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Abstract 

Morphological surface features are a record of genetic and developmental processes as 

well as environmental influences. The 3D geometric “terrain” of the surface consists of slopes 

via tangents, peaks and valleys via normals, smoothness of the transition between peaks and 

valleys, and point connections as flatness or curvature among all features. Such geometric 

quantities can be used to indicate morphological changes in pattern formation over time. 

Quantified 3D surface features as geometric pattern ensembles may be representative of 

structural snapshots of the morphogenetic process.  

 For diatoms, silica valve formation and pattern morphogenesis has been modeled using 

Turing-like and other algorithmic techniques. Models have been created to mimic the way in 

which diatoms exhibit the highly diverse patterns on their valve surfaces. How the created 

surface features are related to one another is not necessarily determined via such methods. With 

the diatom valve face structure of layered areolae, cribra, and other morphological characters, 

pattern formation exhibits different combined geometries unfolding as 3D structural ensembles 

in particular spatial arrangements. Quantifying ensemble 3D surface geometries is attainable via 

models devised using parametric 3D equations and extracting surface features via partial 

derivatives for slopes, peaks and valleys, smoothness, and feature connectedness. Differences in 

ensemble 3D surface features may be used to assess structural differences among selected diatom 

genera as indicators of different valve formation sequences in pattern generation and 

morphogenesis. 
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Introduction 

 

 Morphogenesis is expressed externally in the morphological patterns of organisms as a 

result of internally occurring genetic, cytological and developmental processes. Morphology of 

an organism is what we perceive. We look at an organism to register its external features in our 

mind—its size, its color, its shape. When describing these features, we often characterize them as 

measurable and countable attributes with boundaries. That is, we assign numerical descriptors 

about how much we see. For example, the length of a given feature, the number of repetitions of 

a given feature, and the amount of color and geometry of shape of a given feature are all 

observations that tell us something measurable about morphological attributes. All of these 

morphological measures are interpreted to have biological meaning. 

 Other aspects of morphology are evident, but not necessarily so easily summarized as a 

quantity. How smooth is the surface? How do peaks and valleys vary on the surface? Are some 

places on the surface much more pronounced than others? How flat or curved is the surface? All 

of these morphological attributes may have biologically significant meaning that is just as 

important as countable features. All of the questions involve some feature of the organism’s 

surface and its three-dimensionality. Measuring the surface in terms of the attributes in question 

requires looking at three-dimensional (3D) surface geometry and ensembles of those geometries. 

Morphological surface features are a record of the processes necessary to produce the 

way an organism looks. Surface features are identifiable from points to combinations of 

geometric arrangements of points and contours. The geometric “terrain” of the surface consists 

of slopes via tangents, the peaks and valleys via normals, smoothness at transitional zones 

between peaks and valleys, and point connections as curvature or flatness between tangents and 
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normals spatially tying multiple features together. Each of these geometric quantities can be used 

to indicate changes with regard to morphological characters and their status in terms of 

thickness, roundness, sharpness, or other qualitative attributes relating to their formation over 

time. Quantified surface features may be used to represent structural features and changes during 

morphogenesis as ensembles. That is, the geometry of morphology is quantifiable as ensemble 

surface features in organisms. Because of their elaborate geometric morphology, diatoms would 

qualify as model systems (De Tommasi et al. 2017) for study using ensemble surface features 

(Fig. 1).  

 For diatoms, silica valve formation and pattern morphogenesis has been of interest and 

modeled using Turing (1952)-like and similar algorithmic techniques (e.g., Gordon and Drum 

1964; Parkinson et al. 1999; Gordon et al. 2009). Models have been created to mimic the way in 

which diatoms exhibit the highly diverse patterns evident on their valve surfaces. To date, such 

techniques have been useful in creating patterns at multiscale levels but have not been matched 

with actual morphogenetic steps. Created surface features that are related to one another via 

biological processes has not been determined via such methods.  

Diatom valve formation during morphogenesis can be “cataloged” as geometric surface 

changes that might have some relation to underlying biological processes. Absent direct 

matching with biological processes, a geometric interpretation can be qualitatively relational in 

terms of ensembles of morphological changes over time. With the striking geometry of the 

scaffolded structure of the diatom valve face of layered areolae, cribra, and other morphological 

characters, valve formation has different combined geometries from layer to layer combining 

such structural elements in a spatial arrangement. Quantifying the surface geometries is 

attainable using parameterized 3D surface models and extracting the geometry of the surface via 
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mathematical operations on partial derivatives as the morphometric attributes of slopes, peaks 

and valleys, smoothness, and curvature or flatness via feature connectedness. These quantified 

surface ensemble surface features are useful to elucidate potential patterns in silica deposition 

and valve formation steps.That is, the differences in ensembles surface features as morphological 

boundaryless overlapping characters for various groups of diatom taxa may be used as indicators 

of different valve surface pattern development representing potential morphogenetic changes 

during valve formation or cell growth. 

 

Background 

 

Differential geometry in 3D surface morphology 

  

Many factors are involved in characterizing 3D surface geometry. To start, the whole 

organism surface may be characterized as an object in 3D (x, y, z) space. A system of parametric 

3D equations is used to model the whole organism surface (e.g., Pappas and Miller 2013), and 

this enables extracting various geometric features of the surface that may be matched to or 

interpreted as morphological attributes. Variables x, y, z parameterized by u, v are used in the 

characterization of a point anywhere on the surface as well as movement from point to point on 

the surface along a given curve on a given organism model.  

 Each point on the surface is composed of a trihedron of vectors defined as a moving 

reference frame. For a curve, a Serret-Frenet frame consists of tangent (t), unit normal (n), and 

binormal (b) vectors, while for a surface, a Darboux frame consists of tangent (t), unit normal 

(principal normal) (u), and tangent normal vectors (v). At the tangent and tangent normal vectors 
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of a point, normal planes at the unit normal can be used to cut the surface and define principal 

directions. Curvature,  , at a point in relation to n and u is un   (Kaplan 1999).   

 Curvature is the rate of change of a tangent line to a curve (do Carmo 1976). The 

maximum and minimum curvatures at a point are the principal curvatures, 1  and 2 . The 

product of the maximum and minimum curvatures is Gaussian curvature. Mean curvature is half 

the sum of the maximum and minimum curvatures. If both 1  and 2  are positive or negative, 

then the surface is locally convex. If 1  is positive and 2  is negative or vice versa, then the 

surface is locally a saddle. If 1  or 2  is equal to 0, then the surface is in between a convex and 

saddle. If 1  and 2  are both equal to 0, then the surface is a plane or a monkey saddle at a flat 

umbilic (Kaplan 1999).  

 Rate of change of a tangent is a first partial derivative with respect to a given curve on a 

surface with arc length, s. All of the tangent lines at every point on the surface are summarized in 

a Jacobian matrix (i.e., Jacobian). Numerical solution to the Jacobian characterizes all the 

tangent lines and planes on the whole organism surface. Tangent lines define an intrinsic metric 

via the arc length and are coefficients of the first fundamental form. The second fundamental 

form defines tangent planes in terms of change in surface shape of the normals with respect to 

the tangents (Koenderink 1990).  

For a 2D patch on a 3D surface, tangent vectors span the tangent plane and serve as a 

basis in a matrix of coefficients for the differential of the tangent vectors. The matrix expressed 

in terms of the first and second fundamental forms represents Gaussian and mean curvature, 

respectively (do Carmo 1976). Using Gaussian curvature, shape can be determined as a general 

characterization of the surface (Koenderink 1990). 
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 There are normals to tangent vectors spanning a tangent plane. The differentiable field of 

the unit normal vectors on the surface is a Gauss map of the tangent space of a point. The 

differential of a Gauss map is expressed as the shape operator or a Weingarten map. The shape 

operator determines all the tangent planes in the neighborhood of a point and is the change in 

surface normals with tangent vectors (Koenderink 1990). 

Rate of change of a tangent line to a curve may be characterized by Gaussian curvature, 

21=K , and mean curvature,
2

21  +
=H . Gaussian curvature is an intrinsic property of a 3D 

surface object without reference to the geometric space in which the object resides, and mean 

curvature refers to the embedding of a 3D surface object in a 3D space and is its extrinsic 

property (Koenderink 1990).  

The first and second fundamental forms as well as Gaussian and mean curvature, 

respectively provides a link from Jacobian to Gauss and Weingarten maps (do Carmo 1976). The 

Jacobian determinant of a Gauss map is Gaussian curvature. Principal curvatures of a 

Weingarten map are eigenvalues and are an indicator of how much the surface bends 

(Koenderink 1990). Principal directions are eigenvectors of a Weingarten map. By projecting the 

covariant derivative of the Weingarten map onto the second fundamental form, the connection 

gradient,  , is obtained. The connection gradient is also the derivative of the trihedron of vectors 

and is represented by Christoffel symbols (do Carmo 1976). The connection matrix of Christoffel 

symbols represents the connection of points and the movement of a Darboux frame as it relates 

to a Serret-Frenet frame on a curve (i.e., trihedron of vectors) on the surface (Koenderink 1990). 

The Jacobian is related to the Christoffel symbols because each row of the Jacobian is a gradient 

(do Carmo 1976; Kaplan 2003), and the Jacobian determinant relates surface connections via 

coordinate transformation (Sochi 2016). 
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Mapping and characterizing 3D morphology 

  

Gauss and Weingarten maps implicitly indicate that functions are used in characterizing 

3D surface morphology. Surface geometry is mapped to make it possible to access different 

morphological attributes as ensemble features of whole organism form or surface patches. The 

link between the first and second fundamental forms and the Jacobian has been elucidated, and 

from this, characterizing surface morphology in the form of the Hessian matrix (i.e., Hessian), 

Laplace operator (i.e., Laplacian) and Christoffel symbols are related to the Jacobian. All of 

these quantities are associated with different aspects of ensemble 3D morphology as ensemble 

surface features.  

 

3D morphology quantified as ensemble surface features 

  

The Jacobian characterizes the sloping a 3D surface that can be viewed as changes in the 

contours of that surface. Steepness or shallowness of slopes at a given u, v coordinate can be 

characterized in the x-, y-, and z-directions resulting in a Jacobian. The steepest and shallowest 

points as well as those points that indicate a transition from shallow to steep slopes (or vice 

versa) are calculated as second partial derivatives. These slopes are quantifications of local 

maxima, minima and saddle points (i.e., saddles) with the highest maximum and lowest 

minimum as global values. The Hessian consists of second partial and mixed partial derivatives 

so that the Jacobian is transformed from a six element to a 12-element matrix. 
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 When considering a patch as a tangent plane, the Hessian is much easier to calculate. 

Because x and y define a plane, only the z-direction needs to be considered, and in this case, the 

patch is a Monge patch (Koenderink 1990). The z-direction is the height at each point on a patch, 

and the partial derivatives of z with respect to u and v from the Jacobian are the maximum and 

minimum slopes that represent a morphology gradient of the direction of maximum height of the 

surface as normals to the tangent plane of the surface. The magnitude of maximum height is the 

square root of the sum of the second partial derivatives of z with respect to u and v. These second 

partial derivatives along with the mixed second partial derivatives comprise the Hessian for z. 

Mixed second partial derivatives of z represent a combination of slopes of the morphology at that 

point on the surface. Movement of the change in height along a curve on the surface determines 

the effect of a combination of slopes on the characterization of morphology. 

 From the Hessian, the sum of the elements of the diagonal is the Laplacian, 2 , and is 

the divergence of the gradient on the surface. Taylor expansion of the Laplacian around zero 

gives the state of the surface under conditions of no change in equilibrium and as a measure of 

stability that is solvable by finite differences (Weinberger 1965). Stability at equilibrium is also 

equivalent to being a measure of smoothness. Each of the terms from the finite differences 

approach with respect to u and v are eigenvectors, and the first term may be used to indicate 

approximate smoothness. Because the diagonal elements of the Hessian are used to calculate the 

Laplacian, it is these elements that are the eigenvalues of the eigenvectors. The variation in 

smoothness is evaluated by the sign of the sum of the eigenvalues or trace that is the Laplacian. 

That is, the Laplacian measures the degree to which perturbations on the surface reflect the 

smoothness of surface morphology. 
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 Surface feature connections via Christoffel symbols are also a measure of the degree of 

flatness or curvature of the surface (Koop 1993). For Christoffel symbols that are vanishing, the 

surface is flat. That is, for zero Gaussian curvature and Christoffel symbols at zero, the surface is 

flat (Misner 1973; Sochi 2016). The connection between highly textured and smooth surfaces are 

summarized in the Christoffel symbols as an indicator of changing curvature and flatness both 

vertically and horizontally across a contiguous surface morphology. 

 

Morphogenetic descriptors from quantified ensemble 3D surface features of centric diatoms  

 

Diatom growth patterns follow two general tracks—one for centric diatoms, and the other 

for pennate diatoms (Round et al. 1990). Centric diatom valve formation may be characterized 

simply as growth from an annulus to the valve margin, while pennate diatoms exhibit growth 

from a sternum to the valve margin (e.g., Schmid and Volcani 1983). Growth is horizontal across 

the valve face in 2D and horizontal and vertical in 3D. In the vertical aspect of the diatom growth 

system, the 3D surface may be characterized as layers of morphology. Quantitatively, as each 

layer is accounted for, vertical growth of the organism can be modeled using a series of systems 

of parametric 3D equations. The relation between developmental growth and 3D morphology is 

measurable as the change in whole surface morphology by additional surface morphology, i.e., 

ensemble 3D surface morphologies. This change is more precisely a starting morphology plus an 

additional morphology. The addition is integrated into the original whole so that a new system of 

parametric 3D equations emerges from the original system. As subsequent additions are made, 

the cumulative result is modeled as the final valve produced after valve formation is completed. 
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Purposes of this study 

 

This study will use Schmid and Volcani’s (1983) schema to characterize ensemble 3D 

surface changes in the modeling of centric diatom valve formation as a facet of diatom 

morphogenesis. Models will be created using systems of parametric 3D equations for each 

sequence of valve formation steps. The ensemble 3D geometric surface properties are 

quantifiable as the Jacobian, Hessian, Laplacian, and Christoffel symbols from slopes, peaks-

valleys-saddles, smoothness, and connectedness (via flatness or curvature), respectively. 

Ensemble surface geometric features and the degree to which they change during valve 

formation is used to characterize a constructed diatom morphogenetic system with regard to 

silica deposition implicitly over time.  

 

Background on centric diatoms used as models  

 

Centric diatom taxa chosen for study as exemplars were Actinoptychus senarius, 

Arachnoidiscus ehrenbergii and Cyclotella meneghiniana. These taxa were readily modeled 

using parametric 3D equations and represent three widely different valve surfaces exhibiting 

distinctly different features associated with silica deposition during valve formation. Ensemble 

valve surface features are readily measured to illustrate quantitatively the distinctions among the 

taxa during valve formation as a part of the morphogenetic process.  

Of the three exemplar centric diatom taxa, Actinoptychus senarius exhibits a circular 

buckling pattern as alternating undulations of sectors emanating from the center (Gordon and 

Tiffany 2011). Such a pattern may be recoverable as a wave front (Nechaev 2017). Rimoportulae 
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are curled, and the valve is divided into sectors by interior folds or walls (Hasle and Sims 1986; 

Lee and Chang 1996). For Actinoptychus senarius, the areolae are a coarse or reticulate pattern 

on the valve surface, and there is a marginal ridge from which external projections of the 

rimoportulae protrude above the valve face ((Hasle and Sims 1986). Actinoptychus senarius has 

a narrow hyaline zone that extends from the central area to around halfway to the valve margin. 

Heterovalvy is not present in Actinoptychus senarius (Gordon and Tiffany 2011).  

Arachnoidiscus ehrenbergii may exhibit heterovalvy during auxospore attachment to the 

epivalve of the parent cell (Kobayashi et al. 2000; Sato et al. 2004). Different valve patterns may 

form as a result of differing attachment sites. Re-creation of a diatom valve was accomplished 

using digital holography, resulting in a model of Arachnoidiscus that was obtained via image 

reconstruction of an optical wave front (Ferrara et al. 2014; Ferrara et al. 2016). The model 

showed elongated central slits in a ring surrounding a small planar central area on the valve and 

pores diminishing in view of a planar field (Ferrara et al. 2014). The ribs emanating from the 

central area are regularly spaced and may be bisected to look like windows on the pore structured 

pattern below (Brown 1933). 

Cyclotella meneghiniana has distinctive striations as ribs regularly placed at the valve 

margin covering about half of the valve face (Schmid and Volcani 1983; Håkansson and 

Chepurnov 1999). These striations form a regular undulating pattern around the valve periphery 

giving Cyclotella meneghiniana its distinct appearance. Marginal rimoportulae are present as 

well (Håkansson and Chepurnov 1999), and the central area has fultoportulae. The clear central 

area exhibits a rather uniform surface (Schmid and Volcani 1983; Håkansson and Chepurnov 

1999). Cyclotella meneghiniana may exhibit heterovalvy (Round et al. 1990). 
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Valve formation as a stepwise process 

 

  

 Schmid and Volcani (1983) determined that diatom valve formation roughly occurs as a 

three-stage process. For centric diatoms, the starting point is the annulus from which radial rows 

of silica are deposited in a horizontal fashion toward the valve margin in a crosswise pattern with 

connections so that a branching pattern materializes. This is the basal layer in which silica is 

deposited to initiate the rudimentary formation of internal rimoportulae as well, from which the 

next stage of valve formation occurs. This next stage involves the initiation of vertical silica 

deposition where the walls of the areolae increasingly emerge, and the round pores that may be 

formed in the first stage become hexagonal or more geometrically defined in shape as well as the 

formation of external rimoportulae occurring. Cribra and cribella mark their formation during the 

third stage in which completion of horizontal silica deposition occurs. The size and spacing of 

these structures is controlled by areolae (Schmid and Volcani 1983) as the successive layers of 

silica are deposited to complete the valve structure to the margin (Rogerson et al. 1986).  

Within the silicalemma and silica deposition vesicle (SDV), new wall formation occurs 

as silica is aggregated (Schmid and Volcani 1983; Rogerson et al. 1986; Round et al. 1990), and 

the plasmalemma molds cell wall shape prior to valve formation (Schmid 1987). From the center 

to the valve margin, structural changes occur in a sequence over time. Common valve structures 

are created for a given species within a genus, and differences in those structures occur via silica 

deposition for multiple species within that genus in terms of the location and timing of structural 

elements emerging during valve formation.  

 

Methods 
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Background on quantitative 3D morphological characterization as ensemble surface measures 

and utility in analysis of valve formation in diatom morphogenesis 

  

Diatom valve formation as a part of morphogenesis may be depicted using 3D surface 

models which represent vegetative cells. Systems of parametric 3D equations of the general form 

𝑥 = 𝑓(𝑢, 𝑣), 𝑦 = 𝑔(𝑢, 𝑣), 𝑧 = ℎ(𝑢, 𝑣) with Cartesian coordinates x, y, z in parameters u, v and 

evaluated on the interval [0, 2𝜋] are used to create the 3D surface models (Pappas 2005a, b; 

Pappas 2008; Pappas 2011; Pappas and Miller 2013; Pappas 2016). Whole centric diatom models 

and their forming valves as developmental stages during morphogenesis are devised as the 

stepwise layering of silica deposition. Each 3D surface model serves as a basis for the procedure 

of obtaining quantified ensemble surface features from the Jacobian, Hessian, Laplacian, and 

Christoffel symbols as degree of surface sloping, degree of peaks-valleys-saddles on the surface, 

degree of smoothness of the surface, and pointwise connectivity and flatness or curvature of the 

changing surface, respectively.  

Initially, analysis of a 3D surface necessarily means defining that surface as a tangent 

space and analyzing this space via a Jacobian of first partial derivatives. Connectivity means 

creating ensemble surface features because partial differentiation is insufficient in constituting 

connection of neighboring tangent spaces. Connection of tangent spaces occurs via Christoffel 

symbols. In a tangent space, change in basis vectors relative to a basis forms the way in which to 

measure a differential change in coordinates in each coordinate direction (Koop 1993); change in 

coordinates occurs via the Jacobian (Kaplan 2003). Connection coefficients are Christoffel 

symbols in which the basis vectors change linearly. As a result, Christoffel symbols are a linear 

connection among ensemble surface features as they give structure to a tangent space. The 
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Hessian and Laplacian based on second partial derivative are used to quantify the degree of 

peaks-valleys-saddles and smoothness, respectively, for each ensemble of surface features, and 

in turn, connected ensembles of surface features are used as the morphogenetic descriptors of 

each step of a diatom valve formation sequence.  

 

Measurement of ensemble surface features and 3D surface morphology 

 

The Jacobian of 3D surface morphology: From parametric 3D equations, first derivatives are 

expressed in terms of first partial derivatives with respect to arc length, s. The differential of s is 

2222 dzdydxds ++= on the surface, and dv
v
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J  as first partial derivative of x, y, z with 

respect to u, v (Kaplan 2003). Numerical solution to the Jacobian characterizes all the tangent 

lines and planes on the whole organism surface. Eigenvalues,  , of the Jacobian may be 

negative, meaning a stable surface at extrema (i.e., maxima or minima), or positive, meaning an 

unstable surface at extrema (i.e., saddles or other extrema that are neither maxima nor minima).  
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Monge patch: For a whole organism 3D surface expressed parametrically as ( )vufx ,= , 

( )vugy ,= , ( )vuhz ,= , 













































=

v

z

u

z
v

y

u

y
v

x

u

x

J . For a patch on or as that surface, ( )vugx ,= , ( )vuhy ,= , 

( ) ( ) ( ) vuhvugfyxfz ,,,, == , and ( ) dv
v

x
du

u

x
dvduvugdx




+




==   , , 

( ) dv
v

y
du

u

y
dvduvuhdy




+




==   , , 

( ) ( )  











+








+











+








== dv

v

y
du

u

y

y

z
dv

v

x
du

u

x

x

z
dydxvuhvugfdz   ,,, . For J, define each row as a 

linear combination of the other. At ( )00 ,vu , the submatrices are 
































v

z

u

z
v

x

u

x

, 
































v

y

u

y
v

x

u

x

, and 
































v

z

u

z
v

y

u

y

 for ( ) ( ) ( )( )vuzvuxzx ,,,, = , ( ) ( ) ( )( )vuyvuxyx ,,,, = , and ( ) ( ) ( )( )vuzvuyzy ,,,, = , 

respectively. By the inverse function theorem, the reparameterizations to Monge patches are 

( ) ( )( )
















z

zxvzxuy

x

,,, , 

( ) ( )( )















zxvzxuz

y

x

,,,

, and 

( ) ( )( )

















z

y

zxvzxux ,,,

, respectively.  

 

First and second fundamental forms and surface characterization of the Monge patch: Tangent 

lines define an intrinsic metric expressed as 𝐼 = 𝐸𝑑𝑢2 + 2𝐹𝑑𝑢𝑑𝑣 + 𝐺𝑑𝑣2 where E, F, G are 

coefficients of the first fundamental form (Koenderink 1990). The second fundamental form 
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defines tangent planes as change in surface shape of the normals with respect to the tangents (do 

Carmo 1976; Koenderink 1990) and are given as 22 2 NdvMdudvLduII ++=  (do Carmo 1976). 

For a Monge patch on a surface, tangent vectors, ( ) ( ) uvvuvu rrrr == ,, , span the tangent 

plane and serve as a basis in a matrix of coefficients for the differential of the tangent vectors. 

For ( ) vruruv vux xxr += , ( ) vruruv vuy yyr += , and ( ) vruruv vuz zzr += , coefficients of the first 

fundamental form are uuE rr = , vuF rr = , vvG rr = , and 

( )( ) ( ) 22
FEGvuvvuuvu −=−= rrrrrrrr . The normal to tangent vectors spanning a 

tangent plane is ( ) ( ) uvvuvu nnnn == ,,  and the unit normal vector is 
vu

vu

rr

rr




. The coefficients 

of the second fundamental form are uvuuL nr = , uvuvM nr = , uvvvN nr = (Koenderink 1990).  

For the matrix of the differentials of the tangent vectors, the first and second fundamental 

forms have a determinant given as 
2

2

FEG

MLN
K

−

−
= , and half the trace is 

( )22

2

FEG

NEMFLG
H

−

+−
=  

which are Gaussian and mean curvature, respectively (do Carmo 1976). Using K, shape can be 

determined as a general characterization of the surface (Koenderink 1990), and H is the overall 

shape of the surface as it is embedded in 3D space (do Carmo 1976). 

 

3D surface characterization via Gauss and Weingarten maps and the fundamental forms: The 

differentiable field of the unit normal vectors, N, on the surface, S, is a Gauss map of the tangent 

space of a point and is given as 𝑁: 𝑆 → 𝑆2 for 𝑆 → 𝑅3 and 𝑆2 = {(𝑥, 𝑦, 𝑧) ∈ 𝑅3; |𝑥2 + 𝑦2 +

𝑧2 = 1 } (do Carmo 1976). The differential of a Gauss map is expressed as the shape operator or 

a Weingarten map and given as ( ) 








−−

−−
−=

−

MFNELFME

NFMGMFLG
FEGDir

12

uvS  where 
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vuuuDir
FEG

MELF

FEG

LGMF
rrn

22 −

−
+

−

−
== S  and 

vuvvDir
FEG

NEMF

FEG

MGNF
rrn

22 −

−
+

−

−
== S . The 

shape operator determines all the tangent planes in the neighborhood of a point and is the change 

in surface normals with tangent vectors (Koenderink 1990). 

 

Peaks, valleys and saddles of surface morphology and the Hessian: For a Monge patch with 

height function z, 
























=

v

z
u

z

z is the maximum height, and the magnitude is 
22













+












=

v

z

u

z
z

. The Hessian is used to express the to the maximum slope at each point on the surface and is 

given as 


































=

2

22

2

2

2

v

z

vu

z
vu

z

u

z

A . The product of the maximum height and maximum slope is 

expressed as 

























































=

2

22

2

2

2

 

v

z

vu

z
vu

z

u

z

v

z
u

z

Az . The characterization of extrema is accomplished by 

calculating eigenvalues of the Hessian, and the product of the eigenvalues is the Hessian 

determinant (Koenderink 1990). For each extremum on the surface of a Monge patch, the 

characteristic equation is hh A  = , where   is the eigenvalue of the Hessian expressed in 

matrix format as A and the column vector h represents z . For the purpose of characterizing 

surface morphology using Az , eigenvalues are measures of the degree of concavity and 

curvature at a given z-value on the surface. 
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Smoothness as a characterization of surface morphology and the Laplacian: Characterizing the 

changes over the course of the surface—the ups and downs—is accomplished by the Laplacian 

(div (grad z)). For a patch, the Laplacian is 0
2

2

2

2
2 =




+




=

v

z

u

z
z  as the trace of the Hessian and 

a measure of the degree of average smoothness over the surface. The Laplacian is a harmonic 

function that is equal to the average of its nearby values on a surface. The Laplacian is also 

representative of steady-state or equilibrium conditions because the average smoothness is 

calculated at 02 = z  (Kaplan 2003).  

To solve this initial value problem with a homogeneous boundary for a patch, separation 

of variables is used and expansion of 2  is a quadratic expressing each term as 

2

22

2

222

2

2

2

2

2

2

2
u

y

y

z

u

y

y

z

u

y

u

x

yx

z

u

x

x

z

u

x

x

z

u

z








+
























+












+
























+








=




 and 

2

22

2

222

2

2

2

2

2

2

2
v

y

y

z

v

y

y

z

v

y

v

x

yx

z

v

x

x

z

v

x

x

z

v

z








+
























+












+
























+








=




. Discretization of the 

second partial derivatives with difference quotients (finite differences) determined by Taylor 

expansion of the Laplacian is given as +


+−
+



+−


−+−+

2

1,,1,

2

,1,,1

,

2
22

v

zzz

u

zzz
z

jijijijijiji

ji . 

Each term is approximately equal to the eigenvectors of 2  in u and v so that 

( )vuzI
du

d

u

z
v , 

2

2

2

2














=




 and ( )vuz

dv

d
I

v

z
u , 

2

2

2

2














=




. For jiz ,

2 , the eigenvalue problem is 

( )uz
du

zd
u=2

2

 and ( )vz
dv

zd
v=2

2

 so that ( )yxz
dv

d
II

du

d
z uv , 

2

2

2

2
2




























+














=  to determine degree of 

smoothness. The eigenvectors ( ) vuji eigeigvueig =,,  are ( ) 







=

L

ui

L
ueig

iu


 sin

2
 and  
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( ) 







=

L

vj

L
veig

jv


 sin

2
 with Dirichlet boundary 0= , and the eigenvalues are 

( )
ji vuji vu  +=,, , or more generally, vu  +=  (Weinberger 1965).  

 

Point connections of 3D surface morphology and Christoffel symbols: The parameterization of a 

surface induces the connection between a 3D space and the embedding of 2D geometric 

structures in that 3D space. As an affine connection, a point is transported along a curve on the 

surface inducing a characterization of the geometry as tangent vectors of the surface in the 

neighborhood of that point in a tangent metric space. The derivative of tangent vectors of the 

surface induces a connection between tangent spaces that are nearby each other.  

Christoffel symbols indicate where curvature is present in a locally flat neighborhood on 

a surface (Koenderink 1990). Values of Christoffel symbols that are non-zero are curvature 

indicators of degree of twisting, turning, contraction, or expansion of a surface locally about a 

given point; for vanishing or zero-valued Christoffel symbols, then flatness is defined in a local 

neighborhood of a given point (Misner 1973).  

The metric tensor as a representation of the first fundamental form (do Carmo 1976) is a 

characteristic of differentiable inner products in tangent spaces, and because of this, Christoffel 

symbols can be expressed via the metric tensor components (Koop 1993; Kaplan 2003). 

Curvature is a characteristic of metric space as the metric tensor enables the calculation of 

distances (Sochi 2016) on space curves or surfaces embedded in 3D space. The metric tensor is 

𝑔𝑖𝑗 = 𝐞𝑖 ∙ 𝐞𝑗 where 𝐞𝑖 and 𝐞𝑗 are basis vectors in a coordinate system, and Christoffel symbols in 

basis k for these basis vectors are 𝜕𝑗𝐞𝑖 = Γ𝑖𝑗
𝑘 𝐞𝑘 (Moore 2013). Surface basis vectors are 

contravariant space vectors or covariant surface vectors (Sochi 2016). A change in basis as a 
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scalar product Γ𝑖𝑗
𝑘𝐞𝑘 ∙ 𝐞𝑙 and 𝑔𝑘𝑙 = 𝐞𝑘 ∙ 𝐞𝑙 produces Γ𝑖𝑗

𝑘𝑔𝑘𝑙 + Γ𝑙𝑗
𝑘𝑔𝑘𝑖 = 𝜕𝑗𝑔𝑖𝑙 (Moore 2013). Basis 

vectors can vary from point to point on a curve or surface, and permutated indices are used to 

generate multiple Christoffel symbols in terms of the metric tensor (Kaplan 2003). 

The addition of indices with respect to covariant and contravariant vectors undergoing 

differentiation will yield covariant and contravariant derivatives such as Γ𝑖𝑗
𝑘 =

𝜕2𝜉𝑝

𝜕𝑥𝑖𝜕𝑥𝑗

𝜕𝑥𝑘

𝜕𝜉𝑝 = Γ𝑗𝑖
𝑘 

where 𝜉𝑝 are standard coordinates from a fixed coordinated system, and the Jacobian is 𝐽 =

𝜕(𝑥𝑖,   … ,𝑥𝑛)

𝜕(𝑥𝑙,   … ,𝑥𝑚)
≠ 0 for the two sets of coordinates in bases i and j (Kaplan 2003) with 𝐽𝑇𝐽 = 𝑔𝑖𝑗 as a 

contravariant component of the metric tensor. The Jacobian is related to Christoffel symbols as a 

generalized gradient (Misner 1973). While the Jacobian is undefined at zero (Kaplan 2003), 

Christoffel symbols at zero are indicators of flatness of the surface (Misner 1973). 

The contravariant and covariant components of the metric tensor are expressed in terms 

of the standard coordinates as 𝑔𝑖𝑗 =
𝜕𝜉𝑝

𝜕𝑥𝑖

𝜕𝜉𝑝

𝜕𝑥𝑗 and 𝑔𝑙𝑗 =
𝜕𝜉𝑝

𝜕𝑥𝑙

𝜕𝜉𝑝

𝜕𝑥𝑗 so that 𝑔𝑖𝑗 =
𝜕𝑥𝑘

𝜕𝑥𝑖

𝜕𝑥𝑙

𝜕𝑥𝑗 𝑔𝑘𝑙 and 𝑔𝑖𝑗 =

𝜕𝑥𝑖

𝜕𝜉𝑘

𝜕𝑥𝑗

𝜕𝜉𝑙 𝛿𝑘𝑙 =
𝜕𝑥𝑖

𝜕𝜉𝑘

𝜕𝑥𝑗

𝜕𝜉𝑘 = 𝑔𝑗𝑖, respectively, where 𝛿 is Kronecker delta (Sen and Powers 2012). 

Permutation of indices produces Γ𝑗𝑙
𝑘𝑔𝑘𝑖 + Γ𝑖𝑙

𝑘𝑔𝑘𝑗 = Γ𝑙𝑗
𝑘𝑔𝑘𝑖 + Γ𝑖𝑙

𝑘𝑔𝑘𝑗 = 𝜕𝑙𝑔𝑗𝑖 and Γ𝑙𝑖
𝑘𝑔𝑘𝑗 + Γ𝑗𝑖

𝑘𝑔𝑘𝑙 =

Γ𝑖𝑙
𝑘𝑔𝑘𝑗 + Γ𝑖𝑙

𝑘𝑔𝑘𝑙 = 𝜕𝑙𝑔𝑙𝑗 (Deserno 2004; Moore 2013). Collecting metric tensor components from 

the Christoffel symbols, and because 𝑔𝑖𝑗𝑔𝑗𝑘 = 𝛿𝑘
𝑖  (Moore 2013), Christoffel symbols can be 

expressed in terms of the metric tensor components as Γ𝑖𝑗
𝑘 =

1

2
𝑔𝑘𝑙 (

𝜕𝑔𝑖𝑙

𝜕𝑥𝑗
+

𝜕𝑔𝑙𝑗

𝜕𝑥𝑖
−

𝜕𝑔𝑗𝑖

𝜕𝑥𝑙
) =

1

2
𝑔𝑘𝑙(𝜕𝑗𝑔𝑖𝑙 + 𝜕𝑖𝑔𝑙𝑗 − 𝜕𝑙𝑔𝑗𝑖) (Kaplan 2003; Moore 2013).  

 The first fundamental form coefficients and partial derivatives that are related to the 

metric tensor are used to express the connections between tangent spaces and can be summarized 
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in matrix form as Γ𝑙 ≡ [

Γ𝑖𝑖
𝑙 Γ𝑖𝑗

𝑙 Γ𝑖𝑘
𝑙

Γ𝑗𝑖
𝑙 Γ𝑗𝑗

𝑙 Γ𝑗𝑘
𝑙

Γ𝑘𝑖
𝑙 Γ𝑘𝑗

𝑙 Γ𝑘𝑘
𝑙

] (Weisstein 2002). Christoffel symbols of the first kind 

via covariant surface basis vectors (Sochi 2016) are expressed in terms of the first fundamental 

form and its partial derivatives as Γ11
1 𝐸 +Γ11

2 𝐹 =
1

2
𝐸𝑢, Γ11

1 𝐹 +Γ11
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1

2
𝐺𝑢, and Γ22

1 𝐹 +Γ22
2 𝐺 =

1

2
𝐺𝑣 (do Carmo 1976; Sochi 

2016). Christoffel symbols of the second kind via contravariant surface basis vectors are given as 
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FEG
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−
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= with Γ12

1 = Γ21
1  and Γ12

2 = Γ21
2  resulting from a 

torsion-free orientation of a space curve with respect to a Serret-Frenet frame at a given point on 

the surface (do Carmo 1976; Sochi 2016). The covariant surface metric tensor is 𝑔𝑖𝑗 =

1

𝐸𝐺−𝐹2 [
𝐺 −𝐹

−𝐹 𝐸
], and the contravariant surface metric tensor is 𝑔𝑖𝑗 = [

𝐸 𝐹
𝐹 𝐺

] (Sochi 2016).  

 For a parametric surface, 𝐫 (𝑢, 𝑣) = (𝑥(𝑢, 𝑣), 𝑦(𝑢, 𝑣), 𝑧(𝑢, 𝑣)), 𝐫𝑢𝑢 =  Γ11
1 𝐫𝑢 + Γ11

2 𝐫𝑣 +

𝐿𝐧, 𝐫𝑢𝑣 =  Γ12
1 𝐫𝑢 + Γ12

2 𝐫𝑣 + 𝑀𝐧, and 𝐫𝑣𝑣 =  Γ22
1 𝐫𝑢 + Γ22

2 𝐫𝑣 + 𝑁𝐧 with (𝐫𝑢𝑢)𝑣 =  (𝐫𝑢𝑣)𝑢 and 

(𝐫𝑣𝑣)𝑢 =  (𝐫𝑢𝑣)𝑣 via Clairaut’s Theorem, indicating the relation between Christoffel symbols and 

the second fundamental form (Koenderink 1990). Additionally, Peterson-Codazzi-Mainardi 

equations relate Christoffel symbols to the second fundamental form as 𝐿𝑣 − 𝑀𝑢 = 𝐿𝛤12
1 +

𝑀(𝛤12
2 − 𝛤11

1 ) − N𝛤11
2  and 𝑀𝑣 − 𝑁𝑢 = 𝐿𝛤22

1 + 𝑀(𝛤22
2 − 𝛤12

1 ) − N𝛤12
2  (Koenderink 1990). 

 Monge patches are local surfaces in a 3D metric space (Koenderink 1990). To calculate 

Christoffel symbols for a Monge surface patch via the first fundamental form, a change of 

variables via the total derivative is necessary because of the parameterization of the surface 

(Chase 2012). From elements of the Jacobian, the first fundamental form coefficients are 𝐸𝑢 =
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for parameter v (Kaplan 2003), and 
21 uzE += , vu zzF = , and 

21 vzG +=  (Koenderink 1990). A 

Monge patch with height function z may be expressed in matrix form as [
1 + 𝑧𝑢

2 𝑧𝑢𝑧𝑣

𝑧𝑢𝑧𝑣 1 + 𝑧𝑣
2], and 

𝐼𝑀𝑜𝑛𝑔𝑒 = (1 + 𝑧𝑢
2) 𝑑𝑢 𝑑𝑢 + 2𝑧𝑢𝑧𝑣 𝑑𝑢 𝑑𝑣 + (1 + 𝑧𝑣

2) 𝑑𝑣 𝑑𝑣 is the first fundamental form (Sochi 

2016). For a Monge patch, the second fundamental form is 𝐼𝐼𝑀𝑜𝑛𝑔𝑒 =
𝑧𝑢𝑢𝑑𝑢 𝑑𝑢+2𝑧𝑢𝑣𝑑𝑢 𝑑𝑣+𝑧𝑣𝑣𝑑𝑣 𝑑𝑣

√1+𝑧𝑢
2+𝑧𝑣

2
 

(Sochi 2016), and coefficients of the second fundamental form are expressed as 
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= (Koenderink 1990). Christoffel 

symbols for a Monge patch may be calculated as 
2

2

2

1

 

 
1 zz

zz kjik

ji
++

= (Weisstein 2002) and 

represent the intrinsic geometry locally of curves and surfaces and their measurable 

characteristics such as the distance metric (Carmo 1976; Koenderink 1990) to connect surface 

features quantifiable on a pointwise basis.  

Christoffel symbols of the second kind are the 2D surface connection coefficients of a 3D 

space (Sochi 2016), and the coefficients are a quantification of the degree of twisting, turning, 

contraction, or expansion of the surface. That is, the Christoffel symbols as connection 

coefficients serve three purposes: they are a quantification of how fast the components of a 

vector turn, twist, contract, or expand to keep constant against the turning, twisting, contraction, 

or expansion of the basis vectors; they are a quantification of parallel transport of basis vectors 

along the components of a vector; they are a quantification of the flatness of a surface (Misner 

1973). 
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Ensemble surface features and valve morphogenesis 

 

 Changes in ensemble surface features are used to develop a valve formation sequence as 

the morphogenetic model. Changes are measured as differences from one step to the next, 

starting with a base layer and sequentially accumulating ensemble surface features to complete 

the valve morphology. The base layer will have the smallest values for ensemble surface features 

so that, theoretically, the start would be a blank disk. The subsequent layers representing 

different degrees of sloping, peaks, valleys and saddles, smoothness, and flatness or curvature 

increases to model the acquisition of surface features to arrive at the final valve morphology. 

Whole valve surfaces as well as Monge patches may be measured and compared as valve 

formation sequences. The whole surface may be treated as a Monge patch when calculating 

ensemble surface measures so that results may be indicative of a 2D surface embedded in a 3D 

space. 

 

Diatom taxa used for parametric 3D surface models in valve formation 

 

 Parametric 3D surface models of external and forming valves of Actinoptychus senarius, 

Arachnoidiscus ehrenbergii and Cyclotella meneghiniana are used in analyses following Schmid 

and Volcani’s (1983) schema for centric diatom valve formation. For the modeling process, the 

final external valve model has horizontal slices of its surface removed in a stepwise fashion so 

that four precursor steps are created to comprise the valve formation sequence. The 

ornamentation of the external valves is removed numerically at each step to illustrate the changes 

in valve formation and surface features. Models of each step for each taxon are devised using 
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systems of parametric 3D equations. The modeled steps are clustered to determine their 

identification with Schmid and Volcani’s (1983) valve formation stages.  

 Quantities calculated are: first partial derivatives as elements of the Jacobian of a whole 

parametric 3D surface (variables x, y and z in parameters u and v); second partial derivatives as 

the elements of the x-, y- and z-Hessians of a Monge patch (where height is z with respect to 

planar patch x-y); the Laplacians as the sums of the diagonal elements of the x-, y- and z-

Hessians; Christoffel symbols as connection coefficients with contravariant indices 𝑘 =

1, 2, 𝑜𝑟 3 and covariant indices 𝑖, 𝑗 = 1, 2, 3. That is, Christoffel symbols of the second kind are 

calculated. The quantities calculated from the Jacobian, Hessian, Laplacian, and Christoffel 

symbols constitute ensemble surface measures. 

 For each taxon, resultant quantified ensemble surface measures are analyzed for their 

contribution to each valve formation step. Each ensemble surface measure is analyzed to 

determine its contribution to ensemble surface features for Actinoptychus senarius, 

Arachnoidiscus ehrenbergii, and Cyclotella meneghiniana as well as the role each surface 

measure contributed in a comparison among valve formation taxon sequences. Total contribution 

of all Christoffel symbols to combined valve formation steps for all taxa was analyzed, and 

ensemble surface features for all taxa were analyzed with regard to ensemble surface measures as 

surface descriptors. A morphospace was devised to illustrate the relation between ensemble 

surface measures and the centric diatom taxa Actinoptychus senarius, Arachnoidiscus 

ehrenbergii and Cyclotella meneghiniana. 

 

Results 
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 Parametric 3D equations were used to construct models of Actinoptychus senarius, 

Arachnoidiscus ehrenbergii, and Cyclotella meneghiniana and their valve formation steps. Five 

valve formation steps for each taxon were modeled to fit into Schmid and Volcani’s (1983) three 

stage schema and are depicted in Figs. 2, 3 and 4. From single linkage cluster analysis using 

Hamming distance of non-zero values for ensemble measures, Schmid and Volcani’s (1983) 

stage 1 was covered by modeled valve formation steps 1 and 2, their stage 2 was covered by 

modeled valve formation steps 3 and 4, and their stage 3 was covered by the modeled final valve 

(Fig. 5). Ensemble surface features of the Jacobian, Hessian, Laplacian, and Christoffel symbols 

were calculated for all 3D surface models constructed from parametric equations. Christoffel 

symbols of the second kind are calculated (Hartle 2018) and are holonomic. For contravariant 

indices 𝑘 = 1, 2, 3, covariant indices i, j are symmetric so that Γ12
𝑘 = Γ21

𝑘 , Γ13
𝑘 = Γ31

𝑘 , and Γ23
𝑘 =

Γ32
𝑘 . 

For all models, the same x- and y-equations are used and are given as 16 cos 𝑢 cos 𝑣  (1 +

sin 𝑢) and 16 cos 𝑢 sin 𝑣  (1 + sin 𝑢), respectively. Only the z-equation differs for each taxon 

and are given in Table 1. Because the x- and y-equations were the same for all 3D models, each 

model can be treated as a Monge patch. As a result, the z-equation results are analyzed for the 

Jacobian in the u- and v-directions and the Hessian in the u-, v- and uv-directions. Christoffel 

symbols with contravariant index 𝑘 = 3 are used for comparison to the Jacobian and Hessian z-

equation values and the Laplacian. All Christoffel symbols are used in further analyses. 

 A combination of all the ensemble measures of the Jacobian, Hessian, Laplacian, and 

Christoffel symbols produced the depiction of change from the start to each subsequent step of 

modeled valve formation with regard to the z-term and Christoffel symbols for contravariant 

index 𝑘 = 3. The Jacobian in u- and v-parameters and the Hessian in the u-parameter were 
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positive influences with increasingly positive contribution from start to final valve for 

Actinoptychus senarius (Fig. 6). Negative influences were evident for the Hessian v- and uv-

parameters, the Laplacian as well as Christoffel symbols Γ13
3  and Γ23

3 , Γ31
3 , Γ32

3 . Largest negative 

input was the Hessian v- and uv-parameters and Laplacian for step 4 and the final valve and 

Christoffel symbols Γ13
3  and Γ23

3 , Γ31
3 , Γ32

3  for steps 1 and 3 for Actinoptychus senarius (Fig. 6). 

 For the Jacobian in the u-parameter and Hessian in all parameters, the scenario for 

Arachnoidiscus ehrenbergii was similar to that for Actinoptychus senarius (Fig. 6). The Jacobian 

in the v-parameter had a near zero value for steps 1 thorough 4. Only the final valve had a 

positive value. The Laplacian and Christoffel symbols Γ13
3  and Γ23

3 , Γ31
3 , Γ32

3  were positive 

influences, contributing almost equally to steps 2 through the final valve for Arachnoidiscus 

ehrenbergii, with Christoffel symbols Γ23
3 , Γ31

3 , Γ32
3  contributing a larger portion to the final valve 

(Fig. 6). 

 Cyclotella meneghiniana had positive influence from the Jacobian and Hessian in the u- 

and v-parameters and the Laplacian (Fig. 6). The Hessian in the uv-parameter and Christoffel 

symbols Γ13
3  and Γ23

3 , Γ31
3 , Γ32

3  were negative influences in almost equal contribution for steps 1 

through the final valve, with the exception of almost no contribution by Γ13
3  for the final valve of 

Cyclotella meneghiniana (Fig. 6). 

 Modeled taxa were analyzed by their valve features using each ensemble surface 

measure. The ensemble surface measures that were most indicative of peak height changes in 

Actinoptychus senarius valve features were the Hessian in the v- and uv-directions from step 2 

through the final valve, reflecting the changes in alternating undulations of the six valve surface 

sectors radiating outward from the center (Figs. 7d, f). Only a slight uptick in value from step 3 

to step 5 for the Jacobian in the v-direction was evident, indicating the change in sloping of 
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undulations from sector to sector on the valve surface (Fig.7b) . All other ensemble surface 

measures including the Jacobian and Hessian in the u-direction, Laplacian, and Christoffel 

symbols for contravariant index 𝑘 = 3, indices 𝑖 = 1, 2 and 𝑗 = 3 were near zero, indicating an 

overall regular valve pattern of the smaller surface features in contrast to the larger valve features 

of the alternating undulations of the six sectors (Figs.7a, c, e, g and h). 

Arachnoidiscus ehrenbergii exhibited large surface changes from valve formation step 1 to 

step 2 as sloping and peakedness as the Jacobian and Hessian in the u-direction (Figs. 7-a, c). 

Regular undulations from the ribs to the concentric circles below the ribs is recovered by the 

Laplacian as “harmonics” (Fig. 7-e). While curvature changes in the ribs differing from the 

underlying concentric rings on the valve face are indicated by Christoffel symbols for 

contravariant index 𝑘 = 3, indices 𝑖 = 1 and 𝑗 = 3 (Fig. 7g), the Jacobian in the v-direction, 

Hessian in the v- and uv-directions, and Christoffel symbols for contravariant index 𝑘 = 3, 

covariant indices 𝑖 = 2 and 𝑗 = 3 are near zero, indicating transitional or saddle areas of the 

valve surface that are flat (Figs. 7d, f, and h). Arachnoidiscus ehrenbergii has a fairly even, 

regular patterned surface as measured by ensemble surface features.  

 The slightly undulating surface of Cyclotella meneghiniana was reflected in the Jacobian in 

the v-direction, increasingly from step 1 to step 3 during valve formation (Fig. 7b), in contrast to 

the u-direction (Fig. 7a). The same pattern held for the Hessian in the v-direction with positive 

values indicating valleys (Fig. 7d) as well as Christoffel symbols for contravariant index 𝑘 = 3, 

covariant indices 𝑖 = 1 and 𝑗 = 3 indicating greater curvature areas (Fig. 7g). Sharp changes in 

peak height as an outer ring of “pleats” or plications at the valve margin of Cyclotella 

meneghiniana are recovered via these ensemble surface measures. A slight depression in the 

general valve surface was indicated by the Hessian in the uv-direction (Fig. 7f) representing the 
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central area, and a transitional or saddle area between peaked and depressed areas along the 

marginal plications was indicated by the Hessian in the u-direction (Fig. 7c). Valve surface 

smoothness is reflected in the very lightly radially streaked central area via the Laplacian (Fig. 

7e), while flatness of the overall valve face shape was indicated by Christoffel symbols for 

contravariant index 𝑘 = 3, covariant indices 𝑖 = 2 and 𝑗 = 3 (Fig. 7h).  

 The u- and v-parameters of the z-term in the Jacobian and Hessian and sum of the z-terms 

in the Laplacian contributed differing amounts to the outcome of valve formation for each taxon. 

For the Jacobian, all steps of Cyclotella meneghiniana were influenced by the v-parameter, and 

all steps of Arachnoidiscus ehrenbergii were influenced by the u-parameter as was the case for 

Actinoptychus senarius, but to a lesser degree (Fig. 8, top). For the Hessian, the uv-parameter had 

a larger influence than the v-parameter on all steps of Cyclotella meneghiniana and 

Actinoptychus senarius. For Cyclotella meneghiniana, the influence was positive, while for 

Actinoptychus senarius the influence was negative (Fig. 8, middle). Arachnoidiscus ehrenbergii 

was influenced by the Hessian z-term in the u-parameter ((Fig. 8, middle). The Laplacian was a 

negative influence for Actinoptycus senarius and a positive influence for Cyclotella 

meneghiniana and Arachnoidiscus ehrenbergii (Fig. 8, bottom).  

 All Christoffel symbols were analyzed to determine degree of flatness and to determine 

their contribution to valve characteristics at each step of valve formation on the valve surface. 

The point at which the Christoffel symbols vanish are flat areas in a torsion-free or holonomic 

frame. The direction of change in a tangent space is symmetric in the covariant indices when 

Christoffel symbols equal zero. The non-zero values indicate distortion resulting from curvature 

as the connections on the valve surface change from point to point.  
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 For contravariant index 𝑘 = 1, steps 2, 3, 4, and the final valve were represented as a 

large percentage of negative values of Γ33
1 , then transitioning to step 1 as a narrower percentage 

of positive values for step 1 of Arachnoidiscus ehrenbergii (Fig. 9-top). Step 1 through final 

valve for Actinoptychus senarius and Cyclotella meneghiniana were represented as a large 

percentage of positive values of Γ11
1 (Fig. 9-top). All other values of Christoffel symbols for 

contravariant index 𝑘 = 1 were equal to or near zero. 

 For contravariant index 𝑘 = 2, step 1 through the final valve for Arachnoidiscus 

ehrenbergii had a large percentage of negative values for Γ22
2  (Fig. 9-middle). For step 1 through 

the final valve of Actinoptychus senarius and steps 1 and 2 for Cyclotella meneghiniana, a larger 

percentage of negative values of Γ22
2  was indicated over a smaller negative percentage for Γ33

2  

(Fig. 9-middle). For Cyclotella meneghiniana steps 3, 4 and the final valve, only Γ33
2  had a larger 

percentage of positive versus a lesser percentage of negative values (Fig. 9-middle). All other 

values of Christoffel symbols for contravariant index 𝑘 = 2 were equal to or near zero.  

 The general order of the taxa was switched for contravariant index 𝑘 = 3 Christoffel 

symbols. All steps for Actinoptychus senarius and Cyclotella meneghiniana were large 

percentages of negative values for Γ13
3  and for Γ23

3 , where the latter indicated the bulk of the 

negative values (Fig. 9-middle). By contrast, all steps of Arachnoidiscus ehrenbergii were a large 

percentage of positive values for Γ13
3  and a smaller percentage of positive values for for Γ23

3  (Fig. 

9-middle).  

 All Christoffel symbols for all three taxa were plotted for the sequence of steps in valve 

formation. Each step is covered by all contravariant indices 𝑘 = 1, 2, 3. Of all the Christoffel 

symbols, those that were non-zero and had contributed to non-flat areas of the valve face were 

(Γ32
1 , Γ32

2 , Γ32
3 ), (Γ22

1 , Γ22
2 , Γ22

3 ), (Γ33
1 , Γ33

2 , Γ33
3 ), and (Γ31

1 , Γ31
2 , Γ31

3 ). The contribution of Christoffel 
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symbols with covariant indices 𝑖 = 3, 𝑗 = 2 was a constant negative value for steps 1 through the 

final valve. Covariant indices 𝑖 = 2, 𝑗 = 2 had a similar contribution. On the positive side, 

covariant indices 𝑖 = 3, 𝑗 = 1 contributed to valve formation steps 2 through the final valve as a 

constant. Only step 1 had no contribution from Christoffel symbols with covariant indices 𝑖 =

3, 𝑗 = 1. For Christoffel symbols with covariant indices 𝑖 = 3, 𝑗 = 3, their contribution was 

exponential from step 1 to step 3 then levelled off as a maximum for steps 3, 4 and the final 

valve (Fig. 10). 

 To aggregate ensemble surface measures and their contribution to valve formation steps 

for all taxa combined, a plot was devised to show the percentage of that contribution in terms of 

the descriptors flatness, peaked, sloped, and smoothed (Fig. 11). Contraction described step 1, 

almost exclusively. Contraction to a lesser degree described step 2 with smaller contributions 

from almost flat to expansion, peaked and sloped features, and a slight contribution of dipped 

features. Valve formation step 3 included contraction, almost flat, expansion, dipped, peaked, 

and sloped descriptors along with the addition of the concave smoothness descriptor. Step 4 had 

elements of the same contributing descriptors with the addition of convex smoothness. The final 

valve was similar to step 4 but had the least contribution from the contractor descriptor compared 

to the previous four steps in the valve formation sequence (Fig. 11).  

 A 3D morphospace was devised for Actinoptychus senarius, Arachnoidiscus ehrenbergii 

and Cyclotella meneghiniana using ensemble surface measures of valve formation (Fig. 12). 

Peakedness and smoothness were combined on one axis because the trace of the Hessian is the 

Laplacian. Slopeness and flatness were combined on another axis because differentiation of the 

Jacobian is a coordinate transformation of non-vanishing Christoffel symbols (Bertschinger 

1999).  
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 The morphospace shows a “cut-away” space to facilitate interpreting taxon ensemble 

surface feature results. The most pronounced changed in ensemble surface features occurred for 

Arachnoidiscus ehrenbergii. Emanating from its center, Arachnoidiscus ehrenbergii has 

alternating ribs and dips as its valve surface, exhibiting peaks and valleys. The ribs exhibit 

smoothness, while the branching or reticulated pattern beneath the ribs exhibits peakedness. The 

valve surface pattern exhibits a regular fluctuation in a harmonic fashion (Fig. 12). During valve 

formation, Arachnoidiscus ehrenbergii proceeds with more changes in peakedness and 

smoothness and less so concerning slopeness and flatness (Fig. 12). 

 Because the scale at which Arachnoidiscus ehrenbergii ensemble surface features 

differed was so great, a second morphospace “cut-away” was devised to enable the visualization 

of details for Actinoptychus senarius and Cyclotella meneghiniana (Fig. 13). A marked change in 

peakedness and smoothness more so slopeness and flatness was evident for Actinoptychus 

senarius. A sharp dip proceeding from the first step to final valve in the valve formation 

sequence suggested the formation of the alternating undulations of the sectors on the valve 

surface (Fig. 13).  

 For Cyclotella meneghiniana, the changes in peaks and valleys as well as slopeness and 

flatness varied in a shallow harmonic fashion (Fig. 13). The shallow depth of the change in 

peakedness and smoothness suggested the finer undulation of the valve marginal plications in 

contrast to the regular harmonic undulating changes in the valve surface of Arachnoidiscus 

ehrenbergii or the large undulating sectors of Actinoptychus senarius. The slightly larger peak 

with respect to slopeness and flatness suggested the presence of the central area of Cyclotella 

meneghiniana. For the valve formation sequence, progression from more slopeness and flatness 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 13, 2018. ; https://doi.org/10.1101/468884doi: bioRxiv preprint 

https://doi.org/10.1101/468884
http://creativecommons.org/licenses/by-nc-nd/4.0/


Pappas 33 
 

to more peakedness and smoothness indicated the final valve marginal surface of Cyclotella 

meneghiniana (Fig. 13). 

In the morphospace, the areas where smoothness equals flatness are inflection points that 

may be saddle points as well. That is, at the intersection of the areas for Actinoptychus senarius, 

Arachnoidiscus ehrenbergii and Cyclotella meneghiniana, the value equals or is very close to 

zero (Fig. 13). 

 

Discussion 

 

Diatom morphogenesis is a compilation of silica deposition, valve formation, mitotic 

growth, and other cytological, genetic and epigenetic processes (e.g., Schmid and Volcani 1983). 

Silica deposition during morphogenesis is not uniform (Vartanian et al. 2009). Overall, valve 

surface pattern is maintained and reproducible, but diatom growth concerning silica deposition 

and the geometry of the surface occurs within finite spatial boundaries (Vartanian et al. 2009). 

Regarding phenotypic plasticity as an influence on diatom valve patterns along with processes 

governing valve formation cytologically, pattern formation models are useful in studying 

potential modes of growth in morphogenesis. 

 Centric diatom valve morphogenesis was explored using 3D surface models and 

measurements of boundaryless morphological characters combined as ensemble surface features. 

Studies were conducted with regard to pattern formation as a sequence of events during valve 

formation at stepwise changes in ensemble surface features. Each of the three general stages of 

valve morphogenesis as defined by Schmid and Volcani (1983) were used as guidelines for the 

changes in ensemble surface features as slices in the height distribution of silica deposition. At 
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the first stage of horizontal silica deposition and the presence of an annulus and branching 

pattern of silica strands with radial rows, this basal silica layer is the smoothest and flattest, 

having smaller values of slopes, peakedness and saddles. At the second stage of vertical silica 

deposition, areolae walls increase in height that is reflected in larger values of peakedness and 

saddles. At the third stage of increasing horizontal and vertical silica deposition, peakedness and 

saddles become more differentiated as the size and spacing of such structures may become 

exaggerated with intervening areas of smoothness and flatness, as silica deposition extends to the 

valve margin. 

At each point on the valve surface, ensemble surface features may have positive, negative 

and zero values that are indicators of the degree of sloping, peakedness and saddles, smoothness, 

or flatness (Table 2). Positive values for elements of the Jacobian indicate increasing sloping or 

steepness of the surface, while negative values indicate decreasing sloping. Positive values for 

elements of the z-Hessian are peaks, negative values are valleys, and zero values are saddles. The 

transition from positive to negative values are indicators of changes in smoothness as harmonics, 

as smoothness is when the Laplacian is zero. Positive or negative Christoffel symbols are 

indicators of curvature, while flatness is recorded in zero values.  

 Ensemble surface measures from parametric 3D models were readily compiled and 

corresponded to Schmid and Volcani’s (1983) schema of diatom valve morphogenesis. 

Quantification of diatom surface morphology using such measures enabled the study of valve 

morphogenesis as well as showed the efficacy of using 3D models in valve formation studies. 

 

Ensemble surface features and physical characteristics of valve morphogenesis 
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 Ensemble surface features may be present indicating rotational, reflective, dihedral, or 

conformal symmetry. The same features may indicate degrees of complexity with regard to 

degree of sloping, peakedness, smoothness, or flatness. Increasing sloping and peakedness 

measured as the Jacobian and Hessians, respectively, means increasing complexity in contrast to 

increasing smoothness or flatness as measured from the Laplacian and Christoffel symbols, 

respectively. Symmetry and complexity assessments at each stage in valve formation may be 

used as composite descriptors of the changes in development, and such changes may be related 

to the changes occurring at the subcellular level with regard to organelles and their movement 

during mitosis and the size diminution cycle for many diatoms (Pappas et al. this volume). 

Ensemble surface features may indicate whether circular centric diatoms can become asymmetry 

at a given stage of growth and valve formation despite being formed from an annulus. From 

stepwise valve formation via composite ensemble surface features, a general ranking of most to 

least symmetric taxa are Arachnoidiscus to Actinoptychus to Cyclotella. A composite of 

ensemble surface features indicates that the highest to lowest degree of complexity in diatom 

valve surface formation patterns is Arachnoidiscus to Actinoptychus to Cyclotella.  

Valve formation is directional with respect to valve characters and pattern, but at a local 

level. Initially, branching patterns may exhibit waviness, but spatial constraints on silica 

deposition occur to induce regularly-spaced surface features, such as areolae, as wave front 

expansion from annulus to valve margin occurs in centric diatoms (Vartanian et al. 2009). 

Expansion of a wave front with respect to the SDV may induce fractal-like structures at the valve 

margin with respect to growth (Vartanian et al. 2009). 

Such growth may be indicative of the first stage of valve formation. At the second stage 

of valve formation, silica fills in the valve face producing another layer of patterning which 
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occurs behind the initial wave front expansion. One possibility is that vertical silica deposition 

might occur stochastically, resulting in changing sizes and shapes of pores and rimoportulae in a 

random fashion over the valve face and in contrast to horizontal silica deposition that occurs 

chaotically resulting in fractal-like structures. At the third stage of valve formation, a 

combination of stochastic and directed processes might occur as cribra and cribella form within 

the constraints of the areolae, but silica filling into gaps in the valve face structures may do so in 

a random fashion. This represents growth where cell division and symmetry occur as a 

propagation of wave fronts (Nechaev 2017).  

 

Factors affecting valve formation 

 

Size and geometry of a morphological character may be affected by enzymatic inhibitors 

in contrast to the spatial distribution of those characters on the valve surface (Vartanian et al. 

2009). At the first stage of valve formation, constraints on the valve surface may be laid down 

with regard to transapical costae and at the second stage of valve formation with the formation of 

cross costae in some centric diatom taxa (Vartanian et al. 2009). Sequential deposition with 

respect to silica height on the valve surface records pattern formation over time and may be 

affected by inhibitors. Low concentrations of inhibitor may induce change in silica deposition 

and a change in development of morphological characters on the valve. High concentration of 

inhibitors may induce aberrant valves (Vartanian et al. 2009). 

 Development of a morphological character is affected by inhibitors in contrast to the 

spatial relation among morphological character on the valve surface of a diatom (Vartanian et al. 

2009). Fluctuations in processes at the molecular level may induce slight differences in silica 
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deposition on different parts of the valve surface. Physically, exponential cell growth may 

produce excess silica material generation to induce buckling of the domain boundary (Nechaev 

2017) or buckling on the surface. Structural anomalies such as areolar row disordering or 

distorted valve face shape may be induced via microtubule inhibitors because microtubule 

dissolution occurs or chromosome separation does not (Bedoshvilli et al. 2018). In either case, 

buckled valve structures may result as valve morphogenesis occurs.  

Because valve morphogenesis commences at the microtubule center, and subsequent 

development of large valve structures (e.g., Pickett-Heaps 1998; Van de Meene and Pickett-

Heaps 2002, 2004; Tesson and Hildebrand, 2010a, b) occurs in conjunction with microtubule 

activity, morphogenetic stages that are interrupted or changed by microtubule inhibitors may 

produce abnormal valve structures or valve shape (Bedoshvilli et al. 2018) as buckled surface or 

marginal valve margins. Such differences may be modeled using ensemble surface features with 

the potential of matching numerical results with the associated positioning of microtubules (e.g., 

Cohn et al. 1989) and possible valve surface structural or marginal buckling. The appropriate 

combination of such features has yet to be discerned and how such combinations might be 

associated to particular steps in the silica deposition process and how this represents valve 

formation at given times during this process remains to be studied. 

 

Diatom growth patterns—buckling and wave fronts   

 

Changes in early growth during diatom morphogenesis may resemble the propagation of 

an optical ray. Changes in the trajectory of the ray may resemble changes in the growth path 

during valve formation of diatom morphogenesis. For a homogeneous medium, that path may be 
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linear and constant. Otherwise, the path may be non-linear but follow an exponential or 

logarithmic path. Rays normal to the surface are wave fronts (Ries and Muschaweck 2002) and 

may represent buckling patterns on diatom surfaces. A buckled surface is a patterned surface 

(Chen et al. 1998; Lin et al. 2000). 

A wave front or buckling may be interpreted to occur on the surface of Cyclotella 

meneghiniana with regard to the changes from the central area to the margin of the entire valve. 

Another aspect of a wave front property may be construed to be in the pleating or plications near 

the valve margin with regard to the areolae structure in a ring. The undulating sectors of 

Actinoptychus senarius or the height changes between ribs and underlying structural branching 

pattern of Arachnoidiscus ehrenbergii may be representational of buckling that has wave front 

properties. 

The Jacobian and Hessian elements of first and second partial derivatives, respectively, 

record the indications of buckling on the surface of a diatom valve. By contrast, the Laplacian 

and Christoffel symbols record the smoothness and flatness, respectively, of the diatom valve 

surface which indicates lack of buckling. As a physical phenomenon, buckling is non-uniform 

compression given as differential growth (Nechaev 2017). For isometric planar growth, bucking 

does not exist. That is, early growth from a conical surface above a disk corresponding to 

isometry is a constant growing surface where growth is low and the surface is flat, and buckling 

does not occur (Nechaev 2017). Ensemble surface features and the composite change in these 

features across a surface may be a variant of wave front propagation. The Laplacian has solutions 

that are representative of harmonics, and the combinations of first and second partial derivatives 

are extractable as variants of wave front solutions.  
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For an exponentially growing surface embedded in a plane, the Jacobian of a conformal 

mapping is dependent on angular symmetry and is recoverable in terms of hyperbolic metrics of 

the surface. This growth is a type of motion in which energy is propagated from one stage to 

another along a continuum from nascent cell to mature organism. Buckling as a wave front is a 

natural phenomenon of cell growth at different scales (Nechaev 2017).  

Buckling on the surface may be determined by the metric tensor. Geodesics defining 

paths on the surface are parameterized and determine the Christoffel symbols. Geodesics along a 

surface are associated with the motion of silica deposition at regular intervals producing a 

characteristic valve pattern. Movement of silica with regard to a valve surface may be indicative 

of cell division and symmetry changes as a propagation of wave fronts. Surface height above the 

domain is characterizable by such wave front movement (Nechaev 2017). Degrees and kinds of 

surface buckling may be indicators of different rigidities of surface features (Gordon and Tiffany 

2011). 

At which junctures buckling occurs during diatom valve morphogenesis has yet to be 

determined (Gordon et al. 2009). One hypothesis is that buckling occurs when frustule structures 

are thin (Gordon and Tiffany 2011). Another hypothesis is that via wave front analysis, buckling 

may happen at any time during valve formation as a natural phenomenon that is genetically, 

environmentally, or epistatically controlled. This may induce plasticity in the phenotype. 

Epistasis may be instrumental in buckling as a more complicated, unpredictable, chaotic 

phenomenon. Ensemble surface measures may be used to characterize phenotypic buckling 

during morphogenesis because a 3D surface is a proxy for the phenotype (Pappas and Miller 

2013). 
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At some critical values, the Jacobian may become negative and the resultant growth may 

be squeezed in rather than buckling out. Squeezing in may be a regulation of the rigidity or 

stiffness of the surface (Nechaev 2017) as in buckling, which is constrained by surface features 

that are ridged or stiff (Gordon and Tiffany 2011). Growth may be geometrically hyperbolic in 

which there is zero Gaussian curvature (Nechaev 2017). At constant negative curvature, the 

surface bending may be similar to a pseudosphere. Cascades of pseudospheres may resemble 

peaks and saddles, exhibiting buckling in this way. High positive values of the Hessian may 

measure buckling with respect to silica height off the valve surface, while the high positive 

values for the Laplacian and zero values for Christoffel symbols may be used to measure lack of 

buckling, or possibly, transitions between buckles that are not saddles on valve surfaces with few 

silica elevations as morphological characters. Locally on a valve surface, negative values of 

Hessians, Laplacians and Christoffel symbols may be indicators of squeezing out rather than 

buckling in. With the potential for a hierarchical, nested or cascading structure in terms of the 

relation among ensemble surface features, repetition of such features may be present at multiple 

scales.  

Early in growth, there are buckling instabilities on the circumference as negative values. 

At a critical point on the surface, buckling proliferates in the direction of growth where peaks 

and valleys multiply. A hierarchy in peak size occurs related to degree of buckling. At later 

stages in growth, buckling instabilities subside as the limits of growth occur. At the 

circumference, a self-similar buckling profile may emerge (Nechaev 2017). 

 

Valve formation, ensemble surface features and self-similarity 
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Self-similarity may be evident during valve formation, but such a determination requires 

special testing. One possible test may be to detect the smallest changes among pairwise smallest 

z-Hessian elements and using ultrametricity (Nechaev 2017), find the smallest possible scale at 

which a given feature is measurable, and find the next larger scale at which that feature is 

manifested which may be present on the same valve face or on a valve face generated during 

valve formation. If a given feature is found at different scales, then there is self-similar on the 

diatom valve surface at times when growth or silica deposition occurs. Self-similarity may be at 

work during growth at different scales and may be evident and measurable as scale symmetry. 

The limits to growth and the MacDonald-Pfitzer rule (MacDonald 1869; Pfitzer 1869; 1871) may 

determine the threshold at which self-similarity may or may not be evident. 

The combinations of ensemble surface features that exhibit buckling may be related to 

determinations of phenotypic plasticity in diatom valve surfaces. That is, degree of buckling 

from the subcellular level may be influenced by environmental factors as degree of plasticity of 

the given diatom phenotype, and in turn, be indicative of the degree of phenotypic variation for a 

given diatom morphology.  

 

Diatom morphogenesis: cytoplasmic inheritance and phenotypic plasticity 

 

Cytoplasmic inheritance is non-genetic inheritance in which there is a division of cell 

states between cell lineages (Shirokawa and Shimada 2016). Structure of the parental cell can be 

expressed by the daughter cell through direct descendance or there could be a pre-existing cell 

membrane that functions as a template for development of the daughter cell. Diatoms reproduce 

via daughter cells forming within the SDV that expands within the parent cell, decreasing the 
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size of the offspring. Daughter cell microscale surface structure patterns (i.e., morphological 

characters such as central fultoportulae, striae, central area, and cell diameter) correlate with 

parental organelles (Shirokawa and Shimada 2016). 

Cell structure traits are quantitatively different from structural traits inherited by genetic 

or non-genetic factors. In diatoms, cell structure variation results from the new formation of 

daughter cells within the parent as incomplete inheritance (Shirokawa and Shimada 2016). 

Microscale structural patterns on the daughter cell valve reflect not only the environmental 

conditions the parent cell was subjected to, but also the location of organelles within the parental 

cell (Shirokawa and Shimada 2016). As a result, diatoms exhibit phenotypic plasticity, and 

structural variation in shape and pattern of a cell are reflected during size diminution during the 

diatom life cycle. Size reduction may occur over many generations, and partial renewal 

inheritance occurs such that one valve is always a parental cell in contrast to the new cell 

generated (Shirokawa and Shimada 2016). Ensemble surface features could be measured for 

parent and daughter cells, and values for parent cells could be plotted and regressed on values for 

daughter cells to determine a regression coefficient. Potentially, hypotheses concerning 

cytoplasmic heritability (Shirokawa and Shimada 2016) could be devised and tested using 

ensemble surface measures.  

 

Phenotypic variation and ensemble surface features: epistasis and canalization 

 

Diatom phenotype is affected by developmental changes. Such changes during 

development including valve formation may include epistasis and canalization (Waddington 

1942). Phenotypic variation or the amount of variation in developmental factors is measurable as 
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degree of canalization via the slope in a curved surface (Rice 1998). That is, minimum 

canalization (i.e., decanalization) is an increasing or maximum slope, while maximum 

canalization is a decreasing or minimum slope along a curve on a surface. Measurement of 

change phenotypically may be compared by the amount of developmental change as the 

phenotypic character becomes canalized (Rice 1998). 

By contrast, epistasis represents distinct interactions among developmental states that are 

not additive. A phenotype gradient is the maximum slope of the curve on a surface and is 

comprised of first partial derivatives of a phenotype measure and are elements of the Jacobian. 

Eigenvectors of the Jacobian are phenotype gradients. An epistasis matrix has elements of 

second partial derivatives, and developmental epistasis is represented by the off-diagonal 

elements of the matrix, while the diagonal elements represent dominance and are eigenvalues 

(Rice 1998). This matrix is the Hessian, and the sum of the diagonal elements is the Laplacian. 

For additive effects given as zero valued off-diagonal elements and the same value for diagonal 

elements of the epistasis matrix, maximum slope is the same on a given surface and may be 

indicative of drift (Rice 1998). Ensemble surface measures may be useful in constructing 

possible scenarios on the relation between morphogenesis and epistasis in diatom evolution. 

 

Conclusions 

 

 Quantifying diatom surface features from parametric 3D models enabled the analysis of 

multiple changes in morphology during a valve formation sequence. The analyses were centered 

on the combination of surface descriptors called ensemble surface features—slopeness, 

peakedness, smoothness, and flatness—as quantitative changes that could be compared among 
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taxa. Three exemplars were used. Actinoptychus senarius was characterized by a combination of 

peakedness and smoothness, Arachnoidiscus ehrenbergii was characterized by a different 

combination of smoothness and peakedness, and Cyclotella meneghiniana was characterized by 

a varying combination of all the ensemble surface features measured. 

For valve formation, the degree to which each taxon valve surface changed was 

measurable and elucidated for steps that were clustered and matched to Schmid and Volcani’s 

(1983) schema. Ensemble surface measures were used to determine that in stage one of valve 

formation, early change in the valve was horizontally flatter but sloped in terms of vertical 

changes. Midway through valve formation as stage two, horizontal and vertical surface changes 

increased in peakedness although smoothness of areas was also evident. Finally, toward 

completion of the valve at stage three, all ensemble surface measures contributed in varying 

degrees to the final surface “terrain” in terms of flat, smooth, sloped, and peaked features.  

Matching ensemble surface features to definable stages in cytological processes, such as 

as the position of organelles during mitosis or determining the degree to which ensemble surface 

features are a result of epistasis, is potentially in the offing and of interest in gaining an 

understanding of the role that cytology, inheritance and evolution have in diatom morphogenesis.  
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Table 1. Terms with parameters and coefficients of the z-equations for centric diatom taxa and 

valve formation steps. For all parameters, 𝑢, 𝑣 ∈ [0, 2𝜋]. 
 

Taxon z-equation† 

Actinoptychus senarius −𝛼𝑢 cos 3𝑢 cos 3𝑣 + 𝛽 sin 3𝑢 − 𝛾 sin(6𝑢)5 

−𝜁𝑢 𝑐𝑜𝑠(5 − 4𝑢) sin(3 − 4𝑣)4 + 𝜇 sin 120𝑢 sin 6𝑣 

−𝜑 𝑐𝑜𝑠(0.5𝑢)2 cos(40𝑢)4 cos 3𝑣 sin 40𝑢 sin(40𝑣)3 

−𝜓𝑢 sin 40𝑢 sin 160𝑣 

Arachnoidiscus ehrenbergii 𝜈 cos(0.5𝑢2) + 𝜌 cos(80𝑢)2 sin(1.9𝑢)2 + Ξ sin(1 + 𝑢)3 

+𝜏 cos(10 + 74𝑢2) sin(0.5 + 0.8𝑢)3 sin(2 + 2.9𝑢)3 

+𝜗 cos 𝑢 sin(0.37𝑢)3 sin(22𝑣)3 

Cyclotella meneghiniana cos 1.5𝑢[𝜉 cos 2𝑢 sin 0.5𝑢 sin 2.9𝑢

+ 0.14 cos 𝑢 sin(0.5𝑢)4 sin(7𝑣)4] 

+𝜂 cos(3.5𝑢)6 cos 25𝑣 sin 1.8𝑢6 sin 25𝑣 

† Coefficients: 0.0008 ≤∝≤ 0.64, 0.01 ≤ 𝛽 ≤ 0.1, 0.001 ≤ 𝛾 ≤ 1, 0.003 ≤ 𝜁 ≤ 0.09, 0.0025 ≤ 𝜇 ≤ 0.125, 0.2 ≤ 𝜑 ≤ 10, 

0.0025 ≤ 𝜓 ≤ 0.025, 0.004 ≤ 𝜗 ≤ 0.7, 0.05 ≤ 𝜈 ≤ 0.75, 0.025 ≤ 𝜌 ≤ 0.5, 0.051 ≤ 𝜏 ≤ 2.55, 2 ≤ Ξ ≤ 3, 0.01 ≤ 𝜉 ≤ 0.5, 

0.18 ≤ 𝜂 ≤ 3. 
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Table 2. Ensemble surface features, mathematical operator and numerical results. 

 

Surface feature Mathematical operator Analytical/numerical results 

Slopes Jacobian Positive or Negative 

Peaks Hessian Maxima - Positive 

Valleys Hessian Minima - Negative 

Saddles Hessian Zero 

Convex or Concave 

Smoothness 

Laplacian Positive or Negative 

Smoothness Laplacian Zero  

Curvature Christoffel symbols Positive or Negative 

Flatness Christoffel symbols Zero 
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a  b c  

 

Fig. 1. Ensemble surface features--examples: a, smooth, but not flat; b, flat, but not smooth; c, 

smooth and flat. Smoothness is determined from the Laplacian, and flatness is determined from 

Christoffel symbols. 

 

 

     

Fig. 2. Actinoptychus senarius modelled valve formation sequence steps 1 through 5. From left 

to right, steps 1 and 2 represent stage 1, steps 3 and 4 represent stage 2, and step 5 as the finished 

valve represents stage 3 of Schmid and Volcani’s (1983) valve formation schema. 

 

 

 

Fig. 3. Arachnoidiscus ehrenbergii modelled valve formation sequence steps 1 through 5. From 

left to right, steps 1 and 2 represent stage 1, steps 3 and 4 represent stage 2, and step 5 as the 

finished valve represents stage 3 of Schmid and Volcani’s (1983) valve formation schema. 
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Fig. 4. Cyclotella meneghiniana modelled valve formation sequence steps 1 through 5. From left 

to right, steps 1 and 2 represent stage 1, steps 3 and 4 represent stage 2, and step 5 as the finished 

valve represents stage 3 of Schmid and Volcani’s (1983) valve formation schema. 

 

 

 

 

Fig. 5. Single-linkage cluster analysis using Hamming distance for non-zero values of the 

Jacobian, Hessian, Laplacian, and Christoffel symbols. 
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Fig. 6. Contribution percentage of ensemble surface measures Jacobian, Hessian, Laplacian, and 

Christoffel symbols to each valve formation step.  
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Fig. 7. Jacobian, Hessian and Laplacian from z-terms and Christoffel symbols Γ13
3  and Γ23 

3 for 

modelled valve formation steps 1 through the final valve for Actinoptychus senarius, 

Arachnoidiscus ehrenbergii and Cyclotella meneghiniana. 
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Fig. 8. Contribution of the u,v-parameters of the z-term of the Jacobian, Hessian and Laplacian to 

each step of valve formation for Actinoptychus senarius, Arachnoidiscus ehrenbergii and 

Cyclotella meneghiniana expressed as a percentage.  
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Fig. 9. All Christoffel symbols for the three contravariant indices: top, 𝑘 = 1; middle, 𝑘 = 2; 

bottom, 𝑘 = 3 . Shaded areas indicate percentage that a given Christoffel symbol contributed to a 

valve formation step for each taxon. Because of symmetry, Christoffel symbols with 

contravariant index k = 3, covariant indices i = 3, j = 1 and i = 3, j = 2 are not reported. 
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Fig. 10. Plot of all Christoffel symbols shows change in contribution for (Γ32
1 , Γ32

2 , Γ32
3 ), 

(Γ22
1 , Γ22

2 , Γ22
3 ), (Γ33

1 , Γ33
2 , Γ33

3 ), and (Γ31
1 , Γ31

2 , Γ31
3 ) per valve formation step. 

 

 

 

 

Fig. 11. Ensemble surface measures as indicators of ensemble surface features for each valve 

formation step. 
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Fig. 12. A 3D morphospace of ensemble surface measures of valve formation for Actinoptychus 

senarius, Arachnoidiscus ehrenbergii and Cyclotella meneghiniana.   

 

 

 

 

Fig. 13. A 3D morphospace of ensemble surface measures of valve formation for Actinoptychus 

senarius and Cyclotella meneghiniana. 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 13, 2018. ; https://doi.org/10.1101/468884doi: bioRxiv preprint 

https://doi.org/10.1101/468884
http://creativecommons.org/licenses/by-nc-nd/4.0/

