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Abstract

The finite state projection (FSP) approach to solving the chemical master equation

(CME) has enabled successful inference of discrete stochastic models to predict single-

cell gene regulation dynamics. Unfortunately, the FSP approach is highly computa-

tionally intensive for all but the simplest models, an issue that is highly problematic

when parameter inference and uncertainty quantification takes enormous numbers of

parameter evaluations. To address this issue, we propose two new computational meth-

ods for the Bayesian inference of stochastic gene expression parameters given single-cell

experiments. First, we present an adaptive scheme to improve parameter proposals for

Metropolis-Hastings sampling using full FSP-based likelihood evaluations. We then

formulate and verify an Adaptive Delayed Acceptance Metropolis-Hastings (ADAMH)

algorithm to utilize with reduced Krylov-basis projections of the FSP. We test and
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compare both algorithms on three example models and simulated data to show that

the ADAMH scheme achieves substantial speedup in comparison to the full FSP ap-

proach. By reducing the computational costs of parameter estimation, we expect the

ADAMH approach to enable efficient data-driven estimation for more complex gene

regulation models.

Introduction

An important goal of quantitative biology is to elucidate and predict the mechanisms of

gene expression. Evidence increasingly suggests that gene expression processes are inherently

stochastic with substantial cell-to-cell variability.1–3 In an isogenic population with the same

environmental factors, much of these fluctuations can be attributed to intrinsic chemical

noise, which is captured well by the chemical master equation (CME).4 Predictive models

for gene expression dynamics can be identified by fitting the solution of the CME to the

empirical histogram of single-cell data at several experimental conditions or time-points.5–8

The finite state projection (FSP),9 which approximates the dynamics of the CME with a

finite system of linear ODEs, provides a framework to analyze full distributions of stochastic

gene expression models with computable error bounds. It has been observed that the full

distribution-based analyses using the FSP perform well, even when applied to realistically

small experimental datasets on which summary statistics-based fits may fail.10 On the other

hand, the FSP requires solving a large system of ODEs that grows quickly with the com-

plexity of the gene expression network under consideration. Our present study borrows from

model reduction strategies in other complex systems fields to alleviate this issue by reducing

the computational cost of FSP-based parameter estimation.

There has been intensive research on efficient computational algorithms to quantify the

uncertainty in complex models.11 A particularly promising approach is to utilize multifidelity

algorithms to systematically approximate the original system response. In these approxima-

tions, surrogate models or meta-models allow for various degrees of model fidelity (e.g., error
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compared to the exact model) in exchange for reductions in computational cost. Surrogate

models generally fall into two categories: response surface and low-fidelity models.12,13 We

will focus on the second category that consists of reduced-order systems, which approximate

the original high-dimensional dynamical system using either simplified physics or projections

onto reduced order subspaces.11,14,15 Reduced-order modeling has already begun to appear in

the context of stochastic gene expression. When all model parameters are known, the CME

can be reduced by system-theoretic methods,16,17 sparse-grid/aggregation strategies,18,19 ten-

sor train representations20–22 and hierarchical tensor formats.23 Model reduction techniques

have also been applied to parameter optimization by Waldherr and Hassdonk24 who pro-

jected the CME onto a linear subspace spanned by a reduced basis, and Liao et al.25 who

approximated the CME with a Fokker-Planck equation that was projected onto the manifold

of low-rank tensors.26 While these previous works clearly show the promise of reduced-order

modeling, there remains a vast reservoir of ideas from the broader computational science and

engineering community that remain to be adapted to the quantitative analysis of stochastic

gene expression.

In this paper, we introduce two efficient algorithms, which are based on the templates

of the adaptive Metropolis algorithm27 and the delayed acceptance Metropolis-Hastings

(DAMH28,29) algorithm, to sample the posterior distribution of gene expression parame-

ters given single-cell data. The adaptive Metropolis approach automatically tunes parame-

ter proposal distributions to more efficiently search spaces of unnormalized and correlated

parameters. The DAMH provides a two-stage sampling approach that uses a cheap approx-

imation to the posterior distribution at the first stage to quickly filter out unlikely param-

eters. Improvements to the DAMH allow algorithmic parameters to be updated adaptively

and automatically by the DAMH chain.30,31 The DAMH has been applied to the inference of

stochastic chemical kinetics parameters from time-course data.32 Our algorithm is a modified

version of DAMH that is specifically adapted to improve Bayesian inference from popula-

tion snapshots of single-cell data, such as data arising from flow cytometry or fixed-cell
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microscopy experiments. We employ parametric reduced order models using Krylov-based

projections,33,34 which give an intuitive means to compute expensive FSP-based likelihood

evaluations.35,36 To improve the accuracy and the DAMH acceptance rate, we allow the

reduced model to be refined during parameter space exploration. The resulting method,

which we call the ADAMH-FSP-Krylov algorithm, is tested on three common gene expres-

sion models. We also provide a theoretical guarantee and numerical demonstrations that the

proposed algorithms converge to equivalent target posterior distributions.

The organization of the paper is as follows. We review the background on the FSP

analysis of single-cell data, and basic Markov chain Monte Carlo (MCMC) schemes in the

Background section. In the Materials and Methods section, we introduce our method to

generate reduced FSP models, as well as our way of monitoring and refining their accuracy.

These reduced models give rise to an approximation to the true likelihood function, which

is then employed to devise an Adaptive Delayed Acceptance Metropolis-Hastings with FSP-

Krylov reduced models (ADAMH-FSP-Krylov). We make simple adjustments to the existing

ADAMH variants in the literature to prove convergence, and we give the mathematical details

in the supplementary materials. We provide empirical validation of our methods on three

gene expression models, and we compare the efficiency and accuracy of the approaches in the

Numerical Results section. Interestingly, we find empirically that the reduced model learned

through the ADAMH run could fully substitute the original FSP model in a Metropolis-

Hastings run without incurring a large difference in the sampling results. Finally, we conclude

with a discussion of future work and the potential of computational science and engineering

tools to analyze stochastic gene expression.
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Background

Stochastic modeling of gene expression and the chemical master

equation

Consider a well-mixed biochemical system with N ≥ 1 different chemical species that are

interacting via M ≥ 1 chemical reactions. Assuming constant temperature and volume, the

time-evolution of this system can be modeled by a continuous-time Markov process.4 The

state space of the Markov process consists of integral vectors x ≡ (x1, . . . , xN)T , where xi

is the population of the ith species. Each reaction channel, such as the transcription of an

RNA species, is characterized by a stoichiometric vector νj (j = 1, . . . ,M) that represents

the change when the reaction occurs; if the system is in state x and reaction j occurs, then

the system transitions to state x+νj. Given x(t) = x, the propensity αj(x;θ)dt determines

the probability that reaction j occurs in the next infinitesimal time interval [t, t+ dt), where

θ is the vector of model parameters.

Since the state space is discrete, we can index the states as x1, ...,xn, . . .. The time-

evolution of the probability distribution of the Markov process is the solution of the linear

system of differential equations known as the chemical master equation (CME):


d
dt
p(t) = A(θ)p(t), t ∈ [0, tf ]

p(0) = p0

, (1)

where the probability mass vector p = (p1, p2, . . . )
T is such that each component, pi =

P (t,xi) = Prob{x(t) = xi}, describes the probability of being at state xi at time t, for

i = 1, . . . , n. The vector p0 = p(0) is an initial probability distribution and A(θ) is the

infinitesimal generator of the Markov process. Here, we have made explicit the dependence

of A on the model parameter vector θ, which is often inferred from experimental data.
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Finite State Projection

The state space of the CME could be infinite or extremely large. To alleviate this problem,

the finite state projection (FSP9) was introduced to truncate the state space to a finite size.

In the simplest FSP formulation, the state space is restricted to a hyper-rectangle

H = {0, . . . , n1} × · · · × {0, . . . , nN}, (2)

where the nk are the maximum copy numbers of the chemical species.

The infinite-dimensional matrix A and vector p in eq. (1) are replaced by the corre-

sponding submatrix and subvector. When the bounds nk are chosen sufficiently large and

the propensities satisfy some regularity conditions, the gap between the FSP and the original

CME is negligible and computable.9,37 Throughout this paper, we assume that the bounds

nk have been chosen appropriately and that the FSP serves as a high-fidelity model of the

gene expression dynamics of interest. Our goal is to construct lower-fidelity models of the

FSP using model order reduction and incorporate these reduced models in the uncertainty

analysis for gene expression parameters.

Bayesian inference from single-cell data

Data from smFISH experiments5,8,38,39 consist of several snapshots of many independent cells

taken at discrete times t1, . . . , tT . The snapshot at time ti records gene expression in ni cells,

each of which can be collected in the data vector cj,i, j = 1, . . . , ni of molecular populations

in cell j at time ti. Let p(t,x|θ) denote the entry of the FSP solution corresponding to state

x at time t, with model parameters θ. The FSP-based approximation to the log-likelihood

of the data set D given parameter vector θ is given by

L(D|θ) =
T∑
i=1

ni∑
j=1

log p(ti, cj,i|θ). (3)
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It is clear that when the FSP solution converges to the true solution of the CME, the FSP-

based log-likelihood converges to the true data likelihood. The posterior distribution of

model parameters θ given the data set D then takes the form

fposterior(θ|D) ∝ exp(L(D|θ))f0(θ),

where f0 is the prior density that quantifies prior knowledge and beliefs about the parameters.

When f0 is a constant, the parameters that maximize the posterior density are equivalent

to the maximum likelihood estimator. However, we also want to quantify our uncertainty

regarding the accuracy of the parameter fit, and the MCMC framework provides a way to

address this by sampling from the posterior distribution.

For convenience, we limit our current discussion to models and inference problems that

have the following characteristics:

1. The matrix A(θ) can be decomposed into

A(θ) =
M∑
j=1

gj(θ)Aj, (4)

where gj are continuous functions and Aj are independent of the parameters.

2. The support of the prior is contained in a bounded domain of the form

Θ = [θmin
1 , θmax

1 ]× . . .× [θmin
d , θmax

d ]. (5)

The first assumption means that the CME matrix depends “linearly” on the parameters,

ensuring the efficient assembly of the parameter-dependent matrix. In particular, the factors

Aj can be computed and stored in the offline phase before parameter exploration and only a

few (sparse) matrix additions are required to compute A(θ) in the online phase. When there

are nonlinear dependence on parameters, more sophisticated methods such as the Discrete
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Empirical Interpolation method40 could be applied, but we leave this development for future

work in order to focus more on the parameter sampling aspect. Nevertheless, condition (4)

covers an important class of models, including all models defined by mass-action kinetics.

The second assumption means that the support of the posterior distribution is a bounded

and well-behaved domain (in mathematical terms, a compact set). This allows us to derive

convergence theorems more straightforwardly. In practice, condition (5) is not a severe

restriction since it can be interpreted as the prior belief that physical parameters cannot

assume infinite values.

The Metropolis-Hastings and the adaptive Metropolis algorithms

The Metropolis-Hastings (MH) Algorithm41,42 is one of the most popular methods to sample

from a multivariate probability distribution (Algorithm 1). The basic idea of the MH is to

generate a Markov chain whose limiting distribution is the target distribution. To do so, the

algorithm includes a probabilistic acceptance/rejection step. More precisely, let f denote

the target probability density. Assume the chain is at state θi at step i. Let θ′ be a proposal

from the pre-specified proposal density q(.|θi). The DAMH computes a first-step acceptance

probability of the form

α(θi,θ
′) = min

(
1,
f(θ′)

f(θi)

q(θi|θ′)
q(θ′|θi)

)
,

to decide whether to accept θ′ as the next state of the chain. If θ′ fails to be promoted, the

algorithm moves on to the next iteration with θi+1 := θi.

There could be many choices for the proposal density q (for example, see the survey of

Roberts and Rosenthal43). We will consider only the symmetric case where q is a Gaussian,

that is,

q(θ′|θ) ∝ exp

(
−1

2
(θ′ − θ)TΣ(θ′ − θ)

)
,

where Σ is a positive definite matrix that determines the covariance of the proposal distri-

bution. With this choice, the MH reduces to the original Metropolis Algorithm.41 For gene
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expression models, the MH has been combined with the FSP for parameter inference and

model selection in several studies.8,10

The appropriate choice of Σ is crucial for the performance of the Metropolis algorithm.

Haario et al.27 proposes an Adaptive Metropolis (AM) algorithm in which the proposal Σ is

updated at every step using the values visited by the chain. This is the version that we will

implement for sampling the posterior distribution with the full FSP model. In particular,

let θ1, . . . ,θi be the samples accepted so far, the AM updates the proposal covariance using

the formula

Σ = Σi :=


Σ0, i < n0

sd Cov(θ1, . . . ,θi) + 10−6sdId, i ≥ n0

.

Here, the function Cov returns the sample covariances. The constant sd is assigned the

value (2.4)2/d following Haario et al.27 The matrix Σ0 is an initial choice for the Gaussian

proposal density, and n0 is the number of initial steps without proposal adaptations. Using

the adaptive Metropolis allows for more efficient search over un-normalized and correlated

parameters spaces and eliminates the need for the user to manually tune the algorithmic

parameters. In the numerical results that we will show, the adaptive Metropolis results in

reasonable acceptance rates (19% − 23.4%). Although non-adaptive MH algorithms have

been consider in the past,8,10 to the best of our knowledge, this is the first adaptive MH

algorithm to be proposed for Bayesian inference of gene expression models.

Materials and Methods

Delayed acceptance Metropolis-Hastings algorithm

Previous applications of the MH to gene expression have required 104 to 106 or more it-

erations per combination of model and data set,10 and computational cost is a significant

issue when sampling from a high-dimensional distribution whose density is expensive to

evaluate. A practical rule of thumb for balancing between exploration and exploitation for
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Algorithm 1 Metropolis-Hastings
Input:

Target density f(.);
Initial parameter θ0;

Proposal density q(·|·);
1: for i = 0, 1, . . . , do
2: Draw θ′ from the proposal density q(·|θi)
3: Compute the acceptance probability

α(θi,θ
′) = min

(
1,
f(θ′)

f(θi)

q(θi|θ′)
q(θ′|θi)

)
4: With probability α(θi,θ

′), set θi+1 ← θ′ (accept); otherwise θi+1 ← θi (reject).
5: end for

Output: samples θ1,θ2, . . .

a MH algorithm with the Gaussian proposal is to have an acceptance rate close to 0.234,

which was derived by Roberts et al.44 as the asymptotically optimal acceptance rate for

random walk MH algorithms. Assuming the proposal density of Algorithm 1 is tuned to

have an acceptance rate of approximately 23.4%, one could achieve significant improvement

to computation time if one can quickly screen out the remaining rejected proposals without

evaluating the expensive posterior density.

The delayed acceptance Metropolis-Hasting (DAMH)28 seeks to alleviate the computa-

tional burden of rejections in the original MH by employing a rejection step based on a

cheap approximation to the target density (cf. Algorithm 2). Specifically, let f(.) be the

density of the target distribution of the parameter θ. Let f ?θ(.) be a cheap state-dependent

approximation to f . At iteration i, let θ′ be a proposal from the current parameter θ using

a pre-specified proposal density q(.|.). The DAMH promotes θ′ as a potential candidate for

acceptance with probability

α(θ,θ′) = min

(
1,
f ?θ(θ′)

f ?θ(θ)

q(θ|θ′)
q(θ′|θ)

)
.

If θ′ fails to be promoted, the algorithm moves on to the next iteration with θi+1 := θi. If

the θ′ passes the first inexpensive check, than a second acceptance probability is computed
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using the formula

β(θ,θ′) = min

(
1,
f(θ′)

f(θ)

f ?θ(θ)

f ?θ(θ′)

)
,

and the DAMH algorithm accepts θ′ for the next step with probability β. In this manner,

much computational savings can be expected if unlikely proposals are quickly rejected in the

first step, leaving only the most promising candidates for careful evaluation in the second

step. Christen and Fox show that the ADAMH converges to the target distribution under

conditions that are easily met in practice.28 However, the quality of the approximation

f ?θ affects the overall efficiency. Poor approximations lead to many false promotions of

parameters that are rejected at the expensive second step. On the other hand, the first step

may falsely reject parameters that could have been accepted using the accurate log-likelihood

evaluation. This leads to subsequent developments that seek appropriate approximations

and ways to adapt these approximations to improve the performance of DAMH in specific

applications.30,45 Specifically, the adaptive DAMH variant in Cui et al., 201445 formulates

f ?θ via reduced basis models that can be updated on the fly using samples accepted by the

chain. The adaptive version in Cui et al., 2011,30 allows adaptations for the proposal density

and the error model, with convergence guarantees.31 We will borrow these elements in our

sampling scheme that we introduce below. However, the stochastic gene expression models

that we investigate here differ from the models studied in those previous contexts, since

our likelihood function incorporates intrinsic discrete state variability instead of external

Gaussian noise.

Reduced-order models for the FSP dynamics

Projection-based model reduction

We approximate the full parameter-dependent FSP dynamics,

d

dt
p(t;θ) = A(θ)p(t;θ), p(0) = p0, t ∈ [0, tf ], (6)
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Algorithm 2 Delayed Acceptance Metropolis-Hastings
Input:

Target density f(.);
State-dependent density approximation f ?θ(.);

Initial parameter θ0;
Proposal density q(·|·);

1: for i = 0, 1, . . . , do
2: Draw θ′ from the proposal density q(·|θi)
3: Compute the first-stage acceptance probability

ρ(θi,θ
′) = min

(
1,
f ?θi(θ

′)

f ?θi(θ)

q(θi|θ′)
q(θ′|θi)

)
4: With probability ρ(θi,θ

′), promote the value of θ′ to the next stage. Otherwise, set
θ′ ← θ.

5: Compute the second-stage acceptance probability

α(θi,θ
′) = min

(
1,
f(θ′)

f(θi)

f ?θi(θi)

f ?θi(θ
′)

)
6: With probability α(θi,θ

′), set θi+1 ← θ′ (accept); otherwise θi+1 ← θi (reject).
7: end for

Output: samples θ1,θ2, . . .
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with a sequence of reduced-order dynamics,

d

dt
q(i)(t;θ) = B(i)(θ)q(i)(t;θ), (7)

q(i)(ti−1;θ) =
(
Φ(i)

)T
Φ(i−1)q(i−1)(ti−1;θ). (8)

Here, i = 1, . . . , nB indexes the user-specified subintervals [ti−1, ti] with t0 = 0. Each matrix

Φ(i) ∈ Rn×ri , ri ≤ n, has orthonormal columns that span the subspace onto which we project

the full dynamics. Equation (8) implies that the solution at a previous time interval will be

projected onto the subspace of the next interval. While this introduces some extra errors,

subdividing the long time interval helps to reduce the subspace dimensions for systems

with complicated dynamics. Given an ordered set of reduced bases Φ =
(
Φ(i)

)nB
i=1

, the

approximations to the full distributions are given by

p(t) ≈ pΦ(t) = Φ(i)q(i)(t), t ∈ [ti−1, ti]. (9)

Under assumption (4), the reduced system matrices B(i)(θ) in eq. (7) can be decomposed

as

B(i)(θ) =
M∑
j=1

gj(θ)B
(i)
j , (10)

where B
(i)
j = (Φ(i))TAjΦ

(i). This decomposition allows us to assemble the reduced systems

quickly with O(r2
i ) complexity.

We build the reduced basis for the parameter-dependent dynamics by concatenation (see,

e.g., Benner et al.15). Specifically, we assume that for any fixed parameter θ, we can construct

a set {V (i)(θ)}nBi=1 of orthogonal basis matrices. We can sample different bases from a finite
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set of ‘training’ parameters θ1, . . . ,θntrain
. Then, through the iterative updates

Φ(i,1) = V (i)(θ1), (11)

Φ(i,j) = Gram-Schmidt

[
Φ(i,j−1) V (i)(θj)

]
, (12)

we obtain the bases Φ(i) = Φ(i,ntrain) that provide global approximations for the full dynamical

system across the parameter domain. The operation Gram-Schmidt implies that the columns

in V (i)(θj) are orthogonalized against the columns in Φ(i,j−1) to produce a new matrix with

orthonormal columns.

Krylov subspace approximation for single-parameter model reduction

Consider a fixed parameter combination θ. Let the time points 0 < t1 < . . . < tB = tf be

given. Using a high-fidelity solver, we can compute the full solution at those time points,

and we let pi denote the full solution at time ti. Our aim is to construct a sequence of

orthogonal matrices V (i) ≡ V (i)(θ) with i = 1 . . . B such that the full model dynamics at

the parameter θ on the time interval [ti−1, ti] is well-approximated by a projected reduced

model on the span of V (i).

A simple and effective way to construct the reduced bases is to choose V (i) as the or-

thogonal basis of the Krylov subspace

Kmi(θ, ti−1) = span
{
pi,A(θ)pi, . . .A(θ)mi−1pi

}
. (13)

In order to determine the subspace dimension mi, we use the error series derived by Saad33

which we reproduce here using our notation as

exp(τiA(θ))pi−1 − V (i) exp(τiH
(i))e1 =

∞∑
k=1

hmi+1,mie
T
mi
ϕk(τiH

(i))e1τ
k−1
i A(θ)k−1v

(i)
mi+1.

(14)

Here, v
(i)
mi+1 and hmi+1,mi are the outputs at step mi of the Arnoldi procedure (Algorithm
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10.5.1 in Golub and Van Loan46) to build the orthogonal matrix V (i), where ϕk(X) =∫ 1

0
1
k!

exp((1− s)X) ds for any square matrix X. The matrix H(i) =
(
V (i)

)T
A(θ)V (i) is the

state matrix of the reduced-order system obtained via projectingA onto the Krylov subspace

Kmi . The terms eTmiϕk(τiH
(i))e1 can be computed efficiently using Expokit (Theorem 1,

Sidje34). We use the Euclidean norm of the first term of the series (14) as an indicator

for the model reduction error. Given an error tolerance εKrylov, we iteratively construct the

Krylov basis V (i) with increasing dimension until the error per unit time step of the reduced

model falls below the tolerance, that is,

|hmi+1,mie
T
mi
ϕ1(τiH

(i))e1| ≤ εKrylovτi. (15)

Adaptive Delayed Acceptance Metropolis with reduced-order mod-

els of the CME

The approximate log-likelihood formula

The reduced bases described above allow us to find reduced-cost approximations p ≈ pΦ to

the full FSP dynamics. We can then approximate the full log-likelihood of single-cell data

in equation (3) by the reduced-model-based log-likelihood

L?Φ(D|θ) =
T∑
i=1

ni∑
j=1

log max(εs, pΦ(ti, cj,i|θ)), (16)

where εs is a small constant, chosen to safeguard against undefined values. We need to

include εs in our approximation since the entries of the reduced-order approximation are not

guaranteed to be positive (not even in exact arithmetic). We aim to make the approximation

to be accurate for parameters θ with high posterior density, and crude on those with low

density, which should be visited rarely by the Monte Carlo chain.

One can readily plug in the approximation (16) to the DAMH algorithm. Since exp(L?Φ(D|θ)) >

0 for all θ ∈ Rd
+, the chain will eventually converge to the target posterior distribution (The-
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orem 1 in Christen and Fox,28 and Theorem 3.2 in Efendiev et al.29). On the other hand,

a major problem with the DAMH is that the computational efficiency depends on the qual-

ity of the reduced basis approximation. Crude models result in high rejection rates at the

second stage, thus increasing sample correlation and computation time. Therefore, it is

advantageous to fine-tune the parameters of the algorithm and update the reduced models

adaptively to ensure a reasonable acceptance rate. This motivates the adaptive version of

the DAMH that we discuss next.

Delayed acceptance posterior sampling with infinite model adaptations

We propose an adaptive version of the DAMH for sampling from the posterior density of

the CME parameters given single-cell data (Algorithm 3). We have borrowed elements from

the adaptive DAMH algorithms in Cui et al.30,45 The first step proposal uses an adaptive

Gaussian similar to the adaptive Metropolis of Haario et al.,27 where the covariance matrix

is updated at every step from the samples accepted so far. Here, we generate the proposals

in log10 space.

The reduced bases are updated as the chain explores the parameter domain. Instead of

using a finite adaptation criterion to stop model adaptation as in Cui et al.,45 we introduce

an adaptation probability with which the reduced basis updates are considered. This means

that there could be an infinite amount of model adaptations that occur with diminishing

probability as the chain progresses. This idea is taken from the “doubly-modified example”

in Roberts and Rosenthal.47 The advantage of the probabilistic adaptation criteria is that

it allows us to prove ergodicity for the adaptive algorithm. The mathematical proofs are

presented in the Appendix.

The adaptation probability a(i) is chosen to converge to 0 as the chain iteration index i

increases. In particular, we use

a(i) = 2−i/I0 ,

where I0 is a user-specified constant. This formula means that the probability for an adapta-

16

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted November 11, 2018. ; https://doi.org/10.1101/468090doi: bioRxiv preprint 

https://doi.org/10.1101/468090


tion to occur decreases by half after every I0 chain iterations. In addition, we further restrict

the adaptation to occur only when the error indicator is above a threshold at the proposed

parameters. As a consequence of our model updating criteria, the reduced-order bases will

be selected at points that are close to the support of the target posterior distribution.

Algorithm 3 ADAMH-FSP-Krylov
Input:

Prior density f0;
Parameter-dependent CME matrix A(.);

Chain starting point θ0, initial proposal covariance C0.
Basis update tolerance εbasis, Krylov tolerance εKrylov, reduced model time partition

T = {tk}nBk=1;
Adaptation probability {a(i)}∞i=0;
Maximum basis dimension mmax.

1: Φ0 = GenerateKrylovBases(A(θ0),p0, T , εKrylov);
2: for i = 0, 1, . . . do
3: Compute the proposal θ′ = 10ψ where ψ ∼ N(log10(θi),Ci);
4: With probability α, promote θ′, where

α = min{1, exp(L?Φi
(D|θ′) + log f0(θ′)− L?Φi

(D|θi)− log f0(θi))}

otherwise, θi+1 := θi and move on to the next iteration.
5: if θ′ was promoted then
6: With probability β, accept θ′ as the next sample θi+1. Otherwise, set θi+1 = θ.

Here,

β = min

{
1,

exp(L(D|θ′))
exp(L(D|θi))

exp(L?Φi
(D|θi))

exp(L?Φi
(D|θ′))

}
7: Compute ErrorEst(θ′,Φi) := |L(D|θ′)− L?Φi

(D|θ′)|/|L(D|θ′)|
8: if ErrorEst(θ′,Φi) > εbasis then
9: With probability a(i), Φi+1 = UpdateBases(Φi,θi), otherwise Φi+1 := Φi.

10: else
11: Φi+1 := Φi.
12: end if
13: end if
14: Ci+1 = Cov(log10(θ0), . . . , log10(θi+1)) + 2.42

d
10−6Id; . Update the proposal

15: end for

Output:Samples θ0,θ1, . . .
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Numerical Results

We conduct numerical tests on several stochastic gene expression models to study perfor-

mance of our proposed Algorithms. The test platform is a desktop computer running Linux

Mint and MATLAB 2017a, with 32 GB RAM and Intel Core i7 3.4 GHz quad-core processor.

We compare three sampling algorithms:

1. Adaptive Metropolis-Hastings with full FSP-based likelihood evaluations (AMH-FSP):

This version is an adaptation of the Adaptive Metropolis of Haario et al.,27 which

updates the covariance of the Gaussian proposal density at every step. The algorithm

always uses the FSP-based likelihood (3) to compute the acceptance probability, and

it is solved using the Krylov-based Expokit.34 This is the reference algorithm by which

we assess the accuracy and performance of the other sampling schemes. To the best of

our knowledge, such an adaptive Metropolis scheme has not been used elsewhere for

gene expression models.

2. Adaptive Delayed Acceptance Metropolis-Hastings with reduced FSP model constructed

from Krylov subspace projections (ADAMH-FSP-Krylov): This is Algorithm 3 men-

tioned above. Similar to AMH-FSP, this algorithm uses a Gaussian proposal with an

adaptive covariance matrix. However, it has a first-stage rejection step that employs

the reduced model constructed adaptively using Krylov-based projection.

3. Adaptive Metropolis-Hastings with only reduced model-based likelihood evaluations

(AMH-ROM): This is similar to AMH-FSP, but we instead use the approximate log-

likelihood formula (16). The reduced model is constructed during the run of the

ADAMH-FSP-Krylov, and therefore this variant can only be executed after the ADAMH-

FSP-Krylov has terminated. We include this variant here in order to study the accu-

racy and potential speedup when leaving the acceptance/rejection decision fully to the

reduced model.
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We rely on two metrics for performance evaluation: total CPU time to finish each chain, and

the multivariate effective sample size as formulated in Vats et al.48 Given samples θ1, . . . ,θn,

the multivariate effective sample size is estimated by

mESS = n

(
|Λn|
|Σn|

)1/d

,

where Λn is an estimation of the posterior covariance using the sample covariance, and

Σn the multivariate batch means estimator. An algorithm, whose posterior distribution

matches the full FSP implementation, but with a lower ratio of CPU time per (multivariate)

effective sample will be deemed more efficient. We use the MATLAB implementation by

Luigi Acerbi49 for evaluating the effective sample size from the MCMC outputs.

Implementation details

To achieve reproducible results for each example, we reset the random number generator to

Mersenne Twister with seed 0 in Matlab using the rng(‘default’) command before simulating

the single-cell observations with Gillespie’s Algorithm50 and running the ADAMH-Krylov-

FSP and AMH-FSP chains. The random seed is then set to the ‘default’ value again before

running the AMH-ROM chain.

Two-state gene expression

We first consider the common model of bursting gene expression39,51–54 with a gene that can

switch between ON and OFF states and an RNA species that is transcribed when the gene

is switched on (Table 1). We simulate data at ten equally spaced time points from 0.1 to 1

hour, with 200 independent observations per time point. The gene states are assumed to be

unobserved. We generate the reduced bases on subintervals generated by the time points in

the set

Tbasis = {∆tdataj|j = 1, . . . , 10} ∪ {∆tbasisj|j = 1, . . . , 100},
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Table 1: Two-state gene expression reactions and propensities. We assume that the time
unit is hours (hr). Hence, parameters’ units are hr−1. ([X] is the number of copies of the
species X.)

reaction propensity

1. GOFF
kon−→ GON α1 = kon[GOFF ]

2. GON

koff−→ GOFF α2 = koff [GON ]

3. GON
kr−→ GON +RNA α3 = kr[GON ]

4. RNA
γ−→ ∅ α4 = γ[RNA]

where ∆tdata = 0.1hr and ∆tbasis = 0.01hr. Thus, Tbasis includes the observation times. We

choose the basis update threshold as δ = 10−4. The prior distribution in our test is the

log-uniform distribution on a rectangle, whose bounds are given in Table 2. The full FSP

state space is chosen as

{OFF,ON} × {0, 1, . . . , 1100}.

We choose a starting point for the sampling algorithms using five iterations of MATLAB’s

genetic algorithm with a population size of 100, resulting in 600 full FSP evaluations. We

then refine the output of the genetic algorithm with a local search using fmincon with a

maximum of 1000 further evaluations of the full model. This is a negligible cost in comparison

to the 10, 000 iterations that we set for the sampling algorithms.

We summarize the performance characteristics of the sampling schemes in Table 3. The

ADAMH-FSP-Krylov requires less computational time (Fig. 1) without a significant reduc-

tion in the multivariate effective sample size. In terms of computational time, the ADAMH-

FSP-Krylov takes less time to generate an independent sample. This is partly explained by

observing that the first stage of the scheme filters out many unlikely samples with the efficient

approximation, resulting in 78.34% fewer full evaluations in the second stage (cf. Table 3).

We observe from the scatterplot of log-posterior values of the parameters accepted by

the ADAMH-FSP-Krylov that the reduced model evaluations are very close to the FSP

evaluations, with the majority of the approximate log-posterior values having a relative
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error below 10−4, with an average of 1.09× 10−6 and a median of 8.49× 10−8 across all 2152

accepted parameter combinations (Fig. 1 C). This accuracy is achieved with a reduced set

of no more than 168 basis vectors per time subinterval that was built using solutions from

only four sampled parameter combinations (Fig. 2). All the basis updates occur during the

first tenth portion of the chain, and these updates consume less than one percent of the total

chain runtime (Table 4).

From the samples obtained by the ADAMH-Krylov-FSP, we found that full and reduced

FSP evaluation take approximately 0.25 and 0.09 seconds on average, allowing for a maxi-

mal speedup factor of approximately 100(0.25− 0.09)/0.25 ≈ 65.73% for the current model

reduction scheme. Here, the term reduced model refers to the final reduced model obtained

from the adaptive reduced basis update of the ADAMH-Krylov-FSP. The speedup offered by

the ADAMH-Krylov-FSP was found to be 100(2497.70− 1424.32)/2497.70 ≈ 42.97%, or ap-

proximately two thirds the maximal achievable improvement for the current model reduction

scheme. To further investigate the speed and quality of the reduced model learned from the

ADAMH-FSP-Krylov run, we performed another run of the adaptive Metropolis-Hastings al-

gorithm with the log-likelihood evaluated solely using the reduced model constructed by the

ADAMH-FSP-Krylov. Interestingly, we observe almost identical results using the reduced

model alone in comparison to using the full model (Fig. 2 and Table 5), and the 65.03% re-

duction in computational effort matched very well to the maximal estimated improvement.

Table 2: Two-state gene expression example. Bounds on the support of the prior distribution
of the parameters, which we choose to be the uniform distribution. Parameter units are hr−1.

Parameter kon koff kr γ
Lower bound 1.00e-06 1.00e-06 1.00e-06 1.00e-06
Upper bound 1.00e+01 1.00e+01 1.00e+04 1.00e+01

A gene expression model with spatial components

We consider an extension of the previous model to distinguish between the nucleus and

cytoplasmic compartments in the cell, similar to a stochastic model recently considered for

21

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted November 11, 2018. ; https://doi.org/10.1101/468090doi: bioRxiv preprint 

https://doi.org/10.1101/468090


(A)
2000 4000 6000 8000

Iteration

500

1000

1500

2000

C
P

U
 t
im

e
 (

s
e
c
)

ADAMH-FSP-Krylov

AMH-FSP

(B)
-1.065 -1.0645 -1.064 -1.0635

Full FSP 10
4

-1.065

-1.0645

-1.064

-1.0635

R
e
d
u
c
e
d
 m

o
d
e
l

10
4

corr = 0.99853

(C)

Figure 1: Two-state gene expression example. (A) CPU time vs number of iterations
for a sample run of the ADAMH-FSP-Krylov and the AMH-FSP. (B) Scatterplot of the
unnomarlized log-posterior evaluated using the full FSP and the reduced model. Notice
that the approximate and true values are almost identical with a correlation coefficient
of approximately 0.99853. (C) Distribution of the relative error in the approximate log-
posterior evaluations at the parameters accepted by the ADAMH chain.
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Table 3: Two-state gene expression example. Performance of the Adaptive Delayed Accep-
tance Metropolis-Hastings with the Krylov-based reduced model (ADAMH-FSP-Krylov),
the Adaptive Metropolis-Hastings with full FSP (AMH-FSP), and the Adaptive Metropolis-
Hastings with the reduced model constructed by ADAMH-FSP-Krylov (AMH-ROM). The
total chain length for each algorithm is 10000.

mESS
CPU
time
(sec)

CPU time
mESS (sec)

Number of
full evaluations

Number of
rejections

Number of
rejections by

full FSP

ADAMH-FSP-Krylov 672.76 1424.32 2.12 2166 7848 14
AMH-FSP 636.76 2497.70 3.92 10000 7859 7859
AMH-ROM 715.11 873.53 1.22 0 7741 0

Table 4: Two-state gene expression example. Breakdown of CPU time spent in the main
components of ADAMH-FSP-Krylov.

Component Time occupied (sec) Fraction of total time (per cent)
Full FSP Evaluation 545.87 38.33
Reduced Model Evaluation 863.38 60.62
Reduced Model Update 9.55 0.67
Total 1424.32 100.00

(A)
2.99 2.995 3 3.005 3.01
0

100

200

300

ADAMH-FSP-Krylov

AMH-FSP

AMH-ROM

(B)
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-0.15

-0.1

-0.05

Accepted

Reduced basis build

Figure 2: Two-state gene expression example. (A) Estimations of the marginal posterior
distribution of the parameter kr using the Adaptive Delayed Acceptance Metropolis-Hastings
with Krylov reduced model (ADAMH-FSP-Krylov) and the Adaptive Metropolis-Hastings
with full FSP (AMH-FSP). (B) 2-D projections of parameter combinations accepted by the
ADAMH scheme (blue) and parameter combinations used for reduced model construction
(red).

MAPK-activated gene expression dynamics in yeast.10 The gene can transition between four

states {0, 1, 2, 3} with transcription activated when the gene state is in states 1 to 3. RNA

is transcribed in the nucleus and later transported to the cytoplasm as a first order reaction.
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Table 5: Two-state gene expression example. True parameter values and the average values
of the parameters visited by the ADAMH-FSP-Krylov and AMH-FSP chains. The “Start”
column shows the starting point of both MCMC chains. This starting point is obtained
from a numerical optimization procedure that seeks to maximize the full log-likelihood in
equation (3). Parameter values are shown in log10 scale. All parameters have unit hr−1.

Parameter True Start ADAMH-FSP-Krylov AMH-FSP AMH-ROM
log10(kon) -3.01e-01 -3.97e-01 -4.49e-01 -4.48e-01 -4.50e-01
log10(koff) -9.69e-02 -1.38e-01 -1.39e-01 -1.38e-01 -1.40e-01
log10(kr) 3.00e+00 3.00e+00 3.00e+00 3.00e+00 3.00e+00
log10(γ) 0.00e+00 1.03e-03 1.04e-03 9.21e-04 1.01e-03

Log-posterior
(un-normalizsed)

-1.0641e+04 -1.0636e+04 -1.0638e+04 -1.0638e+04 -1.0638e+04

These cellular processes and the degradation of RNA in both spatial compartments are

modeled by a reaction network with six reactions and three species (Table 6).

We simulated a data set of 200 single-cell measurements at five equally-spaced time

points between 1 min and 10 min, that is, Tdata = {2, 4, 6, 8, 10} (min). The time points

for generating the basis are Tbasis = Tdata ∪ {j × 0.2 min, j = 1, . . . , 50}. We chose the

basis update threshold as δ = 10−4. The prior distribution in our test is the log-uniform

distribution on a rectangle, whose bounds are given in Table 7. The full FSP state space is

chosen as

{0, 1, 2, 3} × {0, . . . , 50} × {0, . . . , 150},

which results in 30, 804 states.

To find the starting point for the chains, we run five generations of MATLAB’s genetic

algorithm (implemented in the function ga) with 600 full FSP evaluations. Then, we run

another 500 steps of fmincon to refine the output of the ga solver. Using the parameter

vector output obtained by this combined optimization scheme as the initial sample, we run

both the ADAMH-FSP-Krylov and the AMH-FSP for 10, 000 iterations.

The acceleration obtained by using the reduced model is quite evident, with the ADAMH

generating an effective sample about twice as fast as the AMH (Table 8). The log-posterior

evaluations from the reduced model are accurate (Fig. 3 C and Table 9), with relative
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error below the algorithmic tolerance of 10−4, with a mean of 1.11 × 10−5 and a median of

6.98×10−6. This accurate model was built automatically by the ADAMH scheme using just

18 points in the parameter space (Fig. 4), resulting in a set of no more than 438 vectors per

time subinterval. All the basis updates occur during the first fifth portion of the chain, and

these updates consume about 11.25% of the total runtime (Table 10). The high accuracy of

the posterior approximation translates into a very high second-stage acceptance of 96.15%

of the proposals promoted by the first-stage reduced-model-based evaluation. Such high

acceptance rates in the second stage are crucial to the efficiency for the delayed acceptance

scheme, since almost all of the expensive FSP evaluations are accepted.30

The close agreement between the first and second stage of the ADAMH algorithm suggests

that the reduced model constructed by ADAMH can provide a reliable substitute of the full

model. Upon finishing the ADAMH chain, we run another chain with 10, 000 iterations using

only the reduced-model-based evaluations, where the reduced model is the final model output

from the ADAMH-Krylov-FSP run. We observe that the marginal posterior distributions

sampled from this chain are not markedly different from the results of the other two chains

(see Fig. (4) for a representative example).

From the posterior samples of the ADAMH chain, we estimate that an average full FSP

evaluation would take 1.31 seconds, while an average reduced model evaluation takes 0.30 sec-

onds, leading to an average speedup (in terms of total CPU time) of approximately 77.35%.

The comparative runtimes shown in Table 8 confirms this estimate, with the AMH-ROM

taking about 76.58% less time than the AMH-FSP chain. The speed up of the ADAMH-

Krylov-FSP was comparable at approximately 45.91%.

Genetic toggle switch

The final model we consider in our numerical tests is the nonlinear genetic toggle switch55

with the propensity functions listed in Table 11. We use the same parameters as those in

Fox and Munsky.56 Using the stochastic simulations and the ‘true’ parameters as given in
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Figure 3: Spatial gene expression. (A) CPU time vs number of iterations for a sample run
of the ADAMH-FSP-Krylov and the AMH-FSP. (B) Scatterplot of the unnomarlized log-
posterior evaluated using the full FSP and the reduced model. Notice that the approximate
and true values are almost identical with a correlation coefficient of approximately 0.9979.
(C) Distribution of the relative error in the approximate log-posterior evaluations at the
parameters accepted by the ADAMH chain.
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Table 6: Spatial gene expression reactions and propensities. The gene is considered as one
species with 4 different states Gi, i = 0, . . . , 3. We assume that the time unit is seconds
(sec). Hence, the parameters’ units are sec−1

reaction propensity

1. Gi
k+gene−→ Gi+1 α1 = k+

gene[i ≤ 2]

2. Gi
k−gene−→ Gi−1 α2 = k−gene[i ≥ 1]

3. Gi
kr−→ Gi +RNAnuc α3 = kr[i ≥ 1]

4. RNAnuc
γnuc−→ ∅ α4 = γnuc[RNAnuc]

5. RNAnuc
ktrans−→ RNAcyt α5 = ktrans[RNAnuc]

6. RNAcyt
γcyt−→ ∅ α6 = γcyt[RNAcyt]

Table 7: Spatial gene expression. Bounds on the support of the prior distribution of the
parameters, which we choose to be the log-uniform distribution. All parameters have the
same unit sec−1.

Parameter k+
gene k−gene kr γnuc ktrans γcyt

Lower bound 1.00e-06 1.00e-06 1.00e-06 1.00e-08 1.00e-06 1.00e-06
Upper bound 1.00e+00 1.00e+00 1.00e+01 1.00e+00 1.00e+00 1.00e+00

Table 12, we generate data at 2, 6 and 8 hours, each with 500 single-cell samples. To build

the reduced bases for the FSP reduction, we use the union of ten equally-spaced points

between zero and 8 hrs and the time points of observations. The prior distribution in our

test was chosen as the log-uniform distribution on a rectangle, whose bounds are given in

Table 13. The full FSP size is set as the rectangle {0, . . . , 100}×{0, . . . , 100}, corresponding

to 10,201 states.

To find the starting point for the chains, we run five generations of MATLAB’s genetic

algorithm with 600 full FSP evaluations. Then, we run another 1000 iterations of fmincon

to refine the output of the ga solver. Using the parameter vector output by this combined

optimization scheme as initial sample, we run both the ADAMH-FSP-Krylov and the AMH-

FSP for 100, 000 iterations.

The efficiency of the ADAMH-Krylov-FSP is confirmed in Table 14, where the delayed

acceptance scheme is 37.16% faster than the AMH-FSP algorithm, compared to a maximum

potential savings of 59.82% when exclusively using the reduced FSP model.
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Table 8: Spatial gene expression. Performance of the Adaptive Delayed Acceptance
Metropolis-Hastings with Krylov-based reduced model (ADAMH-FSP-Krylov) vs the Adap-
tive Metropolis-Hastings with full FSP (AMH-FSP). The total chain length for each algo-
rithm is 100, 000. The ADAMH-FSP-Krylov scheme uses markedly fewer full evaluations
than the AMH-FSP scheme.

mESS
CPU
time
(sec)

CPU time
mESS (sec)

Number of
full evaluations

Number of
rejections

Number of
rejections by

full FSP

ADAMH-FSP-Krylov 447.99 7171.93 16.01 2546 7552 98
AMH-FSP 401.54 13258.43 33.02 10000 7586 7586
AMH-ROM 329.14 3105.75 9.44 0 7601 0

Table 9: Spatial gene expression. True parameter values and the average values of the pa-
rameters visited by the ADAMH-FSP-Krylov and AMH-FSP chains. The “Start” column
shows the starting point of both MCMC chains. This starting point is obtained from a nu-
merical optimization procedure that seeks to maximize the full log-likelihood in equation (3).
Parameter values are shown in log10 scale. All parameters have unit sec−1.

Parameter True Start ADAMH-FSP-Krylov AMH-FSP AMH-ROM
log10(k+

gene) -2.52e+00 -2.55e+00 -2.55e+00 -2.55e+00 -2.56e+00
log10(k−gene) -2.22e+00 -2.21e+00 -2.21e+00 -2.22e+00 -2.22e+00
log10(kr) -5.23e-01 -4.18e-01 -4.18e-01 -4.20e-01 -4.25e-01
log10(γnuc) -2.52e+00 -1.88e+00 -1.89e+00 -1.91e+00 -1.93e+00
log10(ktrans) -1.52e+00 -1.54e+00 -1.54e+00 -1.54e+00 -1.54e+00
log10(γcyt) -2.52e+00 -2.56e+00 -2.56e+00 -2.56e+00 -2.56e+00

Log-posterior
(un-normalizsed)

-6.0994e+03 -6.0887e+03 -6.0915e+03 -6.0916e+03 -6.0917e+03

Similar to the last two examples, we observe a close agreement between the first and

second stage of the ADAMH run, where 98.36% of the proposals promoted by the reduced-

model-based evaluations are accepted by the full-FSP-based evaluation. This high second-

stage acceptance rate is explained by the quality of the reduced model in approximating the

log-posterior values (Fig. 5 C). We also ran another chain using the reduced model outputted

by the ADAMH, which yields similar results to the reference chain (Fig. 6) but with reduced

computational time (Table 14). The accurate reduced model consists of no more than 634

basis vectors per time subinterval, with all the basis updates occurring during the first tenth

portion of the chain.

From the samples obtained by the ADAMH, we found that Expokit takes 0.42 sec to
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Table 10: Spatial gene expression example. Breakdown of CPU time spent in the main
components of ADAMH-FSP-Krylov.

Component Time occupied (sec) Fraction of total time (per cent)
Full FSP Evaluation 3335.65 46.51
Reduced Model Evaluation 3019.64 42.10
Reduced Model Update 807.13 11.25
Total 7171.93 100.00
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Accepted

Reduced basis build

Figure 4: Spatial gene expression. (A) Estimations of the marginal posterior distribution
of the parameter kr using the Adaptive Delayed Acceptance Metropolis-Hastings with the
Krylov reduced model (ADAMH-FSP-Krylov), the Adaptive Metropolis-Hastings with full
FSP (AMH-FSP), and the approximate Adaptive Metropolis-Hastings using the reduced
order model learned from the ADAMH-FSP-Krylov run (AMH-ROM). The dashed vertical
line marks the true parameter value. (B) 2-D projections of parameter combinations ac-
cepted by the ADAMH scheme (blue) and parameter combinations used for reduced model
construction (red). The truncated appearance of the samples is the consequence of the upper
bound on the support of the prior (see Table 7).

Table 11: Reaction channels of the genetic toggle switch example. We assume that the time
unit is seconds (sec). Hence, the unit for the parameters k0X , k1X , γX , k0Y , k1Y , γY are sec−1.
The other parameters (dimensionless) are fixed at ayx = 2.6× 10−3, axy = 6.1× 10−3, nyx =
3, nxy = 2.1

reaction propensity

1. X −→ ∅ γX [X]

2. ∅ −→ X k0X + k1X
1+ayx([Y ]nyx )

3. Y −→ ∅ γY [Y ]

4. ∅ −→ Y k0Y + k1Y
1+axy([X]nxy )
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solve the full FSP model and 0.17 sec to solve the reduced model.

Table 12: Genetic toggle switch. True parameter values and the average values of the param-
eters visited by the ADAMH-FSP-Krylov and AMH-FSP chains. The “Start” column shows
the starting point of both MCMC chains. This starting point is obtained from a numerical
optimization procedure that seeks to maximize the full log-likelihood (3). Parameter values
are shown in log10 scale. All parameters have unit sec−1.

Parameter True Start ADAMH-FSP-Krylov AMH-FSP AMH-ROM
log10(k0X) -2.66e+00 -2.65e+00 -2.65e+00 -2.65e+00 -2.65e+00
log10(k1X) -1.77e+00 -1.75e+00 -1.75e+00 -1.75e+00 -1.75e+00
log10(γX) -3.42e+00 -3.40e+00 -3.40e+00 -3.40e+00 -3.40e+00
log10(k0Y ) -4.17e+00 -4.69e+00 -5.05e+00 -5.07e+00 -5.04e+00
log10(k1Y ) -1.80e+00 -1.77e+00 -1.77e+00 -1.77e+00 -1.77e+00
log10(γY ) -3.42e+00 -3.39e+00 -3.39e+00 -3.39e+00 -3.39e+00

Log-posterior
(un-normalizsed)

-9.2973e+03 -9.2919e+03 -9.2945e+03 -9.2945e+03 -9.2946e+03

Table 13: Genetic toggle switch. Bounds on the support of the log-uniform prior. Parameters
have the same unit sec−1.

Parameter k0X k1X γX k0Y k1Y γY
Lower bound 1.00e-06 1.00e-06 1.00e-06 1.00e-06 1.00e-06 1.00e-06
Upper bound 1.00e-01 1.00e-01 1.00e-01 1.00e-01 1.00e-01 1.00e-01

Discussion and concluding remarks

There is a clear need for efficient computational algorithms for the uncertainty analysis

of gene expression models. In this work, we proposed and investigated new approaches

for Bayesian parameter inference of stochastic gene expression parameters from single-cell

data that employ adaptive tuning of proposal distributions in addition to delayed acceptance

MCMC and reduced-order modeling. Numerical tests confirm that the reduced model can be

used to significantly speed up the sampling process without incurring much loss in accuracy.

A surprising observation from our numerical results is that once trained, the reduced

model constructed by the ADAMH-FSP-Krylov closely matches the original FSP sampling

results. This suggests that the ADAMH-FSP-Krylov algorithm could be used as a data-
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Figure 5: Genetic toggle switch example. (A) CPU time vs number of iterations for a sample
run of the ADAMH-FSP-Krylov and the AMH-FSP. (B) Scatterplot of the unnomarlized log-
posterior evaluated using the full FSP and the reduced model. Notice that the approximate
and true values are almost identical with a correlation coefficient of approximately 0.9993.
(C) Distribution of the relative error in the approximate log-posterior evaluations at the
parameters accepted by the ADAMH chain.
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Table 14: Genetic toggle switch example. Performance of the Adaptive Delayed Accep-
tance Metropolis-Hastings with Krylov-based reduced model (ADAMH-FSP-Krylov) vs the
Adaptive Metropolis-Hastings with full FSP (AMH-FSP). The total chain length for each
algorithm was 100, 000. The ADAMH-FSP-Krylov scheme uses markedly fewer full evalua-
tions than the AMH-FSP scheme, and 98.36% of the parameters promoted by the first-stage
are accepted in the second stage.

mESS
CPU
time
(sec)

CPU time
mESS (sec)

Number of
full evaluations

Number of
rejections

Number of
rejections by

full FSP

ADAMH-FSP-Krylov 4522.66 27524.78 6.09 23893 76498 391
AMH-FSP 4520.54 43799.22 9.69 100000 76587 76587
AMH-ROM 4666.93 17299.84 3.71 0 76579 0

Table 15: Genetic toggle switch example. Breakdown of CPU time spent in the main
components of ADAMH-FSP-Krylov.

Component Time occupied (sec) Fraction of total time (per cent)
Full FSP Evaluation 10142.56 36.85
Reduced Model Evaluation 17040.89 61.91
Reduced Model Update 66.54 0.24
Total 27524.78 100.00
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Figure 6: Genetic toggle switch example. (A) Estimations of the marginal posterior dis-
tribution of the parameter γX using the Adaptive Delayed Acceptance Metropolis-Hastings
with Krylov reduced model (ADAMH-FSP-Krylov), the Adaptive Metropolis-Hastings with
full FSP (AMH-FSP), and the approximate Adaptive Metropolis-Hastings using the reduced
order model learned from the ADAMH-FSP-Krylov run (AMH-ROM). The dashed vertical
line marks the true parameter value. (B) 2-D projections of parameter combinations ac-
cepted by the ADAMH scheme (blue) and parameter combinations used for reduced model
construction (red).
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driven method to learn reduced representations of the full FSP-based model, which could

then be successfully substituted for the full FSP model in subsequent Bayesian updates. In

other words, it could be equally accurate but more efficient to cease full FSP evaluations

in the ADAMH scheme once confident about the accuracy of the reduced model. In our

numerical tests, the ADAMH updates completed first 10-20% of the MCMC chain, at which

point the remaining chain could have been sampled using only the reduced model. Perhaps

other approaches to substitute function approximations into the expensive likelihood evalu-

ations57,58 could provide additional insights to the reduced order modeling approximations

we have used.

While we have achieved a significant reduction in computational time with our implemen-

tation of the Krylov subspace projection, other model reduction algorithms may yet improve

this performance.59 For example, the reduced models discovered here achieved levels of ac-

curacy (i.e., relative errors of 10−8 or less) that are much higher than one would expect to

be necessary to compare models in light of far less accurate data. In light of this finding

and the fact that parameter discrimination can be achieved at different levels of accuracy

for different combinations of models and data,60 we suspect that it could be advantageous

to build less accurate models that can be evaluated in less time.

Our present work assumes the full FSP-based solution can be computed for use to learn

the reduced model bases and to evaluate the second stage likelihood in the ADAMH-FSP-

Krylov algorithm. For many problems, the required FSP state space can be so large that it

would be impossible even to keep the full model in computer memory. Representing the FSP

model in a low-rank tensor format20 is a promising approach that we plan to investigate in

order to overcome this limitation. Our current work has focused on using reduced models

for uncertainty quantification, but the equally important task of finding optimal parameter

fits should also benefit from reduced order modeling. For example, techniques from other

engineering fields, such as trust-region methods,61 may provide valuable improvements to

infer stochastic models from gene expression data. In time, a wealth of algorithms and insight
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remains to be gained by adapting computational technology from the broader computational

science and engineering communities to analyze stochastic gene expression.
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Appendix: Mathematical proofs

Preliminaries on adaptive MCMC algorithms

We will derive ergodicity results in the following sections based on Theorem 1 in the paper

of Roberts and Rosenthal,47 and we will use some proof techniques of Theorem 1 from Cui

et al.31 for part of our analysis. All random variables we will discuss below will be of the

form X : Ω→ X where X is a metric space with the associated Borel σ-algebra B(X ).

Let X be the parameter space, assumed to have a metric space topology, and π : B(X )→

[0, 1] the target distribution to be sampled from by an adaptive MCMC algorithm. We will

assume that π has a density f : X → [0,∞). Let Kγ denote a transition kernel that depends

on an adaptation index γ ∈ Y , and assume that each Kγ has π as an invariant distribution.

We assume that for each fixed γ, an MCMC algorithm with Kγ as the Markov transition

kernel will eventually converge to π, that is

lim
n→∞

‖Kn(x, .)− π‖TV = 0

where ‖µ − ν‖TV = supB∈B(X ) |µ(B)− ν(B)| is the total variation distance between two

probability measures on X .

Let Xn be the random variable representing the state of the adaptive MCMC at iteration

n, and let Γn be the random variable representing the choice of kernel for updating from

Xn to Xn+1. The state of the algorithm is then modeled by the discrete-time stochastic

process {(Xn,Γn)}, whose transition between steps is determined by the underlying rules of

the algorithm. Finally, let Gn = σ ({X0, . . . , Xn,Γ0, . . . ,Γn}) denote the filtration generated

by {(Xn,Γn)}. Thus, each Γn+1 is a Gn+1-measurable random variable.

Roberts and Rosenthal proved the following important result, which gives sufficient con-

ditions for ergodicity of an adaptive MCMC.

Theorem 0.1 (Theorem 1 in Roberts and Rosenthal47). Consider an adaptive MCMC
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algorithm with state space X and adaptation index Y, with transition kernels Kγ, γ ∈ Y.

The algorithm is ergodic if the following conditions hold

(i) (Simultaneous uniform ergodicity) For every ε > 0, there exists N = N(ε) such that

‖Kn
γ (x, .)− π‖TV < ε

for every x ∈ X , γ ∈ Y, and n > N .

(ii) (Diminishing adaptation) limn→∞Dn = 0 in probability where

Dn = sup
x∈X
‖KΓn(x, .)−KΓn+1(x, .)‖TV

is a Gn+1-measurable random variable.

We immediately get a useful corollary.

Corollary 0.2. Consider an adaptive MCMC with state space X and transition kernels

Kγ, γ ∈ Y that are ergodic w.r.t π. Assume that the following conditions are satisfied:

(i) The algorithm satisfies the diminishing adaptiation condition.

(ii) X is a compact metric space.

(iii) Y = ∪mj=1Yj where each Yj is a compact metric space.

(iv) For each n = 1, 2, . . ., and on each set X × Yj with the product metric space topology,

the mapping

(x, γ) 7→ S(x, γ;n, j) = ‖Kn
γ (x, .)− π(.)‖TV

is continuous.

Then, the adaptive MCMC algorithm is ergodic.
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Proof. Our proof is a modification of the proof of Corollary 3 in.47 Fix a number ε > 0 and

an index j ∈ {1, . . . ,m}. Let W j
n be the set of all (x, γ) ∈ X × Yj such that

S(x, γ;n, j) < ε.

Since each kernel is ergodic, for every (x, γ) ∈ X ×Yj there exists some n such that (x, γ) ∈

W j
n, and that S(x, γ;n′, j) < ε for all n′ > n. We thus have

X × Yj = ∪∞n=1Wn
j

Due to continuity, each Wn
j is an open set. By compactness, there exists a finite subcover

{Wni
j}rji=1 for X × Yj. Choose Nj(ε) to be the maximum of all n1, . . . , nrj . Then, choose

N(ε) = N1(ε)+. . .+Nm(ε), we have ‖Kn
γ (x, .)−π‖TV < ε for all n > N(ε) and (x, γ) ∈ X×Y .

Thus, simultaneous uniform ergodicity is satisfied. Combining with diminishing adaptation,

the preceding theorem shows that the algorithm is ergodic.

Convergence of adaptive DAMH with diminishing model adapta-

tions

In this section, we analyze the convergence of an adaptive variant of the DAMH. As seen

in the pseudocode of Algorithm 4, this variant modifies the approximation and the proposal

density at every step, using the samples accepted so far on the chain. The update of the

approximate model occurs randomly, with the upate probability at step n pre-specified as

a(n).

Proposition 0.3. Consider an adaptive delayed acceptance Metropolis-Hastings algorithm

with the target distribution supported on a state space X , proposal adaptation space Y, ap-

proximation space Z. Let f be the density of the target distribution π with respect to a finite

reference measure λ, that is, π(dx) = f(x)λ(dx). Let f ?x,ϕ be the family of approximations
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Algorithm 4 Adaptive Delayed Acceptance MH with probabilistic approximation adapta-
tion.

Input:
Target density f(.);

Proposal densities qγ(., .);
Posterior density approximations f ?x,ϕ(.);

Adaptation probability a(n), , n = 1, 2, . . .;
Chain length N .

Assume that xn = x, γn = γ at iteration n. The next sample is determined by the following
steps.

1. Propose a candidate x′ from the proposal density qγ(x, .).

2. Compute the first-step acceptance probability

αγ,ϕ(x, x′) = min

{
1,
qγ(x

′, x)f ?x,ϕ(x′)

qγ(x, x′)f ?x,ϕ(x)

}

3. With probability αγ,ϕ, set y = x′. Otherwise, set y = x. The actual proposal distribu-
tion is

Q?
x,γ,ϕ(x, dz) = qγ(x, z)αγ,ϕ(x, z)λ(dz) + δx(dz)(1− rγ,ϕ(x)),

where

rγ,ϕ(x) =

∫
X
qγ(x, z

′)αγ,ϕ(x, z′)λ(dz′)

is the overall probability that a proposal is accepted in the first step.

4. Set xn+1 = y with probability

βγ,ϕ(x, x′) = min

{
1,
qγ(x

′, x)f ?x(x′)f(x′)

qγ(x, x′)f ?x(x)f(x)

}
.

Otherwise, set xn+1 = xn.

5. With probability a(n), update the approximation f ?x,ϕ.

6. Update the first-step proposal qγ(x, .).

Output:
Samples x1, . . . , xN .
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to f . Let qγ be the first-step proposal densities. The algorithm is ergodic under the following

conditions:

(i) X ,Y are compact metric spaces, and Z = ∪mj=1Zj where each Zj is a compact metric

space.

(ii) For each fixed γ, ϕ, the transition kernel Kγ,ϕ is ergodic.

(iii) λ{x} = 0 for all x ∈ X .

(iv) The mapping (x, y, γ) 7→ qγ(x, y) is continuous and uniformly bounded on X × X × Y

which is a compact metric space equipped with the product space metric.

(v) For each y ∈ Y, the mapping (x, ϕ) 7→ f ?x,ϕ(y) is continuous on each X × Zj.

(vi) Diminishing adaptation: The chain (Γn,Φn) satisfies

lim
n→∞

sup
x∈X
‖KΓn+1,Φn+1(x, .)−KΓn,Φn(x, .)‖TV = 0

in probability.

Proof. The ADAMH could be viewed as an adaptive MCMC algorithm with state space X

and adaptation space Y×Z. In order to apply corollary 0.2, we will prove that for any fixed

n = 1, 2, . . ., and fixed j = 1, . . . ,m, the mapping

(x, γ, ϕ) 7→ ‖Kn
γ,ϕ(x, .)− π‖TV

is continuous on X ×Y×Zj. In order to do so, we proceed as in the proof of theorem 1 in.31

Fix (x, γ, ϕ) ∈ X × Y × Zj, the transition kernel for the DAMH associated with (x, γ, ϕ) is

Kγ,ϕ(x, dz) = qγ(x, z)αγ,ϕ(x, z)βγ,ϕ(x, z)λ(dz) + δx(dz)(1− ργ,ϕ(x)),
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where αγ,ϕ(x, z) = min
{

1,
qγ(z,x)f?x,ϕ(z)

qγ(x,z)f?x,ϕ(x)

}
is the first step acceptance probability, βγ,ϕ(x, z) =

min
{

1, qγ(z,x)f?x (z)f(z)

qγ(x,z)f?x (x)f(x)

}
is the second step acceptance probability, and

ργ,ϕ(x) =

∫
X
qγ(x, z)αγ,ϕ(x, z)βγ,ϕ(x, z)λ(dz)

is the overall probability for a proposal to be accepted.

Fix the value of z, then due to conditions (iv) and (v), g(x, z, γ, ϕ) = qγ(x, z)αγ,ϕ(x, z)βγ,ϕ(x, z)

is jointly continuous in (x, γ, ϕ) ∈ X ×Y ×Zj. Furthermore, condition (iv) implies that the

functions z 7→ g(x, z, γ, ϕ) is uniformly bounded for (x, γ, ϕ) ∈ X ×Y ×Zj. By the bounded

convergence theorem, ργ,ϕ(x) is jointly continuous in the three variables x, γ, ϕ.

By induction, we can show that the n-step transition kernel has the form

Kn
γ,ϕ(x, dz) = gn(x, z, γ, ϕ)λ(dz) + δx(dz) (1− ργ,ϕ(x))n

where gn is an appropriate function that is jointly continuous in x, γ and ϕ.

From condition (iii), δx and π are orthogonal measures. Therefore,

‖Kn
γ,ϕ(x, .)− π‖TV = (1− ργ,ϕ(x))n +

1

2

∫
X

(gn(x, z, γ, ϕ)− f(z))λ(dz).

The integral on the right hand side is jointly continuous in x, γ, ϕ due to the bounded

convergence theorem. This shows that ‖Kn
γ,ϕ(x, .) − π‖TV is continuous in the variable

(x, γ, ϕ) ∈ X ×Y ×Zj. From this, conditions (i), (vi) and corollary 0.2 combined show that

the algorithm is ergodic.

Proposition 0.4. Assume the ADAMH with probabilistic model adaptation satisfies con-

ditions (i)-(v) in proposition 0.3. Assume further that the proposal is symmetric, that the

approximate posterior adaptation probability a(n)→ 0 as n→∞, and that dY(Γn+1,Γn)→ 0

in probability (here dY denote the metric on Y). Then, the algorithm satisfies diminishing

adaptation.
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Proof. All conditions for ergodicity in proposition 0.3 are satisfied, except for the diminishing

adaptation that we will verify. Fix a value of n. Consider a fixed set of values (γj, ϕj)
n
j=1 of

adaptivity parameters of the ADAMH chain up to iteration n.

Fix an event A ∈ B(X ) and x ∈ X . We have

|Kγn+1,ϕn+1(x,A)−Kγn,ϕn(x,A)| ≤
∣∣Kγn+1,ϕn+1(x,A)−Kγn,ϕn+1(x,A)

∣∣︸ ︷︷ ︸
D1

+
∣∣Kγn,ϕn+1(x,A)−Kγn,ϕn(x,A)

∣∣︸ ︷︷ ︸
D2

We bound each term separately. First of all, we have D2 = 0 if ϕn = ϕn+1 and D2 ≤

Kγn,ϕn+1(x,A) + Kγn,ϕn(x,A) ≤ 2 if ϕn 6= ϕn+1, with the latter event taking place with

probability less than a(n).

Due to the symmetry of the proposal, the first and second step acceptance probabilities

do not depend on the choice of γ. This and the uniform continuity of qγ(x, y) gives us

D1 ≤ 2

∫
X
|(qγn+1(x, y)− qγn(x, y))αϕn(x, y)βϕn(x, y)|λ(dy)

≤ 2

∫
X
|qγn+1(x, y)− qγn(x, y)|λ(dy)

≤ C · dY(γn, γn+1)

where C > 0 is independent of x, y, γ and ϕ.

Combining the bounds on D1 and D2 we get

|Kγn+1,ϕn+1(x,A)−Kγn,ϕn(x,A)| ≤ C · dY(γn, γn+1) + 2χ([ϕn = ϕn+1])

where χ(A) = 1 if A is true and 0 otherwise. Taking the supremum over all x and A we get

Dn = sup
x∈X
‖Kγn+1,ϕn+1(x, .)−Kγn,ϕn(x, .)‖TV ≤ C · dY(γn, γn+1) + 2χ([ϕn 6= ϕn+1])

Fix a scalar ε > 0. The set of runs where Dn < ε include sample chains where both events

ϕn = ϕn+1 and C.dY(γn, γn+1) < ε hold. Therefore, the event [Dn ≥ ε] is a subset of the
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event [C · dY(Γn,Γn+1) ≥ ε] ∪ [Φn 6= Φn+1]. We therefore have

P[Dn ≥ ε] ≤ P[C · dY(Γn,Γn+1) ≥ ε] + P[Φn 6= Φn+1]

≤ P[dY(Γn,Γn+1) ≥ ε/C] + a(n).

The last right hand side of the inequality above converges to 0 as n → ∞. Therefore, Dn

converges to 0 in probability. The diminishing adaptation condition is satisfied and the

algorithm is ergodic.

Regularity of the ROM-based likelihood approximation

Let Sj be the set of all n × j matrices Q such that QTQ = Ij×j. It is known that Sj with

the metric defined by the induced matrix 2-norm

‖Q‖ = max
x6=0

‖Qx‖2

‖x‖2

is a compact metric space (indeed, it is the inverse image of Ij×j via the continuous mapping

A 7→ ATA). Let mmax be the maximum dimension allowed in the reduced basis and let Φ

be a particular basis set constructed during a run of the ADAMH chain, then there exists a

tuple (j1, . . . , jnB) with 1 ≤ jk ≤ mmax such that

Φ ∈ Sj1 × · · · × SjnB := Sj

Thus, the set of all possible choices of reduced basis set Φ is the finite union of all Sj

with j bounded elementwise by mmax. Note that each Sj is a compact metric space with the

product space topology. Thus, we can apply the theory developed in the previous section

to show that the ADAMH-FSP-Krylov is ergodic. The following propositions concern the

continuity in the change of the reduced-order approximations with respect to the change in

basis.
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Proposition 0.5. Fix a space Sj as above, and let Φ and Ψ be elements of this space. For

for every fixed θ ∈ Θ we have

L?Ψ(θ)→ L?Φ(θ)

as Ψ → Φ in Sj, where L?Φ is the approximation to the FSP log-likelihood as defined in

eq. (16).

Proof. From eq. (7), it is clear that the mapping Φ 7→ pΦ(tk) is continuous on Sj for all time

points tk. The mapping Φ 7→ L?Φ(θ) is a composition of continuous mappings Φ 7→ pΦ(tk)

and p 7→
∑ni

j=1 log(ε ∨ pj) and is therefore continuous.

Ergodicity of the ADAMH-FSP-Krylov algorithm

Proposition 0.6. The ADAMH-FSP-Krylov algorithm is ergodic.

Proof. We apply proposition 0.3 with X = Θ. The proposal densities of the first step are

Gaussian with γ being the modified empirical covariance matrix as in the adaptive Metropolis

Algorithm.27 Similar to the proof of Theorem 1 in Haario et al.,27 we can take Y to be a

closed, bounded subset of the set of positive definite matrices. The reduced model space is

Z = ∪jSj the finite union of the compact spaces Sj with j ≤ mmax pointwise. These spaces

satisfy condition (i), and the proposal density satisfies condition (iv).

The posterior density is

f(θ) = π0(θ) exp(−L(D|θ)),

and the approximate posterior densities are

f ?Φ(θ) = π0(θ) exp(−L?Φ(D|θ)),

where these are the densities of the true and approximate posterior distributions with respect

to the Lebesgue measure. From Theorem 1 in Christen and Fox,28 condition (ii) is satisfied.
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Condition (v) is then satisfied using proposition 0.5.

Since the empirical covariances are computed from values in a bounded set, the modifi-

cation to the empirical covariance matrix γ at step n is O(1/n), so changes in Γn converge to

0 (see Haario et al.27). Thus, the conditions in proposition 0.4 are satisfied. The algorithm

therefore satisfies all sufficient conditions for ergodicity outlined in proposition 0.3.
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(8) Gómez-Schiavon, M.; Chen, L.; West, A. E.; Buchler, N. E. Genome Biol. 2017, 18,

164.

(9) Munsky, B.; Khammash, M. J. Chem. Phys. 2006, 124, 044104.

(10) Munsky, B.; Li, G.; Fox, Z. R.; Shepherd, D. P.; Neuert, G. PNAS 2018,

(11) Peherstorfer, B.; Willcox, K.; Gunzburger, M. SIAM Review 2018, 60, 550–591.

44

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted November 11, 2018. ; https://doi.org/10.1101/468090doi: bioRxiv preprint 

https://doi.org/10.1101/468090


(12) Asher, M. J.; Croke, B. F. W.; Jakeman, A. J.; Peeters, L. J. M. Water Resour. Res.

2015, 51, 5957–5973.

(13) Razavi, S.; Tolson, B. A.; Burn, D. H. Water Resour. Res. 2012, 48 .

(14) Pinnau, R. Model Order Reduction: Theory, Research Aspects and Applications ;

Springer Berlin Heidelberg, 2008; Vol. 13; pp 95–109.

(15) Benner, P.; Gugercin, S.; Willcox, K. SIAM R 2015, 57, 483–531.
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