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ABSTRACT 26 

Gene expression profiling is an effective way to provide insights into cell function. 27 

However, for heterogeneous tissues, bulk RNA-Seq can only provide the average gene 28 

expression profile for all cells from the tissue, making the interpretation of the sequencing 29 

result challenging. Single-cell RNA-seq, on the other hand, generates transcriptomic 30 

profiles of individual cell and cell types, making it a powerful method to decode the 31 

heterogeneity in complex tissues. 32 

The retina is a heterogeneous tissue composed of multiple cell types with distinct 33 

functions. Here we report the first single-nuclei RNA-seq transcriptomic study on human 34 

neural retinal tissue to identify transcriptome profile for individual cell types. Six retina 35 

samples from three healthy donors were profiled and RNA-seq data with high quality was 36 

obtained for 4730 single nuclei. All seven major cell types were observed from the dataset 37 

and signature genes for each cell type were identified by differential gene express 38 

analysis. The gene expression of the macular and peripheral retina was compared at the 39 

cell type level, showing significant improvement from previous bulk RNA-seq studies. 40 

Furthermore, our dataset showed improved power in prioritizing genes associated with 41 

human retinal diseases compared to both mouse single-cell RNA-seq and human bulk 42 

RNA-seq results. In conclusion, we demonstrated that feasibility of obtaining single cell 43 

transcriptome from human frozen tissues to provide additional insights that is missed by 44 

either the human bulk RNA-seq or the animal models. 45 

  46 
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INTRODUCTION 47 

Transcriptome profiling is a powerful tool for understanding gene function, classifying of 48 

cell type and state, and investigating human diseases1–3. Transcriptome can be more 49 

powerful when combined with other ‘omics’ data to build prediction models on human 50 

diseases4. For example, by combining transcriptomic data and proteomic data, a list of 51 

candidate disease genes can be predicted with high specificity5. However, until recently, 52 

vast majority transcriptome profiles are generated from profiling tissue samples 53 

containing thousands to millions of cells. Thus, gene expression information of individual 54 

cells would be lost. For tissues with high cellular heterogeneity, knowing the transcriptome 55 

profiles of each cell type would be important for both identification of novel cell types and 56 

understanding the functional organization of the tissue. Cell sorting would be required to 57 

obtain transcriptome of a single cell type; not only was it not always practical, but also the 58 

heterogeneities of many tissues were not fully revealed. This gap was met by the 59 

development of the high throughput single-cell RNA-seq technology6–8.  60 

 61 

Transcriptomic studies on the single cell level was first performed decades ago9,10, while 62 

the first single-cell transcriptome study based on Next-Generation Sequencing was 63 

reported ten years ago11. Since then, technologies have been dramatically improved in 64 

scale and sensitivity. Development in single-cell isolation, such as microfluidic-device-65 

based methods, enables high throughput sequencing of thousands of cells at a time. 66 

Library construction methods, like SCRB-seq12 and SMART-seq13 allows for higher 67 

mRNA capture efficiency and lower bias. RNA-seq in single nuclei have been shown to 68 

be sufficient in representing the transcriptome of the whole cells and would facilitate 69 

transcriptome profiling when fresh samples, such as human samples, are not easily to 70 

obtain14,15. Recently, single-cell transcriptome studies have the used in many applications, 71 

such as identify novel cell types16, reveal key players in cell differentiation17, and 72 

reconstruct the developmental trajectory in early embryonic development18. 73 

 74 

The retina is an example of heterogeneous tissues and is composed of multiple neuronal 75 

and non-neuronal cell types19. In the human retina, there is an ordered array of 76 

approximately 70 different neuron types across 5 major classes: photoreceptor (rods and 77 
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cones), retinal ganglion cells (RGCs), horizontal (HC), bipolar (BC), amacrine (AM) along 78 

with a non-neuronal Müller glial cell (MG), each playing a unique role in processing visual 79 

signal19,20. Transcriptome of human retina has been reported using bulk tissue RNA-80 

seq21,22, and the overall gene expression profiles from different retinal regions (macular 81 

and peripheral region) were compared23. These studies provided the general 82 

transcriptomic information of the retina as a whole tissue, while they were not sufficient 83 

to reveal the complexity of the retina at individual cell type resolution. In addition, 84 

transcriptomic study of selected cell types of the human and primate retina were 85 

performed but were not sufficient to obtain the complete picture of all major cell types24,25. 86 

However, the profiles of individual cell types, particularly types that account for a small 87 

portion of the retina, will offer important insights to the biology and disease. For example, 88 

it is often observed that one cell type, such as the cone cells in the cone-rod dystrophy 89 

(CRD) and the retinal ganglion cells in glaucoma, is the primary target of the disease26,27. 90 

Given the great benefit of obtaining the transcriptome at individual cell type or even 91 

individual cell level, single-cell RNA-seq on human retina tissue is highly desired. 92 

 93 

Recently, single-cell RNA-seq studies have been performed on mouse retina, both with 94 

the whole retina28 and with specifically enriched cell types29,30. These studies provided 95 

unprecedentedly high-resolution transcriptomic data of each cell types and allowed for 96 

novel cell subtype discovery. The success of these studies supported the feasibility of 97 

single-cell studies on human retina using similar approaches. Despite the rich dataset 98 

from the mouse, it is essential to perform parallel study on the human retina given the 99 

considerable differences between the human and mouse. For example, the mouse retina 100 

lacks the macula region of the retina of humans and primates31,32, a structure which is 101 

essential both for high visual acuity and color vision perception in the retina. Mouse cone 102 

cells are also different from human’s in their wavelength-sensitive opsin expression 103 

patterns. Here, we report the first transcriptomic study on healthy human retina tissues 104 

by using snRNA-seq. snRNA seq is an improvement over the standard single-cell RNA 105 

seq for profiling samples such as the neuronal tissue33–36. Using the snRNA-seq approach, 106 

a total of 4730 nuclei are profiled both the peripheral and macular region of three frozen 107 

human donor retina samples. Through unsupervised clustering of the gene expression 108 
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profiles, clusters corresponding to all seven major cell types in human retina (rod, cone, 109 

MG, HC, AM, BC, and RGC) were identified. We compared the gene expression profile 110 

between macular and peripheral region, both as an entity and by individual cell type. While 111 

comparing the total macular and peripheral profiles, we found that the inherent differences 112 

in cell populations would strongly influence the detection of differentially expressed genes 113 

(DEG), a shortcoming of the bulk RNA-seq analysis. Single-nuclei study, on the other 114 

hand, allowed for macular-peripheral comparison within matching cell types. Significantly 115 

higher expression of mitochondrial electron transport genes was found in macular rod 116 

cells compared with peripheral ones, which might indicate that higher level of oxidation 117 

stress existed in the region and explain the vulnerability of macular rod cells as the stress 118 

accumulated as aging. In addition, as expected, compared to the published mouse single-119 

cell data, the single-nuclei human data show stronger predictive power on genes 120 

associated with human disease. Finally, we found that photoreceptor DEGs significantly 121 

enriched inherited retinal disease (IRD) genes, indicating that it can serve as a 122 

prioritization tool for novel disease gene discovery and cell-specific pathway analysis. 123 

Overall, our study reported the first transcriptome profile of all major cell types of human 124 

retina at individual cell resolution, which would serve as a rich resource for the community. 125 

 126 

 127 

MATERIALS AND METHODS: 128 

 129 

Macular and peripheral sample collection 130 

 131 

As previously described in detail (Owen et al., in press), human donor eyes were obtained 132 

in collaboration with the Utah Lions Eye Bank. Only eyes within 6 hours postmortem time 133 

were used for this study. Both eyes of the donor undergo rigorous postmortem 134 

phenotyping including spectral domain optical coherence tomography (SD-OCT) and 135 

color fundus photography. Most importantly these images are taken in a manner 136 

consistent with the appearance of the analogous images utilized in the clinical setting. 137 

Dissections of donor eyes were carried out immediately according to a standardized 138 

protocol to reliably isolate the RPE/choroid from the retina and segregate the layers into 139 
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quadrants37 (Owen et al., in press). After the eye is flowered and all imaging is complete, 140 

macula retina tissue is collected using an 6mm disposable biopsy punch (Integra, Cat # 141 

33-37) centered over the fovea and flash frozen and stored at -80°C. The peripheral retina 142 

is collected in a similar manner from each of the four quadrants. To determine precise 143 

ocular phenotype relative to disease and or healthy aging, analysis of each set of images 144 

is performed by a team of retinal specialists and ophthalmologists at the University of 145 

Utah School of Medicine, Moran Eye Center and the Massachusetts Eye and Ear 146 

Infirmary Retina Service. Specifically, each donor eye is checked by independent review 147 

of the color fundus and OCT imaging; discrepancies are resolved by collaboration 148 

between a minimum of 3 specialists to ensure a robust and rigorous phenotypic analysis. 149 

This diagnosis is then compared to medical records and a standardized epidemiological 150 

questionnaire for the donor. For this study, both eyes for each donor were classified as 151 

AREDS 0/1 to be considered normal. Only one eye was used for each donor. Donors with 152 

any history of retinal degeneration, diabetes, macular degeneration, or drusen were not 153 

used for this study. Institutional approval for consent of patients to donate their eyes was 154 

obtained from the University of Utah and conformed to the tenets of the Declaration of 155 

Helsinki. All retinal tissues were de-identified in accordance with HIPPA Privacy Rules. 156 

 157 

Preparation of single-nucleus suspensions 158 

 159 

Nuclei from frozen neural retinal tissue was isolated using RNase-free lysis buffer (10 mM 160 

Tris-HCl, 10 mM NaCl, 3 mM MgCl2, 0.1% NP40). The frozen tissue was resuspended in 161 

ice cold lysis buffer and triturated to break the tissue structure. The tissue aggregates 162 

were then homogenized using a Wheaton™ Dounce Tissue Grinder and centrifuged 163 

(500g) to pellet the nuclei. The pellet was re-suspended in fresh lysis buffer and 164 

homogenized to yield clean single-nuclei suspension. The collected nuclei were stained 165 

with DAPI (4',6-diamidino-2-phenylindole, 10ug/ml) and were diluted to 1000 μl of 3E4/ml 166 

with 1× PBS (without Ca and Mg ions, pH 7.4, Thermo Fisher), RNase inhibitor (NEB, 167 

40KU/ml) and Cell Diluent Buffer. 168 

 169 

The ICELL8™ single cell based single cell capture 170 
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 171 

Single nuclear capture and sequencing was performed on the ICELL8 single cell platform 172 

(Wafergen Biosytems). ICELL8 platform comprises of a multi-sample nano-dispenser that 173 

precisely dispensed 50nl of the single nuclei suspension into an ICELL8 nanowell 174 

microchip containing 5184 wells (150nl capacity). Assuming a Poisson distribution 175 

frequency for the number of cells per well, about 30% of the nanowells were expected to 176 

contain a single-nuclei under optimal conditions. Automated scanning fluorescent 177 

microscopy of the microchip was performed using Olympus BX43 fluorescent microscope 178 

with a robotic stage to visualize wells containing single nuclei (see Table 1 for single cell 179 

capture number across different experimental repeats). Automated well selection was 180 

performed using the CellSelect software (Wafergen Biosystems), which identified 181 

nanowells containing single nuclei and excluded wells with >1 nuclear, debris, nuclei 182 

clumps or empty wells. The candidate wells were manually evaluated for debris or clumps 183 

as an additional QC.  184 

 185 

Single-cell RT-PCR and library preparation 186 

 187 

The chip was subjected to freeze-thaw in order to lyse the cells and 50 nl of reverse 188 

transcription and amplification solution (following ICELL8 protocol) was dispensed using 189 

the multi-sample nano-dispenser to candidate wells. Each well has a preprinted primer 190 

that contains an 11 nucleotide well-specific barcode which is added to the 3’ (A)n RNA 191 

tail of the nuclear transcripts during reverse transcription and cDNA amplification 192 

performed on candidate wells using SCRB-seq chemistry. After RT, the cDNA products 193 

from candidate wells were pooled, concentrated (Zymo Clean and Concentrator kit, 194 

Zymogen) and purified using 0.6x AMPure XP beads. A 3’ transcriptome enriched library 195 

was made by using Nextera XT Kit and 3’-specific P5 primer which was sequenced on 196 

the Illumina Hiseq2500. 197 

 198 

Data analysis 199 

 200 
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For bulk RNA-seq, FASTQ sequences were mapped to human genome hg19 (GRCh37) 201 

downloaded from UCSC genome browser website and aligned using STAR38. Transcript 202 

structure and abundance were estimated using Cufflinks39–42.  203 

 204 

For snRNA-seq data analysis, FASTQ files were generated from Illumina base call files 205 

using bcl2fastq2 conversion software (v2.17). Sequence reads were aligned to the human 206 

genome hg19 (GRCh37). For transcriptome analysis, aligned reads were counted within 207 

exons using HTseq-count with default parameters43. All genes that were not detected in 208 

at least 2.5% of all our single cells were discarded for all further analyses. Cells were 209 

filtered based on a minimum number of 500 expressed genes per cell, a minimum number 210 

of 6000 and a maximum number of 100000 transcripts per cell. Data were log-211 

transformed [log(read count + 1)] and normalized for all downstream analyses, using 212 

Seurat package (http://satijalab.org/seurat/)44. MultiCCA method in Seurat was used to 213 

align all the six datasets (3 macular, 3 peripheral). Aligned data were used for single cell 214 

clustering, tSNE visualization and differentially expressed gene (DEG) analysis. Without 215 

specific note, DEGs were assigned following three criteria: first, at least 25% of the  group 216 

of interest expressed this gene; second, the gene in the group of interest should pass the 217 

Wilcoxon rank sum test against the reference group with Bonferroni adjusted p-218 

value<0.05; third, the average fold-change of the gene in the group of interest against the 219 

reference group is more than 1.28 (logFC>0.25). Functional enrichment analysis was 220 

performed using DAVID45. 221 

 222 

For mouse single-cell RNA-seq, the expression data was obtained from GSE6347328. 223 

Matrices from seven P14 mice, GSM1626793-1626799, were used for analysis. Gene 224 

filter of detection in >1% cell and cell filter of gene expression number over 500 were 225 

applied. CCA alignment and DEG analysis were performed with a similar procedure as 226 

the human sample.  227 

 228 

RESULTS 229 

 230 
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Generation and the quality evaluation of the human retinal tissue single-nuclei 231 

RNA-seq. 232 

 233 

To generate transcriptome profiles for human photoreceptor cells, specially cones, retinae 234 

from three individual separate healthy donors were obtained (n = 3 donors). All three 235 

donors are Caucasian people and range from 60 to 80 years (Table 1) and were 236 

thoroughly examined as described in methods. Figure 1 shows an example of the donor 237 

tissues used for this study. There is no visible pathogenic indication, not even macular 238 

drusen, a hallmark of age-related macular degeneration, commonly found in this age 239 

group, according to the fundus images46. Two sample punches from each retina (n =6), 240 

one from the macula region and the other from the peripheral region, were collected and 241 

subjected to single cell nuclei RNA-Seq. After dispensing, nano-wells were imaged and 242 

only wells with single nuclei were selected. cDNA library construction and sequencing 243 

were performed for a total of 6,544 individual nuclei. Distribution of the number of nuclei 244 

from each sample is listed in Table 2. To exclude low quality data, several QC steps are 245 

conducted (detailed in methods). As results, 1,814 nuclei are filtered out, leaving a total 246 

number of 4,730 nuclei for downstream analysis. On average, 31,783 mapped reads are 247 

obtained per nucleus with the median number of genes detected at 1,054. To further 248 

evaluate the quality of snRNA-Seq data, bulk RNA-seq from the corresponding sample 249 

was performed. Good correlation between the bulk gene expression (FPKM, paired-end 250 

seq) and single-nuclei gene expression (average of normalized read count, 3’ end seq) 251 

was observed with positive correlation coefficient ranges from 0.57 to 0.72. This dataset, 252 

to the best of our knowledge, is the first snRNA-seq analysis on human retinal tissue. 253 

 254 

Unbiased single-cell transcriptomics profiling identifies all seven neuronal cell 255 

types of human retina. 256 

 257 

To identify individual retinal cell types, we performed unbiased clustering on the gene 258 

expression profiles of 4,730 human retinal nuclei. Seven clusters are identified, each of 259 

which contains cells from all six samples (Figure 2A), suggesting relatively low sample 260 

bias. Based on the expression pattern of cell type specific marker genes in the cluster, it 261 
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is possible to map each cluster to individual cell types (Figure 2B). As shown in Figure 262 

2C, markers for known retinal cell types, such as PDE6A for rod cells, TRPM1 for bipolar 263 

cells (BC), SLC1A3 for Müller glial cells (MG), GAD1 for amacrine cells (AM), SEPT4 for 264 

horizontal cells (HC), ARR3 for cone cells and RBPMS for retinal ganglion cells (RGC), 265 

show cluster specific expression pattern. Thus, each cluster could be assigned to a known 266 

retinal cell type, which is further supported by examining additional known marker genes 267 

for each cell type (Supplement Table 1). Based on the number of nuclei in each cluster, 268 

we were able to quantify the proportion of each cell type in the sample. As shown in Figure 269 

2D-E, composition of different cell types from human peripheral retina was generally 270 

consistent with that from previous mouse studies, with the exception of a higher 271 

percentage of MG cells and a lower percentage of AM cells being observed in the human 272 

retina28,47. This trend is consistent with the results reported from a previous study in 273 

monkey, in which the relative ratio of BC: MG: AC: HC is close to 40:28:22:947,48. As 274 

expected, a lower rod proportion and higher BC, HC and RGC proportions are observed 275 

in the human macular sample compared with the human peripheral retina. A total of 122, 276 

96, 126, 211, 228, 299 and 396 differentially expressed genes (DEGs) are identified for 277 

rod, BC, MG, AM, HC, cone, and RGC cell respectively (Supplement Table 2). Gene 278 

ontology enrichment analysis of biological process terms were performed with these 279 

DEGs (Supplement Table 3). Top GO terms enriched by each DEG lists showed 280 

consistency with our previous knowledge for each cell type, such as, for example, visual 281 

perception term for photoreceptor cells49, ion transmembrane transport term for retinal 282 

interneurons50–52, and MAPK pathway regulation term for Müller glia cells53. These results 283 

all support the data quality is sufficient to faithfully represent the transcriptome profiles of 284 

major cell types of human retina.  285 

 286 

Differentially expressed genes in the macular region compared with peripheral 287 

region. 288 

 289 

The macula is a structure unique to human and other primates. Several studies aiming at 290 

identifying genes that are differentially expressed between macular and peripheral retina 291 

have been conducted. For example, using a SAGE approach, Sharon et al reported 20 292 
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genes with high expression in the macula and 23 genes with high expression in peripheral 293 

region in the retina (referred as SAGE gene list)54. In addition, based on bulk RNA-Seq, 294 

Li et al reported 1,239 genes with high expression in macular retina and 812 genes with 295 

high expression in the peripheral macular region23. To evaluate our data to these 296 

published data, we generated the virtual bulk macular and peripheral RNA-Seq data by 297 

in silico combining snRNA-Seq from each region. As a result, we obtained a list of 181 298 

genes that are highly expressed in the macular region and 118 genes that are highly 299 

expressed in the peripheral region (to get the most significant DEGs, we only included 300 

genes with 1.5-fold changes and adjusted p-value<0.01, Supplement Table 6). Significant 301 

overlapping between the SAGE gene list and our list is observed. Specifically, for the 302 

SAGE gene list, 11 out of 20 macular genes (CPLX1, D4S234E, NEFL, STMN2, UCHL1, 303 

NDRG4, TUBA1B, DPYSL2, APP, YWHAH, MDH1) and 11 out of 23 peripheral genes 304 

(SAG, RCVRN, UNC119, GPX3, PDE6G, ROM1, ABCA4, DDC, PDE6B, GNB1, NRL) 305 

are also observed in our gene list. Based on GO term analysis, the macular gene list is 306 

enriched in the cholesterol biosynthetic process, microtubule skeleton organization, 307 

microtubule-based movement (Figure 3A), indicating a more interneuron-like 308 

transcriptome, while the peripheral genes are enriched for visual perception, 309 

phototransduction and rhodopsin related signal transduction pathways. Similar GO terms, 310 

such as ion transport in macular genes and visual perception in peripheral genes (Figure 311 

3A), are enriched in both our data set and the Li dataset (gene set not public available).  312 

 313 

Based on previous report and our data, although the macular and the peripheral region 314 

have the same types of cell, the proportion of cell types are different between macular 315 

and peripheral human retina (Figure 2D-E). As a result, genes that show differential 316 

expressing level between the macular and peripheral regions in bulk transcriptome 317 

profiling experiments might be due to difference in cell proportion instead of true 318 

expression level difference. In the 181 macular DEGs, 118 were also found in DEG lists 319 

of RGC, BC or HC, which are much more abundant in the macular region (Figure 2D-E), 320 

while in the 118 peripheral DEGs, 58 are found as rod DEGs (Figure 3B). This result 321 

confirmed that “bulk” RNA-seq data tended to be affected by cell population variations in 322 

different regions in the retina and indicated that the single-cell level study is required for 323 
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revealing genuine macular-peripheral similarities and differences. Our snRNA-Seq data 324 

overcomes the issue and allows direct comparison of gene expression between macular 325 

and peripheral retina for the same cell type. Correlation of averaged gene expression 326 

patterns of five cell types, rod, cone, MG, BC and AM, from each sample were calculated 327 

(Figure 3C). The profiles of cells from the macular and peripheral form two sub-clusters, 328 

indicating differences do exist within the same cell type depending on the region. Within 329 

each cell types (rod, cone, MG, BC and AM) between the macular cells and peripheral 330 

cells, we performed differential expression analysis and found cell type DEGs (Figure 3D, 331 

Supplement Table 6). Among the DEGs, interestingly, some mitochondrial electron 332 

transport related genes showed high expression in macular rod cells compared with 333 

peripheral ones (Figure 3E). Rod photoreceptor cells have large numbers of mitochondria 334 

packed in the inner segment55 for they require high amount of energy in order to keep the 335 

high turnover rate of the outer segment and support phototransduction56. Higher 336 

expression level of these genes indicates higher oxidative stress which has been linked 337 

to photoreceptor death57. Mitochondria is the major source of oxidative stress in the retina 338 

and it could get accumulated as the organism ages58. Mitochondrial dysfunction in retinal 339 

pigment epithelial cells (RPEs) has been associated with retinal diseases like age-related 340 

macular degeneration (AMD), while the effect in photoreceptor cells remains elusive56. 341 

Our finding might be able to contribute to the explanation of why macula photoreceptors 342 

are more vulnerable then peripheral ones. In conclusion, the cell-type based macular-343 

peripheral comparison reveals regional variances that bulk RNA-seq cannot achieve. 344 

 345 

 346 

DEG analysis reveals human cone-rod differences and shows increased relevance 347 

to human disease. 348 

 349 

More than half of the retina cell population is composed of photoreceptor cells. By 350 

combining rod and cone photoreceptor cells, a list of 147 genes that are highly enriched 351 

in photoreceptors was obtained (Supplement Table 2). These genes show significant 352 

enrichment of biological process GO terms of visual perception, rhodopsin mediated 353 

signaling pathway, maintenance of photoreceptor cells and regulation of rhodopsin 354 
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mediated signaling pathway (Figure 4A). This is largely consistent with the known function 355 

of photoreceptor cells, which further validate our cluster assignment and DEG analysis.  356 

 357 

In photoreceptor cells, cones are functionally important19,49,59,60 and less studied. During 358 

the retina development, photoreceptor precursors first commit to the photoreceptor cell 359 

fate, and then get specified to subtypes, rods and cones61. Thus, cone cells and rod cells 360 

are close in development and share similarities in functions, and comparison of 361 

transcriptomes between cone cells and rod cells would provide informative insights to 362 

cone cell specific functions. With published single-cell RNA-seq data of mouse retina28, 363 

rod and cone cells were identified with similar methods as that we use for the human data. 364 

Thus, we first compared the average gene expression between human rod and cones, 365 

and between mouse rod and cones (Figure 4B). High Spearman correlations have been 366 

found between each pair, indicating the overall transcriptome similarity between rod and 367 

cone cells. In the linear models that using rod (or cone) gene expression as the 368 

observation value and cone (or rod) gene expression as the only variable, the human 369 

data showed a residue standard error (0.1487) 2.4 times as much as the mouse data 370 

(0.0607), meaning that the gene expression values between human rod and cone are 371 

more disperse. In other words, in comparison, human cones are more distinct from human 372 

rods, while mouse rod and cones are more similar. 373 

 374 

Genes with higher cone expression compared with rod may be relevant to cone specific 375 

functions. We identified 276 genes that are highly expressed in human cone cells 376 

compared with rod cells (human cone-over-rod gene list, referred as hCOR list, 377 

Supplement Table 5). GO analysis on biological process terms revealed that these genes 378 

enrich terms such as visual perception, response to stimulus, sodium ion membrane 379 

transport, and cilium assembly (Supplement Table 4). Previous study in mice retina has 380 

identified 226 genes that are be highly expressed in cone cells compared with rod cells 381 

(mouse cone-over-rod list, referred as mCOR list, Supplement Table 5). Interestingly, this 382 

mCOR list only share about 10% with the hCOR list (Figure 4C), indicating the 383 

considerable differences between human and mouse cone cells. Excluding the 22 shared 384 

genes by hCOR and mCOR, the rest genes in hCOR enrich biological process GO terms 385 
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such as photoreceptor cell maintenance, visual perception and sodium ion transport, 386 

while the top terms enriched by the rest of mCOR list were not as phototransduction-387 

related. This result again indicates that in the transcriptome level, human cone and rod 388 

cells are more distinct, while mouse cone and rod cells are closer. Besides, in the hCOR 389 

list (excluding shared genes), 7 genes (CDHR1, CNNM4, CACNA2D4, RD3, PROM1, 390 

KCNV2, RPGRIP1) are found as known human CRD or LCA genes, while mCOR list only 391 

has one (GUCA1A). As an example, high expression of RPGRIP1 and RD3, both being 392 

known human IRD genes62–71, are showing significantly higher expression in human 393 

cones compared to rods, as is shown in Figure 4D. Consistent with the expression pattern, 394 

patients with mutations in RPGRIP1 and RD3 show LCA and CRD phenotype, which has 395 

more severe defects in cones than rods. In contrast, in the mice dataset, these two gene 396 

show no differential expression in rod and cone (Figure 4D). Consistently, KO mouse 397 

models of these two genes are reported to display RP like phenotypes71–73, which were 398 

resulting from rod cells early affections. Therefore, the differences in mouse and human 399 

phenotype is likely due to difference in cell specific expression of the gene. Thus, the 400 

human cone profile we report here show increased relevance to human diseases and 401 

would serve as a better resource for human study. 402 

 403 

 404 

Differentially expressed genes in photoreceptor cells enrich inherited retinal 405 

disease genes. 406 

 407 

With the expression profile for each retinal neuronal cell type generated in this study, we 408 

sought to examine its potential utility in identifying genes associated with human retina 409 

diseases. A gene list of 234 genes that contains all the known IRD genes for RP, LCA, 410 

CRD, and other retinopathies was obtained from the retnet (RetNet, 411 

http://www.sph.uth.tmc.edu/RetNet/) (Supplement Table 7). As expected, robust 412 

expression of most of these known IRD genes (197 of the 234) could be detected in our 413 

dataset (Supplement Table 7). Additionally, the detected IRD genes are expressed at 414 

significantly higher level than average (Figure 5A, p-value = 2.27e-07, two-sample t-test). 415 

Since the vast majority of known IRD associated genes affects photoreceptor cells 416 
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exclusively, we reason that significant overlap should be detected between IRD genes 417 

and the photoreceptor enriched gene set.  Indeed, 44 IRD genes are among the 147 PR 418 

DEGs, representing a significant enrichment over background (odds ratio = 29.62, p-419 

value<2.2e-16, fisher’s exact test) (Figure 5B, Supplement Table 8). Thus, we propose 420 

that the PR DEG list could also be directly used as a gene prioritization list for novel IRD 421 

gene discovery. This result showed improvement compared with previous bulk RNA-seq 422 

studies. Pinelli et al performed RNA-seq on 50 retina samples and used co-expression 423 

analysis to predict potential IRDs and were able to recover 56 known genes from a list of 424 

472 genes, with an odds ratio of 15 (Figure 5B)22. In comparison, our PR DEG list, without 425 

any optimization, show highly enrichment level with the odds ratio almost doubled (z score 426 

= 2.54, p-value = 0.0055). 427 

 428 

Depending on the timing and severity of rod and cone photoreceptors defect, IRDs can 429 

be classified into different subtypes clinically. For example, although cone photoreceptor 430 

cell degeneration is observed as the disease progresses, RP is primarily due to defect in 431 

rod photoreceptors74–76. On the other hand, cone-rod dystrophy (CRD) is result from cone 432 

degeneration from the very beginning26,27. Among the 44 IRD genes that show 433 

photoreceptor cell-specific expression, 26 have been associated with RP while 11 have 434 

been associated with CRD. Consistent with the clinical phenotype, on average, RP 435 

associated genes have higher expression in rod cells while CRD associated genes show 436 

higher in cone cells (Figure 5C-D). 437 

 438 

Given the significant enrichment of IRD associated genes in the cell type DEG set, it can 439 

be potentially used to prioritize candidate IRD disease genes. To further test this idea, the 440 

eye phenotype for mice with photoreceptor cell DEG orthologous gene mutation is 441 

examined. For the 103 photoreceptor DEGs that have not been associated with human 442 

retina diseases, 49 have knock out mice recorded in the MGI database with non-lethal 443 

phenotypes. Among them, 18 shown phenotypes in the visual system (Supplement Table 444 

8), such as GNGT1, RDH8 and RCVRN. Protein encoded by GNGT1 is known to locate 445 

in the outer segment of photoreceptor cells and plays important role in 446 

phototransduction5,77. RDH8 gene encodes a human retinol dehydrogenase, and 447 
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mutation of its mouse ortholog causes delayed rod function recovery after light exposure 448 

and accumulation of all-trans-retinal in the rod outer segment78. RCVRN is a calcium-449 

binding protein which is a regulator of rod sensitivity of dim lights, and it is also found to 450 

be an auto-antigen of cancer-associated retinopathy79. In addition to investigating the 451 

genes with mouse eye phenotype, we also highlighted the genes with known mouse 452 

retina expression (MGI database query). In summary, our photoreceptor cell DEG list 453 

would serve as a prioritization tool for novel disease gene discovery. 454 

 455 

 456 

Retinal disease genes and mouse phenotype related genes in other retinal cell 457 

types. 458 

 459 

In contrast to the significant overlap between IRD genes and photoreceptor (PR) DEGs, 460 

no significant enrichment is observed in DEGs for other retina cell types. Although rare, 461 

it has been shown that defects in cell types in the neural retina other than PR can also 462 

lead to IRD. Indeed, 14 known IRD genes show enriched expression in cell types not 463 

restricted to photoreceptor cells (Supplement Table 8). From those genes, we found a 464 

few of them have known functions consistent with the expression pattern and human 465 

phenotype. For example, RDH11 is highly expressed in Müller Glia cell which plays an 466 

important function in retinal cycle and mutations in RDH11 lead to RP80. GRM6 and 467 

TRPM1 are bipolar DEGs and their mutations could cause a recessive congenital 468 

stationary night blindness (CSNB), and CSNB is known to be caused by abnormal 469 

photoreceptor-bipolar signaling81–87. Besides, in their DEG lists, 28, 30, 38, 32, and 18 470 

genes that are highly expressed in MG, HC, RGC, AM and BC, respectively, showed 471 

correlation to the mouse eye phenotypes (Supplement Table 8). These genes could 472 

potentially serve as prioritization of possibly disease-causing genes for further study of 473 

non-PR-related IRDs. 474 

 475 

DISCUSSION 476 

Studying the cell type specific transcriptome expands our understanding of the cell 477 

function within heterogeneous tissues, which the retina is a good example for. The retina 478 
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contains seven major cell types with various proportion: rod cells consists of over half 479 

while some types such as amacrine cells and RGCs are found to be much less. All the 480 

cell types have distinct functions and coordinate to allow for visual perception and 481 

regulation. In multiple pathological conditions, especially inherited retinal diseases (IRDs), 482 

certain cell types, such as rod, cone, or bipolar cells, but not the whole tissue, are affected 483 

at the early stage26,74,88. Thus, understanding the transcriptome will also facilitate disease-484 

related studies. In the retina, transcriptome profiles of many cell types, especially rare 485 

ones, are usually masked by the average of all cell populations in bulk RNA-seq of the 486 

whole retinal tissue. Cell-surface-marker-based sorting and purification methods have 487 

been developed for enriching for all cell types. Thus, single-cell RNA-seq stands out as 488 

the most optimal and unbiased method for obtaining the transcriptome of the cell types in 489 

the retina.  490 

 491 

We report the first transcriptome profiles of the human retinal major cell types at the 492 

single-cell level from 4,730 nuclei. These nuclei were from six samples originating from 493 

three donor retinae. It is worth emphasizing that the tissues we used all came from similar 494 

genetic background, all underwent post-mortem phenotyping, and are shown to be 495 

normal. As standard in current clinical practices, OCT images are used to resolve the 496 

appearance of subretinal drusen, fluid, atrophy and fibrosis and differentiate artifact from 497 

pathology. These images (Figure 1) demonstrate the usage of a combination of fundus 498 

and OCT imaging techniques for post-mortem eye common in clinical practice according 499 

to the Utah Grading Scale for Post mortem Eyes (Owen et al In press IOVS). All major 500 

cell types were found in every sample with the reasonable proportion and expected 501 

marker expression. Thus, the transcriptome profiles we demonstrated here are 502 

reproducible and reliable. 503 

 504 

Regional transcriptomes for tissues are of great interest for researchers. Here, we 505 

demonstrated that for heterogeneous tissue, single-cell studies out-perform bulk studies 506 

in regional specific transcriptome profiling. Bulk studies are largely limited by variations 507 

of cell population in different regions so that the genes showing variable expression levels 508 

could just be the outcome of changed cell proportions. Single-cell studies, on the other 509 
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hand, allows for comparisons between certain cell types and facilitates detection of real 510 

differences.  511 

 512 

The transcriptome profiles of cell types in the human retina are also major findings in our 513 

study. Mice, the most studied animal model for retinal degeneration, are not an ideal 514 

model for studying cone biology as its cones have significant differences from those in 515 

humans. For example, in the human retina, cone cells are highly enriched in a region 516 

called the fovea near the central macula which is absent in the mouse retina31,89. In 517 

addition, mice have two types of cone-opsins, namely Opn1sw for short-wavelength 518 

sensing and Opn1mw for middle- and long-wavelength sensing. Some mouse cone cells 519 

express only one type of opsin while a considerable proportion (40% for C57/BL6 mice) 520 

express both90. In contrast, humans have three types of cone-opsins, OPN1SW, 521 

OPN1MW and OPN1LW, and each cone cell only express one type of opsin61. Mustafi et 522 

al previously compared the transcriptomes between cone-enriched macular region and 523 

rod-enriched peripheral region in monkey to analyze rod and cone signatures25. They 524 

found known cone makers, such as SLC24A2 and OPN1MW. However, they also found 525 

other genes, including NEFL and NEFM, which generally showed higher expression 526 

levels in the macular region and might partially be driven by the uneven proportion of 527 

RGCs. Welby et al developed a sorting method to enrich fetal cones in human and 528 

reported the transcriptome of these fetal cone cells24. Their findings identified the cone 529 

signature during the development (9 to 20 weeks post conception), which could be useful 530 

in recapitulating some aspects of the human adult cone. Our study took advantage of “in 531 

silico” sorting to separate cones from other cell types and thus provided better profiling.  532 

 533 

The utility of snRNA-seq on human retinal tissue is assessed in our study. snRNA-seq is 534 

a viable alternative method to single-cell RNA-seq which is more practical for human 535 

tissue study because it could be applied to frozen neuronal tissue. In addition, snRNA-536 

seq has less bias on sampling as it is not affected by factors such as cell size. Gao et al 537 

reported that, in breast cancer cells, the snRNA-seq was representative of single-cell 538 

RNA-seq 15. Our single-nuclei profiles showed a good correlation with bulk RNA-seq of 539 
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the same sample, and the cell type profiles also displayed consistency with published 540 

human retinal cell markers (Supplement Table 1). 541 

 542 

The transcriptome profiles of human retinal cell types could be a useful tool for 543 

researchers. For example, we observed significant enrichment of IRD genes among the 544 

genes with specificity in photoreceptor cells. In addition, the rest of the list also contains 545 

multiple genes that were linked to mouse eye phenotypes. Thus, we would use this list 546 

as a reference in prioritizing genes for novel IRD gene discovery. Additionally, it should 547 

not be neglected that some genes with specificity in other cell types were also found to 548 

be IRD genes or cause mouse eye phenotype. Besides the uses we addressed here, our 549 

findings could also be useful for other studies. For instance, the cell type markers reported 550 

in our data would facilitate approaches in cell purification of the human retina, which may 551 

lead to better cell type profiles in the future. 552 

 553 
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FIGURE LEGENDS: 792 

 793 

Table 1. Medical information of the sample donors.  794 

 795 

 796 
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Table 2. Basic sample information showing nuclei numbers and correlation with 797 

bulk RNA-seq of the same sample. 798 

Calculation of correlation was performed between the single nuclei RNA-seq and bulk 799 

RNA-seq of the same samples. For single nuclei RNA-seq (3’-end seq), the gene 800 

expression data from each nuclear were gene-filtered (2.5% cutoff, see method), 801 

normalized and log-transformed before averaging. For bulk RNA-seq (paired-end seq), 802 

FPKM was used.  803 

 804 
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 805 

Figure 1. Representative analogous color fundus and OCT images demonstrating 806 

normal findings according to the Utah grading scale for postmortem eyes. 807 

A. Color fundus imaging of post mortem retina showing normal phenotype. 808 

B. OCT image of post mortem retina showing normal phenotype.  809 

 810 
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 811 

Figure 2. Unsupervised clustering identifies 7 major cell types in human retina. 812 

A. Clustering of 4730 human retina single nuclei expression profiles into 7 populations 813 

(left) and representation of alignment of 6 dataset from 3 donors. 814 

B. Heatmap of top 15 DEGs in each cell type. Each column represents a cell while each 815 

row represents a gene. Gene expression values are scaled. 816 

C. Profiles of known markers (PDE6A, GRM6, SLC1A3, GAD1, SEPT4, ARR3, RBPMS) 817 

in each cluster. 818 
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D-E. Comparison of proportion of 7 major cell types of mouse and human retina. 819 

 820 

 821 

Figure 3. Transcriptome difference revealed between macular and peripheral 822 

region. 823 

A. Differential expressed genes between the overall macular and peripheral cells and 824 

biological process GO term enrichment. 825 
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B. Proportion of cell type DEGs in the overall macular-peripheral DEGs showing cell 826 

population affection on DEG detection. 827 

C. Heatmap demonstrating correlation of averaged gene expression of five major cell 828 

types in six samples. 829 

D. Number of cell type specific DEGs in rod, cone, amacrine cell (AM), bipolar cell (BC) 830 

and Müller glia cell (MG).  831 

E. Demonstration of mitochondrial electron transport related genes showing differential 832 

expression in rod cells in macular and peripheral region. 833 
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 834 

 835 

Figure 4. Differentially expressed genes are revealed in rod and cone 836 

photoreceptors. 837 

A. Biological process GO term enrichment by photoreceptor cell DEGs. 838 

B. Gene expression correlation between rod and cone cells in human and mouse. 839 
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C. Overlap of the hCOR (human cone-over-rod) and mCOR (mouse cone-over-rod) gene 840 

list and biological process GO term enriched in non-overlapping part. 841 

D. Demonstration of the expression of CRD/LCA genes in the non-overlapping part of 842 

hCOR (CDHR1, CNNM4, CACNA2D4, RD3, PROM1, KCNV2, RPGRIP1) and mCOR 843 

(GUCA1A).  844 

 845 

 846 

 847 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted March 3, 2019. ; https://doi.org/10.1101/468207doi: bioRxiv preprint 

https://doi.org/10.1101/468207


 848 

 849 

 850 

Figure 5. Photoreceptor DEGs enrich human IRDs. 851 

A. IRD genes generally show higher expression level than the rest of genes in human 852 

retina. 853 

B. Photoreceptor cell DEG list enrich known IRD genes and showed improvement 854 

from previous study based on bulk RNA-seq 855 

C. Distribution of human retinal disease genes, mouse eye phenotype genes (but no 856 

human disease discovered), mouse retinal expressing genes (but no eye 857 

phenotype found) in DEGs of all cell types (PR is merged from rod and cone). 858 

D. RP genes and CRD genes show different expression trend in rod and cone 859 

photoreceptors. The y-axis is representing the differential expression of each gene 860 

in cone cells compared with rod cells (cone minus rod). Expression values were 861 

log-transformed followed by averaging within cell types (rod, cone). 862 

 863 
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