
1 
 

PHENOME-WIDE INVESTIGATION OF HEALTH OUTCOMES ASSOCIATED WITH GENETIC PREDISPOSITION TO LONELINESS  

Abdel Abdellaoui1,2, Sandra Sanchez-Roige3, Julia Sealock4, Jorien L. Treur2,5,6, Jessica Dennis4, Pierre 

Fontanillas7, Sarah Elson7, The 23andme Research Team7, Michel Nivard1, Hill Fung Ip1, Matthijs van der 

Zee1, Bart Baselmans1, Jouke Jan Hottenga1, Gonneke Willemsen1, Miriam Mosing8,9, Li Yu9, Nancy L. 

Pedersen9, Najaf Amin10,  Cornelia M van Duijn10,11, Ingrid Szilagyi12, Henning Tiemeier12,13, Alexander 

Neumann14, Karin Verweij2, Stephanie Cacioppo15, John T. Cacioppo15,*, Lea K. Davis4,*, Abraham A. 

Palmer3,*, Dorret I. Boomsma1,* 

1 Department of Biological Psychology, Vrije Universiteit, Amsterdam, Netherlands   
2 Department Psychiatry, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands 

3 Department of Psychiatry, University of California San Diego, La Jolla, CA, USA 
4 Vanderbilt Genetics Institute, Division of Genetic Medicine, Department of Medicine, Vanderbilt University, 

Nashville, TN, USA  

5 School of Experimental  Psychology, University  of  Bristol, Bristol, UK 
6 MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK 
7 23andMe, Inc., Mountain View, CA, USA 
8 Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden. 
9 Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden 
10 Genetic Epidemiology Unit, Department of Epidemiology, Erasmus Medical Center, Rotterdam, Netherlands 

11 Translational Epidemiology, Faculty Science, Leiden University, Leiden, the Netherlands  
12 Department of Epidemiology, Erasmus Medical Center, Rotterdam, Netherlands 
13 Department of Psychiatry, Erasmus Medical Center, Rotterdam, Netherlands 
14 Department of Child and Adolescent Psychiatry/Psychology, Erasmus Medical Center, Rotterdam, Netherlands 
15 Center for Cognitive and Social Neuroscience, Department of Psychology, The University of Chicago, Chicago, 

Illinois, USA 

 

* These authors jointly directed this work 

  

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 14, 2018. ; https://doi.org/10.1101/468835doi: bioRxiv preprint 

https://doi.org/10.1101/468835
http://creativecommons.org/licenses/by-nc-nd/4.0/


2 
 

ABSTRACT  

Humans are social animals that experience intense suffering when they perceive a lack of social 

connection. Modern societies are experiencing an epidemic of loneliness. While the experience of 

loneliness is universally human, some people report experiencing greater loneliness than others. 

Loneliness is more strongly associated with mortality than obesity, emphasizing the need to understand 

the nature of the relationship between loneliness and health. While it is intuitive that circumstantial 

factors such as marital status and age influence loneliness, there is also compelling evidence of a genetic 

predisposition towards loneliness. To better understand the genetic architecture of loneliness and its 

relationship with associated outcomes, we conducted a genome-wide association (GWAS) meta-analysis 

of loneliness (N=475,661), report 12 associated loci (two novel) and significant genetic correlations with 

34 other complex traits. The polygenic basis for loneliness was significantly enriched for evolutionary 

constrained genes and genes expressed in specific brain tissues: (frontal) cortex, cerebellum, anterior 

cingulate cortex, and substantia nigra. We built polygenic scores based on this GWAS meta-analysis to 

explore the genetic association between loneliness and health outcomes in an independent sample of 

18,498 individuals for whom electronic health records were available. A genetic predisposition towards 

loneliness predicted cardiovascular, psychiatric, and metabolic disorders, and triglycerides and high-

density lipoproteins. Mendelian randomization analyses showed evidence of a causal, increasing, effect 

of body fat on loneliness, and a similar weaker causal effect of BMI. Our results provide a framework for 

ongoing studies of the genetic basis of loneliness and its role in mental and physical health.  
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INTRODUCTION 

Loneliness is a universal human experience that has been documented across cultures and generations. 

According to the evolutionary theory of loneliness1, this familiar painful feeling corresponds to an aversive 

response to a discrepancy between a people’s desired and perceived level of social connectedness.2,3 This 

definition, which emphasizes the desired level of social connection, highlights the difference between 

loneliness and solitude. Unlike solitude, the signal associated with loneliness has likely evolved to motivate 

humans and other social animals to seek and improve the salutary social connections needed to help them 

survive and reproduce.4 Loneliness serves as an emotional warning or signal that there is an emotional 

imbalance in one’s social network, regardless of the size of that network. Feeling lonely is also very 

common; about 5-30% of adults in Western populations report some degree of loneliness, while the actual 

prevalence may be higher since loneliness is stigmatized in many cultures.5-7  

Multiple factors influence the individual differences in the experience of chronic loneliness.1 Most 

studies have focused on circumstantial factors such as marital status, age, and sex.8-11 However, there are 

also innate individual differences in the propensity to feel lonely. Heritability estimates based on twin and 

family data suggest that ~37% of the variation in loneliness levels is explained by genetic factors12. Studies 

using molecular genetic data provided evidence that the aggregate of common genetic variants account 

for 4-27% in individual differences in loneliness,13-15 and a recent genome-wide association study (GWAS) 

of social interaction and isolation in the UK Biobank sample has identified 15 common genetic variants 

associated with loneliness.15    

Both social isolation and chronic high levels of loneliness are strongly correlated with negative 

health outcomes; chronic loneliness has a stronger association with early mortality than obesity.16 A long-

running longitudinal study on physical and mental health, the Harvard Study of Adult Development, has 

concluded that the warmth of one’s relationships has the greatest impact on wellbeing and life 

satisfaction.17 Findings like these suggest that loneliness is a public health concern. While these studies 

demonstrate a clear and strong correlation between loneliness and increased morbidity and mortality, 

the causality and etiology of the relationship between loneliness and mental and physical health is 

unclear. For example, one possibility is that loneliness may cause poor health, or, alternatively, poor 

health may cause loneliness directly or indirectly, for example, by disrupting social networks.  

Here, we first conducted a GWAS meta-analysis for loneliness on nearly half-a-million subjects of 

European descent from various cultural backgrounds, including the UK biobank (UKB), 23andMe (USA), 

the Health and Retirement Study (USA), the Netherlands Twin Register (NTR), and the Swedish Twin 

Registry (STR). We performed secondary analyses on the summary statistics18 using gene-based and LD 

score regression approaches to further elucidate the biological basis underlying the propensity to feel 

lonely and the genetic overlap between loneliness and complex human traits related to personality, 

cognition, reproduction, substance use, social connections, and physical and mental health. Next, we 

carried out a phenome wide association study (PheWAS). PheWAS have emerged as a method to screen 
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for associations between genetic measures and a range of phenotypes, such as those measured in 

electronic health records (EHR).19,20 For certain phenotypes, EHR may provide more objective measures 

of physical and mental health than self-reported health data, which may not be readily known by patients 

(e.g., lab values) or can be distorted by mood and recall bias. Since the time of their original publications, 

the PheWAS approach has expanded beyond analysis of a single SNP to also include analysis of polygenic 

risk predictors.21 In this study, we constructed a polygenic predictor of loneliness using estimated SNP 

effects from the GWAS meta-analysis and performed a PheWAS on this polygenic score in the Vanderbilt 

University Medical Center (VUMC) EHR and associated biobank. Subsequent to this analysis, we analyzed 

a subset of quantitative traits that were significantly associated with the loneliness polygenic score in our 

PheWAS and known to be biomarkers for diagnoses. The goal of this analysis was to determine whether 

polygenic scores for loneliness were associated with known causal biomarkers. However, these analyses, 

like others that rely on genetic correlations, do not distinguish causal effects from pleiotropic effects. 

Therefore, we further tested for bidirectional causal relationships between loneliness and a selection of 

genetically correlated phenotypes using Mendelian randomization. We performed a comprehensive 

characterization of the polygenic contribution to the universal human experience of loneliness and 

extended this understanding to elucidate the genetic relationships between loneliness and health.  

 

SUBJECTS AND METHODS 

 

SUBJECTS & PHENOTYPE 

A total of 475,661 adult subjects from 7 different cohorts were included in the GWAS meta-analysis. An 

overview of subjects and phenotyping across cohorts can be found in Supplementary Table 1. The UK 

Biobank (UKB) dataset was the largest. UKB was the only cohort with a dichotomous phenotype (Ntotal = 

413,337: 74,142 lonely and 339,195 non-lonely individuals). The other six cohorts had three types of 

continuous measures for loneliness: the sum of 9 items on a 4-point scale, the sum of 3 items on a 3-point 

scale, and 1 item on a 4-point scale.  

 

GENOTYPING AND QC 

Information on genotyping, imputation, and QC is given in Supplementary Table 2. In all cohorts, SNP data 

were imputed to either 1000 Genomes or the Haplotype Reference Consortium (HRC). SNPs remaining 

after QC ranged from 5.7 million to 14.1 million. Based on ancestry information derived from SNP data, 

only subjects with European descent were included.  
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GWASS & META-ANALYSIS 

GWASs were performed in all seven cohorts separately, with the variables age, sex, family relationships, 

and ancestry-informative PCs as fixed effects (see Supplementary Table 2 for details). The UK Biobank 

dataset was split into three groups of unrelated individuals on which three separate categorical GWASs 

were run, and there were six continuous GWASs for the other six cohorts. The categorical GWASs (logistic 

regressions) on UKB were run on the following three groups: 1) the largest group of unrelated individuals 

with British ancestry (Ntotal = 332,991: 58,960 cases & 274,031 controls), 2) individuals with British ancestry 

that consist of family members of the first group (Ntotal = 57,865: 10,430 cases & 47,435 controls), and 3) 

individuals of Non-British European descent (Ntotal = 22,481: 4,752 cases & 17,729 controls). The two 

groups of GWASs (i.e., three categorical GWASs and six continuous GWASs) were first meta-analyzed 

separately using the multivariate approach described in Baselmans et al (2017)22. This approach controls 

for bias due to relatedness or sample overlap between GWASs by incorporating the cross-trait LD-score 

intercept (a measure for sample overlap) from LD-score regression (LDSC)23 as weights, which was 

especially necessary for the UK Biobank datasets, since the second dataset of unrelated individuals 

consisted of family members of the first dataset of unrelated individuals. The two meta-analyses 

(categorical and continuous) were then meta-analyzed using sample size-based weights to accounts for 

the respective differences of heritabilities, genetic correlation, and measurement scales of the categorical 

and continuous GWASs (see Demontis et al, 2017, for more details).24  

 

FOLLOW-UP ANALYSES 

Gene-based tests & gene enrichment tests: GWAS meta-analysis summary statistics were used to 

compute gene-based p-values in MAGMA25 for 18,125 protein coding genes using FUMA.26 MAGMA in 

FUMA was further used to test whether the effects of genes on loneliness were correlated with higher or 

lower gene-expression in a given tissue based on GTEx RNA-seq data.26 This was tested for 30 general 

tissue types and 53 more specific tissue types. 

LD-Score Regression Heritability Partitioning: Stratified LD-score regression was carried out using 

LDSC in order to partition the heritability signal into specific cell-type groups or genomic annotations.27,28 

This method requires the GWAS meta-analysis summary statistics, and LD information based on an 

external reference panel, for which we used the European populations from the HapMap 3 reference 

panel.   

 S-PrediXcan: S-PrediXcan29 uses reference panels with both measured gene expression and 

genotype data collected on the same individuals to build predictive models of gene expression in samples 

in which only genotype information is available. Predicted expression of genes for cases and controls can 

then be associated with phenotypic differences, yielding a gene-based test of association that 

incorporates transcriptional information. We used S-PrediXcan29 to predict gene expression levels in 10 

brain tissues, and to test whether the predicted gene expression correlates with loneliness. Pre-computed 
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tissue weights were employed from the Genotype-Tissue Expression (GTEx v7) project database 

(https://www.gtexportal.org/)30 as the reference transcriptome dataset. As input data, we included the 

loneliness GWAS meta-analysis summary statistics, transcriptome tissue data, and covariance matrices of 

the SNPs within each gene model (based on HapMap SNP set; available to download at the PredictDB Data 

Repository) from 10 brain tissues: anterior cingulate cortex, caudate basal ganglia, cerebellar hemisphere, 

cerebellum, cortex, frontal cortex, hippocampus, hypothalamus, nucleus accumbens basal ganglia, and 

putamen basal ganglia. We used a transcriptome-wide significant threshold of p < 1.34 × 10-6, which is the 

Bonferroni corrected threshold when adjusting for all tissues and genes (37,281 gene-based tests). 

Genetic correlations: Genetic correlations between loneliness and 60 other traits were computed 

in LDSC.31 Here, the genetic correlation between traits is based on the estimated slope from the regression 

of the product of z-scores from two GWASs on the LD score and represents the genetic covariation 

between the two traits based on all polygenic effects captured by the included SNPs. Summary statistics 

from well-powered GWASs were available for 60 traits related to personality, cognition, reproduction, 

social circle, body composition, substance use, and physical and mental health. Multiple testing was 

corrected for using a Bonferroni corrected significance threshold of 8.5 × 10-4. LD scores were based on 

European populations from the HapMap 3 reference panel.23,31 

Polygenic scores: All SNPs from the loneliness meta-analysis were thinned using an association-

driven pruning algorithm that clumped SNPs into 250 kb windows and removed SNPs in LD (r2>0.1) with 

the most associated SNP (i.e., lowest p-value) in that window. LD estimates were directly derived from 

the BioVU samples (see below). After clumping, a total of 93,501 LD-independent SNPs remained for 

scoring. Scores were then constructed using PRSice software32 and defined by the sum of the number of 

risk alleles at each locus, weighted by their estimated effect sizes. The polygenic scores were calculated 

in an independent sample of 18,498 genotyped individuals of European descent in BioVU. Genotyping and 

QC of this sample have been described elsewhere.20,33 

PheWAS: A logistic regression model was fitted to each of 897 case/control phenotypes to 

estimate the odds of each diagnosis given the loneliness polygenic score, after adjustment for sex, median 

age across the EHR, top 10 principal components of ancestry, and genotyping batch. The 897 disease 

phenotypes included 32 infectious diseases, 75 neoplasms, 86 endocrine/metabolic diseases, 29 

hematopoietic diseases, 36 mental disorders, 44 neurological disorders, 54 sense organs, 126 circulatory 

system disorders, 59 respiratory diseases, 85 digestive diseases, 77 genitourinary diseases, 3 pregnancy 

complications, 43 dermatologic disorders, 64 musculoskeletal disorders, 8 congenital anomalies, 24 

symptoms, and 52 injuries/poisonings. We required the presence of at least two International 

Classification of Disease (ICD) codes that mapped to a PheWAS disease category (Phecode Map 1.2 

(https://phewascatalog.org/phecodes) to assign “case” status. PheWAS analyses were run using the 

PheWAS R package.34 
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Lipid traits in the EHR: We examined the relationship between polygenic risk for loneliness and 

three quantitative lipid traits. Clinically measured lipid levels included low density lipoprotein (LDL) (N = 

6,455 with pre-medication values), high density lipoprotein (HDL) (N = 10,722), and triglycerides (trigs) (N 

= 11,012; Supplementary Table 5). As most patients had multiple lipid values available in their EHRs, we 

calculated median LDL, HDL, and triglyceride values for each patient after removing outlier values that 

were +/- 4 SDs from the sample mean. To adjust for age, we extracted the age at the median lipid value, 

and used the average age between the two median measurements if the number of lab value 

measurements was even.  We then regressed the median lab value on sex and the cubic spline of median 

age, and quantile normalized the residuals.  For sensitivity analyses, we also calculated the median of pre-

medication (Supplementary Table 5) lipid values, using only observations that occurred before the first 

mention of lipid-lowering medication in the EHR,35 and transformed the age- and sex-adjusted residuals 

as above. Linear regression models were then fitted to the median LDL, HDL, and trigs values respectively 

to estimate the effect of the loneliness polygenic score on each lipid trait. As the lipid traits were already 

sex and age adjusted, we included only the top 10 principal components of ancestry and genotyping batch 

as covariates. 

Mendelian Randomization: We performed two-sample bi-directional Mendelian Randomization 

(MR)36 analyses to investigate the direction of causality in the relationship between loneliness and 

cardiovascular risk factors and diseases. Of the eight cardiovascular risk factors and diseases for which we 

know the genetic correlations from the LDSC analyses (coronary artery disease [CAD], myocardial 

Infarction, high density lipoprotein (HDL) cholesterol, low density lipoprotein (LDL) cholesterol, total 

cholesterol, triglycerides, BMI, and body fat), we tested the four traits that showed a significant genetic 

correlation, namely CAD (rg = .19), triglycerides (rg = .14), BMI (rg = .18), and body fat (rg = .25). We used 

genome-wide significant SNPs from the five GWASs (loneliness and the four significant traits) to serve as 

instrumental variables (gene-exposure association). SNPs were pruned for LD (r2<.001), and the remaining 

SNPs (or proxy SNPs with r2≥0.8 when the top-SNP was not available in the other GWASs) were then 

identified in the GWAS summary statistics of the outcome variable (gene-outcome association). When 

both gene-exposure and gene-outcome associations are significant and in the expected ratio of an indirect 

causal effect, and the MR assumptions are met,37 this is considered evidence for a causal relationship. We 

combined estimates from individual SNPs by applying inverse-variance weighted (IVW) linear regression.38 

We conducted three sensitivity analyses more robust to horizontal pleiotropy, each relying on distinct 

assumptions: weighted median regression39, MR-Egger regression40 and Generalized Summary-data based 

Mendelian Randomization (GSMR).41 Weighted median regression can provide a consistent estimate of a 

possible causal effect, even when up to 50% of the weight in the genetic instrument comes from invalid 

instruments. MR-Egger regression uses “Egger’s test” to test for bias from horizontal pleiotropy. MR-Egger 

will provide a consistent estimate of the causal effect, given that the strength of the genetic instrument 

(gene-exposure association) does not correlate with the effect that the instrument has on the outcome. 

This InSIDE assumption (Instrument Strength Independent of Direct Effect) is a much weaker assumption 
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than the assumption that there is no pleiotropy. However, if the NOME (NO Measurement Error) 

assumption is violated, MR-Egger may be biased. Violation of NOME can be assessed with the I2 statistic, 

which ranges between 0 and 1. When I2 is below 0.9, there is a considerable risk of bias. By applying MR-

Egger simulation extrapolation (SIMEX),42 this bias can be corrected for. When I2 is below 0.6 the results 

of MR-Egger (even with SIMEX correction) are not reliable. For our analyses we report MR-Egger results 

when I2 >0.9, MR-Egger SIMEX results when I2 = 0.6-0.9 and we don’t report MR-Egger results when I2 <0.6. 

Lastly, we performed GSMR, a method that takes into account LD between the different genetic variants 

included in an instrument. Since GSMR accounts for LD, we pruned the genetic variants included in GSMR 

instruments at a higher threshold of r2<0.05 (as opposed to r2<0.001). Including SNPs in higher LD than 

0.05 was shown to provide very limited increase in power. GSMR includes a filtering step which excludes 

SNPs that are suspected to have pleiotropic effects on both the exposure and the outcome (HEIDI 

filtering).  

 

RESULTS 

GWAS Meta-Analysis  

The proportion of phenotypic variance accounted for by all genotyped variants (SNP heritability) of the 

categorical loneliness measure in UKB and continuous loneliness measure were 13.3% (SE = .7) and 4.9% 

(SE = .8) respectively (see Supplementary Table 3). The results from the two meta-analyses (categorical 

and continuous phenotypes) were then meta-analyzed together using sample size-based weights.24 The 

adjusted effective sample size of the final meta-analysis, accounting for information from related 

individuals, was 205,708 (see Demontis et al).24 The SNP heritability of the final meta-analysis was 7.9% 

(SE = .4), which accounts for approximately one quarter of the total heritability as estimated in twin-family 

studies and is about twice as large as the SNP heritability estimate of a recently published GWAS on 

loneliness in the UK Biobank sample.15  

The genomic inflation factor λ was 1.28 for the full meta-analysis (Figure 1) and results from LDSC 

analysis23 showed that this inflation was mostly due to true polygenic signal with about 1.8% of the 

inflation due to residual population stratification (LDSC intercept = 1.005, SE = .01, ratio = .015). We 

identified 14 independent genome-wide significant variants (r2 < .1), which were located in 12 genomic 

regions (i.e., within 250 kb; Figure 1, Table 1, and Supplementary File 1).  
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Figure 1: QQ-plot and Manhattan plot of meta-analysis on loneliness. A: The QQ-plot shows a considerable inflation of association 
statistics (λ = 1.28), which is mostly due to true polygenic signal rather than population stratification (LD-score regression intercept 
= 1.005, SE = .01, ratio = .015). B: Manhattan Plot of the Loneliness GWAS meta-analysis showing 14 independent genome-wide 
significant associations 
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Table 1: 14 Independent genome-wide significant SNPs from 12 loci, with independence based on an r2 threshold of .1, belonging to the same locus if they are within 250 kb (see 

supplementary file 1 for more details on the significant SNPs). 

SNPs CHR BP (hg19) A1/A2 BETA (SE) p-value Gene Additional traits associated with top SNPs 

rs618869; 
rs12458015; 
rs72627233 

18 53248151; 
53305735; 
53486724   

C/T; 
C/T; 
G/T 

.03 (.004); 

.02 (.003); 
.02 (.004) 

4.47 × 10-13;  
2.35 × 10-9;  
2.81 × 10-8 

TCF4; 

RPL21P126 

Schizophrenia, Autism, Fuchs's corneal dystrophy, Hand grip 

strength 

rs4509081 5 152257172 G/A .02 (.003) 2.90 × 10-10 LINC01470 Life satisfaction, Bipolar disorder, Schizophrenia 

rs74338595 2 212749786 C/T -.02 (.003) 1.92 × 10-9 ERBB4  

rs1022688 20 47648856 A/G .02 (.003) 5.41 × 10-9 ARFGEF2 Subjective well-being, Positive affect, Height, Cognitive ability 

rs171697 5 103956516 G/C .02 (.003) 1.10 × 10-8 AC099520.1 Anorexia nervosa, Depression 

rs10123378 9 96375217 C/T -.02 (.003) 1.79 × 10-8 PHF2 Childhood BMI, Educational attainment 

rs7925389 11 47466790 T/A -.02 (.003) 1.81 × 10-8 RAPSN Subjective well-being, Neuroticism, Height, BMI 

rs7626596 3 82000680 A/G -.02 (.003) 2.55 × 10-8   

rs11867618 17 65875587 A/G .02 (.004) 3.29 × 10-8 
BPTF 

BMI, Eosinophil and basophil counts, Lung cancer, Alcohol 

dependence  

rs61943369 12 118805950 T/C .02 (.004) 3.35 × 10-8 TAOK3 Glucose homeostasis traits, Neuroticism 

rs2656321 2 149073434 T/C .02 (.003) 3.57 × 10-8 MBD5  

rs2149351 9 120501644 G/T -.02 (.004) 3.78 × 10-8  Neuroticism 
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MAGMA AND S-PREDIXCAN GENE-BASED ANALYSES 

We performed two types of gene-based analyses using MAGMA, which aggregates SNP effects at the gene 

level using positional annotations, and S-PrediXcan, which uses expression quantitative-trait loci (eQTL) 

annotations to assign SNPs to genes. The meta-analysis summary statistics formed the basis to compute 

gene-based p-values in MAGMA25 and S-PrediXcan29 for 17,715 and 13,037 protein coding genes, 

respectively. In the MAGMA analysis, a total of 38 genes reached genome-wide significance at a 

Bonferroni corrected significance threshold of 2.82 × 10-6 (Supplementary Figure 1). Six genes of these 

genes (ARFGEF2, BPTF, MBD5, PHF2, TAOK3, TCF4; Table 1) included a genome-wide significant SNP from 

the GWAS meta-analysis. Using S-PrediXcan,29 we identified 10 genes (of which 8 were significant in the 

MAGMA analysis) that significantly associated with loneliness at a Bonferroni corrected significance 

threshold of p < 1.34 x 10-6 across six brain tissues: anterior cingulate cortex, cerebellar hemisphere, 

cerebellum, prefrontal cortex, cortex, and the caudate basal ganglia (Supplementary Table 4).  

 

GWAS SIGNALS ARE SIGNIFICANTLY ENRICHED FOR BRAIN TISSUES AND EVOLUTIONARY CONSERVED REGIONS 

Next, we investigated if genetic effects on loneliness were enriched for loci with specific functional and 

tissue annotations.  

First, we tested whether genome-wide effects on loneliness were consistent with tissue-specific 

differential gene-expression based on GTEx RNA-sequence data from 53 tissues types using two 

approaches. For the first approach, we determined whether the distribution of effect sizes of all 17,715 

protein coding genes estimated from the gene-based tests showed enrichment of expression across 

multiple tissues.26 These results indicated that the gene-based association results were significantly 

enriched (Bonferroni threshold: p < 9.4 × 10-4) for genes with higher gene-expression levels in five brain 

tissues: frontal cortex, cortex, cerebellar hemisphere, cerebellum, and anterior cingulate cortex (Figure 

3). For the second approach, SNP-heritability of loneliness was partitioned into categories of functional 

SNP annotations using LDSC.23 We found that SNPs associated with loneliness were also more likely than 

expected by chance (Bonferroni threshold: p < 9.4 × 10-4) to regulate gene expression in four brain tissues 

including cerebellum, anterior cingulate cortex, substantia nigra, and cortex.  

Second, we used LDSC to test for the enrichment of 24 genomic annotations that are not specific 

to any cell type, including coding vs non-coding regions, promoter regions, introns, and evolutionary 

conserved regions (see Finucane et al, 201528 for additional details). Of these 24 annotations, the genetic 

signals were significantly enriched for regions that were highly evolutionary conserved in mammals, which 

contain 2.6% of all SNPs but explain 25% of the loneliness heritability captured by all SNPs (Figure 4). 
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Figure 3: Enrichment of gene-expression for 53 specific tissue types using MAGMA and LDscore regression. 

 

 

 

Figure 4: Enrichment of 24 annotations not specific to cell-types, ordered by size (proportion of SNPs). 
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GENETIC CORRELATIONS   

Genetic correlations31 were estimated for loneliness and 60 characteristics from 9 domains including 

anthropomorphic traits, cardiovascular disease risk, cognitive functions, mental health, reproduction, and 

substance use. After applying a Bonferroni corrected significance threshold of 8.3 × 10-4, 34 out of 60 traits 

showed a significant genetic correlation with loneliness (Figure 5 & supplementary_file.csv). A significant 

signal was observed at least once from each of the 9 domains, with the strongest genetic correlations 

observed for mental health, especially for depressive symptoms (rg = .88, p = 2.2 × 10-101), subjective 

wellbeing (rg = -.77, p = 8.0 × 10-50), and major depressive disorder (rg = .64, p = 2.8 × 10-114). In the health 

domain, tiredness and self-rated health showed the strongest correlations (rg = .74, p = 3.0 × 10-59, and rg 

= -.56, p = 2.5 × 10-44, respectively; more loneliness = more tiredness and worse health), while father’s and 

mother’s age of death showed modest but significant negative genetic correlations with loneliness (rg = -

.32, p = 1.8 × 10-5, and rg = -.38, p = 1.8 × 10-5, respectively). Four out of five personality dimensions showed 

a significant genetic correlation with loneliness, with neuroticism showing the highest association (rg = 

.69, p = 2.4 × 10-49), a genetic association that has recently been shown to be a major driver for the 

association between loneliness and personality.14 SES indicators related to economic success (Townsend 

index and income; rg = .43, p = 7.7 × 10-12, and rg = -.50, p = 3.5 × 10-51, respectively) showed a considerably 

higher genetic correlation with loneliness than indicators of cognition (IQ and educational attainment; rg 

= -.19, p = 6.1 × 10-6, and rg = -.28, p = 3.7 × 10-23, respectively). Genetic correlations with traits from the 

reproduction domain indicate that having more offspring and having offspring at a younger age is 

genetically associated with higher levels of loneliness, an association that is in the other direction for 

phenotypic correlations.12 For substance use, alcohol consumption had a significant genetic correlation 

with loneliness (rg = -.16, p = 4.9 × 10-4), with more alcohol consumption being associated with lower 

loneliness, while alcohol dependence had a larger genetic correlation in the opposite direction (rg =.43, p 

= 9.7 × 10-7). In the social circle domain, family and friendship satisfaction both showed significantly larger 

genetic correlations with loneliness (rg = .56, p = 2.9 × 10-42, and rg = .55, p = 4.6 × 10-31, respectively; more 

loneliness = less satisfaction) than the frequency of friend and family visits (rg = .18, p = 9.8 × 10-6; more 

loneliness = less visits), suggesting that the subjective experience of social isolation may play  a larger role 

in feeling lonely than objective social isolation.  
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Figure 5: Genetic correlations as computed with LD score regression. Red stars are significant after Bonferroni correction. 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 14, 2018. ; https://doi.org/10.1101/468835doi: bioRxiv preprint 

https://doi.org/10.1101/468835
http://creativecommons.org/licenses/by-nc-nd/4.0/


15 
 

PheWAS on the polygenic score for loneliness  

Five cardiovascular, three neuropsychiatric, and one of the metabolic phenotypes were significantly 

associated with genetic propensity to loneliness after Bonferroni correction for the 897 phenotypes tested 

(p < 5.57 × 10-5) (Figure 6). Mood disorders yielded the most significant association with the loneliness 

polygenic score (Ncases = 3,299, OR = 1.11, SE = .02 , p = 2.8× 10-7), followed by depression (Ncases = 2,969, 

OR = 1.11, SE =.02   p = 3.9 × 10-7), heart failure (Ncases = 818, OR = 1.19, SE = .03, p = 4.9 x 10-6),  ischemic 

heart disease (Ncases = 5,797 OR = 1.09, SE = .02 , p = 5.7 × 10-7), and tobacco use disorder (Ncases = 1,705, 

OR = 1.12 , SE = .03 , p = 1.2 × 10-5). Complete results may be viewed interactively at 

https://sealockj.shinyapps.io/loneliness_phewas/loneliness_phewas.Rmd.  

In our subsequent analysis of quantitative lipid traits, the polygenic score for loneliness modestly 

but significantly predicted reduced HDL (R2 = 0.16%, p = 2.99 x 10-5) and increased triglycerides (R2 = 0.16%, 

p = 2.40 x 10-5), but not LDL levels (R2 = 0.05%, p = 2.62 x 10-2). To benchmark these results, we compared 

them to the proportion of variance explained by a polygenic score for CAD developed using the beta 

weights from the CARDIOoGRAMplusC4D study (http://www.cardiogramplusc4d.org/data-

downloads/).43 The proportion of variance explained by the polygenic score for CAD was similar in 

magnitude to the variance explained by the loneliness polygenic score for clinically evaluated HDL (R2 = 

0.34%, p = 6.96 x 10-10), triglycerides (R2 = 0.16%, p = 2.40 x 10-5), and LDL (R2 = 0.03%, p = 6.05 x 10-2).  As 

a negative control (see Supplementary Figure 3), we also tested whether the loneliness polygenic score 

predicted median height across the medical record and, as expected, observed no significant prediction 

of height (R2 = 0.02%, p = .09) (Supplementary Figure 3).  Details on the best-fit p-value thresholds used 

in these analyses are provided in Supplementary Table 7 and Supplementary Figure 4.  

 

Figure 6: Results of the Phewas on the polygenic score for loneliness, corrected for gender, age, first 10 PCs, and batch. 
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MENDELIAN RANDOMIZATION 

To distinguish genetic correlation from causation, we applied Mendelian Randomization (MR; 

methodology to examine evidence for causal effects of one phenotype on another) to traits that showed 

a significant genetic correlation with loneliness and of which the top SNPs were unlikely to share 

pleiotropic effects with loneliness. We focused on the relationship between loneliness and cardiovascular 

disease and its associated risk factors including: coronary artery disease (CAD), myocardial infarction, HDL 

cholesterol, LDL cholesterol, total cholesterol, triglycerides, BMI, and body fat, which we also found to be 

genetically correlated with loneliness. Of these traits, we selected those with a significant genetic 

correlation with loneliness, namely CAD (rg = .19), triglycerides (rg = .14), BMI (rg = .18), and body fat (rg = 

.25) (see Figure 7). When both gene-exposure and gene-outcome associations are significant and in the 

expected ratio of a causal effect, and the MR assumptions are met,37 this is considered evidence for a 

causal relationship. 

We found evidence for a causal effect of body fat on loneliness using the IVW, weighted median 

and GSMR methods, but not the MR-Egger method (higher body fat = higher loneliness; Table 2 and Figure 

7). Since the effect size of MR-Egger is of similar magnitude to the other two analyses and the MR Egger 

intercept is not significantly different from 0 (p = .90, see Supplementary Table 12), indicating that there 

is no evidence of horizontal pleiotropy for this relationship, it is most likely that this analysis remained 

underpowered due to weak instrument variables.44 There was also evidence for a causal, increasing effect 

of BMI on loneliness, but only with the GSMR method. We note that sample overlap between GWASs 

could cause a bias of MR results in the direction of the observational association. However, sample overlap 

was minimal in the present study (max 3.7%) and so it is unlikely to have affected our findings.  
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Table 2. Two sample, bidirectional Mendelian randomization results 

Exposure Outcome n  IVW Weighted 

median 

MR-Egger GSMR  

  SNPs beta SE P Beta SE p beta SE p SNPs Beta SE p 

Loneliness BMI 9 -.23 .22 .30 .04 .13 .73 .88* 1.72 .62 8 .02 .13 .87 

Loneliness Body fat 9 .00 .20 .997 .05 .13 .73 .58* 1.71 .74 8 .25 .17 .14 

Loneliness Triglycerides  9 -.06 .17 .72 .02 .14 .90 n.a. n.a. n.a. 9 -.09 .14 .53 

Loneliness CAD 12 -.01 .19 .97 .24 .22 .27 n.a. n.a. n.a. 13 .14 .23 .54 

BMI Loneliness 53 .03 .03 .22 .02 .03 .59 .04 .07 .61 65 .06 .02 .004 

Body fat Loneliness  10 .10 .04 .01 .14 .05 .003 .17* .25 .52 10 .12 .04 .001 

Triglycerides Loneliness 41 .00 .01 .85 -.01 .02 .75 -.01 .02 .77 77 .00 .01 0.86 

CAD Loneliness 26 .00 .01 .76 .01 .01 .50 -.02* .02 0.29 31 .03 .02 .20 

*Egger-SIMEX correction applied because of low I2 estimates. n.a. = I2 estimates too low to give reliable results for 

MR-Egger. 

 

 

Figure 7: Two Sample Mendelian Randomization results for the causal effect of body fat on loneliness. 
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DISCUSSION 

Chronic loneliness is strongly associated with physical and mental health, and is a growing concern in 

many societies. In this study we performed a large GWAS meta-analysis which confirmed the polygenic 

architecture of loneliness, and performed follow-up analyses to further investigate the genetic 

architecture of loneliness and its relationship with a wide range of traits. We identified 14 SNPs located in 

12 independent loci that were significantly associated with loneliness. The most significant SNP signal 

came from chromosome 18 within the TCF4 gene, which plays an important role in nervous system 

development and has recently been associated with major depressive disorder (MDD)45. We replicated 10 

loci from a previous GWAS on loneliness15 and report two novel loci on chromosomes 9 and 12 (top SNPs: 

rs2149351 and rs61943369, respectively). 

We identified that the significantly associated variants were disproportionally enriched for 

regions that were conserved in mammals, confirming the biological importance of processes that underlie 

individual differences in loneliness. Additionally, we found that associated variants were highly enriched 

in the brain, in particular in the cerebellum, (frontal) cortex, anterior cingulate cortex, and substantia 

nigra. The cerebellum is mostly known for its modulating role in motor, cognitive, and affective functions, 

and has been shown to play a role in social cognition as well, especially for processes that require higher-

level abstraction away from the current event (i.e., past, future or hypothetical events).46 The prefrontal 

cortex is posited to be involved in the perception of social isolation (i.e., loneliness).47-49 The anterior 

cingulate cortex is functionally connected with the prefrontal cortex in orchestrating emotional and 

physiological adjustments for potential threats and stressors, and is known to be involved the social 

(rather than the physical) pain associated with loneliness.50 The substantia nigra is most known for its role 

in reward and learning, which extends to social contexts as well.51 A recent large GWAS meta-analysis on 

MDD performed similar tissue enrichment analyses and reached only partly the same conclusions: for 

MDD all the same cortical regions were significant (frontal cortex, cortex, anterior cingulate cortex, 

substantia nigra), but none of the cerebellar regions (cerebellar hemisphere and cerebellum).45 This 

suggests that the role of the cerebellar region may be more specific or larger for loneliness. The complex 

processes underlying loneliness likely involve more brain regions, as all 13 brain regions included in the 

enrichment analyses depicted in Figure 3 were nominally significant with p < .05.  

Over 34 out of the 60 traits in the genetic correlation analyses showed a significant genetic 

association with loneliness, suggesting widespread shared genetic influences (e.g., pleiotropic effects) or 

causal relationships between loneliness and several traits. MDD has been strongly associated with 

loneliness in previous studies52-54, but evidence from longitudinal studies indicates that loneliness and 

depression are conceptually and statistically different constructs.53-55 Our results confirm the strong 

biological ties between loneliness, major depression, and depressive symptoms in both research 

ascertained samples and EHR from a hospital population. Our analyses do not provide conclusive findings 
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however regarding the direction of causation in the relationship between loneliness and MDD, due to a 

lack of instrument variables for loneliness that are strong enough for causal inference.  

There are several traits that show a genetic correlation with loneliness that is not in line with the 

expected direction from phenotypic observational data. In observational data, having more offspring has 

been shown to be associated with lower levels of loneliness,12 while the genetic correlations with number 

of offspring and age at first birth indicate an association with loneliness in the opposite direction (i.e., 

having more children or children at an earlier age = more lonely). Alcohol use has also been associated 

with higher levels of loneliness56, while we find a genetic correlation with alcohol consumption in the 

opposite direction. A possible explanation of these contradictory results may be that they are driven by 

the genetic association between loneliness and socio-economic status, which is also associated with many 

life outcomes. We observe a significant genetic overlap between loneliness and SES-related traits (e.g., 

income, educational attainment [EA], social deprivation of the neighborhood), with lower SES indicators 

showing a genetic association with more loneliness (with a particularly strong genetic correlation for 

income: rg = -.50). Number of offspring shows a negative genetic correlation with EA57 (and positive with 

loneliness), age at first birth a positive genetic correlation with EA57 (and negative with loneliness), while 

alcohol consumption shows a positive genetic correlation with EA58 (and negative with loneliness), and 

alcohol dependence a negative genetic correlation with EA59 (and positive with loneliness), which is all in 

line with the negative genetic association between loneliness and EA/SES.    

 Our phenome-wide analysis in a unique EHR dataset recapitulated the genetic correlation results 

and found that genetic propensity to loneliness is associated with increased risk for clinical depression, 

cardiovascular disease, and metabolic diseases such as type-2 diabetes. Furthermore, we found that 

elevated triglycerides and reduced HDL, two well-known risk factors for heart disease, were also 

associated with predisposition to loneliness after adjusting for covariates and even after restricting to 

levels prior to use of antilipemic medications. These findings provide a proof of principle that even in 

clinical settings, polygenic scores can be used to uncover relationships between difficult to measure 

behavioral traits (such as loneliness) and health outcomes. Another important advantage of this out-of-

sample analysis is that by relying on physician assigned ICD codes instead of retrospective self-report (as 

in UK Biobank), we avoid potential reporting biases related to loneliness that may subsequently influence 

correlations between loneliness and health outcomes. One possible limitation of this out-of-sample 

analysis could be the potential for some overfitting because we included all SNPs at a p-value threshold 

of 1. However, this is unlikely to be a substantial driver of our results given that an analysis of loneliness 

polygenic scores using a p-value threshold of 0.05 yielded similar results (Supplementary Figure 5). 

Another important limitation is that polygenic score analyses cannot distinguish pleiotropy from causal 

effects. 

With Mendelian randomization analysis – which can distinguish pleiotropic from causal effects – 

we found evidence of a causal, increasing, effect of body fat on loneliness, and weaker evidence of a 
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causal, increasing, effect of BMI on loneliness. This concurs with a recent MR study reporting that BMI 

increases depressive symptoms and decreases subjective well-being.60 Our evidence for a causal effect on 

loneliness was stronger for total body fat than for BMI, which may be due to body fat being a better 

measure for an unhealthy excess of body weight than BMI. Nonetheless, both findings point to an 

increased body weight causally leading to poorer mental health. Our MR analysis ruled out the possibility 

of horizontal pleiotropy among the instrument variables used in this analysis. However, it is important to 

note that the condition of “no pleiotropy” is only required for the instrument variables themselves and 

need not apply genome-wide. Indeed, it is possible (and likely) that the relationship between loneliness 

and health outcomes is influenced by bidirectional causal effects and pleiotropic biological effects. More 

research is needed to tease apart the complex etiology of these states and traits. 

 We identified 12 genome-wide significant loci and a total of 40 significantly associated genes. 

Follow-up analyses identified specific brain tissues in cortical and cerebellar regions involved in loneliness 

risk. We showed that a wide range of traits are genetically associated with loneliness and extended these 

findings to an electronic health record system. Limitations of the study include the sample size, which, 

while large even by modern GWAS standards is still modest for detection of genome-wide significant loci 

for loneliness given its heritability and heterogeneity. Future work needs to establish the etiology of these 

associations, and to determine which additional loci explain the rest of common genetic variation 

underlying loneliness, which together explain ~8% of individual differences. 
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Supplementary Table 1: Subjects and phenotype details per cohort 

Dataset Sample Size % Females Mean Age (SE) Loneliness Measure 

UK Biobank61 413,337 54% 56.5 (8.1) Do you often feel lonely? (yes/no) 
23andMe62 20,591 55% 59.6 (16.0) 9-item questionnaire (4-point scale): 

1) I feel in tune with the people around me 
2) There are people I can turn to. 
3) I feel alone 
4) I feel part of a group of friends 
5) I have a lot in common with the people around me 
6) I feel isolated from others 
7) There are people who really understand me 
8) I am unhappy being so withdrawn 
9) There are people I can talk to 

Netherlands Twin 
Register63 

11,046 63% 44.6 (17.1) 3-item questionnaire (3-point scale):  
1) How often do you feel left out? 
2) How often do you feel isolated from others? 
3) How often do you feel that you lack companionship? 

Health & Retirement 
Study13 

7,556  59% 67.2 (10.3) 3-item questionnaire (3-point scale):  
1) How often do you feel left out? 
2) How often do you feel isolated from others? 
3) How often do you feel that you lack companionship? 

Rotterdam Study64 7,764  57% 67 (10.7) Did you feel lonely during the past week? (4-point scale) 
Sweden – SALTY65 5,750  52.2% 49.8 (4.2) Did you feel lonely during the past week? (4-point scale) 
Sweden – TwinGene65 9,617 53% 58.4 (8.0) Did you feel lonely during the past week? (4-point scale) 
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Supplementary Table 2: Genotyping, imputation, QC, and GWAS information per cohort 

Dataset Microarray(s) Imputation 

Panel 

SNP MAF, INFO, 

HWE exclusion 

thresholds 

N SNPs after 

QC 

Identification of 

European 

Ancestry 

GWAS analysis 

UK Biobank61 UK BiLEVE array 

& UK Biobank 

Axiom Array 

Haplotype 

Reference 

Consortium 

MAF <.005;  

INFO <.8; 

HWE p < 10-10 

7,954,332 Self-report & PCA Logistic regression in PLINK in 3 

separate groups of unrelateds: 

332,991 + 57,865 British, and 

22,481 of Non-British European 

(74,142 cases & 339,195 controls). 

Covariates: sex, age, 40 PCs. 

23andMe62 23andMe custom 

genotyping array 

platforms62 

1000 Genomes 

(Phase 1 

Version 3) 

MAF <.01;  

INFO <.5; 

HWE p < 10-20 

14,113,458 Ancestry 

Composition66 

Linear regression using the 

internal 23andMe pipeline.62  

Covariates: age, sex, 5 PCs, 

genotype platform. 

Netherlands Twin 

Register63 

Several Illumina 

and Affymetrix 

platforms63,67 

Haplotype 

Reference 

Consortium 

MAF <.01;  

INFO <.4; 

HWE p < 10-5 

6,917,809 PCA PLINK linear regression with within 

family clustering. 

Covariates: sex, age, 10 PCs 

Health & Retirement 

Study13 

Illumina Human  

Omni-2.5 

Haplotype 

Reference 

Consortium 

MAF <.01;  

INFO <.5; 

HWE p < 10-6 

5,768,559 NA Linear mixed model in GEMMA.  

Covariates: sex, age, marital status 

Rotterdam Study64 Several Illumina 

and Affymetrix 

platforms64 

Haplotype 

Reference 

Consortium 

MAF <.05;  

INFO <.4;  

HWE p <10-7 

6,984,254 PCA Linear mixed model in GCTA. 

Covariates: sex, age, 10 PCs 

Sweden – SALTY65 Illumina Infinium 

PsychArray-24 

1000 Genomes 

(Phase 1 

Version 3) 

MAF < .01;  

INFO < .8; 

HWE p < 10-6 

8,511,408 PCA Linear mixed model in 

RAREMETALWORKER. 

Covariates: sex, age, 10 PCs 

Sweden – TwinGene65 Illumina 

OmniExpress 

1000 Genomes 

(Phase 1 

Version 3) 

MAF < .01;  

INFO < .8; 

HWE p < 10-6 

8,834,367 PCA PLINK linear regression with within 

family clustering. 

Covariates: sex, age, 10 PCs 
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Supplementary Table 3: Sample size, lambda, intercept, and h2 estimated from LD score regression 

 UKB 

unrelateds 

UKB 

relatives 

UKB NBW 23andMe HRS NTR Rotterdam Sweden - 

SALTY 

Sweden - 

TwinGene 

N 332,991 57,862 22,481 20,591 7,556 11,046 7,764 5,750 9,617 

Lambda 1.233 1.053 1.011 1.047 1.017 1.002 1.002 1.011 1.011 

Intercept 1.017 

(.008) 

1.012 

(.007) 

1.005 

(.007) 

1.001 

(.006) 

1.006 

(.006) 

1.005 

(.006) 

.994 (.006) .99 (.007) 1.020 

(.006) 

h2 .081 (.01) .091 (.02) .026 (.04) .096 (.02) .106 (.06) .002 (.04) .031 (.06) .108 (.08) -.047 (.04) 
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Supplementary Table 4: Significant associations of S-PrediXcan gene-based association analyses (Bonferroni corrected significance threshold = 0.05/37281 = 1.34 × 10-6)   

Gene 
Gene 
name 

Z score Effect Size p-value Var g 
Pred perf 

r2 
Pred perf 

pval 
N SNPs 

used 
N SNPs in 

cov 
N snps in 

model 
Tissue 

ENSG00000249484 
AC091969.

1 
6.176 0.080 6.58E-10 0.030 0.112 1.25E-04 23 31 31 caudate 

ENSG00000196666 FAM180B -5.700 -0.042 1.20E-08 0.074 0.076 1.53E-03 22 26 26 cerebellum 

ENSG00000165915 SLC39A13 -5.631 -0.039 1.79E-08 0.092 0.168 1.77E-05 11 20 20 prefrontal cortex 

ENSG00000124198 ARFGEF2 -5.434 -0.138 5.50E-08 0.006 0.105 5.31E-04 7 12 12 cortex 

ENSG00000109919 MTCH2 -5.420 -0.050 5.96E-08 0.052 0.140 8.06E-05 23 30 30 prefrontal cortex 

ENSG00000196666 FAM180B -5.415 -0.438 6.12E-08 0.001 0.140 1.24E-04 1 12 12 prefrontal cortex 

ENSG00000196666 FAM180B -5.415 -1.961 6.12E-08 0.000 0.049 2.51E-02 1 13 13 
cerebellar 

hemisphere 

ENSG00000109919 MTCH2 -5.399 -0.036 6.71E-08 0.101 0.226 1.36E-07 12 24 24 nucleus accumbens 

ENSG00000109919 MTCH2 -5.388 -0.240 7.13E-08 0.002 0.118 2.91E-05 9 18 18 caudate 

ENSG00000109919 MTCH2 -5.376 -0.038 7.61E-08 0.080 0.121 4.08E-04 18 22 22 
anterior cingulate 

cortex 

ENSG00000165915 SLC39A13 -5.355 -0.071 8.54E-08 0.022 0.039 3.35E-02 4 5 5 caudate 

ENSG00000109919 MTCH2 -5.298 -0.031 1.17E-07 0.121 0.280 4.48E-10 33 54 54 cortex 

ENSG00000165916 PSMC3 -5.229 -0.036 1.71E-07 0.093 0.078 3.67E-03 38 63 63 
cerebellar 

hemisphere 

ENSG00000165915 SLC39A13 -5.143 -0.040 2.70E-07 0.071 0.064 4.10E-03 22 39 39 cerebellum 

ENSG00000233276 GPX1 5.094 0.030 3.51E-07 0.148 0.215 1.45E-07 49 55 55 prefrontal cortex 

ENSG00000165915 SLC39A13 -5.037 -0.068 4.74E-07 0.021 0.052 2.66E-02 11 18 18 
anterior cingulate 

cortex 

ENSG00000172247 C1QTNF4 4.943 0.048 7.70E-07 0.050 0.111 5.64E-04 30 46 46 
cerebellar 

hemisphere 

ENSG00000233276 GPX1 4.937 0.041 7.92E-07 0.072 0.183 1.46E-05 66 74 74 
anterior cingulate 

cortex 

ENSG00000115947 ORC4 4.915 0.049 8.88E-07 0.050 0.131 1.57E-04 14 20 20 
cerebellar 

hemisphere 

ENSG00000213619 NDUFS3 -4.849 -0.033 1.24E-06 0.094 0.121 1.35E-04 25 51 51 
cerebellar 

hemisphere 

Gene name = as listed by the Transcriptome Model, generally extracted from Genquant (http://www.gencodegenes.org/); Z score = summary PrediXcan's association
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Supplementary Table 5.  Characteristics of genotyped BioVU patients with lipid measurements 

  HDL LDL TG 

Number of individuals 10722 10492 11012 
Number of observations 74171 68737 77812 
Median lab value, mean (sd) 49.1 (17.3) 99.7 (32.6) 149.7 (92.3) 
Age in years at median lab value, mean (sd) 59.4 (13.8) 59.6 (13.8) 59.1 (13.9) 
Multiple observations       

Number of individuals with >1 observation (%) 8160 (76.1) 7918 (75.5) 8366 (76.0) 
Number of observations per individual, mean (sd) 8.8 (8.5) 8.4 (8.1) 9.0 (9.4) 
Number of years between first and last observations, mean (sd) 7.7 (5.4) 7.3 (5.0) 7.6 (5.4) 
Lab value range within an individual, mean (sd) 20.1 (14.4) 57.3 (39.6) 147.2 (145.0) 
Median absolute deviation within an individual, mean (sd) 6.5 (4.9) 18.4 (13.5) 44.5 (44.2) 

Anti-lipemic medications       
Number of individuals with pre-medication lab values (%) 6742 (62.9) 6455 (61.5) 7060 (64.1) 
Number of pre-medication observations ( % of all observations) 23686 (31.9) 21434 (31.2) 26939 (34.6) 
Median of pre-medication lab value, mean (sd) 52.0 (18.3) 115.2 (35.2) 153.0 (101.5) 
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Supplementary Table 6.  Validation of EHR-derived lipid values.  Polygenic scores for HDL, LDL, and TG constructed from SNPs 

below pT=5x10-8 in the discovery sample were associated with the same trait in BioVU. 

Phenotype R2 P N SNPs 

HDL 0.056 1.29E-140 186 

HDL-premed 0.057 3.18E-91 186 

LDL 0.017 4.43E-42 80 

LDL-premed 0.029 7.89E-43 80 

TG 0.044 8.79E-110 124 

TG-premed 0.046 3.60E-75 124 
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Supplementary Table 7. Prediction of lipid levels in BioVU using polygenic scores for CAD and loneliness.  We identified the best 

fit p-value threshold for each trait pair by iterating over thresholds from 5 × 10-8 to 0.5 in increments of 5 × 10-4.  R2 is the 

proportion of variance in the trait explained by the polygenic score, p-value is its strength of association, and N SNPs denotes the 

number of SNPs included in the polygenic score at a given p-value threshold.  

Base Phenotype Threshold R2 p-value N SNPs 

CAD HDL 1 0.00343 6.96E-10 121732 

CAD LDL-premed 5.00E-08 0.00277 2.30E-05 42 

CAD TG 0.0169501 0.00220 7.52E-07 7636 

CAD Height 0.00085005 0.00052 2.40E-03 931 

loneliness HDL 0.16985 0.00157 2.99E-05 35861 

loneliness LDL-premed 0.00055005 0.00016 3.13E-01 832 

loneliness TG 0.48185 0.00161 2.40E-05 68271 

loneliness Height 0.0569001 0.00017 8.69E-02 17438 
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Supplementary Table 10: Cochran's heterogeneity statistic for Inverse Variance Weighted (IVW) bidirectional two-sample 

Mendelian randomization analyses 

Exposure Outcome n Cochran’s Q 

  SNPs Q p 

Loneliness BMI 9 60.515 3.69E-10 

Loneliness Body fat 9 25.294 0.001 

Loneliness Triglycerides 9 27.321 0.001 

Loneliness CAD 12 16.231 0.133 

BMI Loneliness 53 120.142 2.59E-07 

Body fat Loneliness 10 14.308 0.112 

Triglycerides Loneliness 41 46.209 0.231 

CAD Loneliness 26 32.141 0.227 

 

Supplementary Table 11: I-squared statistic  

Exposure Outcome n   

  SNPs I2 

Loneliness BMI 9 0.59 

Loneliness Body fat 9 0.88 

Loneliness Triglycerides  9 0.00 

Loneliness CAD 12 0.00 

BMI Loneliness 53 0.91 

Body fat Loneliness 10 0.60 

Triglycerides Loneliness 41 0.98 

CAD Loneliness 26 0.86 

I2 quantifies heterogeneity between the genetic variants in an instrument and indicates whether the ’NO 

Measurement Error’ (NOME) assumption has been violated. If I2  is smaller than 0.9, the NOME assumption is likely 

to be violated.  
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Supplementary Table 12: MR-Egger intercept, indicating horizontal pleiotropy, for bidirectional two-sample Mendelian 

randomization analyses 

Exposure Outcome n  Egger intercept 

  SNPs intercept SE p 

Loneliness BMI 9 -0.020* 0.033 0.556 

Loneliness Body fat 9 -0.010* 0.034 0.771 

Loneliness Triglycerides  9      n.a. n.a. n.a. 

Loneliness CAD 12 n.a. n.a. n.a. 

BMI Loneliness 53 0.000 0.002 0.940 

Body fat Loneliness 10 -0.002* 0.009 0.797 

Triglycerides Loneliness 41 0.000 0.001 0.817 

CAD Loneliness 26 0.003* 0.002 0.116 

*Egger-SIMEX correction applied because of low I2 estimates. n.a. = I2 estimates too low to give reliable results for 

MR-Egger. 
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Supplementary Figure 1: Manhattan plot of the gene-based analysis showing 38 significantly associated genes 
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Supplementary Figure 2.  SNP-based heritability (h2
SNP) of lipid values in BioVU and in the discovery dataset (Global Lipid 

Genetics Consortium). BioVU h2
SNP values were estimated by restricted maximum likelihood models in GCTA while discovery 

dataset h2
SNP values were estimated by LD score regression and extracted from LD Hub (http://ldsc.broadinstitute.org/lookup/). 
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Supplementary Figure 3. Polygenic scores for loneliness are associated with lipid levels in BioVU.  The proportion of variability 

explained (R2) by the loneliness polygenic scores is similar to that of a CAD polygenic scores, while neither polygenic scores are 

associated with height (negative control).   
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A. B.  

C.  

Supplementary Figure 4. High-resolution scoring of polygenic scores for CAD and loneliness into HDL (A), pre-medication LDL 

values (B), and triglycerides (C). We identified the best-fit pT for each trait pair (black dot) by iterating over p-value thresholds 

from 5 × 10-8 to 0.5 in increments of 5 × 10-4. 
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Supplementary Figure 5: Results of the Phewas on the polygenic score for loneliness, corrected for gender, age, first 10 PCs, and 

batch. The loneliness polygenic score used here is constructed using only SNPs that reach p<.05 in the GWAS meta-analysis.  
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Supplementary Figures on Mendelian Randomization results: 

Loneliness  BMI 

 

 

Loneliness  body fat 
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Loneliness  triglycerides 

 
 

Loneliness  CAD 
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