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 Abstract 

The present study reports the utilization of three approaches viz Pharmacophore, CoMFA, 

CoMSIA and HQSAR studies to identify the essential structural requirements in 3D chemical 

space for the modulation of the antimalarial activity of substituted 1,2,4 trioxanes. The 

superiority of Quantitative pharmacophore based alignment (QuantitativePBA) over global 

minima energy conformer-based alignment (GMCBA) has been reported in CoMFA and 

CoMSIA studies. The developed models showed good statistical significance in internal 

validation (q2, group cross-validation and bootstrapping) and performed very well in predicting 

antimalarial activity of test set compounds. Structural features in terms of their steric, 

electrostatic, and hydrophobic interactions in 3D space have been found important for the 

antimalarial activity of substituted 1,2,4-trioxanes. Further, the HQSAR studies based on the 

same training and test set acted as an additional tool to find the sub-structural fingerprints of 

substituted 1,2,4 trioxanes for their antimalarial activity. Together, these studies may facilitate 

the design and discovery of new substituted 1,2,4-trioxane with potent antimalarial activity. 
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1. Introduction 

In spite of worldwide efforts to combat malaria, it still kills approximately one million people, 

mostly children, each year [1,2]. There is no fully effective prophylactic vaccine against malaria 

till date [3,4] and the major problem in the chemotherapy of malaria is the development of 

resistance of the Plasmodium falciparum parasites to many of the standard quinoline antimalarial 

drugs like chloroquine [5]. The discovery of artemisinin, extracted from the plant Artemisia 

annua, has opened a new era in the malarial chemotherapy. Artemisinin and its more potent 

analogues viz. artemether, arteether and artesunic acid represent the endoperoxide class of 

compounds which are highly active against both chloroquine-sensitive and chloroquine-resistant 

strains of P. falciparum [6]. The WHO-recommended artemisinin combination therapy (ACT) is 

the best option available till date for the chemotherapy of malaria [7]. The ligand based 

approaches like three-dimensional Quantitative Structure Activity Relationship (3D-QSAR) 

studies have been quite useful in identifying the essential structural requirements for biological 

activity of the compounds where the 3D structure of the exact target is unknown[8, 9]. Therefore, 

considering the importance of artemisinin and its analogues as potent class of antimalarial drugs 

effective against the multidrug-resistant P. falciparum strains and unavailability of the exact 

target for this class of molecule [10] we have earlier reported the Discovery studio (DS)[11] 

based quantitative pharmacophore model utilizing this class of molecules[12]. The DS based 

pharmacophore models are more computationally intensive, as they consider many 

conformations (number ≤ 255) of each molecule to generate the QSAR equations [13], but they 

give the minimum essential structural requirements for the activity in terms of favorable regions 

and do not give any information about the features that diminishes the biological activity. The 

successful application of CoMFA, CoMSIA technique to understand the effect of contrast of 
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structural requirements in 3D chemical space has been reported by many research groups in 

recent past [14,15]. Thus, on our next move we focused on to the less computationally intensive 

CoMFA, CoMSIA models on the same dataset which not only provide the information about the 

favorable regions but also give the information about the unfavorable regions in defining the 

potency. Structural alignment is perhaps the most subjective, yet critical, step in CoMFA study. 

In our earlier studies the global minima energy conformer-based alignment (GMCBA) had 

shown better results than docked conformer-based alignment (DCBA), and co-crystallized 

conformer-based alignment (CCBA) [16]. Further, we had also reported the superiority of 

qualitative pharmacophore based alignment (QualitativePBA) over GMCBA where the co-

crystallize structure of the molecule is unknown [17]. Now, we herein report the superiority of 

quantitative pharmacophore based alignment (QuantitativePBA) over GMCBA in terms of 

statistical significance. Besides the knowledge gained from the CoMFA, CoMSIA studies in 

terms of favorable and unfavorable features in 3D space to regulate the antimalarial activity of 

this class of compounds, the HQSAR studies based on the same molecular conformations of the 

training and test sets were also performed to generate the molecular fingerprints for the structures 

of the artemisinin derivatives relevant to their antimalarial activity. The HQSAR offers the 

ability of rapid and easy generation of high statistical quality QSAR models [18]. The premise of 

Hologram QSAR (HQSAR) is based on the assumption that the structure of a molecule is a key 

determinant (fingerprint) of the biological activity. The HQSAR studies however use an 

extended form of fingerprint, known as a "molecular hologram", which encodes more 

information in terms of branched and cyclic fragments including their stereochemistry, than the 

traditional 2D fingerprint. Together, the resulting three layered QSAR models will help to better 

understand the role of different chemical features in governing antimalarial activity of 
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substituted 1,2,4-trioxanes and may serve as a tool for developing more potent antimalarial 

agents. 

2.Method and Material 

2.1.Biological activity.  The QSAR studies were performed using eight series of substituted 1, 2, 

4-trioxanes comprising 88 artemisinin analogues (activity ranges from 1.4nM to 2000nM) 

reported in literature [19-24]. The homogeneity of the biological assays is one of the important 

aspects in QSAR study therefore, the dataset was collected from the same research group 

following the same biological testing protocol. It has been suggested that the generated models 

should be tested on a sufficiently large test set to establish a reliable QSAR model [25] therefore, 

the molecules were rationally divided into training set of 45 and the test set of 43 compounds in 

such a way that both sets cover the structural diversity of following eight different chemical 

prototypes and entire range of biological activity (Figure 1 and Table 1).  

 

Please Insert Figure. 1 about here 

 

Please Insert Table 1 about here 

 

2.2 CoMFA and CoMSIA studies  

2.2.1 Computational approach and Molecular alignment 

The CoMFA and CoMSIA molecular modeling studies were performed using SYBYL software 

[26] running on a Silicon Graphics Octane R12000 workstation.  In ‘GMCBA’ method, the 3D 

structures of the molecules to be analyzed are aligned to a suitable conformational template, 

which is assumed to adopt a ‘‘bioactive conformation’’. Hence, in this case the molecular 
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structures of all the compounds were drawn using the most active compound 40 as a template in 

SYBYL6.9 where the partial charges were calculated using Gasteiger-Hückel method and 

geometry optimized using Tripos force field with a distance-dependent dielectric function and 

energy convergence criterion of 0.001 kcal/mol Å using 1000 iterations and standard SYBYL 

settings. The conformational search was performed using multi-search method with the 

following settings: maximum cycles (400), maximum conformers (400), energy cutoff (70 

kcal/mol), maximum rms gradient (3.0) tolerance (0.40), and number of hit (12). The minimum 

energy conformations thus obtained were used in the GMCBA analysis. The substructure (shown 

in blue color) of the most active compound 40 (Figure 2A) was used as a template for molecular 

alignment. Whereas, in the QuantitativePBA analysis the earlier reported quantitative 

pharmacophore based alignment of all the 88 artemisinin derivatives was exported to SYBYL6.9 

interface for CoMFA and CoMSIA studies (Figure 2C). The partial charges for all the 

compounds were calculated using the Gasteiger-Hückel method. The overall alignment of the 

training set molecules for the GMCBA and QuantitativePBA method has been shown in Figure 

2B and 2D. 

Please Insert Figure. 2 about here 

 

2.2.2 CoMFA 

The CoMFA methodology was first reported by Cramer et al.[27] through which a three-

dimensional QSAR model can be derived for a set of ligands by sampling the steric and 

electrostatic fields around them with respect of their biological activity. In the present study the 

aligned molecules of the training set were positioned in a 3D cubic lattice with a grid spacing of 
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2.0 Å in x, y and z directions for deriving the CoMFA fields. The steric (Lennard–Jones 

potential) and electrostatic (Columbic with 1/r dielectric) fields were calculated at each lattice 

point using Tripos force field and a distance dependent dielectric constant of 1.0. An sp3-

hybridized carbon with a +1.0 charge and a radius of 1.52 Å was used as a probe to calculate 

various steric and electrostatic fields. An energy cutoff value of 30 kcal/mol was applied to avoid 

too high and unrealistic energy values inside the molecule.  

2.2.3 CoMSIA 

The CoMSIA technique is based on the molecular similarity indices with the same lattice box 

used for the CoMFA calculations [28]. It is considered superior to CoMFA technique in certain 

aspects such as the results remain unaffected to both, region shifts as well as small shifts within 

the alignments, it does not require steric cutoffs and more intuitively interpretable contour maps. 

In the present study, five different similarity fields viz. steric, electrostatic, hydrophobic, H-donor 

and H-acceptor were calculated using the standard settings of CoMSIA (Probe with charge +1, 

radius 1 Å and hydrophobicity +1, hydrogen-bond donating +1, hydrogen-bond accepting +1, 

attenuation factor of 0.3 and grid spacing 2 Å). 

2.2.4 Partial least squares (PLS) and Predictive r2 analysis 

PLS is used to correlate sirt1 activity with the CoMFA and CoMSIA values containing 

magnitude of steric, electrostatic and hydrophobic potentials. Leave one out (LOO) validation 

was utilized as tool for determining the predictability of the developed model. The full PLS 

analysis was carried out with a column filtering of 2.0 kcal/mol to speed up the calculation and 

reduce the noise. The predictive r2 value is based on the only test set molecules which may be 

define as  
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                     (SD - PRESS) 

 r2 (pred) =   

                           SD 

where SD is the sum of squared deviation between the biological activities of the test set 

molecule to the mean activity of the training set molecules while PRESS is the sum of squared 

deviations between the observed and the predicted activities of the test molecules.36 

2.3 Hologram QSAR (HQSAR) studies 

A molecular hologram development for a number of structures can yield a data matrix of 

dimension N x L. N is the number of compounds analyzed and L is the length of the molecular 

hologram. The PLS method is used to build a statistical model which relates the molecular 

hologram descriptors to an experimental property such as pIC50. The combinations of different 

fragments viz. atomic numbers (A) to distinguish the atom types, bond types (B) to distinguish 

the bond types, atomic connections (C) to consider the hybridization states of the atoms in a 

fragment, hydrogen (H) for inclusion of H-atoms, donor and acceptor (DA) for donor and 

acceptor atoms, and chirality (Ch) were accessed for all the 88 artemisinin derivatives during the 

hologram generation. This choice was based on the structural features likely to be important in 

the data set being analyzed. The non-cross-validated regression coefficient (r2), cross-validated 

regression coefficient value (q2) and standard error of prediction (SEE) for different 

combinations of fragments were analyzed to select the best combinations as a molecular 

hologram and the HQSAR model. 
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3. Results and discussion 

3.1 CoMFA and CoMSIA studies  

Since, the CoMFA and CoMSIA are highly sensitive to the relative alignment of molecules, it 

was important to determine the best alignment rule for these molecules having varying 

structures. Among the QuantitativePBA and GMCBA methods for the alignment for all the 88 

artemisinin derivatives, the best alignment was selected on the basis of statistical parameters 

obtained both for CoMFA and CoMSIA models listed in Table 2. Since the QuantitativePBA 

based alignment method gave the model with best statistics and predictive values, this alignment 

was further used for systematic CoMFA, and CoMSIA studies. 

Please Insert Table 2 about here 

3.1.1 CoMFA analysis 

The QuantitativePBA method based CoMFA analysis revealed a cross validated q2 of 0.721 for 1 

principal components and a non cross validated conventional r2 of 0.834, F value of 222.982 and 

standard error of estimate SEE of 0.292. To further assess the robustness of the models, 

bootstrapping analysis (20 runs) was performed and the observed r2
bs of 0.821 (SDbs= 0.036), 

further strengthened the model. In addition to LOO, a group cross-validation for 20 runs was also 

carried out to assess the internal predictive ability of the model and the observed mean r2
CV of 

0.724 (TS) was indicative of high internal predictivity of the model (Table 2). 

3.1.2 CoMSIA analysis 

The CoMSIA model having steric(S), electrostatic (E), and hydrophobic (H) descriptors gave the 

highest q2 value of 0.725 for 1 component with a conventional non cross-validated r2 value 
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0.875, F value 150.728 and standard error of estimate SEE 0.257. To further assess the statistical 

ability and the robustness of the model, bootstrapping analysis (20 runs) was performed where 

the observed r2
bs value 0.879 with very low standard deviation 0.036 indicated the high 

robustness of the model. Similar to CoMFA, it also showed high internal predictive ability (mean 

r2
cv value 0.741) for 20 runs. 

3.1.3 Test Set Validation 

The test set validation is the rigorous validation for the model where the activity predictions for 

compounds not included in the training set are made. The external predictive ability of the 

generated CoMFA model was evaluated for the test set of 43 molecules where the obtained 

predictive r2 value (r2
pred) of 0.635 further supported the high predictive ability of the generated 

model (Figure 3A). The predictive pIC50 values of the training as well as test set molecules based 

on the CoMFA model are listed in the Table 3. Similar to the CoMFA model, the CoMSIA 

models also showed the high external predictive ability (r2
pred) of 0.713 for the external test set 

(Figure 3B).  The observed and predicted activities of the training and test set by the best 

CoMSIA (SEH) model are shown in Table 3. These results for the test-set compounds provide 

strong evidence that the CoMFA and CoMSIA models so derived are able to predict well the 

antimalarial activities of structurally diverse artemisinin derivatives. 

Please Insert Figure 3 about here 

Please Insert Table 3 about here 

3.1.5 CoMFA and CoMSIA contour maps analysis 

The coefficients from CoMFA and CoMSIA models were used to generate 3D contour maps. 

which determine the vital physicochemical properties responsible for variation in activity and 
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also explore the crucial importance of various substituents in their 3D orientation. The generated 

Contour maps from the above hypothesis of CoMFA and CoMSIA analyses are shown in Figure. 

4A,B,C. 

Please Insert Figure 4 about here 

 

A contrast of the contours obtained from the PLS co-efficient of CoMFA and CoMSIA 

descriptors yields necessary information about the physicochemical properties of the substituted 

1,2,4-trioxane molecules vital in defining the antimalarial activity. An analysis of the CoMFA 

and CoMSIA contours in terms of common steric and electrostatic parameters around the most 

active molecule of the dataset 40 signified the importance of sterically favorable region (green 

color) near the 2-furyl group at C-10 position of the molecule while sterically unfavorable 

contours (yellow color) have been observed near the region of three carbon chain linked with the 

C-3 and C-12a position of the trioxane ring, the cyclohexyl ring and the methyl group at C-6 

position of the molecule 40 for antimalarial activity (Figure 4A and B). At the same time the 

CoMSIA based PLS contour analysis of the hydrophobic feature highlighted the importance of 

the favorable hydrophobic functionalities in the vicinity of the regions adjoining the 3 and 6 

position of methyl group as well as regions below the cyclohexyl group of the molecule while 

the unfourable hydrophobic interactions in the regions near the C-12, 12a, 8a and 9 (Figure 4C). 

Therefore, it may be inferred that the steric bulk should not be increased at position 3 of the 

molecule while the hydrophobic groups should be added in the adjacent regions between 3 and 6 

positions as well as in the regions below the cyclohexyl group of the molecule while 

hydrophilicity may be increased in the regions near the C-12, 12a, 8a and 9 of the molecule. 

Thus this information adds on to the information provided by the DS pharmacophore where 
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though the two aliphatic hydrophobic (HYAl-1 and 2) features were shown but it did not provide 

any information about the addition or deletion of steric bulk and hydrophobicity in different 

regions in 3D space of the molecule.  Similarly, when the electrostatic contours were considered, 

both the CoMFA and CoMSIA contours emphasized the importance of the electronegative 

substituent in the vicinity of the oxygen atoms at 1,2,4 position of the molecule which was 

corroborated with the two H-bond acceptor features present in the DS based pharmacophore 

model. However the CoMFA and CoMSIA studies gave the additional information regarding the 

favorable electropositive functionality in the region adjacent to the 1,2,4-trioxane ring for 

increasing the antimalarial activity (Figure. 4A and 4B). 

3.2. HQSAR Study  

The role of 1,2, 4 trioxane ring in the artemisinin derivatives for defining the antimalarial activity 

is well established. Although the CoMFA and CoMSIA studies gave an insight about the 

quantitative role of chemical features in modulating the antimalarial activity in terms of 

favorable and unfavorable contours still the HQSAR studies were performed on the same data set 

to find out the minimal 2D sub-structural requirement for antimalarial activity besides the well 

known role of 1,2,4 trioxane ring. The HQSAR models were generated using the default 

fragment size (4–7) combined with various fragment types and various hologram lengths as 

summarized in Table 2. The model having A, B, C, H, Ch, and DA fragments with r2
ncv value of 

0.873 at 6 components and 199 hologram lengths was selected. In order to further analyse it, the 

data set was divided into the same training and test set as in CoMFA and CoMSIA studies to 

access the predictive values of the model. The observed r2
ncv value 0.848 and 0.910 between 

experimental and predicted pIC50 of the training and test set respectively further signified the 
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quality of the model. The predictive pIC50 values of the training as well as test set molecules 

based on the HQSAR model are listed in the Table 4 and plotted in Figure 5. 

Please Insert Table 4 about here 

Please Insert Figure 5 about here 

 

An attractive property of HQSAR technique is that it provides straightforward clues about the 

individual atomic contributions to the biological activities through the use of different color 

codes. The color coding is based on the activity contribution of the individual atoms of the 

molecules. The individual atomic contribution of the most potent compound 40 is shown in 

Figure 4D where the cyclohexy group and ring formed by the 3C chain linkers both attached 

with trioxane ring define the antimalarial activity besides the well known 1,2,4 trioxane ring. 

These findings also corroborates with the CoMFA, CoMSIA and DS based pharmacophore 

studies where these chemical group were found favorable in defining the antimalarial activity.  

4. Conclusion 

The present study describes a successful application of combination of three different 

computational approaches to identify essential structural requirements in 3D chemical space for 

the modulation of the antimalarial activity of substituted 1,2,4-trioxanes. Each approach has its 

own advantages and disadvantages. The CoMFA and CoMSIA have been applied successfully to 

rationalize the 3D space in diverse substituted 1,2,4-trioxanes in terms of their steric, 

electrostatic, and hydrophobic interaction for their antimalarial activity. The developed models 

showed good statistical significance in internal validation (q2, group cross-validation and 

bootstrapping) and performed very well in predicting antimalarial activity of 43 substituted 

1,2,4-trioxanes in the test set. The CoMFA, CoMSIA models not only provided the information 
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about the favorable regions as reported in DS based pharmacophore but also give the information 

about the unfavorable regions in defining the potency. In addition the superiority of 

QuantitativePBA over GMCBA has been established. Further, the HQSAR studies based on the 

same training set also provided the 2D sub-structural requirements and showed good statistical 

significance in internal validation (r2
cv, r2

ncv) as well as predicted very well the antimalarial 

activity of the test set compounds. Thus, the three layered QSAR studies viz. Pharmacophore, 

CoMFA, CoMSIA and HQSAR may be useful for designing new substituted 1,2, 4-trioxane with 

potent antimalarial activity. 
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Captions of Figures. 

 

Figure 1. Structures of compounds used in training and test set. 

igure 2. The overall alignment of the training set molecules used in the 3D-QSAR study,(A) 

global minima energy conformer-based alignment, (B) Quantitative pharmacophore based 

alignment. 

Figure 3. Correlation graph between observed and predicted activities of training set (dots) and 

test set (triangles) molecules (A) CoMFA and (B) CoMSIA. 

Figure 4. 3D-QSAR analysis of substituted 1,2,4-trioxane molecules (A) Steric and electrostatic 

CoMFA contours; (B) Steric and electrostatic CoMSIA contours around the most active 

compound 40. The green and yellow contours indicate sterically favored and disfavored regions 

respectively while the blue and red contours denote regions that favor electropositive substituent 

and electronegative substituent respectively; (C) PLS hydrophobic contours from CoMSIA 

analysis around the most active compound 40. The yellow contours indicate hydrophobic 

favored regions while the white contours denote hydrophobic disfavored regions (D) Individual 

atomic contributions for the activity of the most potent compound 40. The colors at the red end 

of the spectrum reflect unfavorable contributions in the order of red > red-orange > orange color, 

while colors at the green end indicate favorable (positive) contributions in the order of green>  

green-blue > yellow. Atoms with intermediate contributions are colored in white. 

Figure 5. Correlation graph between observed and predicted activities of training set (dots) and 

test set (triangles) molecules based on HQSAR model. 
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Figure 1. Structures of compounds used in training and test set. 
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Figure 2. The overall alignment of the training set molecules used in the 3D-QSAR study, (A) 

global minima energy conformer-based alignment, (B) Quantitative pharmacophore based 

alignment. 
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Figure 3. Correlation graph between observed and predicted activities of training set (dots) and 

test set (triangles) molecules (A) CoMFA and (B) CoMSIA. 
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Figure 4. 3D-QSAR analysis of substituted 1,2,4-trioxane molecules (A) Steric and electrostatic 

CoMFA contours; (B) Steric and electrostatic CoMSIA contours around the most active 

compound 40. The green and yellow contours indicate sterically favored and disfavored regions 

respectively while the blue and red contours denote regions that favor electropositive substituent 

and electronegative substituent respectively; (C) PLS hydrophobic contours from CoMSIA 

analysis around the most active compound 40. The yellow contours indicate hydrophobic 

favored regions while the white contours denote hydrophobic disfavored regions (D) Individual 

atomic contributions for the activity of the most potent compound 40. The colors at the red end 

of the spectrum reflect unfavorable contributions in the order of red > red-orange > orange color, 

while colors at the green end indicate favorable (positive) contributions in the order of green>  

green-blue > yellow. Atoms with intermediate contributions are colored in white. 
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Figure 5. Correlation graph between observed and predicted activities of training set (dots) and 

test set (triangles) molecules based on HQSAR model. 
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Title of Tables. 

Table 1. Structures of the molecules used in training and test set. 

Table. 2. PLS statistics of CoMFA (TS) and CoMSIA (SEHA) models. 

Table 3. Training set and test set compounds along with their experimental and predicted 

biological activity. 

Table 4. Results of HQSAR analyses for various fragment distinctions on the key statistical 

parameters using fragment-size default (4–7). 
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Table 1. Structures of the molecules used in training and test set               

C.N. R C.N. R C.N. R 

1 Ph 

(C12-OMe)  

 

31 

 

Et 

61 Z-CH=CHPh 

2 p-PhPh 

(C12-OMe)  

 

32 

 

(CH3)2CHCH2CH2 

62 E-CH=CHPhNO2-p 

3 p-PhPh 

(C12-OMe) β 

 

33 

 

PhCH2CH2CH2 

63 Z-CH= CHPhNO2-p 

4 1-naphthyl 

(C12-OMe)  

 

34 

 

CH2=CH- 

64 -SPh 

(C12-R)β 

5 1-naphthyl 

(C12-OMe) β 

 

35 

 

Ph 

65 -SO2Ph 

(C12-R)β 

6 p-ClPh 

(C12-OMe)  

 

36 OR'OR'  

      (C-10-R) 

 

R’=Me 

66 -SO2Ph 

(C12-R) 

7 p-ClPh 

(C12-OMe) β 

 

37 

 

R’=Allyl 

67 -SPh–OMe-p 

(C12-R)β 

8 2-furyl 

(C12-OMe)  

 

38 

OMe

OMeMeO         (C10- R)  

68 -SO2Ph–OMe-p 

(C12-R) β 

9 p-HOCH2Ph 

(C12-OMe)  

 

39 MeO OMe      (C10-R)  

69 -SO2Ph–OMe-p 

(C12-R) 

10 p-HOCH2Ph 

(C12-OMe)  β 

 

40 

 

 

O R'

 

 

(C10-R)  

 

R’=H 

70 -SPh-Cl-p 

(C12-R) β 

11 p-MeOCH2Ph 

(C12-OMe)  

 

41 

 

R’=Me 

71 -SO2Ph-Cl-p 

(C12-R) β 

12 p-MeOCH2Ph 

(C12-OMe)  β 

 

42 

 

R’=Et 

72 -SO2Ph-Cl-p 

(C12-R)  

13 p-MeOC(O)OCH2Ph 

(C12-OMe)  

   43 R’=t-butyl 73 X= OHCH2CH2-,   

R=Me (C4-R) β 
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14 p-MeC(O)OCH2Ph 

(C12-OMe)  

 

44 

S

          (C10-R))  

74 X= OHCH2CH2-,  

 R=Me  (C4-R)  

15 p-MeC(O)OCH2Ph 

(C12-OMe) β 

 

45 

 

 

N

R'

 

(C10-R)  

 

R’ = Me 

75 X= OHCH2CH2-,  

 R=PhCH2-      (C4-R) β 

16 p-(p’-FPhCH2OCH2)Ph 

(C12-OMe)  

 

46 

R’= 

PhCH2- 

76 X= OHCH2CH2-,   

R=H 

17 p-(p’-FPhCH2OCH2)Ph 

(C12-OMe) β 

 

47 

R’= 
OCH

2

 

77 X= OHCH2CH2-,   

R=PhCH2-   (C4-R) β 

18 p-FPh 

(C12-OMe)  

48 R’= 

EtOOCH2 

78 X= H,   

R=Ph   (C4-R) β 

19 p-FPh 

(C12-OMe) β 

 

49 
N

Me   (C10-R)  

79 X= H,  

R= OHCH2-   (C4-R) β 

20 p-F-o-MePh 

(C12-OMe)  

 

50 

 

R'                 
(C10-R) β 

 

 

R’= Cl 

80 X= H,   

R= p-(HOCH2)PhCH2- 

21 p-F-o-MePh 

(C12-OMe) β 

 

51 

 

R’= F 

81 X= H,   

R= (PhO)2P(O)OCH2CH2- 

22 p-CF3Ph 

(C12-OMe)  

 

52 

 

R’=  SMe 

82 X= H,  

 R= PhCH2OCH2CH2- 

23 p-CF3Ph 

(C12-OMe) β 

 

53 

 

2’-thiozolyl 

83 X= H,  

 R= p-FPhCH2OCH2CH2- 

24 CF3CH2 CH2- 

(C12-OMe) β 

54  

2’-benzothiazolyl 

84 X= CH3,  

R= (PhO)2P(O)OCH2CH2- 

25 FCH2- 

(C12-OMe)  

55  

-CHO 

85 X= CH3,   

R= PhCH2OCH2CH2- 

26 FCH2- 

(C12-OMe) β 

56  

-C(O)n-Bu 

86 X= CH3,   

R= p-FPhCH2OCH2CH2- 

27 X= Ph, 

 R= -CH2CH2OH 

57  

-C(O)Ph 

87 X= CH2O ( p-FPhCH2),  

 R=H 

28 X= Me3Si,  

R= -CH2CH2OH 

58  

-C(OH)Ph2 

88 X= CH2Ph p-{ CH2O- p-(FPhCH2)},  

R=H 
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29 X= Ph,  R= H 59 -CH=CH2   

30 Me 60 E-CH=CHPh   

     C. N. = Compound Name 
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Table. 2. PLS statistics of CoMFA (TS) and CoMSIA (SEHA) models. 

Parameters GMCBA QuantitativePBA 

 CoMFA (TS) CoMSIA (SEH) CoMFA (TS) CoMSIA (SEH) 

q2 0.341 0.331 0.721 0.725 

Spress 0.589 0.593 0.383 0.410 

r2 0.527 0.499 0.834 0.875 

SEE 0.499 0.513 0.292 0.257 

F 47.857 42.902 222.982 150.728 

N 1 1 1 1 

 

Fractions 

S 0.534 0.228 0.352 0.152 

E 0.466 0.413 0.648 0.455 

H  0.359  0.393 

r2
bs (20 runs) 0.624 0.570 0.821 0.879 

SDbs 0.432 0.469 0.303 0.239 

r2
CV(mean) (20 groups) 0.341 0.333 0.724 0.741 

r2
pred 0.482 0.482 0.635 0.713 

q2 = leave one out cross-validation correlation coefficient; r2 = conventional correlation; SEE = standard error of 

estimate; F = degree of freedom; N = optimal number of component; r2
bs = bootstrapping correlation; SDbs = 

bootstrapping standard deviation; r2
CV(mean) = group cross-validation; TS = Tripos standard; SEH = Steric, 

electrostatic, and Hydrophobic. 

 

 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 12, 2018. ; https://doi.org/10.1101/468959doi: bioRxiv preprint 

https://doi.org/10.1101/468959
http://creativecommons.org/licenses/by-nc-nd/4.0/


30 

 

Table 3. Training set and test set compounds along with their experimental and predicted 

biological activity. 

Training Set  Test Set 

C. 

N. 

Exp. 

pIC50 

(nM) 

Pred. 

CoMFA 

pIC50 

(nM) 

Pred. 

CoMSIA 

pIC50 

(nM) 

Pred. 

HQSAR 

pIC50 

(nM) 

C. 

N. 

Exp. 

pIC50 

 (nM) 

Pred. 

CoMFA 

pIC50 

(nM) 

Pred. 

CoMSI

A 

pIC50 

(nM) 

Pred. 

HQSAR 

pIC50 

(nM) 

2 -1.8808 -1.805 -1.698 -2.235 1 -2.0414 -1.868 -1.853 -2.034 

4 -2.2304 -1.884 -1.831 -1.985 3 -1.8325 -1.737 -1.513 -1.822 

7 -1.7404 -1.705 -1.464 -1.532 5 -1.6435 -1.741 -1.532 -1.553 

8 -2.7782 -2.6 -2.758 -2.301 6 -1.6902 -1.731 -1.653 -1.91 

9 -1.8921 -1.976 -1.895 -1.742 10 -1.1761 -1.602 -1.372 -1.329 

11 -1.5911 -1.884 -1.788 -1.796 12 -1.7076 -1.697 -1.397 -1.382 

16 -1.6232 -1.855 -1.784 -1.578 13 -1.8976 -1.989 -1.933 -1.884 

17 -1.3617 -1.738 -1.364 -1.201 14 -1.6435 -1.85 -1.863 -1.728 

19 -1.4771 -1.592 -1.471 -1.537 15 -1.301 -1.733 -1.471 -1.315 

21 -1.5315 -1.632 -1.526 -1.81 18 -1.8129 -1.792 -1.761 -1.914 

22 -1.5911 -1.724 -1.868 -1.737 20 -1.9956 -1.867 -1.805 -2.187 

23 -1.7243 -1.666 -1.568 -1.36 25 -2.5052 -2.487 -2.662 -2.746 

24 -1.9243 -1.592 -1.558 -1.906 26 -2.2041 -1.464 -1.507 -2.308 

27 -0.9191 -1.32 -1.057 -1.669 30 -2.9823 -2.414 -2.635 -2.806 

28 -2.3802 -2.467 -2.43 -2.143 32 -2.2041 -1.671 -1.619 -2.04 

29 -2.5315 -2.609 -2.565 -2.687 35 -1.5798 -1.656 -1.507 -1.621 

31 -2.8513 -2.938 -2.985 -2.635 38 -0.8921 -1.093 -1.041 -0.957 

33 -2.0414 -1.287 -1.423 -2.413 39 -0.9542 -1.108 -1.016 -1.008 

34 -1.6628 -1.664 -1.531 -1.715 41 -0.716 -1.257 -1.197 -0.501 

36 -0.6232 -0.757 -0.689 -0.871 42 -0.9345 -1.263 -1.05 -0.68 
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37 -0.8195 -0.563 -0.816 -0.664 46 -1.2041 -0.764 -0.926 -0.93 

40 -0.1461 -0.789 -0.895 -0.584 50 -1.0414 -1.31 -1.26 -0.823 

43 -1 -0.682 -0.787 -1.087 51 -0.9191 -1.213 -1.253 -0.875 

44 -0.7076 -0.696 -0.926 -0.887 53 -1.1461 -1.282 -1.165 -1.129 

45 -0.6628 -0.752 -0.866 -0.898 54 -0.8921 -1.566 -1.109 -0.972 

47 -0.9731 -1.106 -1.061 -1 55 -1.5682 -1.151 -1.22 -1.129 

48 -0.959 -0.787 -0.869 -1.032 56 -0.6335 -1.309 -1.089 -0.526 

49 -0.6021 -0.679 -0.705 -0.769 57 -0.6628 -1.25 -1.166 -0.833 

52 -0.9243 -1.038 -1.143 -0.85 58 -0.6532 -0.707 -0.454 -0.637 

59 -1.4472 -0.988 -1.115 -1.207 63 -1 -1.11 -1.126 -0.97 

60 -1.2041 -1.193 -1.183 -1.002 64 -1.7482 -1.598 -1.86 -1.899 

61 -0.9085 -0.928 -0.872 -1.002 65 -1.5185 -1.569 -1.752 -1.56 

62 -1.0414 -0.85 -0.99 -0.948 67 -1.9494 -1.104 -1.169 -1.987 

66 -1.7709 -1.56 -1.734 -1.56 68 -1.4771 -1.529 -1.441 -1.625 

69 -1.6335 -1.501 -1.769 -1.452 70 -2.0414 -1.125 -1.187 -1.891 

72 -1.3979 -1.708 -1.539 -1.371 71 -1.3617 -1.6 -1.753 -1.543 

73 -0.8865 -1.596 -1.476 -1.523 74 -3.1139 -2.754 -3.029 -2.58 

75 -3.2304 -3.124 -3.278 -2.643 77 -2.4914 -2.609 -2.565 -2.687 

76 -2.0792 -1.607 -1.565 -2.269 80 -2.7782 -2.483 -2.47 -2.414 

78 -3.301 -2.68 -3.074 -3.228 82 -1.1461 -1.177 -1.088 -1.787 

79 -2.3617 -2.66 -2.694 -2.231 83 -1.4914 -1.204 -1.151 -1.525 

81 -1.3979 -1.133 -1.195 -1.291 85 -1.0414 -1.217 -1.221 -1.041 

84 -0.8388 -0.886 -0.632 -0.678 88 -2.3802 -2.969 -3.161 -2.339 

86 -1.1139 -1.159 -1.089 -0.78      

87 -1.2788 -1.384 -1.37 -1.806      
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Table 4. Results of HQSAR analyses for various fragment distinctions on the key statistical 

parameters using fragment-size default (4–7). 

Model  Fragmenta r2
cv SEP r2

ncv HL N 

1 A/B/C 0.585 0.369 0.716 257 4 

2 A/B/C/H 0.573 0.392 0.675 151 3 

3 A/B/C/H/Ch 0.557 0.359 0.713 151 4 

4 A/C/H/Ch/DA 0.578 0.267 0.855 199 6 

5 A/B/C/H/Ch/DA 0.572 0.249 0.873 199 6 

6 A/B/Ch/DA 0.571 0.378 0.697 97 3 

7 A/B/C/Ch/DA 0.500 0.401 0.660 151 3 

8 A/C/Ch/DA 0.483 0.451 0.566 307 2 

SEP: standard error of prediction, HL: hologram length, N: optimal number of components, aFragment distinction; 

A: atom, B: bond, C: connection, H: hydrogen, Ch: chirality, DA:donor and acceptor. 

 

           

 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 12, 2018. ; https://doi.org/10.1101/468959doi: bioRxiv preprint 

https://doi.org/10.1101/468959
http://creativecommons.org/licenses/by-nc-nd/4.0/

