illustrated this type of approach in our study by evaluating the results of a 

phenome-wide association study of schizophrenia genetic liability. We identified 

various associations with different neurological traits such as depression and 

neuroticism, which may likely be explained due to having a shared genetic component 

with schizophrenia risk. 

 

There were also strong associations with measures of cognitive function and smoking 

behaviour which MR follow-up analyses suggested may be due to putative causal 

relationships with schizophrenia genetic liability. There is long standing evidence from 

the literature that cognitive impairment is a recognised characteristic of 
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schizophrenia38. Although PRS may prove useful in determining lifelong risk of 

developing schizophrenia, based on currently available data they may be less effective 

in terms of predicting age of schizophrenia onset as well as the severity of its 

progression. Characterization of cognitive decline in individuals with a high 

schizophrenia PRS may therefore help to better understand its neurological basis, and 

therefore improve our capability to treat it39. 

 

There is also a wealth of evidence in the literature from observational studies that 

individuals diagnosed with schizophrenia smoke more frequently compared to the 

general population40. Our results indicate that UK Biobank participants with a high 

schizophrenia genetic liability are more likely to be unsuccessful in their attempts to 

stop smoking. This may therefore suggest that the high frequency of schizophrenia 

patients who smoke could be attributed to their inability to quit smoking. However, we 

were unable to support recent evidence which suggests that smoking is a risk factor for 

schizophrenia which could be attributed to weak instruments in our analysis33. The 

positive association with smoking behaviour may also provide a possible explanation 

for the inverse association we observed between schizophrenia genetic liability and 

anthropometric traits. Evaluating the relationship between schizophrenia genetic 

liability and body mass index supports this as we identified weak evidence of a direct 

causal relationship in this analysis. Not only does this result emphasise the importance 

of evaluating associations detected in our atlas, but also suggests that findings could be 

valuable in terms of uncovering traits that mediate the effect of genetic risk on disease.  

 

In this study we have also provided an example of how investigating various PRS 

associations with the same outcome may help motivate studies evaluating the effect of 
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multiple risk factors on disease risk. Our analysis detected evidence of an association 

between body mass index and gout risk, putatively mediated by triglycerides and urate 

levels. The findings from this analysis therefore appear to recapitulate known biology 

regarding the established causal pathway to gout41,42. Speculatively, a diet including 

high calorie and alcohol consumption, which are known risk factors for increased body 

mass index and triglyceride levels, may result in elevated circulating uric acid level and 

in turn increase gout risk. A recent study has suggested that genetic factors may have a 

greater impact on serum urate levels than environmental factors such as diet43. Our 

findings suggest that genetic drivers of appetite which may influence higher BMI levels 

are likely to predominantly influence gout risk via increased urate levels. We hope this 

illustration will motivate creative hypotheses for future endeavours to investigate the 

effect of multiple risk factors on disease risk.  

 

The application of PRS is a topic which has sparked considerable recent debate, 

particularly concerning whether scores are relevant for clinical decision making44. 

Although resources such as the UK Biobank provide an unparalleled opportunity to 

investigate the determinants of complex disease as we have done in this study, findings 

regarding genetic liability may not be generalizable to individuals who are not of 

European descent. As such, there is likely to be an emphasis in the forthcoming years on 

efforts to establish disease-specific datasets for a diverse range of ancestries. We also 

note that, although we have adjusted all analyses in our study using the top 10 principal 

components from the UK Biobank, there may still be an influence of geographic 

clustering which remains unaccounted for45. Furthermore, although we have flagged the 

PRS traits in our study derived using GWAS who samples overlap with the UK Biobank, 

we are unable to assess this for scores whose GWAS predate this cohort. Future efforts 
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to link anonymous identifiers between the UK Biobank and UK cohorts would be of 

helpful in terms of ascertaining this information to prevent overfitting. Lastly, certain 

complex traits in our study may benefit from being combined to improve statistical 

power. For instance, a more powerful approach to identify associations between genetic 

liability and statin medication could involve deriving a combined measure of all the 

different types of statins reported. Investigating these results in a hypothesis-free 

manner as we have described in this study may also prove useful for drug repurposing 

efforts.  

 

Polygenic risk scores hold huge promise in the era of large-scale genetic epidemiology 

to identify individuals who are at high risk of disease. Associations detected between 

these scores and outcomes undertaken by large-scale analyses should prove powerful 

for future studies that wish to unravel causal relationships between complex traits. 

Doing so will help improve disease prevention by developing a stronger understanding 

of complex epidemiological pathways. 
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Methods 

Constructing polygenic risk scores from large-scale genome-wide association studies 

We have used the MR-Base platform46 to identify SNPs from large-scale GWAS to 

include in our PRS. Our inclusion criteria for selected GWAS was having a sample size of 

more than 1,000 participants, over 100,000 SNPs measured on genotyping arrays and 

based on European/mixed populations. If multiple studies were found for the same 

trait, we selected the most recent study or the one with the largest sample size.  

PRS were constructed using SNPs for each GWAS trait based on P < 5 x 10-05. A 

threshold of r2 < 0.001 was selected to identify independent SNPs using genotype data 

from European individuals (CEU) from phase 3 (version 5) of the 1000 genomes 

project22. When a GWAS SNP was not available from the UK Biobank study genotype 

data, we used a proxy SNP instead based on r2 ≥ 0.8 using the same reference panel. 

Scores were then calculated as the sum of the effect alleles for all SNPs weighted by 

their reported regression coefficients. However, a small subset of PRS were left 

unweighted to reduce the likelihood of overfitting. This was due to their GWAS 

including participants from the initial release of the UK Biobank study. As such, 

additional caution should be exercised when interpreting findings from these 

unweighted PRS. Prior to analysis, each PRS was normalised to have a mean of zero and 

a standard deviation (SD) of one. Our PRS construction pipeline was also applied using a 

more stringent threshold of P<5x10-08. Although we have not interpreted any of the 

results using these more stringent scores in this report, they are available within our 

atlas for future use.  
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Complex trait and genotype data from the UK Biobank study 

We selected traits from the UK Biobank study21 which had P < 0.05 in the heritability 

analyses conduct by the Neale lab23. Genotype data were available for approximately 

490,000 individuals enrolled in the study. Phasing and imputation of these data are 

explained elsewhere20. Individuals with withdrawn consent, evidence of genetic 

relatedness or who were not of ‘white European ancestry’ based on a K-means 

clustering (KK=K4) were excluded from analysis. After exclusions there were up to 

334,398 individuals with both genotype and complex trait data who were eligible for 

analysis. 

Statistical analysis 

We evaluated the association between each combination of PRS and complex trait in the 

UK Biobank study using linear regression (for continuous traits), logistic regression (for 

case/control traits), ordinal logistic regression (for ordered categorical traits) and 

multinomial logistic regression (for unordered categorical traits). All analyses were 

adjusted for age, sex, the first 10 genetic principle components (to adjust for population 

stratification) and genotyping chip used to measure genetic data in participants. Only 

female participants were included in the ‘Age at menarche’ and ‘Age at menopause’ PRS 

analyses. 

 

We also calculated R2 coefficients for continuous traits and McFadden pseudo R2 

coefficients for other models by repeating analyses unadjusted for covariates. 

McFadden’s R2 is defined as: 

R2 McF= 1 – ln(Lm/ ln(L0) 
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where ln is the natural logarithm, L0 is the value of the likelihood function of the model 

with no predictors and Lm is the likelihood of the model being estimated. We note that 

pseudo R2 coefficients should not be interpreted in a similar manner to those derived 

using linear regression47. 

Mendelian randomization analysis 

We used various two-sample MR methods to evaluate associations detected in the PRS 

analysis. This involved using the observed effects of the genetic variants used in the PRS 

on both the GWAS trait that the score was based on (treated as the exposure in our MR 

analysis) as well as the UK Biobank trait (treated as the outcome in our MR analysis). 

For all MR analyses we only selected SNPs with P<5x10-08 based on GWAS findings as 

instrumental variables to reduce the likelihood of weak instrument bias24. In terms of 

MR methods, we applied the inverse variance weighted (IVW)18, weighed median27 and 

weighted mode26 approaches. We also conducted several different sensitivity analyses 

to evaluate findings. We derived Cochran’s Q  statistic25 when undertaking the IVW 

approach as an indicator of heterogeneity, as well as repeating all analyses after 

filtering out SNPs which the MR directionality test28 suggested did not influence the 

outcome of interest through the analysed exposure. The intercept of the MR-Egger 

approach29 was used to investigate directional horizontal pleiotropy and leave-one-out 

analyses (i.e. reapplying the IVW method after removing each SNP in turn with 

replacement) were conducted to discern whether any individuals SNPs were driving 

observed associations. These types of analyses are particularly important when 

assessing findings from our atlas, as one possible explanation is that they could be 

attributed to a single pleiotropic SNP which has a large effect size (e.g. the APOE locus 

which is associated with Alzheimer’s disease and lipid levels). 
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To investigate the direction of effect for associations identified in the PRS analysis we 

undertook bi-directional MR30. This involves firstly modelling our PRS trait as our 

exposure and complex trait as our outcome, and subsequently the complex trait as our 

exposure and PRS trait as our outcome in a separate analysis. Lastly, we have 

undertaken two recent developments in the MR paradigm; mediation MR34 and 

multivariable MR35. These methods can be used to investigate the effect of multiple risk 

factors on a single outcome, as well as uncover potential mediators in disease. In this 

study we have evaluated findings from the PRS analysis based on the P < 5 x 10-05 

threshold. We note however that it is only advisable to apply techniques in MR using 

this threshold as long as in-depth sensitivity analyses (e.g. leave-one out, MR-Egger 

intercept) are also undertaken to evaluate alternative explanations for associations, as 

opposed to genetic liability.  

All analyses were undertaken using R (version 3.5.1). The R packages ‘shiny’ v1.1 was 

used to develop the web application and ‘highcharter’ v0.5 was used to generate 

interactive plots. Figures in this manuscript were generated using ‘ggplot2’ v2.2.1.  
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Data availability  

All summary statistics for the analyses undertaken in this study can be downloaded 

using our web application (http://mrcieu.mrsoftware.org/PRS_atlas/). Our dataset was 

derived from the UK Biobank study as part of projects 8786 and 15825. The same 

dataset can be created with an application to use data from the UK Biobank study 

(http://biobank.ctsu.ox.ac.uk/crystal/). 
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Figures 

Figure 1: A simulation study to compare the performance of Mendelian randomization with polygenic risk score analy
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Figure 2: A bi-directional phenome-wide association plot for schizophrenia genetic liability 
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Figure 3: Applying a) mediation and b) multivariable Mendelian randomization to 

investigate the causal effect of body mass index, triglycerides and urate on gout 

risk 
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Figure legends 

Figure 1:  

A comparison of the performance between the inverse variance weighted (IVW) 

Mendelian randomization (MR) model against polygenic risk score (PRS) analysis. 

Simulations were conducted under different levels of horizontal pleiotropy for two 

different models; the causal model (where the simulated exposure has a causal effect on 

the outcome) and the null model (where there is no causal effect between exposure and 

outcome). 

 

Figure 2:  

Each point on this plot represents the association between the schizophrenia polygenic 

risk score (based on P<5x10-05) and a complex trait in the UK Biobank study. Along the 

y-axis are –log10 p-values for these associations multiplied by the direction of effect for 

their corresponding effect size. As such, traits positively associated with schizophrenia 

genetic liability reside above the horizontal grey line representing the null (i.e. –log10 

(P) =0), whereas negative associations are below. Points are grouped and coloured 

based on their corresponding complex traits’ subcategory. Horizontal red lines indicate 

the Bonferroni corrected threshold for the 551 tests undertaken (i.e. 0.05/551 = 

9.07x10-05). 

 

Figure 3: 

a) Mediation Mendelian randomization (MR) framework to investigate whether 

urate mediates the effect of body mass index (BMI) and triglycerides (TG) on 

gout risk. The various analyses undertaken suggest that 1) elevated BMI 
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increases TG levels 2) which subsequently has an effect on urate 3) and this in 

turn influences gout risk. This mediation pathway may help explain the manner 

by which BMI, potentially driven by lifestyle factors such as diet, is a risk factor 

for gout. 

b) Multivariable MR framework attempting to reproduce findings from the 

mediation analysis. Genetic instruments for BMI, TG and urate were analysed 

simultaneously to evaluate the joint effect of these risk factors on gout risk. The 

effect of BMI and TG on gout risk attenuated compared to univariable analyses, 

suggesting that they influence gout risk through increased urate levels. 

Investigating each combination of pairwise risk factors using this framework 

suggested that BMI influences TG rather than the opposite direction of effect, 

which also supports findings from the mediation analysis. 
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