
Statistically consistent divide-and-conquer pipelines for

phylogeny estimation using NJMerge

Erin K. Molloy and Tandy Warnow

January 17, 2019

Abstract

Background. Divide-and-conquer methods, which divide the species set into over-
lapping subsets, construct a tree on each subset, and then combine the subset trees
using a supertree method, provide a key algorithmic framework for boosting the scal-
ability of phylogeny estimation methods to large datasets. Yet the use of supertree
methods, which typically attempt to solve NP-hard optimization problems, limits the
scalability of such approaches.

Results. In this paper, we introduce a divide-and-conquer approach that does not
require supertree estimation: we divide the species set into pairwise disjoint subsets,
construct a tree on each subset using a base method, and then combine the sub-
set trees using a distance matrix. For this merger step, we present a new method,
called NJMerge, which is a polynomial-time extension of Neighbor Joining (NJ); thus,
NJMerge can be viewed either as a method for improving traditional NJ or as a method
for scaling the base method to larger datasets. We prove that NJMerge can be used to
create divide-and-conquer pipelines that are statistically consistent under some models
of evolution. We also report the results of an extensive simulation study evaluating
NJMerge on multi-locus datasets with up to 1000 species. We found that NJMerge
sometimes improved the accuracy of traditional NJ and substantially reduced the run-
ning time of three popular species tree methods (ASTRAL-III, SVDquartets, and “con-
catenation” using RAxML) without sacrificing accuracy. Finally, although NJMerge
can fail to return a tree, in our experiments, NJMerge failed on only 11 out of 2560
test cases.

Conclusions. Theoretical and empirical results suggest that NJMerge is a valu-
able technique for large-scale phylogeny estimation, especially when computational
resources are limited. NJMerge is freely available on Github
(http://github.com/ekmolloy/njmerge).

Introduction

Estimating evolutionary trees, called phylogenies, from molecular sequence data is a fun-
damental problem in computational biology, and building the Tree of Life is a scientific
grand challenge. It is also a computational grand challenge, as many of the most accurate
phylogeny estimation methods are heuristics for NP-hard optimization problems. Species
tree estimation can be further complicated by biological processes (e.g., incomplete lineage

1

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted January 18, 2019. ; https://doi.org/10.1101/469130doi: bioRxiv preprint

https://doi.org/10.1101/469130

sorting, gene duplication and loss, and horizontal gene transfer) that create heterogeneous
evolutionary histories across genomes or “gene tree discordance” [24].

Incomplete lineage sorting, which is modeled by the Multi-Species Coalescent (MSC)
model [36, 39], has been shown to present challenges for phylogenomic analyses [11]. In
addition, while the standard approach for multi-locus species tree estimation uses maximum
likelihood methods (e.g., RAxML) on the concatenated sequence alignment, recent studies
have established that even exact algorithms for maximum likelihood are not statistically
consistent methods for multi-locus species tree estimation under the MSC model (see [42]
for a proof for unpartitioned maximum likelihood and [41] for fully partitioned maximum
likelihood).

Because concatenation analyses using maximum likelihood are provably not statistically
consistent in the presence of incomplete lineage sorting, new methods have been developed
that are provably statistically consistent under the MSC model. Bayesian methods that co-
estimate gene trees and species trees (e.g., [15, 35]) are statistically consistent and expected
to be the highly accurate; however, such methods are also prohibitively expensive on large
datasets. More efficient approaches have been developed that are statistically consistent
under the MSC model, including “gene tree summary methods”, which take a collection of
gene trees as input and then compute a species tree from the gene trees using only the gene
tree topologies. For example, NJst [23] runs Neighbor Joining (NJ) [43] on the “average
gene tree internode distance” (AGID) matrix, and ASTRAL [27] finds a quartet-median tree
(i.e. a species tree that maximizes the total quartet tree similarity to the input gene trees)
within a constrained search space. However, gene tree summary methods can have reduced
accuracy when gene tree estimation error is high, which is a problem for many phylogenomic
datasets (see discussion in [31]).

Because of the impact of gene tree estimation error, alternative approaches that bypass
gene tree estimation, called “site-based” methods, have been proposed. Perhaps the best
known of site-based method is SVDquartets [9], which estimates quartet trees from the
concatenated sequence alignments (using statistical properties of the MSC model and the
sequence evolution model) and then combines the quartet trees into a tree on the full set of
species using quartet amalgamation methods that are heuristics for the Maximum Quartet
Consistency problem [18]. Other examples site-based methods include computing Jukes-
Cantor [20] or log-det [46] distances from concatenated alignment and then running NJ
on the resulting distance matrix. Such approaches can be statistically consistent under
the MSC model when the sequence evolution models across genes satisfy some additional
assumptions (e.g., a relaxed molecular clock) [10, 3].

Many of these methods (e.g., ASTRAL, SVDquartets, and concatenation using RAxML)
are heuristics for NP-hard optimization problems. Such methods can have difficulties scaling
to datasets with large numbers of species, and divide-and-conquer approaches have been
developed to scale methods to larger datasets (e.g., the family of disk covering methods
[55, 16, 21, 32, 6, 53]). Such methods operate by dividing the species set into overlapping
subsets, constructing trees on the subsets, and then merging the subset trees into a tree
on the entire species set. The last step of this process, called “supertree estimation”, can
provide good accuracy (i.e., retain much of the accuracy in the subset trees) if good supertree
methods are used. Notably, the supertree compatibility problem is NP-complete [7], and
the preferred supertree methods attempt to solve NP-hard optimization problems (e.g., the
Robinson-Foulds supertree problem [5], the Maximum Quartet Consistency problem [19],
the Matrix Representation with Parsimony problem [38], and the Matrix Representation
with Likelihood problem [34]). In summary, none of the current supertree methods provide

2

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted January 18, 2019. ; https://doi.org/10.1101/469130doi: bioRxiv preprint

https://doi.org/10.1101/469130

both accuracy and scalability to datasets with large numbers of species (see [54] for further
discussion).

In this paper, we introduce a new divide-and-conquer approach to scaling phylogeny
estimation methods to large datasets: we divide the species (or leaf) set into pairwise disjoint
subsets, construct a tree on each of the subsets, and then assemble the subset trees into a tree
on the entire species set. Supertree methods cannot be used to combine trees on pairwise
disjoint leaf sets, and we present a new polynomial-time method, called NJMerge, for this
task. We prove that NJMerge can be used in statistically consistent divide-and-conquer
pipelines for both gene tree and species tree estimation and evaluate the effectiveness of using
NJMerge in the context of multi-locus species tree estimation. We found, using an extensive
simulation study, that NJMerge sometimes improved the accuracy of traditional NJ and that
NJMerge provided substantial improvements in running time for three methods (ASTRAL-
III [57], SVDquartets [9], and concatenation using RAxML [44]) without sacrificing accuracy.
Furthermore, NJMerge enabled SVDquartets and RAxML to run on large datasets (e.g.,
1000 taxa and 1000 genes), on which SVDquartets and RAxML would otherwise fail to run
when limited to 64 GB of physical memory. While NJMerge is not guaranteed to return a
tree; the failure rate in our experiments was low (less than 1% of tests). In addition, NJMerge
failed on fewer datasets than either ASTRAL-III, SVDquartets, or RAxML — when given
the same computational resources: a single compute node with 64GB of physical memory,
16 cores, and a maximum wall-clock time of 48 hours. Together, these results suggest
that NJMerge is a valuable technique for large-scale phylogeny estimation, especially when
computational resources are limited.

NJMerge

Neighbor Joining (NJ) [43], perhaps the most widely used polynomial-time method for
phylogeny estimation, estimates a tree T from a dissimilarity matrix D; NJMerge is a
polynomial-time extension of NJ to impose a set of constraints on the output tree T
(Figure 1). More formally, NJMerge takes as input a dissimilarity matrix D on leaf set
S = {s1, s2, . . . , sn} and a set T = {T1, T2, . . . , Tk} of unrooted binary trees on pairwise
disjoint subsets of the leaf set S and returns a tree T that agrees with every tree in T
(Definition 1). Note that the output tree T is a compatibility supertree for T and that
because the trees in T are on pairwise disjoint subsets of the leaf set S, a compatibility
supertree always exists. NJMerge does not require that the input constraint trees T form
clades in T . For example, the caterpillar tree on {A,B,C,D,E, F,G,H} obtained by mak-
ing a path with the leaves hanging off it in alphabetical order is a compatibility supertree for
T = {AC|EG, BD|FH}, and yet the trees in T do not form clades within the caterpillar
tree (Figure 2). Of course, other compatibility supertrees exist for T , and, in some of them,
the input constraint trees will form clades. The objective is to find a tree that is close to the
true (but unknown) tree from the set of all compatibility supertrees for T , and NJMerge
tries to achieve this objective by using the dissimilarity matrix D.

Definition 1. Let T be a tree on leaf set S, and let T ′ be a tree on leaf set R ⊆ S. We
say that T ′ agrees with T if restricting T to leaf set R induces a binary tree that (after
suppressing the internal nodes of degree 2) is isomorphic to T ′.

Here we briefly describe the NJ algorithm by Satiou and Nei [43]. NJ has an iterative
design that builds the tree from the bottom up, producing a rooted tree that is then un-
rooted. Initially, all n leaves are in separate components. When a pair of leaves is selected

3

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted January 18, 2019. ; https://doi.org/10.1101/469130doi: bioRxiv preprint

https://doi.org/10.1101/469130

to be siblings, the pair of leaves is effectively replaced by a rooted tree on two leaves, and
the number of components is reduced by one. This process repeats until there is only one
component: a tree on the full leaf set. At each iteration, NJ updates D based on the new
sibling pair, derives a new matrix Q from D, and uses Q to determine which pair of the
remaining nodes to join. Specifically, NJ accepts siblinghood proposal (i, j) such that Q[i, j]
is minimized. The same formulas used by NJ [43] to update D and compute Q are also used
by NJMerge; however, NJMerge can make different siblinghood decisions than NJ — based
on the input constraint trees.

After each siblinghood decision, NJMerge updates the constraint trees. Specifically,
when two leaves are made siblings, they are replaced by a new leaf, and the constraint trees
are relabeled. For example, if x is a leaf in Ti and y is a leaf in Tj , then the siblinghood
proposal z = (x, y) requires that x and y are replaced with z in Ti and Tj , respectively.
Because siblinghood decisions change the set of leaves in the constraint trees, they can result
in the constraint trees no longer being disjoint (Figure 3). Thus, siblinghood decisions have
the potential to make the set of constraint trees incompatible. Determining whether or not
a set of unrooted phylogenetic trees is compatible is an NP-complete problem [45, 52], so
NJMerge uses a polynomial-time heuristic. In each iteration, NJMerge sorts the entries of
the Q from least to greatest and accepts the first siblinghood proposal (x, y) that satisfies
the following properties:

1. If x and y are both in some constraint tree Ti, then they are siblings in Ti.

2. If x or y are in more than one constraint trees, then replacing x and y with a new
leaf z = (x, y) in all constraint trees does not make any pair of constraint trees in-
compatible, i.e., a compatibility supertree exists for every pair of updated constraint
trees.

Because pairwise compatibility of unrooted trees does not guarantee that the entire set of
constraint trees is compatible, it is possible for NJMerge to accept a siblinghood decision
that will eventually cause the algorithm to fail when none of the remaining leaves can
be joined without violating the pairwise compatibility of constraint trees. Although the
“pairwise compatibility heuristic” can fail, it is easy to see that if NJMerge returns a tree,
then it is a compatibility supertree for the input set T of constraint trees.

To determine if some pair of constraint trees becomes incompatible after making x and y
siblings, it suffices to check only those pairs of constraint trees that contain at least one of x
and y; all other pairs of trees are unchanged by accepting the siblinghood proposal and are
pairwise compatible by induction. Because the leaves in the two trees labeled x or y have
been relabeled by the new leaf z = (x, y), they can be treated as rooted trees by rooting
them at z. Testing the compatibility of rooted trees is easily accomplished in polynomial
time using [1]. In fact, instead of testing pairs of constraint trees, the entire set of trees in T
containing the new leaf z = (x, y) can be tested for compatibility in polynomial time using
[1]. Furthermore, if at least one leaf exists in all constraint trees, then the compatibility of
T can be determined in polynomial time. Finally, note the input matrix was referred to
as a dissimilarity matrix (and not a distance matrix), because estimated distances between
species may not satisfy the triangle inequality [53]; however, this matrix is more commonly
referred to as a distance matrix, and we use this term henceforth.

4

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted January 18, 2019. ; https://doi.org/10.1101/469130doi: bioRxiv preprint

https://doi.org/10.1101/469130

Divide-and-Conquer Pipelines for Phylogeny Estimation

NJMerge can be used in divide-and-conquer pipelines for phylogeny estimation as described
below and shown in Figure 4.

1. Estimate distances between pairs of leaves using method MD.

2. Decompose the leaf set into pairwise disjoint subsets.

2a. Compute a starting tree by running NJ on the distance matrix computed in Step
1.

2b. Decompose the starting tree into pairwise disjoint subsets of leaves with a prede-
fined maximum subset size (e.g., using the centroid tree decomposition described
in PASTA [26]).

3. Build a tree on each subset using method MT , thus producing the set T of constraint
trees. Note that constraint trees can be estimated in serial or in parallel, depending
on the computational resources available.

4. Run NJMerge on the input pair (T , D).

In order to use NJMerge in a divide-and-conquer pipeline, the user must define the method
for computing a distance matrix MD (Step 1), the method for decomposing the leaf set into
pairwise disjoint subsets and the maximum subset size (Step 2), and the method MT for
computing subset trees (Step 3). Thus, the user can define MD and MT to be appropriate
for gene tree estimation or species tree estimation. Finally, although not explored in this
study, this pipeline can be run in an iterative fashion by using the tree produced in Step 4
to define the next subset decomposition.

Statistical Consistency

Neighbor Joining (NJ) has been proven to be statistically consistent [14, 4, 8] under models of
evolution for which pairwise distances can be estimated in a statistically consistent manner.
This includes standard models of sequence evolution (e.g., the Generalized Time Reversible
(GTR) model [50], which contains other models of sequence evolution, including Jukes-
Cantor [20]). More recently, NJ has been used on multi-locus datasets to estimate species
trees under the Multi-Species Coalescent (MSC) model; specifically, the method, NJst [23]
estimates a species tree by running NJ on the average gene tree internode distance (AGID)
matrix, calculated by averaging the topological distances between pairs of species in the
input set of gene trees. Allman et al. [2] showed that the AGID matrix converges to an
additive matrix for the species tree, and so NJst and some other methods (e.g., ASTRID
[51]) that estimate species trees from the AGID matrix are statistically consistent under the
MSC model.

We now prove that NJMerge can be used in statistically consistent divide-and-conquer
pipelines for estimating gene trees and species trees. These results follow from Theorem 3
that shows NJMerge will return the tree T ∗ when given a nearly additive distance matrix
(Definition 2) for T ∗ and a set T of constraint trees that agree with T ∗ (Definition 1).

Definition 2. Let T be a tree with positive weights on the edges and leaves labelled 1, 2, . . . , n.
We say that an n×n matrix M is nearly additive for T if each entry M [i, j] differs from
the distance between leaf i and leaf j in T by less than one half of the shortest branch length
in T .

5

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted January 18, 2019. ; https://doi.org/10.1101/469130doi: bioRxiv preprint

https://doi.org/10.1101/469130

Theorem 3. Let T = {T1, T2, . . . , Tk} be a set of constraint trees on pairwise disjoint leaf
sets, and let D be a distance matrix on S =

⋃
i Si, where Si is the set of leaves in Ti. Let

T ∗ be the true tree on leaf set S. If D is a nearly additive matrix for T ∗ and if constraint
tree Ti agrees with T ∗ for all i ∈ {1, . . . , k}, then NJMerge applied to input (T , D) returns
T ∗.

Proof. NJ applied to a nearly additive distance matrix for T ∗ will return T ∗ [4]. Because all
constraint trees in T agree with T ∗, the siblinghood proposals suggested by NJ will never
violate the the constraint trees T or the compatibility of T . Thus, NJMerge applied to
(T , D) will return the same output as NJ applied to D, which is T ∗.

We now define statistical consistency in the context of gene tree estimation (Definition
4) and show that NJMerge can be used to create statistically consistent divide-and-conquer
pipelines for gene tree estimation (Corollary 5).

Definition 4. Let (T,Θ) be a GTR model tree with topology T and numerical parameters Θ
(e.g., substitution rate matrix, branch lengths, etc). A method M for constructing gene trees
from DNA sequences is statistically consistent under the GTR model if, for all ε > 0,
there exists a constant l > 0 such that, given sequences of length at least l, M returns T
with probability at least 1− ε.
Corollary 5. NJMerge can be used in a gene tree estimation pipeline that is statistically
consistent under the GTR model of sequence evolution.

Proof. Let (T ∗,Θ) be a GTR model tree, let MD be a method for calculating distances
between pairs of sequences, and let MT be a method for constructing trees from DNA
sequences. Suppose that

• the divide-and-conquer pipeline produces k pairwise disjoint subsets of sequences

• Neighbor Joining (NJ) applied to a matrix of pairwise distances calculated using MD

is a statistically consistent method for constructing gene trees under the GTR model
(e.g., the log-det distance [46])

• MT is statistically consistent under the GTR model (e.g., maximum likelihood [33, 12])

Now let ε > 0, and select εD, εT > 0 such that εD + kεT < ε. By Definition 4, there exists a
constant lD such that NJ applied to matrix D computed from sequences of length at least
lD returns T ∗ with probability at least 1− εD, and there exists a constant lT such that MT

given DNA sequences length at least lT returns T ∗ with probability at least 1 − εT . If a
distance matrix D is calculated using MD and a set of k constraint trees T are constructed
using MT , given sequences of length at least max{lD, lT }, then the probability that NJ
applied to D returns T ∗ and that MT returns a tree that agrees with T ∗ for all k constraint
trees in T is at least 1− ε, as

(1− εD)(1− εT)k ≥ (1− εD)(1− kεT) by Bernoulli’s Inequality [29]

= 1− εD − kεT + kεDεT

> 1− (εD + kεT) > 1− ε

Then, by Theorem 3, NJMerge applied to the input (T , D) will return the T ∗ with proba-
bility at least 1− ε, and by Definition 4, NJMerge is statistically consistent under the GTR
model.

6

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted January 18, 2019. ; https://doi.org/10.1101/469130doi: bioRxiv preprint

https://doi.org/10.1101/469130

Finally, we define statistical consistency in the context of species tree estimation (Defi-
nition 7) and show that NJMerge can be used to create statistically consistent divide-and-
conquer pipelines for species estimation (Corollary 7).

Definition 6. Let (T,Θ) be a MSC model tree with topology T and numerical parameters
Θ (e.g., substitution rate matrix, branch lengths, etc). A method M for constructing species
trees from true gene trees is statistically consistent under the MSC model if, for all ε > 0,
there exists a constant m > 0 such that, given at least m true gene trees, M returns T with
probability at least 1− ε.

Corollary 7. NJMerge can be used in a species tree estimation pipeline that is statistically
consistent under the MSC model.

Proof. Let (T ∗,Θ) be an MSC model tree, let MD be a method for calculating distances
between pairs of species from a set of gene trees, and let MT be a method for constructing
species trees from a set of gene trees. Suppose that

• the divide-and-conquer pipeline produces k pairwise disjoint subsets of sequences

• Neighbor Joining (NJ) applied to a matrix of pairwise distances calculated using MD

is a statistically consistent method for constructing species trees under the MSC model
(e.g., the average topological distance between species in the input set of gene trees
[2])

• MT is statistically consistent under the MSC model (e.g., ASTRAL [27, 28])

Now let ε > 0, and select εD, εT > 0 such that εD + kεT < ε. By Definition 6, there exists
a constant mD such that NJ applied to matrix D computed from at least mD gene trees
returns T ∗ with probability at least 1 − εD, and there exists a constant mT such that MT

given at least mT gene trees returns T ∗ with probability at least 1−εT . If a distance matrix
D is calculated using MD and a set of constraint trees T are constructed using MT , both
given at least max{mD,mT } gene trees, then the probability that NJ applied to D returns
T ∗ and that MT returns a tree that agree with T ∗ for all k constraint trees in T is at least
1 − ε. Then, by Theorem 3, NJMerge applied to the input (T , D) will return the T ∗ with
probability at least 1− ε, and by Definition 6, NJMerge is statistically consistent under the
MSC model.

Performance Study

Our study evaluated the effectiveness of using NJMerge to estimate species trees on large
multi-locus datasets, simulated for this study using the protocol presented in [28]. Our sim-
ulation produced model conditions, described by two numbers of taxa (100 and 1000) and
two levels of ILS (low/moderate and very high), each with 20 replicate datasets. Datasets in-
cluded both exon-like sequences and intron-like sequences with exon-like sequences (“exons”)
characterized by slower rates of evolution across sites (less phylogenetic signal) and intron-
like sequences (“introns”) characterized by faster rates of evolution across sites (greater
phylogenetic signal). The 100-taxon datasets were analyzed using 25, 100, and 1000 genes,
and the 1000-taxon datasets were analyzed using 1000 genes; note that exons and introns
were always analyzed separately. For each of these 320 datasets, we constructed distance
matrices using two different methods and constraint trees using four different methods. This

7

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted January 18, 2019. ; https://doi.org/10.1101/469130doi: bioRxiv preprint

https://doi.org/10.1101/469130

provided 2560 different tests on which to evaluate NJMerge. NJMerge failed on 11/2560
tests, so the failure rate (in our experiments) was less than 1%. All species tree meth-
ods were evaluated in terms of species tree estimation error (computed using normalized
Robinson-Foulds (RF) distances [40]) and running time. All software commands are pro-
vided in Additional file 1.

Simulated Datasets

True species and true gene trees. Datasets, each with a true species tree and 2000 true
gene trees, were simulated using SimPhy version 1.0.2 [25]. All model conditions had deep
speciation (towards the root) and 20 replicate datasets. By holding the effective population
size constant (200K) and varying the species tree height (in generations), model conditions
with different levels of ILS were generated. For species tree heights of 10M and 500K
generations, the average distance between the true species tree and the true gene trees (as
measured by the normalized RF distance) was 8-10% and 68-69% respectively. Thus, we
referred to these levels of ILS as “low/moderate” and “very high” respectively.

True sequence alignments. Sequence alignments were simulated for each true gene tree
using INDELible version 1.03 [13] under the GTR+Γ model of evolution without insertions
or deletions. For each gene, the parameters for the GTR+Γ model of evolution (base
frequencies, substitution rates, and alpha) were drawn from distributions based on estimates
of these parameters from the Avian Phylogenomics Dataset [17]; distributions were fitted
for exons and introns, separately (Supplementary Table S1, Additional file 1). For each
dataset (with 2000 genes), 1000 gene sequences were simulated with parameters drawn from
the exon distributions, and 1000 gene sequences were simulated with parameters drawn
from the intron distributions. Note that exons and introns were analyzed separately. The
sequence lengths were also drawn from a distribution (varying from 300 to 1500 bp).

Estimated gene trees. Maximum likelihood gene trees were estimated using FastTree-
2 [37] under the GTR+CAT model of evolution. The average gene tree estimation error
(computed using normalized RF distances between true and estimated gene trees) across
all replicates ranged from 26% to 51% for introns and 38% to 64% for exons; thus gene tree
estimation error was higher for the exon datasets (Supplementary Table S2, Additional file
1).

Estimated Species Trees

For each model condition (described by number of taxa and level of ILS), species trees
estimation methods were run on the exon-like genes and the intron-like genes, separately.
Species trees were estimated on 25, 100, or 1000 genes for the 100-taxon datasets and 1000
genes for the 1000-taxon datasets using three species tree estimation methods: ASTRAL-III
[27, 28, 57] version 5.6.1, SVDquartets [9] (as implemented in PAUP* version 4a161 [49]),
and concatenation using unpartitioned maximum likelihood under the GTR+Γ model of
evolution (as implemented in RAxML [44] version 8.2.12 with pthreads and SSE3).

NJMerge.

Distance matrices. Distance matrices were created using two different approaches.

8

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted January 18, 2019. ; https://doi.org/10.1101/469130doi: bioRxiv preprint

https://doi.org/10.1101/469130

• DAGID refers to the average gene tree internode distance (AGID) matrix [23], com-
puted from estimated gene trees using ASTRID [51] version 1.1.

• DLD refers to the log-det distance matrix [46], computed from concatenated alignment
using PAUP* [49] version 4a163.

Recall that NJ applied to the AGID matrix (i.e., NJst [23]) was proven to be statistically
consistent method under the MSC model [2] and that NJ applied to the log-det distance
matrix was proven to be statistically consistent under the MSC model when the sequence
evolution models across genes satisfy some additional assumptions (e.g., a relaxed molecular
clock) [3].

Subset decomposition. We decomposed the species set into subsets as indicated by the
blue dashed arrows in Figure 4. Specifically, the NJ tree was computed for each distance
matrix using FastME [22] version 2.1.5 and then the centroid tree decomposition (described
in PASTA [26]) was used to create disjoint subsets of taxa from the NJ tree. Datasets with
100 species were decomposed into 4-6 subsets with a maximum subset size of 30 taxa, and
datasets with 1000 species were decomposed into 10-15 subsets with a maximum subset size
of 120 taxa.

Constraint trees. Constraint trees were created using four different approaches.

• Ttrue refers to constraint trees computed by restricting the true species tree to each
subset of species.

• TAST refers to constraint trees computed by running ASTRAL-III on each subset, i.e.,
on the estimated gene trees restricted to each subset of species.

• TSV D refers to constraint trees computed by running SVDquartets on each subset,
i.e., on the concatenated alignment restricted to each subset of species.

• TRAX refers to constraint trees computed by running RAxML on each subset, i.e., on
the concatenated alignment restricted to each subset of species.

Notation. We often specify the inputs to NJ and NJMerge using the following notation:
NJ(D) and NJMerge(T , D). For example, NJMerge(TRAX , DLD) refers to NJMerge given
the RAxML constraint trees and the log-det distance matrix as input, whereas NJMerge(TRAX ,
D) refers to NJMerge given the RAxML constraint trees and the AGID or the log-det dis-
tance matrix as input.

Evaluation

Species tree estimation error. Species tree estimation error was measured as the RF
error rate, i.e., the normalized RF distance between the true and the estimated species trees
both on the full species set. Since both trees were fully resolved or binary, the RF error rate
is the proportion of edges in the true tree that are missing in the estimated tree. RF error
rates were computed using Dendropy [47].

9

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted January 18, 2019. ; https://doi.org/10.1101/469130doi: bioRxiv preprint

https://doi.org/10.1101/469130

Running time. All computational experiments were run on the Blue Waters supercom-
puter, specifically, the XE6 dual-socket nodes with 64 GB of physical memory and two AMD
Interlagos model 6276 CPU processors (i.e., one per socket each with 8 floating point cores).
All methods were given access to 16 threads with 1 thread per bulldozer (floating-point)
core. SVDquartets and RAxML were explicitly run with 16 threads; however, ASTRAL-
III and NJMerge currently were not implemented with multi-threading at the time of this
study. All methods were restricted to a maximum wall-clock time of 48 hours.

Running time was measured as the wall-clock time and recorded in seconds for all meth-
ods (Tables S7 and S8, Additional file 1). For ASTRAL, SVDquartets, and RAxML, the
timing data was recorded for running the method on the full dataset as well as running the
method on subsets of the dataset (to produce constraint trees for NJMerge). RAxML did
not complete within the maximum wall-clock time of 48 hours on datasets with 1000 taxa,
so we used the last checkpoint file to evaluate species tree estimation error and running time.
Specifically, running time was measured as the time between the info file being written and
the last checkpoint file being written.

We approximated total running time of the NJMerge pipeline by combining the running
timing data for estimating subset trees as well as the running timing data for combining the
subset trees using NJMerge. If a study only had access to one compute node, then subset
trees would need to be estimated in serial. In this case, the running time of NJMerge would
be approximated as

Ts =

N∑
i=1

TM
i + TNJM (1)

where N is the number of subsets, TM
i is the running time of using the base method (i.e.,

ASTRAL-III, SVDquartets or RAxML) to compute a species tree on subset i, and TNJM

is the running time of using NJMerge to combine the subset trees into a single tree on
the full taxon set. Note that the average running times for TM and TNJM are shown in
Supplementary tables S7 and S8, Additional file 1.

If a study had access to multiple compute nodes (specifically at least 6 for the 100-
taxon datasets and at least 15 for the 1000-species datasets), then the subset trees could be
estimated in parallel. In this case, the running time of NJMerge would be approximated as

Tp = max
1≤i≤N

TM
i + TNJM (2)

where N is the number of subsets, TM
i is the running time of using the base method (i.e.,

ASTRAL-III, SVDquartets or RAxML) to compute a tree on subset i, and TNJM is the
running time of using NJMerge to combine the subset trees into a single tree on the full
taxon set. In this paper, only the running times computed using Equation 1 are shown;
however, running times computed using Equation 2 can be found in [30].

The approximate running times given above for the NJMerge pipeline assume that the
distance matrix has already been computed, which is typically inexpensive for datasets with
up to 1000 species. However, we note that the AGID matrix required the computation of
gene trees and give an approximation of the additional running time required to estimate
gene trees using FastTree-2 (see Additional file 1). For datasets with 100 species, FastTree-
2 took approximately 5.3 minutes to estimate 1000 gene trees, and for datasets with 1000
species, FastTree-2 took approximately 65 minutes to estimate 1000 gene trees.

10

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted January 18, 2019. ; https://doi.org/10.1101/469130doi: bioRxiv preprint

https://doi.org/10.1101/469130

Results

Pipelines using NJMerge can be thought of in two ways: 1) as techniques for potentially
improving the accuracy of NJ (hopefully without a large increase in running time) or 2)
as techniques for potentially improving the scalability or speed of the base method used
to compute constraint trees (hopefully without sacrificing accuracy). When distance-based
species tree estimation is not as accurate as some other species tree methods, we would
predict that NJMerge (when given constraint trees estimated using highly accurate species
tree methods) would be more accurate than traditional NJ. Because NJMerge, like NJ,
is typically faster than other species tree methods, we would predict that NJMerge would
improve the running time of more computationally intensive methods (such as RAxML) used
to estimate constraint trees, hopefully without sacrificing accuracy. Thus, we compared the
accuracy of NJMerge to NJ, and we compared the accuracy and running time of NJMerge
(with constraint trees estimated using different base methods: ASTRAL-III, SVDquartets,
and RAxML) to the running the same base method on the full dataset.

Results are shown here for intron-like datasets; results for exon-like datasets are shown
in Additional file 1. Unless otherwise noted, results were similar for both sequence types;
however, species trees estimated on the exon datasets had slightly higher error rates than
those estimated on the intron datasets. This is expected, as the exons had slower rates of
evolution (and thus less phylogenetic signal) than the introns.

How do pipelines using NJMerge compare to Neighbor Joining (NJ)?

In this section, we report results on the effectiveness of using NJMerge as compared to NJ
in terms of accuracy.

Impact of estimated distance matrix. We compared the accuracy of the NJMerge
pipeline to traditional NJ on distance matrices estimated from datasets with 100 taxa and
varying numbers of genes (Figure 5; Supplementary Figure S1, Additional file 1). Because
the accuracy of NJMerge also depends on error in the input constraint trees, we considered
an idealized case where NJMerge was given true constraint trees (i.e., constraint trees that
agree with the true species tree). We found that NJMerge(Ttrue, D) was more accurate
than NJ(D) for all model conditions and that the difference in error was especially large
when the number of genes was small and the level of ILS was very high (e.g., the difference
in mean error was greater than 15% when matrices were estimated from 25 introns but
was closer to 5% when matrices were estimated from 1000 introns). A similar trend was
observed for matrices computed using the log-det distance. Interestingly, both NJ(D) and
NJMerge(Ttrue, D) were more accurate when given the AGID matrix rather than the log-
det distance matrix as input — even when the level of ILS was low/moderate (Figure 5
and Supplementary Figure S1, Additional file 1). In summary, NJMerge(Ttrue, D) was
always more accurate than NJ(D), but the improvement in accuracy was greater under
challenging model conditions, suggesting that NJMerge(Ttrue, D) was more robust to error
in the distance matrix than NJ(D).

Impact of estimated constraint trees. We compared traditional NJ to the NJMerge
pipeline given estimated constraint trees on datasets with 1000 taxa and 1000 genes (Figure
6; Supplementary Figure S2, Additional file 1). When the level of ILS was low/moderate,
NJMerge outperformed NJ regardless of the method used to estimate species trees. For

11

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted January 18, 2019. ; https://doi.org/10.1101/469130doi: bioRxiv preprint

https://doi.org/10.1101/469130

intron-like datasets with low/moderate ILS, the use of constraint trees reduced the median
species tree error from 11–14% (NJ) to less than 3–6% (NJMerge); however, when the level
of ILS was very high, the performance of NJMerge varied greatly with the species tree
method. Specifically, NJMerge(TSV D, D) and NJMerge(TRAX , D) were less accurate than
NJ(D) by 0-4% on average, whereas NJMerge(TAST , D) was more accurate than NJ(D)
by 0–1% on average (Supplementary Tables S5 and S6, Additional file 1). These trends
were consistent with the relative performance of methods on the 100-taxon datasets (Figure
7 and Supplementary Figure S3, Additional file 1); specifically, when the level of ILS was
very high, SVDquartets and RAxML performed worse than running NJ on either the AGID
matrix or the log-det distance matrix. In summary, NJMerge was highly impacted by the
quality of the constraint trees — so that accurate constraint trees resulted in NJMerge
being more accurate than NJ, but inaccurate constraint trees resulted in NJMerge being
less accurate than NJ.

How do pipelines using NJMerge compare to ASTRAL-III, SVDquar-
tets, and RAxML?

In this section, we report the running time and accuracy of the NJMerge pipeline using three
different base methods (ASTRAL-III, SVDquartets, RAxML) to estimate constraint trees
in comparison to running the base method on the full dataset. Because NJMerge was more
accurate when given the AGID matrix (Figure 5; Supplementary Figure S1, Additional file
1), results for NJMerge given the AGID distance matrix are shown here, and results for
NJMerge given the log-det distance matrix are shown in Additional file 1.

ASTRAL-III vs. NJMerge. Both NJMerge(TAST , DAGID) and NJMerge(TAST , DLD)
provided running time advantages over ASTRAL-III under some model conditions. While
ASTRAL-III completed on all the low/moderate ILS datasets with 1000 taxa and 1000
genes in less than 9 hours on average, ASTRAL-III failed to complete within the maximum
wall-clock time of 48 hours on 23/40 datasets with 1000 taxa, 1000 genes, and very high
ILS (Table 1). On the other 17/40 datasets, ASTRAL-III ran for more than 2000 minutes
(approximately 33 hours). This difference between the low/moderate ILS and the very high
ILS datasets is noteworthy (see discussion). In contrast, both NJMerge(TAST , DAGID)
and NJMerge(TAST , DLD) completed in under 300 minutes (approximately 5 hours) on
average, including the time it took to estimate subset trees with ASTRAL-III in serial
(Figure 8, Supplementary Figure S4, Additional file 1). NJMerge(TAST , DAGID) failed on
zero datasets, and NJMerge(TAST , DLD) failed on two datasets (Table 1). In summary,
NJMerge substantially reduced the running time of ASTRAL-III on the 1000-taxon, 1000-
gene datasets with very high ILS.

ASTRAL-III and NJMerge(TAST , DAGID) achieved similar levels of accuracy with the
mean species tree error within 0–2% for both intron and exon datasets (Figure 8; Supple-
mentary Figure S4, Additional file 1; Supplementary Table S5, Additional file 1). Trends
were similar for NJMerge(TAST , DLD) except when the level of ILS was very high; under
these conditions, the mean error of NJMerge(TAST , DLD) was 2–6% greater than that of
ASTRAL-III (Supplementary Figures S7 and S8, Additional file 1; Supplementary Table
S6, Additional file 1).

NJMerge vs. SVDquartets. Species trees can be estimated with SVDquartets us-
ing the full set of

(
n
4

)
quartet trees or a subset of quartet trees. Based on a prior study

12

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted January 18, 2019. ; https://doi.org/10.1101/469130doi: bioRxiv preprint

https://doi.org/10.1101/469130

[48], which showed that the best accuracy was obtained when using all quartet trees, we
computed all

(
n
4

)
quartet trees for 100-taxon datasets. However, on datasets with 1000

taxa, SVDquartets was run using a random subset of quartet trees (without replacement),
because the maximum number of quartets allowed by SVDquartets (as implemented by
PAUP*) was 4.15833× 1010. Running PAUP* resulted in a segmentation fault for all 1000-
taxon datasets, i.e., SVDquartets failed on 40/40 datasets with 1000 taxa and 1000 genes.
In contrast, NJMerge(TSV D, DAGID) failed on 0 datasets, and NJMergeTSV D, DLD failed
on 3 datasets (Table 1).

NJMerge also improved running time on datasets with 100 taxa; for example, SVDquar-
tets completed in 19–81 minutes on average, whereas NJMerge(TSV D, DAGID) completed
in less than 2 minutes on average for datasets with 100 taxa and 1000 genes (Figure 9; Sup-
plementary Figure S5, Additional file 1). This running time comparison does not take into
account the time needed to estimate gene trees, which required approximately 5.3 minutes
using FastTree-2 on datasets with 100 taxa and 1000 genes.

NJMerge(TSV D, DAGID) typically produced species trees with less error than SVDquar-
tets. The difference between methods was typically small (between 0–2%) when the level of
ILS was low/moderate but could be larger than 10% when the level of ILS was very high.
Similar trends were observed for NJMerge(TSV D, DLD) (Supplementary figures S9 and S10,
Additional file 1).

NJMerge vs. RAxML. NJMerge(TRAX , DAGID) and NJMerge(TRAX , DLD) reduced
the running time of RAxML by more than half — even when RAxML was run on the subset
trees in serial (Figure 10 and Supplementary Figure S6, Additional file 1). For the 1000-
taxon datasets, the final checkpoint was written by RAxML after more than 2250 minutes
(∼37.5 hours) on average. In comparison, when RAxML was run on subsets in serial,
the average running time of NJMerge(TRAX , DAGID) was between 500 (approximately
8.5 hours) and 1500 minutes (approximately 25 hours). Although these running times for
NJMerge do not include the time to estimate gene trees, recall that it took approximately
65 minutes to estimate 1000 gene trees on datasets with 1000 species using FastTree-2.

While NJMerge can fail to return a tree, NJMerge failed less frequently than RAxML —
when both methods were given the same computational resources. NJMerge(TRAX , DAGID)
failed on one dataset, and NJMerge(TRAX , DLD) failed on two datasets. In contrast, for
datasets with 1000 taxa, RAxML failed to run on 38 intron-like datasets and 3 exon-like
datasets due to “Out of Memory” (OOM) errors (Table 1); the difference between the
number of intron-like versus the number of exon-like datasets is noteworthy (see discussion).

For datasets with low/moderate levels of ILS, RAxML produced species trees with less
error (0–3% on average) than NJMerge(TRAX , DAGID); however, for datasets with very
high levels of ILS, NJMerge(TRAX , DAGID) produced species trees with less error 0–4% on
average) than RAxML (Figure 10 and Supplementary Figure S3 and Table S5, Additional
file 1). Similar trends were observed for NJMerge(TRAX , DLD) (Supplementary figures S11
and S12, Additional file 1).

Discussion

Remarks on the utility of pipeline’s using NJMerge

Pipelines using NJMerge can be viewed either as techniques for improving traditional NJ or
as techniques for scaling a computationally-intensive base method to larger datasets. Thus,

13

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted January 18, 2019. ; https://doi.org/10.1101/469130doi: bioRxiv preprint

https://doi.org/10.1101/469130

in order to maximize the utility of NJMerge, users should select a base method that is both
more accurate and more computationally-intensive than NJ. Our results show that selecting
base methods for NJMerge may not be trivial when analyzing phylogenomic datasets —
because both accuracy and running time were impacted by the level of ILS. For example,
ASTRAL-III was very fast when the level of ILS was low/moderate but was substantially
slower when the level of ILS was very high. Similarly, SVDquartets and RAxML were both
more accurate than NJ(DAGID), i.e., NJst, when the level of ILS was low/moderate but
were less accurate than these methods when the level of ILS was very high; note that this
trend is consistent with results from [31] (also see the review paper by [56]). Overall, our
results suggest that constraint trees should be estimated using RAxML when the level of
ILS is low/moderate and using ASTRAL-III when the level of ILS is very high, and thus,
determining whether the level of ILS in a given phylogenomic datasets is an important area
of future research. Finally, we note that NJMerge, when given constraint trees that agreed
with the true species tree, was very accurate (less than 2% error on average) even when the
level was very high, suggesting that NJMerge is a promising technique for scaling Bayesian
methods (e.g., Starbeast2 [35]) and future species tree methods to larger datasets.

Although NJMerge can fail, this should not discourage potential users, as NJMerge failed
on fewer datasets than ASTRAL-III, SVDquartets, or RAxML — when all methods were
given the same computational resources, including a maximum wall-clock time of 48 hours.
In our experiments, NJMerge failed on only 11/2560 test cases from running NJMerge on 320
datasets with two different types of distance matrices and four different types of constraint
trees (Table 1).

Importantly, in all our experiments, NJMerge was run within the divide-and-conquer
pipeline shown in Figure 4, specifically, with subsets of taxa derived from decomposing the
NJ tree (blue dashed lines). Because NJMerge was always given inputs generated by this
pipeline, our results on the accuracy, the failure rate, and the running time of NJMerge may
not generalize to arbitrary inputs.

Remarks on other results

Impact of distance matrix on NJ. Our results showed that on average NJ(DAGID)
was either as accurate or else more accurate than NJ(DLD). Notably, there was a clear
difference between these two methods on datasets with 100 taxa and low/moderate levels
of ILS; specifically NJ(DAGID) produced trees with less than 5% error on average, whereas
NJ(DLD) produced trees with greater than 10% error on average). However, on the exact
same model condition but with 1000 taxa, NJ(DAGID) and NJ(DLD) produced trees with
similar levels of accuracy. This may be due to the difference between the median branch
length between low/moderate ILS datasets with 100 taxa and 1000 taxa (Supplementary
Table S3, Additional file 1); furthermore, it is possible that ranch length and other factors
that limit the accuracy of NJ(DLD) in the context of gene tree estimation would also apply
in the context of species tree estimation. However, it is interesting to note that NJ(DLD) was
more accurate than either SVDquartets or RAxML when the level of ILS was very high,
providing support for Allman et al.’s statement, “The simplicity and speed of distance-
based inference suggests log-det based methods should serve as benchmarks for judging
more elaborate and computationally-intensive species trees inference methods” [3].

Impact of ILS and sequence type on ASTRAL-III. Our results showed that
ASTRAL-III was much faster on the low/moderate ILS datasets than on the very high ILS

14

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted January 18, 2019. ; https://doi.org/10.1101/469130doi: bioRxiv preprint

https://doi.org/10.1101/469130

datasets. This finding makes sense in light of ASTRAL-III’s algorithm design. ASTRAL-
III operates by searching for an optimal solution to its search problem within a constrained
search space that is defined by the set X of bipartitions in the estimated gene trees, and in
particular, ASTRAL-III’s running time scales with |X |1.726 [57]. The set of gene trees will
become more heterogeneous for higher levels of ILS, and thus, the size of X will increase,
as every gene tree could be different when the level of ILS is very high. In addition, gene
tree estimation error can also increase the size of X , explaining why ASTRAL-III failed
to complete on the exon datasets more often than on the intron datasets (Supplementary
Table S2, Additional file 1).

Impact of sequence type on RAxML. Our results showed that RAxML failed on more
intron-like datasets than exon-like datasets. This finding makes sense in light of RAxML’s
implementation. RAxML uses redundancy in site patterns to store the input alignment
compactly, so that the memory scales with the number of unique site patterns. The intron
datasets had more unique site patterns than the exon datasets (i.e., greater phylogenetic
signal and lower gene tree estimation error), which explains why RAxML required more
memory when analyzing introns.

Remarks on the statistical consistency of pipelines using NJMerge

Although than NJMerge can fail, statistical consistency under the MSC (Corollary 7) model
means that NJMerge will not fail when the number of true gene trees goes to infinity. In fact,
NJMerge was designed to have this theoretical guarantee via the selection of the heuristic
for determining whether or not to accept a siblinghood proposal. It is easy to think of other
heuristics that prevent NJMerge from failing but do not have the guarantee of correctness
(Theorem 3) and thus do not have the guarantee of statistical consitency (Corollary 7).
Designing heuristics that prevent NJMerge from failing but have good theoretical properties
is an area of future research.

As mentioned previously, our proof of statistical consistency under the MSC model
assumes requires that the number of true gene trees to go to infinity, which is the equivalent
of requiring that both the number of gene trees and the sequence length per gene tree go to
infinity. Roch et al. [41] recently showed that essentially all gene tree summary methods
(e.g., NJst [2], and ASTRAL [27]) are not statistically consistent under the MSC if the
sequence length per gene is fixed — and these theoretical results apply to NJMerge as well.
The failure to be statistically consistent when the sequence length per gene is bounded is
not unique to gene tree summary methods or NJMerge, as Roch et al. also showed that
fully partitioned maximum likelihood is not consistent under these conditions, and [42] had
shown that unpartitioned maximum likelihood is also not consistent.

Conclusions

In this paper, we introduced a divide-and-conquer approach to phylogeny estimation that
1) decomposes a set of species into pairwise disjoint subsets, 2) builds trees on each subset
of species using a base method, and 3) merges the subsets trees together using a distance
matrix. For the merger step, we presented a new method, called NJMerge, and proved
that some divide-and-conquer pipelines using NJMerge are statistically consistent under
some models of evolution. We then evaluated pipelines using NJMerge in the context of

15

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted January 18, 2019. ; https://doi.org/10.1101/469130doi: bioRxiv preprint

https://doi.org/10.1101/469130

species tree estimation, specifically using simulated multi-locus datasets with up to 1000
species and two levels of ILS. We found that pipelines using NJMerge provided several
benefits to large-scale species tree estimation. Specifically, under some model conditions,
pipelines using NJMerge improved the accuracy of traditional NJ and substantially reduced
the running time of three popular species tree methods (ASTRAL-III, SVDquartets, and
“concatenation” using RAxML) without sacrificing accuracy (see discussion for details as
the results depended on the level of ILS). Finally, although NJMerge can fail to return a
tree, in our experiments, pipelines using NJMerge failed on only 11 out of 2560 test cases.
Together these results suggest that NJMerge is a promising approach for scaling highly
accurate but computationally-intensive methods to larger datasets.

This study also suggests several different directions for future research. Since NJMerge
uses a heuristic (which can fail) to test for tree compatibility (in deciding whether to accept
a siblinghood proposal), a modification to NJMerge to use an exact method for this problem
would reduce the failure rate and — if sufficiently fast — would still enable scalability to
large datasets. In addition, all aspects of the divide-and-conquer pipeline could be modified
and tested; for example, the robustness of NJMerge to the starting tree and initial subset
decomposition could be evaluated. Finally, divide-and-conquer pipelines using NJMerge
could be compared to traditional divide-and-conquer pipelines (e.g., Disk Covering Methods)
when robust implementations become publicaly available for species tree estimation. Other
agglomerative techniques for merging disjoint subset trees are being developed (e.g., the
agglomerative technique described in [58] for gene tree estimation has good theoretical
properties but has not yet been implemented), and NJMerge should be compared to such
techniques when they become publicaly available.

Funding

This work was supported by the U.S. National Science Foundation (award CCF-1535977) to
TW. EKM was supported by the NSF Graduate Research Fellowship (award DGE-1144245)
and the Ira and Debra Cohen Graduate Fellowship in Computer Science. Computational
experiments were performed on Blue Waters. This research is part of the Blue Waters
sustained-petascale computing project, which is supported by the NSF (awards OCI-0725070
and ACI-1238993) and the state of Illinois. Blue Waters is a joint effort of the University
of Illinois at Urbana-Champaign and its National Center for Supercomputing Applications.

References

[1] A. V. Aho, Y. Sagiv, T. G. Szymanski, and J. D. Ullman. Inferring a Tree from Lowest
Common Ancestors with an Application to the Optimization of Relational Expressions.
SIAM Journal on Computing, 10(3):405–421, 1981.

[2] E. S. Allman, J. H. Degnan, and J. A. Rhodes. Species Tree Inference from Gene Splits
by Unrooted STAR Methods. IEEE/ACM Transactions on Computational Biology and
Bioinformatics, 15(1):337–342, 2018.

[3] E. S. Allman, C. Long, and J. A. Rhodes. Species tree inference from genomic sequences
using the log-det distance, 2018.

16

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted January 18, 2019. ; https://doi.org/10.1101/469130doi: bioRxiv preprint

https://doi.org/10.1101/469130

[4] K. Atteson. The Performance of Neighbor-Joining Methods of Phylogenetic Recon-
struction. Algorithmica, 25(2-3):251–278, 1999.

[5] M. S. Bansal, J. G. Burleigh, O. Eulenstein, and D. Fernández-Baca. Robinson-foulds
supertrees. Algorithms for Molecular Biology, 5(1):18, 2010.

[6] M. S. Bayzid, T. Hunt, and T. Warnow. Disk covering methods improve phylogenomic
analyses. BMC Genomics, 15(6):S7, 2014.

[7] H. L. Bodlaender, M. R. Fellows, and T. J. Warnow. Two strikes against perfect
phylogeny. In Automata, Languages and Programming: 19th International Colloquium
Wien, Austria, July 13–17, 1992 Proceedings, pages 273–283. Springer Berlin Heidel-
berg, Berlin, Heidelberg, 1992.

[8] D. Bryant. On the Uniqueness of the Selection Criterion in Neighbor-Joining. J.
Classification, 22:3–15, 2005.

[9] J. Chifman and L. Kubatko. Quartet Inference from SNP Data Under the Coalescent
Model. Bioinformatics, 30(23):3317–3324, 2014.

[10] G. Dasarathy, R. Nowak, and S. Roch. Data Requirement for Phylogenetic Inference
from Multiple Loci: A New Distance Method. IEEE/ACM Trans. Comput. Biol. Bioin-
formatics, 12(2):422–432, Mar. 2015.

[11] S. V. Edwards. Is a new and general theory of molecular systematics emerging? Evo-
lution, 63(1):1–19, 2009.

[12] J. Felsenstein. Evolutionary trees from DNA sequences: A maximum likelihood ap-
proach. Journal of Molecular Evolution, 17(6):368–376, 1981.

[13] W. Fletcher and Z. Yang. INDELible: A Flexible Simulator of Biological Sequence
Evolution. Molecular Biology and Evolution, 26(8):1879–1888, 2009.

[14] O. Gascuel. Concerning the NJ algorithm and its unweighted version, UNJ. In
F. Roberts and A. Rzhetsky, editors, Mathematical Hierarchies and Biology, pages
149–170, Providence, 1997. American Mathematical Society.

[15] J. Heled and A. J. Drummond. Bayesian Inference of Species Trees from Multilocus
Data. Molecular Biology and Evolution, 27(3):570–580, 2010.

[16] D. H. Huson, L. Vawter, and T. Warnow. Solving Large Scale Phylogenetic Problems
Using DCM2. In Proceedings of the Seventh International Conference on Intelligent
Systems for Molecular Biology, pages 118–129, Palo Alto, 1999. AAAI Press.

[17] E. D. Jarvis, S. Mirarab, et al. Whole-genome analyses resolve early branches in the
tree of life of modern birds. Science, 346(6215):1320–1331, 2014.

[18] T. Jiang, P. Kearney, and M. Li. A Polynomial Time Approximation Scheme for Infer-
ring Evolutionary Trees from Quartet Topologies and Its Application. SIAM Journal
on Computing, 30(6):1942–1961, 2001.

[19] T. Jiang, P. Kearney, and M. Li. A polynomial time approximation scheme for infer-
ring evolutionary trees from quartet topologies and its application. SIAM Journal on
Computing, 30(6):1942–1961, 2001.

17

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted January 18, 2019. ; https://doi.org/10.1101/469130doi: bioRxiv preprint

https://doi.org/10.1101/469130

[20] T. H. Jukes and C. R. Cantor. Evolution of protein molecules. In H. Munro, editor,
Mammalian Protein Metabolism, volume 3, pages 21–132. Academic Press, New York,
1969.

[21] J. Lagergren. Combining polynomial running time and fast convergence for the disk-
covering method. Journal of Computer and System Science, 65(3):481–493, 2002.

[22] V. Lefort, R. Desper, and O. Gascuel. FastME 2.0: A Comprehensive, Accurate, and
Fast Distance-Based Phylogeny Inference Program. Molecular Biology and Evolution,
32(10):2798–2800, 2015.

[23] L. Liu and L. Yu. Estimating Species Trees from Unrooted Gene Trees. Systematic
Biology, 60(5):661–667, 2011.

[24] W. P. Maddison. Gene Trees in Species Trees. Systematic Biology, 46(3):523–536,
1997.

[25] D. Mallo, L. De Oliveira Martins, and D. Posada. SimPhy : Phylogenomic Simulation
of Gene, Locus, and Species Trees. Systematic Biology, 65(2):334–344, 2016.

[26] S. Mirarab, N. Nguyen, S. Guo, L.-S. Wang, J. Kim, and T. Warnow. PASTA: Ultra-
Large Multiple Sequence Alignment for Nucleotide and Amino-Acid Sequences. Journal
of Computational Biology, 22(5):377–386, 2015.

[27] S. Mirarab, R. Reaz, M. S. Bayzid, T. Zimmermann, M. S. Swenson, and T. Warnow.
ASTRAL: genome-scale coalescent-based species tree estimation. Bioinformatics,
30(17):i541–i548, 2014.

[28] S. Mirarab and T. Warnow. ASTRAL-II: coalescent-based species tree estimation with
many hundreds of taxa and thousands of genes. Bioinformatics, 31(12):i44–i52, 2015.

[29] D. S. Mitrinović. Analytic Inequalities. Springer-Verlag, New York, 1970.

[30] E. K. Molloy and T. Warnow. NJMerge: A Generic Technique for Scaling Phylogeny
Estimation Methods and Its Application to Species Trees. In M. Blanchette and
A. Ouangraoua, editors, Comparative Genomics. RECOMB-CG 2018. Lecture Notes
in Computer Science, volume 11183. Springer, Cham, 2018.

[31] E. K. Molloy and T. Warnow. To Include or Not to Include: The Impact of Gene
Filtering on Species Tree Estimation Methods. Systematic Biology, 67(2):285–303,
2018.

[32] S. Nelesen, K. Liu, L.-S. Wang, C. R. Linder, and T. Warnow. DACTAL: divide-and-
conquer trees (almost) without alignments. Bioinformatics, 28(12):i274–i282, 2012.

[33] J. Neyman. Molecular Studies of Evolution: A Source of Novel Statistical Problems.
In S. S. Gupta and J. Yackel, editors, Statistical Decision Theory and Related Topics,
pages 1–27. Academic Press, Cambridge, 1971.

[34] N. Nguyen, S. Mirarab, and T. Warnow. MRL and SuperFine+MRL: new supertree
methods. Algorithms for Molecular Biology, 7(1):3, 2012.

18

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted January 18, 2019. ; https://doi.org/10.1101/469130doi: bioRxiv preprint

https://doi.org/10.1101/469130

[35] H. A. Ogilvie, R. R. Bouckaert, and A. J. Drummond. StarBEAST2 Brings Faster
Species Tree Inference and Accurate Estimates of Substitution Rates. Molecular Biology
and Evolution, 34(8):2101–2114, 2017.

[36] P. Pamilo and M. Nei. Relationships between gene trees and species trees. Molecular
Biology and Evolution, 5(5):568–583, 1988.

[37] M. N. Price, P. S. Dehal, and A. P. Arkin. FastTree 2 - Approximately Maximum-
Likelihood Trees for Large Alignments. PLOS ONE, 5(3):1–10, 2010.

[38] M. A. Ragan. Phylogenetic inference based on matrix representation of trees. Molecular
Phylogenetics and Evolution, 1(1):53–58, 1992.

[39] B. Rannala and Z. Yang. Bayes Estimation of Species Divergence Times and Ancestral
Population Sizes Using DNA Sequences From Multiple Loci. Genetics, 164(4):1645–
1656, 2003.

[40] D. Robinson and L. Foulds. Comparison of phylogenetic trees. Mathematical Bio-
sciences, 53(1):131–147, 1981.

[41] S. Roch, M. Nute, and T. Warnow. Long-Branch Attraction in Species Tree Estima-
tion: Inconsistency of Partitioned Likelihood and Topology-Based Summary Methods.
Systematic Biology, page syy061, 2018.

[42] S. Roch and M. Steel. Likelihood-based tree reconstruction on a concatenation of
aligned sequence data sets can be statistically inconsistent. Theoretical Population
Biology, 100:56–62, 2015.

[43] N. Saitou and M. Nei. The neighbor-joining method: a new method for reconstructing
phylogenetic trees. Molecular Biology and Evolution, 4(4):406–425, 1987.

[44] A. Stamatakis. RAxML version 8: a tool for phylogenetic analysis and post-analysis of
large phylogenies. Bioinformatics, 30(9):1312–1313, 2014.

[45] M. Steel. The complexity of reconstructing trees from qualitative characters and sub-
trees. Journal of Classification, 9(1):91–116, 1992.

[46] M. Steel. Recovering a tree from the leaf colourations it generates under a Markov
model. Applied Mathematics Letters, 7(2):19–24, 1994.

[47] J. Sukumaran and M. T. Holder. DendroPy: a Python library for phylogenetic com-
puting. Bioinformatics, 26(12):1569–1571, 2010.

[48] M. S. Swenson, R. Suri, C. R. Linder, and T. Warnow. An experimental study of
Quartets MaxCut and other supertree methods. Algorithms for Molecular Biology,
6(1):7, 2011.

[49] D. L. Swofford. PAUP* (*Phylogenetic Analysis Using PAUP), Version 4a161, 2018.

[50] S. Tavaré. Some probabilistic and statistical problems in the analysis of DNA sequences.
Lectures on mathematics in the life sciences, 17(2):57–86, 1986.

[51] P. Vachaspati and T. Warnow. ASTRID: Accurate Species TRees from Internode
Distances. BMC Genomics, 16(10):S3, 2015.

19

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted January 18, 2019. ; https://doi.org/10.1101/469130doi: bioRxiv preprint

https://doi.org/10.1101/469130

[52] T. Warnow. Tree Compatibility and Inferring Evolutionary History. Journal of Algo-
rithms, 16(3):388–407, 1994.

[53] T. Warnow. Computational Phylogenetics: An Introduction to Designing Methods for
Phylogeny Estimation. Cambridge University Press, Cambridge UK, 2017.

[54] T. Warnow. Supertree Construction: Opportunities and Challenges. ArXiv e-prints,
May 2018.

[55] T. Warnow, B. M. E. Moret, and K. St. John. Absolute Convergence: True Trees from
Short Sequences. In Proceedings of the Twelfth Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA ’01, pages 186–195, Philadelphia, PA, USA, 2001. Society
for Industrial and Applied Mathematics.

[56] B. Xu and Z. Yang. Challenges in Species Tree Estimation Under the Multispecies
Coalescent Model. Genetics, 204(4):1353–1368, 2016.

[57] C. Zhang, M. Rabiee, E. Sayyari, and S. Mirarab. ASTRAL-III: polynomial time species
tree reconstruction from partially resolved gene trees. BMC Bioinformatics, 19(6):153,
2018.

[58] Q. R. Zhang, S. Rao, and T. J. Warnow. New absolute fast converging phylogeny
estimation methods with improved scalability and accuracy. In 18th International
Workshop on Algorithms in Bioinformatics, WABI 2018, August 20-22, 2018, Helsinki,
Finland, pages 8:1–8:12, 2018.

20

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted January 18, 2019. ; https://doi.org/10.1101/469130doi: bioRxiv preprint

https://doi.org/10.1101/469130

Ti

A

B

C

E

Tj
D

H

F

G

+

Di j

A 0 2 4 4 4 5 6 6
B 2 0 4 4 4 5 6 6
C 4 4 0 2 4 5 6 6
D 4 4 2 0 4 5 6 6
E 4 4 4 4 0 3 4 4
F 5 5 5 5 3 0 3 3
G 6 6 6 6 4 3 0 2
H 6 6 6 6 4 3 2 0

NJMerge

Ti j

A

B

C D

E H

G

F

Figure 1: NJMerge Input/Output Example. In this example, NJMerge is given
two constraint trees (Ti and Tj) and a distance matrix Dij that is additive for the tree
(((A,B), (C,D)), E, (F, (G,H))). NJMerge returns a compatibility supertree, called Tij ,
for the two constraint trees (Ti and Tj). Note that Neighbor Joining (NJ) applied to the
distance matrix Dij would return (((A,B), (C,D)), E, (F, (G,H))) [4]; however, NJMerge
rejects the siblinghood proposal (G,H), because it violates constraint tree Tj . Instead,
NJMerge makes G and F siblings.

Ti

A

C

E

G

Tj
B

D

F

G ...and others...

TA

B C D E F G

H

T ′

T

A

C E G B D F

H

Figure 2: Compatibility Supertree Example. In this example, two compatibility
supertrees for T = {Ti, Tj} are shown. Note that the trees in T form clades in T ′ but do
not form clades in T . Other compatibility supertrees for T exist.

21

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted January 18, 2019. ; https://doi.org/10.1101/469130doi: bioRxiv preprint

https://doi.org/10.1101/469130

Ti

A

B

C

E

Tj
D

H

F

G

Proposed
siblinghood
X = (C, D)

T ′
i

A

B

X

E

T ′
j

X

H

F

G

Figure 3: NJMerge Siblinghood Proposal Example. In this example, NJMerge
evaluates the siblinghood proposal (C,D). Because C ∈ Ti and D ∈ Tj , NJMerge first
updates the constraint trees Ti and Tj based on the proposed siblinghood to get T ′i and
T ′j . Specifically, both C ∈ Ti and D ∈ Tj are replaced by X, representing the siblinghood
(C,D). The compatibility of the updated constraint trees can be tested by rooting the trees
at leaf X and using the algorithm proposed in [1]. Because the updated constraint trees
(T ′i and T ′j) are indeed compatible, NJMerge will accept siblinghood proposal. Importantly,
when NJMerge evaluates the next siblinghood proposal, the two constraint trees will no
longer be on disjoint leaf sets.

22

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted January 18, 2019. ; https://doi.org/10.1101/469130doi: bioRxiv preprint

https://doi.org/10.1101/469130

2. Decompose species set
into pairwise disjoint subsets.Full

species
set

3. Build a tree on each
subset using method MT.

4. Run NJMerge.
Tree

on full
species set

Distance
matrix
on full

species set

2a. Build tree,
e.g., using NJ.

1. Estimate distances
between pairs of species
using method MD.

2b. Decompose tree
into pairwise disjoint
subsets of species.

Figure 4: Divide-and-Conquer Pipeline using NJMerge. We present a divide-and-
conquer pipeline that operates by 1) estimating distances between pairs of species using
method MD, 2) decomposing the species set into pairwise disjoint subsets, 3) building a tree
on each subset using method MT , and 4) merging trees together using the distance matrix
using NJMerge. Step 2 can be performed by estimating a tree from the distance matrix (e.g.,
using NJ) and then decomposing this tree into pairwise disjoint subsets of species (shown in
blue). Although not explored in this study, this pipeline can be run in an iterative fashion by
using the tree produced in Step 4 to define the next subset decomposition. In this schematic,
sets of species are represented by circles, distance matrices are represented by squares, and
trees are represented by triangles.

23

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted January 18, 2019. ; https://doi.org/10.1101/469130doi: bioRxiv preprint

https://doi.org/10.1101/469130

25 100 1000
0.00

0.05

0.10

0.15

0.20

S
pe

ci
es

Tr
ee

E
rr

or

Low/moderate ILS with D = DAGID

25 100 1000
0.00

0.05

0.10

0.15

0.20

Low/moderate ILS with D = DLD

25 100 1000

Number of Genes

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

S
pe

ci
es

Tr
ee

E
rr

or

Very high ILS with D = DAGID

25 100 1000

Number of Genes

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Very high ILS with D = DLD

NJ(D) NJ(Ttrue, D)

Figure 5: Impact of estimated distance matrix on Neighbor Joining (NJ) and
NJMerge. Neighbor Joining (NJ) and NJMerge was run with two different distance
matrices (see the Performance Study section for more information on the notation), and
NJMerge was run with constraint trees that agreed with the true species tree. Datasets
had two difference levels of incomplete lineage sorting (ILS) and numbers of genes varying
from 25 to 1000. Species tree estimation error is defined as the normalized Robinson-Foulds
(RF) distance between true and estimated species trees. Lines represent the average over
replicate datasets, and filled regions indicate the standard error.

24

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted January 18, 2019. ; https://doi.org/10.1101/469130doi: bioRxiv preprint

https://doi.org/10.1101/469130

D = DAGID (N=20) D = DLD (N=19)
0.00

0.05

0.10

0.15

0.20

0.25

S
pe

ci
es

Tr
ee

E
rr

or

Low/moderate ILS (1000 taxa, 1000 introns)

NJ(D)
NJMerge(TAST , D)
NJMerge(TSVD, D)

NJMerge(TRAX , D)
NJMerge(Ttrue, D)

D = DAGID (N=20) D = DLD (N=19)
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

S
pe

ci
es

Tr
ee

E
rr

or

Very high ILS (1000 taxa, 1000 introns)

Figure 6: Impact of estimated constraint trees on NJMerge. Neighbor Joining
(NJ) was run with two different distance matrices, and NJMerge was run with two different
distance matrices and four different sets of constraint trees (see the Performance Study
section for more information on the notation). Species tree estimation error is defined as
the normalized Robinson-Foulds (RF) distance between true and estimated species trees.
Note that gray bars represent medians, gray squares represent means, gray circles represent
outliers, box plots are defined by quartiles (extending from the first to the third quartiles),
and whiskers extend to plus/minus 1.5 times the interquartile distance (unless greater/less
than the maximum/minimum value).

25

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted January 18, 2019. ; https://doi.org/10.1101/469130doi: bioRxiv preprint

https://doi.org/10.1101/469130

25 introns 100 introns 1000 introns
0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40

S
pe

ci
es

Tr
ee

E
rr

or

Low/moderate ILS (100 taxa)

NJ(DAGID)
NJ(DLD)

ASTRAL-III
SVDquartets

RAxML

25 introns 100 introns 1000 introns
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

S
pe

ci
es

Tr
ee

E
rr

or

Very high ILS (100 taxa)

Figure 7: Comparison of species tree methods. Species tree estimation error is defined
as the normalized Robinson-Foulds (RF) distance between true and estimated species trees.
Neighbor Joining (NJ) was run with two different distance matrices; see the Performance
Study section for more information on the notation. Note that gray bars represent medians,
gray squares represent means, gray circles represent outliers, box plots are defined by quar-
tiles (extending from the first to the third quartiles), and whiskers extend to plus/minus 1.5
times the interquartile distance (unless greater/less than the maximum/minimum value).

26

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted January 18, 2019. ; https://doi.org/10.1101/469130doi: bioRxiv preprint

https://doi.org/10.1101/469130

Low/mod ILS
(N=20,20)

Very high ILS
(N=20,20)

0.0

0.1

0.2

0.3

0.4

0.5

S
pe

ci
es

Tr
ee

E
rr

or

100 taxa, 25 introns

ASTRAL-III NJMerge(TAST , DAGID)

Low/mod ILS
(N=20,20)

Very high ILS
(N=20,20)

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40

100 taxa, 100 introns

Low/mod ILS
(N=20,20)

Very high ILS
(N=20,20)

0.00

0.05

0.10

0.15

0.20

0.25

0.30
100 taxa, 1000 introns

Low/mod ILS
(N=20,20)

Very high ILS
(N=16,20)

0.00

0.05

0.10

0.15

0.20
1000 taxa, 1000 introns

Low/mod ILS
(N=20,20)

Very high ILS
(N=20,20)

0.0

0.2

0.4

0.6

0.8

1.0

R
un

ni
ng

Ti
m

e
(m

)

Low/mod ILS
(N=20,20)

Very high ILS
(N=20,20)

0.0

0.5

1.0

1.5

2.0

Low/mod ILS
(N=20,20)

Very high ILS
(N=20,20)

0

5

10

15

20

25

Low/mod ILS
(N=20,20)

Very high ILS
(N=16,20)

0

500

1000

1500

2000

2500

3000

Figure 8: ASTRAL vs. NJMerge given ASTRAL constraint trees and average
gene tree internode distance (AGID) matrix. Subplots on top row show species tree
estimation error (defined as the normalized RF distance between true and estimated species
trees); note that gray bars represent medians, gray squares represent means, gray circles
represent outliers, box plots are defined by quartiles (extending from the first to the third
quartiles), and whiskers extend to plus/minus 1.5 times the interquartile distance (unless
greater/less than the maximum/minimum value). Subplots on bottom row show running
time (in minutes); bars represent means and error bars represent standard deviations across
replicate datasets. NJMerge running times is for computing the subset trees “in serial”; see
Equation (1) in the main text for more information. The numbers of replicates on which
the methods completed is shown on the x-axis, e.g., N = X,Y indicates that ASTRAL
completed on X out of 20 replicates and that NJMerge(TAST , DAGID) completed on Y out
of 20 replicates. ASTRAL did not complete within the maximum wall-clock time of 48 hours
on 4/40 intron-like datasets with 1000 taxa and very high ILS.

27

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted January 18, 2019. ; https://doi.org/10.1101/469130doi: bioRxiv preprint

https://doi.org/10.1101/469130

Low/mod ILS
(N=20,20)

Very high ILS
(N=20,20)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

S
pe

ci
es

Tr
ee

E
rr

or

100 taxa, 25 introns

SVDquartets NJMerge(TSVD, DAGID)

Low/mod ILS
(N=20,20)

Very high ILS
(N=20,20)

0.0

0.1

0.2

0.3

0.4

0.5
100 taxa, 100 introns

Low/mod ILS
(N=20,20)

Very high ILS
(N=20,20)

0.00

0.05

0.10

0.15

0.20

0.25

0.30
100 taxa, 1000 introns

Low/mod ILS
(N=0,20)

Very high ILS
(N=0,20)

0.00

0.05

0.10

0.15

0.20
1000 taxa, 1000 introns

Low/mod ILS
(N=20,20)

Very high ILS
(N=20,20)

0

1

2

3

4

5

R
un

ni
ng

Ti
m

e
(m

)

Low/mod ILS
(N=20,20)

Very high ILS
(N=20,20)

0

2

4

6

8

10

12

Low/mod ILS
(N=20,20)

Very high ILS
(N=20,20)

0
10
20
30
40
50
60
70
80

Low/mod ILS
(N=0,20)

Very high ILS
(N=0,20)

0

100

200

300

400

500

600

700

Figure 9: SVDquartets vs. NJMerge given SVDquartet constraint trees and
average gene tree internode distance (AGID) matrix. Subplots on top row show
species tree estimation error (defined as the normalized RF distance between true and
estimated species trees); note that gray bars represent medians, gray squares represent
means, gray circles represent outliers, box plots are defined by quartiles (extending from the
first to the third quartiles), and whiskers extend to plus/minus 1.5 times the interquartile
distance (unless greater/less than the maximum/minimum value). Subplots on bottom row
show running time (in minutes); bars represent means and error bars represent standard
deviations across replicate datasets. NJMerge running times is for computing the subset
trees “in serial”; see Equation (1) in the main text for more information. The numbers of
replicates on which the methods completed is shown on the x-axis, e.g., N = X,Y indicates
that SVDquartets completed on X out of 20 replicates and that NJMerge(TSV D, DAGID)
completed on Y out of 20 replicates. SVDquartets did not run any datasets with 1000 taxa
due to segmentation faults.

28

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted January 18, 2019. ; https://doi.org/10.1101/469130doi: bioRxiv preprint

https://doi.org/10.1101/469130

Low/mod ILS
(N=20,20)

Very high ILS
(N=20,20)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

S
pe

ci
es

Tr
ee

E
rr

or

100 taxa, 25 introns

RAxML NJMerge(TRAX , DAGID)

Low/mod ILS
(N=20,20)

Very high ILS
(N=20,20)

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40

100 taxa, 100 introns

Low/mod ILS
(N=20,20)

Very high ILS
(N=20,20)

0.00

0.05

0.10

0.15

0.20
100 taxa, 1000 introns

Low/mod ILS
(N=0,20)

Very high ILS
(N=1,20)

0.00

0.05

0.10

0.15

0.20
1000 taxa, 1000 introns

Low/mod ILS
(N=20,20)

Very high ILS
(N=20,20)

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

R
un

ni
ng

Ti
m

e
(m

)

Low/mod ILS
(N=20,20)

Very high ILS
(N=20,20)

0

2

4

6

8

10

12

14

Low/mod ILS
(N=20,20)

Very high ILS
(N=20,20)

0

50

100

150

200

Low/mod ILS
(N=0,20)

Very high ILS
(N=1,20)

0

500

1000

1500

2000

2500

3000

Figure 10: RAxML vs. NJMerge given RAxML constraint trees and and average
gene tree internode distance (AGID) matrix. Subplots on top row show species tree
estimation error (defined as the normalized RF distance between true and estimated species
trees); note that gray bars represent medians, gray squares represent means, gray circles
represent outliers, box plots are defined by quartiles (extending from the first to the third
quartiles), and whiskers extend to plus/minus 1.5 times the interquartile distance (unless
greater/less than the maximum/minimum value). Subplots on bottom row show running
time (in minutes); bars represent means and error bars represent standard deviations across
replicate datasets. NJMerge running times is for computing the subset trees “in serial”; see
Equation (1) in the main text for more information. The numbers of replicates on which
the methods completed is shown on the x-axis, e.g., N = X,Y indicates that RAxML
completed on X out of 20 replicates and that NJMerge(TRAX , DAGID) completed on Y out
of 20 replicates. RAxML was only able to run on 1/40 intron-like datasets with 1000 taxa
due to “Out of Memory” errors.

29

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted January 18, 2019. ; https://doi.org/10.1101/469130doi: bioRxiv preprint

https://doi.org/10.1101/469130

Table 1: The number of datasets on which methods failed is indicated below by model
condition. ASTRAL-III failed due to running beyond the maximum wall clock time of 48
hours; SVDquartets failed due to segmentation faults; RAxML failed due to running out of
memory; NJMerge failed due to being unable to find a legal siblinghood. Note that NJMerge
is described by the input set T of constraint trees and input distance matrix D; see the
Performance Study section for more information on the notation.

of # of ILS Sequence Method # of Failures
Taxa Genes Level Type (out of 20)

100 25 very high exon NJMerge(Ttrue, DLD) 1
100 25 very high exon NJMerge(TRAX , DAGID) 1
100 25 very high intron NJMerge(Ttrue,DAGID) 1
1000 1000 low/moderate exon SVDquartets 20
1000 1000 low/moderate exon RAxML 3
1000 1000 low/moderate intron NJMerge(TAST , DLD) 1
1000 1000 low/moderate intron SVDquartets 20
1000 1000 low/moderate intron RAxML 20
1000 1000 very high exon ASTRAL-III 19
1000 1000 very high exon NJMerge(Ttrue, DLD) 1
1000 1000 very high exon NJMerge(TAST , DLD) 1
1000 1000 very high exon NJMerge(TSV D, DLD) 2
1000 1000 very high exon NJMerge(TRAX , DLD) 2
1000 1000 very high exon SVDquartets 20
1000 1000 very high intron ASTRAL-III 4
1000 1000 very high intron NJMerge(TSV D, DLD) 1
1000 1000 very high intron SVDquartets 20
1000 1000 very high intron RAxML 19

30

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted January 18, 2019. ; https://doi.org/10.1101/469130doi: bioRxiv preprint

https://doi.org/10.1101/469130

	References

