
Matrix linear models for high-throughput chemical genetic

screens

Jane W. Liang1, Robert J. Nichols2, and �aunak Sen3

1Department of Biostatistics, Harvard T.H. Chan School of Public Health
2Department of Microbiology and Immunology, University of California, San Francisco
3Department of Preventive Medicine, University of Tennessee Health Science Center

November 9, 2018

Abstract

We develop a �exible and computationally e�cient approach for analysing high throughput chem-
ical genetic screens. In such screens, a library of genetic mutants is phenotyped in a large number of
stresses. The goal is to detect interactions between genes and stresses. Typically, this is achieved by
grouping the mutants and stresses into categories, and performing modi�ed t-tests for each combina-
tion. This approach does not have a natural extension if mutants or stresses have quantitative or non-
overlapping annotations (eg. if conditions have doses, or a mutant falls into more than one category
simultaneously). We develop a matrix linear model framework that allows us to model relationships
between mutants and conditions in a simple, yet �exible multivariate framework. It encodes both cat-
egorical and continuous relationships to enhance detection of associations. To handle large datasets,
we develop a fast estimation approach that takes advantage of the structure of matrix linear models.
We evaluate our method's performance in simulations and in an E. coli chemical genetic screen, com-
paring it with an existing univariate approach based on modi�ed t-tests . We show that matrix linear
models perform slightly better than the univariate approach when mutants and conditions are classi-
�ed in non-overlapping categories, and substantially better when conditions can be ordered in dosage
categories. Our approach is much faster computationally and is scalable to larger datasets. It is an
attractive alternative to current methods, and provides a natural framework extensible to larger, and
more complex chemical genetic screens. A Julia implementation of matrix linear models and the code
used for the analysis in this paper can be found at https://bitbucket.org/jwliang/mlm_packages
and https://bitbucket.org/jwliang/mlm_gs_supplement, respectively.

1 Introduction

High-throughput assays have revolutionalized biology. It was made possible by advances in automation
and multiplexing, availability of large and comprehensive collections (such as mutant libraries, and
sequenced genomes), and advances in computational and statistical methodology. In this note we consider
high-throughput genetic screens which have been deployed for answering complex, large-scale scienti�c
questions. Consider a high throughput genetic screen to observe the �tness of a library of mutants in
a variety of growth conditions. Potential goals of such a screen would be to analyze condition × gene
interactions or to predict the e�ect of a new, but related, antibiotic. Matching genes with phenotypes
is a particularly valuable application of high-throughput experiments in the age of rapid sequencing
technology [van Opijnen and Camilli, 2012]. These techniques can shed light on the physiological roles of
partially redundant gene functions [Typas et al., 2011] and the physiological pathways that are involved
with responses to di�erent environmental factors [Ivask et al., 2013]. Or, they can reveal relationships
between unknown or seemingly unrelated genes [Oh et al., 2011] and provide insights on genes involved
in multiple antibiotic resistance [Nichols et al., 2011].

We are now able to run high-throughput genetic screens cost-e�ectively and in bulk, but the un-
precedented scale of these types of studies necessitates the development of generalizable and e�cient
methods for analyzing their results. Such studies are essentially multivariate problems, but most tradi-
tional methods turn them into several univariate problems for computational feasibility. Doing so fails
to take advantage of known groupings and correlations in the observations. In the case of the genetic
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screening example, one can group mutants by gene or gene family; group growth conditions by antibiotic
class or temperature; and consider spatial correlation on plates.

We present matrix linear models, which provide a formal statistical framework for encoding such
known, but perhaps non-explicit, underlying relationships to enhance detection of associations that
might otherwise be masked. This straightforward, multivariate approach can take into account any
number of continuous or categorical covariates. Existing methods can encode for di�erent mutant
strains and condition types, but are univariate; these approaches are akin to ANOVA or t-tests. In
addition to categorical groupings, matrix linear models have the distinct advantage of being able to ex-
plicitly model more complex and potentially non-categorical information, such as dosage response levels,
null/heterozygous/homozygous genotypes, and spatial correlation on the plates. (Colonies located on
the edge of the plate are expected to exhibit greater growth, since they have fewer neighbors with whom
to compete for resources.). Matrix linear models o�er �exibility over existing methods analogous to what
linear regression o�ers over t-tests.

Estimation of matrix linear models is fast even in moderately large dimensions. Using simulations
and data from an E. coli genetic screen [Nichols et al., 2011], we show that our method produces results
comparable to those of the univariate S score approach [Collins et al., 2006], but with considerably more
e�cient computation time. We also analyze the data while encoding for dosage response of growth
conditions, to demonstrate the method's ability to incorporate information from continuous covariates
and assess relationships more generally.

This paper is organized as follows. Section 2 introduces a E. coli chemical genetic screen data that
motivated our method. Section 3 describes the statistical model and estimation. Section 4 evaluates our
method using simulated and real datasets. We conclude with a discussion in Section 5.

2 E. coli Genetic Screening Data

In this high-throughput genetic screening experiment [Nichols et al., 2011] [Shiver et al., 2016], colony
opacity was recorded for mutant strains grown in high-density on agar plates with a range of condi-
tions. Six plate arrangements of mutants were used, with 1536 colonies grown per plate. The 3983
mutant strains were taken from the Keio single-gene deletion library [Baba et al., 2006]; essential gene
hypomorphs (C-terminally tandem-a�nity tagged [Butland et al., 2008] or speci�c alleles); and a small
RNA/small protein knockout library [Hobbs et al., 2010]. The colonies were grown in 307 conditions rep-
resenting di�erent E. coli stresses. More than half were antibiotic/ antimicrobial treatments, but they
also included other types of conditions, such as temperature and pH. Among the six plate arrangements,
a total of 982,902 condition × gene interactions need to be estimated, along with main e�ects across
interactions for the growth conditions and mutant strains. The study aimed to examine the interaction
e�ects between the E. coli genes and the growth conditions. This information can be used to study
potential drugs with unknown targets and the mechanism behind drug interactions, as well as identify
the genes necessary to support growth in di�erent conditions [Nichols et al., 2011].

3 Model and Estimation

3.1 Model

Suppose that Y is an n×m matrix of quantitative colony growth from a high-throughput genetic screen
similar to the one described in the previous section. The growth conditions are annotated by Xn×p along
the n rows and the di�erent mutant strains are annotated by Zm×q along the m columns. Matrix linear
models are thus given by

Y = XBZT + E

with the main and interaction e�ects contained in Bp×q and errors in En×m. The statistical form of
the model model is similar to that used by [Xiong et al., 2011] for genetic analysis of function-valued
phenotypes.

If ⊗ denotes the Kronecker product and vec is an operator that stacks columns of a matrix into a
single column vector, the vectorized equivalent is

vec(Y ) = (Z ⊗X) · vec(B) + vec(E).
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This resembles the familiar linear regression model of y = Xβ+ ε, and so matrix linear models in this
form can theoretically be analyzed using traditional methods for least squares linear regression methods.
However, doing so is frequently computationally ine�cient or even infeasible.

If the n plates, each exhibiting a certain growth condition, are independent with a common covariance
matrix, then var(vec(E)) = In⊗Σ. The residual covariance matrix Σ is generally unknown and must be
estimated using the data.

3.2 Estimation

To obtain least squares estimates, we choose B to minimize the residual sum of squares:

S(vec(B)) = vec(Y − Ŷ )Tvec(Y − Ŷ )

This approach may be viewed as a generalized estimation equations approach [Xiong et al., 2011].
The solution has a closed-form:

B̂ = (XTX)−1XTY Z(ZTZ)−1

The solution can be viewed as a combination of a least squares on the mutant strains (the Z
part) and another on the conditions (the X part). The resulting estimate is asymptotically unbiased
[Liang and Zeger, 1986].

The variance of the estimated coe�cient is

τ = var(B̂) = (XTX)−1 ⊗
(

(ZTZ)−1ZT Σ̂Z(ZTZ)−1
)
.

If a consistent estimate of the residual covariance matrix Σ can be obtained, so can a consistent estimate
of the variance of the coe�cient estimates.

The �tted values are
Ŷ = XB̂ZT = X(XTX)−1XY Z(ZTZ)−1ZT

3.3 Testing

Similar to the t-statistic used to assess the coe�cients from the typical (univariate) linear regression
model, we can de�ne a test statistic for our method:

vec(t) =
vec(B̂)√
diag(τ̂)

Based on simulations and real data, we empirically observed that the test statistics approximate
a skewed t distribution. Rather than attempting to specify appropriate parameters for a skewed t
distribution, we used permutation tests to obtain p-values for our analysis.

Matrix linear models handle only complete data, so all missing values should be dropped, smoothed,
or estimated beforehand, as appropriate. The E. coli data set had no missing values, so no such con-
siderations were needed. Weighted least squares can be used for heteroscedastic data by weighing plates
and/or colonies.

4 Simulations Studies and Data Analysis

We applied our method to simulated data and E. coli genetic screening data [Nichols et al., 2011]. We
compared the results and computation time for matrix linear models and the S score, a popular existing
method for analyzing high throughput genetic screening data [Collins et al., 2006]. An S score is essen-
tially a t-statistic comparing the observations for a given mutant and condition with the observations for
a given mutant over all conditions. Unlike matrix linear models, which only assume that the rows of Y
are independent, S scores assume that both the rows (plates) and columns (colonies) are independent.
So the method is expected to make improvements over S scores especially when this assumption is vi-
olated, such as when the columns of Y (the colonies) are spatially correlated. Matrix linear models go
beyond the S score ANOVA-like approach and allow for encoding more complex categorical or continuous
relationships, similar to linear regression.
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4.1 Simulation studies

Using the framework of theX and Z matrices from the E. coli data's six plate arrangements, we simulated
data with 1/2 nonzero main e�ects and 1/4 nonzero interactions drawn from a Normal(0, 2) distribution.
The errors were independent and identically distributed from the standard normal distribution. We then
applied both our multivariate method and the S score's univariate approach to estimate approximately
180,000 interactions. Using permutation tests, we obtained p-values corresponding to each interaction
for each approach. The p-values were then converted into q-values to help account for multiple testing.

To compare the results for each plate arrangement, we plotted the receiver operating characteristic
(ROC) curve generated by obtaining true positive rates (TPR) and false positive rates FPR) at varying
q-value cuto�s for both methods. The cuto�s were used to determine which q-values corresponded to
signi�cant (nonzero) interactions, and these results were then compared to the simulated interactions to
obtain the varying TPRs and FPRs. Figure 1 is the ROC plot for the �rst plate arrangement. The grey
reference line that cuts diagonally from the lower left to the upper right is what we would expect the
curve to look like for a method that just produces random noise. Its area under the curve (AUC) is 0.5.
A method that performs well will have a curve that closely aligns with the upper left corner and an AUC
approaching 1 (its true positive rate will be high even if its false positive rate is low for a given cuto�).
See Figure S1 for ROC plots for the remaining �ve plates.

Figure 1: ROC curves comparing MLM to S scores applied to data simulated using frame-
work of �rst plate arrangement. Interactions corresponding to q-values below a given cuto� are
considered signi�cant; these results are compared to the simulated interactions. Curves were generated
by plotting the TPR and FPR at varying q-value cuto�s. The two methods perform very similarly, with
MLM (AUC of 0.845) performing slightly better than the S scores (AUC of 0.833).

The AUCs for our method and Collins's method were 0.845 and 0.833, respectively. Based on both
the visual and quantitative summaries, we can observe that matrix linear models perform as least as well
as the S scores. However, this slight positive di�erence is consistent across all six plate arrangements
[Table 1].

4.1.1 Dosage-response simulation

A more interesting case that illustrates the �exibility and bene�ts of using matrix linear models is to
consider a a genetic screen whose plate conditions have multiple dosage levels. Suppose a given condition
has 3 dosage levels. The S score approach will analyze these condition × gene interactions separately for
each of the dosage levels, e.g. ConditionLevel1 × gene, ConditionLevel2 × gene, and ConditionLevel3
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Plate 1 2 3 4 5 6
MLM 0.845 0.843 0.853 0.852 0.847 0.853
S scores 0.833 0.838 0.852 0.850 0.840 0.852

Table 1: Area under the curve for simulations based on each of the six plate arrangements.
This is computed directly from the ROC curves, as in Figure 1. Matrix linear models outperform Collins's
S scores slightly but consistently in each of the six cases.

× gene. It is possible to analyze the data analogously using matrix linear models by encoding each of
the condition-dosage combinations as separate dummy variables. However, it is also possible for our
method to encode this information as dosage response levels for a given condition. Instead of treating
this hypothetical condition as essentially three separate conditions with no relationship to each other, we
can encode the three dosage response levels together as a single variable corresponding to the condition.

To examine this scenario more closely, we used the Z matrix frameworks for mutant strains from
each of the E. coli data's six plate arrangements. For each plate, we simulated e�ects for an experiment
with 10 di�erent conditions, each with 3 dosage levels and 3 replicates. 1/4 nonzero interactions were
drawn from a Normal(0, 1/2) distribution. For these 1/4 nonzero interactions, we further simulated
monotonic dosage e�ects. We did this by �rst randomly selecting a direction for the condition's e�ect
(positive or negative). Then, for the �rst dosage level, we simulated an e�ect from an Exponential(0.5)
distribution. For the second dosage level, we took the e�ect from the �rst dosage level and added that
to a random e�ect drawn from an Exponential(0.5 α) distribution, where α = 0.8. For the third dosage
level, we summed the second dosage level's e�ect with a random e�ect drawn from Exponential(0.5 α2).
The dosage e�ects for a given condition were then assigned the appropriate direction that was randomly
selected in the �rst step. This simulation can be extended for any number of conditions with any number
of monotonic dosage levels.

The ROC curves in Figure 2 illustrate the performance of the dosage-response encoded approach
compared with Collins's S scores, which can only encode categorical information, for the �rst plate
arrangement. For each method, the ROC curve was generated by obtaining adaptive Benjamini-Hochberg
permutation p-values and varying the cuto� for determining signi�cant interactions. These were then
compared to the true simulated interaction e�ects to calculate the TPR and FPR.

� The red solid line plots the results for matrix linear models with dosage-response encoding of the
conditions.

� The blue dashed line plots the results for Collins's S scores with categorical encoding of condition-
dosage combinations, which is the conventional approach.

� The green dot-dashed line plots the results for Collins's S scores with categorical encoding of only
conditions, i.e. all the di�erent dosage levels for a given condition are encoded as one categorical
condition.

� The black and grey dotted lines o�er an alternate visualization of the Collins's S scores results,
encoded for categorical condition-dosage combinations. For a given condition × gene interaction,
there are three corresponding S scores/ adjusted p-values under this encoding scheme (one for each
condition dosage level, which is not information incorporated into the method). When plotting the
black dotted �1/3 Hits� line, a true positive is counted when at least one out of the three adjusted
p-values for a signi�cant simulated condition × gene interaction is below the cuto�. Analogously,
a false positive is counted when at least one out of the three adjusted p-values for a non-signi�cant
simulated condition × gene interaction is below the cuto�. The grey dotted �2/3 Hits� line is
generated similarly, but requires at least two out of the three adjusted p-values to be below the
cuto�.

The corresponding AUCs for the plate 1 simulation are shown in Table 2.
Our proposed dosage-response matrix linear models approach (red solid line) outperforms Collins's S

scores encoded with categorical condition-dosage combinations, regardless of representation (blue dashed,
black dotted, and grey dotted lines). It also outperforms Collins's S scores when they only encode for
the conditions without regard for dosage level (green dot-dashed line). These trends are consistent across
simulations based on the other plates' arrangements [Figure S2 and Table S1]. From an interpretation
standpoint, this encoding can be useful if the investigator is interested in the overall e�ect of a plate
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Figure 2: ROC curves for plate 1 simulations comparing dosage-response encoded matrix
linear models to categorically encoded S scores. Dosage-response encoded matrix linear models
outperform all other methods shown. These include S scores for data encoded with categorical condition-
dosage combinations, for any of the three representations (Cond.-Conc, 1/3 Hits, and 2/3 Hits), as well
as S scores for data encoded with just the conditions.

MLM Dos. Resp. Cond.-Conc. Conditions 1/3 Hits 2/3 Hits
0.714 0.612 0.694 0.650 0.612

Table 2: AUCs for plate 1 ROC curves plotted in Figure 2. Dosage-response encoded matrix linear
models outperform all other methods shown. These include S scores for data encoded with categorical
condition-dosage combinations, for any of the three representations (Cond.-Conc, 1/3 Hits, and 2/3
Hits), as well as S scores for data encoded with just the conditions.

condition as opposed to separately considering the di�erent dosage levels. The more general approach
to encoding covariates in matrix linear models leads to superior analysis in this situation.

4.2 Data analysis

We then applied the our method to each of the six plate arrangements in the E. coli genetic screen. The
colony opacities were standardized by subtracting the median colony opacity of each plate (which has
multiple mutant strains growing under a given set of conditions) and dividing by the IQR.

4.2.1 Computational considerations

When we ran our matrix linear model and S score implementations (encoded with condition-dosage
combinations) on the entire data set of six plates, the latter required signi�cantly more computation
time [Tables 3 and 4]. A computer with 128 GB memory and a 3.00 GHz dual-core processor was used to
obtain the times as averages of 10 runs. Matrix linear models only take about three and a half seconds to
estimate the roughly 1 million interactions, plus main e�ects [Table 3]. In comparison, Collins's S scores
require around two and a half minutes. Two and a half minutes is still fairly reasonable; however, much
greater computation time is needed to obtain permutation p-values. If the p-values are calculated based
on 1000 permutations (parallelized over 5 cores), matrix linear models take just over eighteen minutes
[Table 4]. S scores require over eight hours to complete the same procedure (again, parallelized over 5
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cores). This dramatic di�erence in computation time can have a considerable impact on the scope and
feasibility of analyzing such data sets.

Plate 1 2 3 4 5 6 Total
MLM 0.52 0.47 0.67 0.61 0.52 0.50 3.29 sec
S scores 22.81 20.83 30.52 29.94 23.82 24.08 151.99 sec

Table 3: Computation time to estimate condition × gene interactions, plus main e�ects, for
each plate (a total of about 1 million interactions). Matrix linear models are considerably less
computationally expensive.

Plate 1 2 3 4 5 6 Total
MLM 2.82 2.78 3.46 3.28 2.82 3.00 18.16 min
S scores 77.62 72.59 93.37 94.22 76.31 77.32 491.42 min

Table 4: Computation time to estimate permutation p-values for the condition × gene inter-
actions for each plate (a total of about 1 million interactions). The computational advantages
of matrix linear models are even more apparent when permutation p-values are desired.

4.2.2 Auxotroph Analysis

To assess whether our method identi�es signi�cant interactions in the expected manner, we analyzed
auxotrophs. Auxotrophs are mutant strains that have lost the ability to synthesize a particular nutrient
required for growth. These might include knockout strains for a certain amino acid. Since they should
experience little to no colony growth under speci�c conditions where the required nutrient is not present,
we expect negative interactions between auxotrophic mutants and minimal media growth conditions.
Auxotrophs are useful as controls, since the phenotype under particular conditions for a mutant strain
is typically not known.

In the original univariate analysis of the colony size data, Nichols et al. empirically identi�ed 102
auxotrophs [Nichols et al., 2011]. Likewise, a previous study of the Keio Collection auxotrophs, based on
colony size, found 238 auxotrophs, 110 of which were mutants included in this data set [Joyce et al., 2006].
Nichols et al. and Joyce et al. found a 70% overlap, despite signi�cant experimental di�erences (e.g.
growth in liquid vs. solid media).

In a similar fashion, we empirically identi�ed auxotrophs based on the matrix linear model estimates.
We did this by obtaining the quantiles of the MLM interaction scores for each mutant strain under
minimal media conditions. Mutants whose 95% quantile for interaction scores with minimal media
conditions fell below zero were classi�ed as auxotrophs. Our auxotrophs had a 83.33% overlap with the
Nichols et al. auxotrophs and a 71.82% overlap with Joyce et al. The slightly larger intersection of
auxotrophs when comparing with Nichols et al. vs comparing with Joyce et al. is to be expected, since
we are analyzing the same data set. As noted above, Joyce et al. was a separate study with experimental
di�erences. While not all of the matrix linear model interactions between the Nichols et al. and Joyce
et al. auxotrophs and minimal media conditions were negative, the vast majority of them were. Figures
3, S4 are visualizations of the distributions of each auxotroph's interaction scores across minimal media
conditions. The interaction scores and plotted as points, and the median for each auxotroph is plotted
as a horizontal bar. Most fall below zero, which is what we would expect.

However, some of the discrepancy may be due to di�erences between analyzing colony opacity, as
we did, and analyzing colony size, as Nichols et al. and Joyce et al. did. Kritikos et al. ran a
study of the Keio collection, but analyzed colony opacity and made their raw S scores publicly available
[Kritikos et al., 2017]. We used the Kritikos et al. S scores to replicate the auxotroph-identifying process
for MLM t-statistics. Of the nineteen Nichols et al. auxotrophs that MLM was not able to identify, the
Kritikos et al. S scores were also unable to detect twelve. This result suggests that about two-thirds of
the Nichols et al. auxotrophs that MLM was unable to detect can be accounted for by di�erences in the
types of measurements used to quantify growth.

Of the remaining �ve auxotrophs that MLM failed to �nd but that the Kritikos et al. S scores
identi�ed, fepC is a mutant that results in the loss of ferric enterobactin uptake. There are minimal
media conditions for both �high iron� and �low iron�. The MLM t-statistics are generally positive for
interactions between fepC and both iron growth conditions; the Kritikos et al. S scores are positive
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Figure 3: Distributions of matrix linear model interaction estimates for auxotrophs identi�ed
by [Nichols et al., 2011] over minimal media conditions. The Nichols et al. auxotrophs are
plotted along the horizontal axis. The MLM interactions between the auxotrophs and minimal media
conditions are plotted along the vertical axis, with the horizontal bars indicating the median value. Most
interactions fall below zero, indicating little growth.

only for �high iron�. Thus, fepC might be considered a borderline case in auxotroph determination
depending on whether or not it exhibits growth under the �low iron� condition. Additionally, there were
two auxotrophic mutants that were found through analysis of the MLM t-statistcs, but not through
analysis of the Kritikos et al. S scores.

22 out of the 31 Joyce et al. auxotrophs that the MLM t-statistics were unable to �nd were also
undetectable to the Kritikos et al. S scores. Once again, this suggests that about two-thirds of the
discrepant auxotrophs can likely be explained by di�erences between analyzing colony size and colony
opacity.

[Kritikos et al., 2017]
As an alternative visualization, consider ROC plots [Figure 4, S5] that assess the ability of matrix

linear models to correctly identify auxotrophs found by Nichols et al. and Joyce et al. To get the TPR
and FPR for Figure 4, we took the auxotrophs identi�ed by Nichols et al. to be the �true� auxotrophs. We
then obtained TPRs and FPRs by varying cuto�s for the median minimal media interaction score for the
auxotrophs that we identi�ed. Figure S5 was obtained analogously for the Joyce et al. auxotrophs. The
AUCs were 0.884 and 0.824, respectively; there is high concordance between the three sets of auxotrophs.

4.3 Dosage-response analysis

We also analyzed the data set by running matrix linear models with dosage-response levels encoded in
the X matrix growth conditions. It should be noted that many of the conditions in the Nichols et al.
data set had only one dosage level, which makes it somewhat less-than-ideal for illustrating this encoding
approach. We then compared the dosage-response results with the results from applying matrix linear
models and Collins's S scores on data conventionally encoded for condition-dosage combinations.

Figure 5 examines the performance of these three approaches for analyzing the �rst plate arrangement.
(The other �ve plate arrangements, shown in Figure S3, produced similar results.) For each of the
three methods, we used permutation tests to obtain adaptive Benjamini-Hochberg adjusted p-values
corresponding to each interaction. We then plotted the proportion of adjusted p-values below varying
thresholds to generate the three curves. The dosage-response-encoded matrix linear models were able
to detect more signi�cant interactions (adjusted p-values below a given cuto�) than Collins's method at
nearly every threshold. For lower cuto�s, this continuous encoding strategy also detects more signi�cant
interactions than matrix linear models with categorical encoding.

This simple example illustrates the potential gains in performance and detection of signi�cant inter-
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Figure 4: ROC curve for the auxotrophs we empirically identi�ed, compared against those
identi�ed by [Nichols et al., 2011] as the reference. TPRs and FPRs were calculated based on the
median minimal media interaction score for the each of the auxotrophs we identi�ed, at varying cuto�s.
The AUC was 0.884.

actions when taking advantage of matrix linear models's regression-like ability to encode for complex
and continuous covariates. Encoding the conditions in this manner also provides interpretable results
about the e�ects of dosage in the interactions as well as the e�ects of the conditions themselves.

5 Discussion

We have presented matrix linear models, a simple framework for encoding relationships and groupings
in high-throughput genetic screenings. This approach is computationally e�cient, requiring signi�cantly
less time to run than the univariate S score method [Collins et al., 2006]. The speed advantage is
especially noticeable when performing analysis on larger data sets or doing repeated runs, as for a
permutation test.

Matrix linear models can also improve the detection of interaction e�ects that might otherwise be
masked. By evaluating our method alongside the S score approach when applied to simulations and
an E. coli genetic screen [Nichols et al., 2011], we show that we achieve comparable results at much
less computational expense. Furthermore, unlike the S score, matrix linear models are not limited to
encoding categorical groupings. In this way, the relationship between S scores and matrix linear models
can be thought of as being analogous to that between ANOVA/t-tests and linear regression. Analysis
of the simulated and E. coli data when encoding for multi-level condition dosages demonstrates how
matrix linear models can provide a more �exible and powerful approach that can analyze scenarios with
non-categorical covariates.

In this paper, we discussed a generalized estimating equation approach to estimation that uses least
squares as the computational engine. Several extensions are possible. We may want a robust estimation
procedure that downweights extreme observations (least squares is well-known to be sensitive to outliers).
This can be achieved by modifying the loss function from a sum of squares to a robusti�ed version (such
as Huber's loss function)[Hastie et al., 2009]. The resulting optimization problem is expected to be more
complex, however. Another extension might be to �t penalized matrix linear models with a L1 penalty.
This optimization problem is also challenging, and we expect to report progress in future work. Finally,
although we were motivated by high-throughput chemical genetic screens, many other high throughput
data such as metabolomic data or cancer cell line drug screening have a similar structure and might
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Figure 5: Comparing the proportion of signi�cant interactions detected when encoding for
dosage response and when encoding dosage-condition combinations categorically, for the
�rst plate arrangement. The former is only possible in matrix linear models. The latter is shown for
both matrix linear models and S scores. The curves were generated by obtaining the adaptive Benjamini-
Hochberg adjusted p-values from permutation tests for each method and identifying the proportion of
adjusted p-values below varying cuto�s.

bene�t from a similar approach.
A Julia implementation of matrix linear models can be found at

https://bitbucket.org/jwliang/mlm_packages. The code to perform the analysis and generate the
�gures in this paper is available at https://bitbucket.org/jwliang/mlm_gs_supplement.
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Supplemental �gures and tables

Plate 2 3 4 5 6
MLM Dos. Resp. 0.707 0.779 0.688 0.736 0.720
Cond.-Conc. 0.623 0.663 0.591 0.644 0.632
Conditions 0.683 0.753 0.666 0.713 0.705
1/3 Hits 0.657 0.713 0.625 0.673 0.683
2/3 Hits 0.634 0.666 0.588 0.655 0.630

Table S1: AUCs for dosage-response simulation based on plates 2-5. Dosage-response encoded
matrix linear models outperform all other methods shown within each plate. These include S scores
for data encoded with categorical condition-dosage combinations, for any of the three representations
(Cond.-Conc, 1/3 Hits, and 2/3 Hits), as well as S scores for data encoded with just the conditions.
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Figure S1: ROC curves comparing MLM to S scores applied to data simulated using frame-
works of plates 2-5. Interactions corresponding to q-values below a given cuto� are considered signif-
icant; these results are compared to the simulated interactions. Curves were generated by plotting the
TPR and FPR at varying q-value cuto�s
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Figure S2: ROC curves for plate 2-5 simulations comparing dosage-response encoded matrix
linear models to categorically encoded S scores. Dosage-response encoded matrix linear models
outperform all other methods shown. These include S scores for data encoded with categorical condition-
dosage combinations, for any of the three representations (Cond.-Conc, 1/3 Hits, and 2/3 Hits), as well
as S scores for data encoded with just the conditions.
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Figure S3: Comparing the proportion of signi�cant interactions detected when encoding
for dosage response and when encoding dosage-condition combinations categorically, for
plates 2-5. The former is only possible in matrix linear models. The latter is shown for both matrix
linear models and S scores. The curves were generated by obtaining the adaptive Benjamini-Hochberg
adjusted p-values from permutation tests for each method and identifying the proportion of adjusted
p-values below varying cuto�s.
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Figure S4: Distributions of matrix linear model interaction estimates for auxotrophs iden-
ti�ed by [Joyce et al., 2006] over minimal media conditions. The Joyce et al. auxotrophs are
plotted along the horizontal axis. The MLM interactions between the auxotrophs and minimal media
conditions are plotted along the vertical axis, with the horizontal bars indicating the median value. Most
interactions fall below zero, indicating little growth.

Figure S5: ROC curve for the auxotrophs we empirically identi�ed, compared against those
identi�ed by [Joyce et al., 2006] as the reference. TPRs and FPRs were calculated based on the
median minimal media interaction score for the each of the auxotrophs we identi�ed, at varying cuto�s.
The AUC was 0.824.
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