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REWARD EFFECTS ON ATTENTION 2

Abstract

In order to learn efficiently, organisms must learn how to distribute their attention to the

available cues. Traditionally, most experiments on attention learning have involved discrete

outcomes (e.g. no food vs. one food pellet, or category A vs. category B). A basic finding

is that cues receive attention in proportion to how well they predict such outcomes.

However, more recent research has shown an apparently independent effect of outcome

value on attention (Le Pelley, Mitchell, & Johnson, 2013), in which cues associated with

large rewards receive more attention than those associated with small rewards. It has been

suggested that a separate derived attention mechanism - in which attention is based

directly on association strength - is necessary to explain this result (Le Pelley, Mitchell,

Beesley, George, & Wills, 2016). As our primary experimental contribution, we use

modified versions of this design to replicate the value effect and show that it can be

reversed by manipulating the rewards given for incorrect choices. Our simulations show

that CompAct - a model in which cues compete for attention on the basis of their relative

predictiveness - can account for both of our empirical results. The derived attention theory,

in contrast, incorrectly predicts that cues associated with large rewards will always receive

more attention. We conclude that we do not need separate mechanisms to account for

predictiveness effects and value effects on attention.

Keywords: learning, attention, learning models, outcome value, learned attention

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 15, 2018. ; https://doi.org/10.1101/469809doi: bioRxiv preprint 

https://doi.org/10.1101/469809
http://creativecommons.org/licenses/by-nc-nd/4.0/


REWARD EFFECTS ON ATTENTION 3

Predictiveness and Reward Effects on Attention can be Explained by a Single Mechanism

1 There is a great deal of evidence that learning is shaped by selective attention. To

make decisions, organisms must be able to predict outcomes on the basis of cues in the

environment. Many models suppose that this is accomplished by direct learning of

associations between cues or sets of cues and outcomes or action-contingent outcomes.

Some theories additionally assume a second sort of learning of attention, i.e. which cues one

ought to learn about and which to ignore. Little or nothing will be learned about cues that

are ignored, while cues that are attended can rapidly develop strong associations.

As an example, consider a house cat that sometimes is scolded when it jumps up on

the counter but sometimes is not. The cat dislikes being scolded and hence wants to

discriminate between these cases. It notices that when its owner is in the room it is

scolded, whereas when its owner is absent it gets off scot free. However, the time of day is

not strongly correlated with scolding. Suppose the cat now tries to learn under what

circumstances it can get away with sharpening its claws on the furniture, and suppose its

first several scratching attempts happen during the day while the owner is gone, and the

cat gets off scot free. If the animal pays attention to time of day, meaning it focuses on

learning an association from this cue, then after the first several attempts it might acquire

a belief that it is safe to scratch the couch during daylight, at which point its owner might

yell at it while eating breakfast. However, if our hypothetical feline has learned from its

experience with jumping on the counter to pay attention to whether its owner is present

and not to time of day, then it is likely to rapidly learn that it can safely scratch away

whenever the owner is not in the house.

One must be careful to distinguish attention to a cue from its associations with

particular responses or outcomes. Experiments designed to examine learned attention
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REWARD EFFECTS ON ATTENTION 4

therefore often have a two-stage structure, much like the cat example given above (e.g.,

Mitchell, Griffiths, Seetoo, & Lovibond, 2012). In the first stage, the participant learns to

use the cues to choose among a certain set of responses. In the second stage, the same cues

provide information about a new set of responses. Theories relating attention to

associability predict that experience in the first stage will cause the participant to pay

more attention to some cues than to others, and that this learned attention will transfer to

the second stage, affecting the rate at which each cue acquires associations with the new

responses. That is, cues that gain more attention during stage 1 will acquire stronger

associations during stage 2, all else being equal. The association strengths acquired in

stage 2 can be assessed using test stimuli at the end of the experiment, providing an index

of learned attention from stage 1. We describe such experiments below.

Although this general phenomenon is well established, there remains the question of

what exactly determines which cues the learner will come to attend. That is, what

statistical properties of the initial learning environment (i.e., stage 1 of the transfer design

above) determine which cues receive attention, and what cognitive mechanisms govern this

process? One of the major theories is that attention is based on cues’ predictiveness. To

paraphrase Sutherland and Mackintosh (1971), the predictiveness theory states that

attention to a cue is strengthened when it consistently enables the organism to make

correct predictions about important future events. Under this theory, attentional learning

can be seen as a form of inductive reasoning: the learner assumes that cues that have been

good predictors in the past will continue to be good predictors in the future (Hume,

1748/2007). The predictiveness theory of attention is not only intuitively plausible but is

supported by a wide range of experimental evidence and has been embodied in a variety of

mathematical learning models; these are summarized below.

Recently however, Le Pelley and colleagues have suggested that attention is also

determined by the strength of cue associations (Le Pelley et al., 2016). This claim is

supported by experiments manipulating the magnitude of rewards, rather then simply
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REWARD EFFECTS ON ATTENTION 5

whether reward is present or absent. Based on these findings, they propose a new

attentional mechanism whereby the association learning rate for a cue is directly

proportional to the magnitude of its current associations. They call this mechanism derived

attention, because attention weights are derived directly from associations rather than

being learned via a separate mechanism. Thus this is a single-process model: there is no

attention learning separate from association learning. This could also be called the “rich

get richer” theory: cues that already have strong associations more easily strengthen those

associations or acquire new ones.

This paper presents new experimental results and simulations that challenge the

derived attention theory while supporting a particular competitive version of the

predictiveness theory. We conclude that these competitive predictiveness models provide a

parsimonious explanation for many attentional learning phenomena, including those based

on outcome value, and thus that it is not necessary to have separate mechanisms for

attention learning based on predictiveness and based on reward magnitude.

Attentional Effects With Discrete Outcomes

Investigators of learned attention have mostly used tasks in which the participant

tries to predict discrete outcomes. For example, these may be category labels (Lupyan,

Rakison, & McClelland, 2007), fictitious diseases (Kruschke, 1996) or food rewards in the

case of experiments with non-human animals (Sutherland & Holgate, 1966). A key feature

of these designs is that the reward (whether food, money or satisfaction of finding the right

answer) is all or nothing: choices are either rewarded or not rewarded, and the rewards do

not vary in value. Thus one is tempted to describe “predictiveness” in terms of conditional

probabilities, an approach that cannot easily be extended to more general cases. The

following subsections review the main empirical phenomena and modeling approaches for

discrete-outcome designs.
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REWARD EFFECTS ON ATTENTION 6

Correlation Effects. Learners pay more attention to cues that are correlated with

outcomes than to cues that are not correlated with outcomes. We call this a correlation

effect. Correlation effects have been demonstrated in both human (Le Pelley & McLaren,

2003; Mitchell et al., 2012) and non-human animals (Sutherland & Holgate, 1966). We

shall describe a single representative experiment (Le Pelley & McLaren, 2003, summarized

in Table 1) that has a very similar structure to others that we discuss later. The basic idea

is that participants learn to pay attention to cues that are correlated with outcomes and

that this transfers to a new learning task with separate response options.

On each trial in this representative experiment, the participant is shown a stimulus

consisting of two discrete cues, such as pictures or words. The objective is to predict what

category label or response is appropriate for the current stimulus (i.e., cue configuration).

After making a response, the participant is told what the correct answer was and whether

he or she was correct. This is thus a fully supervised learning task. Stimuli are shown in a

random order, and training is continued either for a fixed number of trials or until the

participant’s performance has passed some criterion (e.g., giving the correct response to

each stimulus twice, with no intervening errors).

In the first stage (see Table 1), participants learn to predict categories using four cues

that are correlated with the outcomes (A, B, C and D) and four non-correlated cues (V,

W, X and Y). In the second stage, each of the previously correlated cues is paired with a

previously non-correlated cue with which it had not previously appeared. Note that all

cues are equally correlated with the new outcomes (III and IV). New cues (E-L) are also

introduced in this stage to make the task more difficult and for comparison. In the final

stage, the participants’ associations between the cues and the stage 2 outcomes are tested.

The primary result is that in stage 2, participants form strong associations with cues

that were correlated with the stage 1 outcomes (A, B, C and D) but only weak associations

with those that were not correlated with stage 1 outcomes (V, W, X and Y) (compare rows

1-2 to rows 3-4 of Table 1, rightmost column). All of these cues were equally correlated
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REWARD EFFECTS ON ATTENTION 7

with the stage 2 outcomes, so this difference must be the result of attentional learning in

stage 1, which leads to faster learning for the more strongly attended cues in stage 2.

The correlation effect is the cornerstone of the predictiveness theory of attention:

cues receive attention to the degree to which they predict outcomes (Mackintosh, 1975;

Sutherland & Mackintosh, 1971). This theory is certainly plausible, but needs to be

explicated before it can be rigorously tested. How does an organism determine to what

degree a cue is “predictive”? We cannot rely merely on our intuitions about cue

predictiveness: we need mathematical models to formalize these ideas and develop testable

predictions.

Modeling Attention Effects in Learning. We can make our thinking about

attention more precise by translating our theories into mathematical models. The models

that we consider are all based on a form of the Rescorla-Wagner model (Rescorla &

Wagner, 1972), which we briefly describe next. We then describe how attention can modify

this basic model. Finally, we describe theories of how attention itself could be learned by

predictiveness calculations or alternatively as a direct function of reward associations.

We follow the standard approach of starting with the Rescorla-Wagner model

(Rescorla & Wagner, 1972) and adding a selective attention mechanism. The

Rescorla-Wagner model operates in the following manner. At the beginning of each trial,

the learner is presented with a stimulus vector (s) in which cues that are absent are

represented as 0 and cues that are present are represented as 1. For example, the stimulus

“light + tone” could be s = (1, 1) while “no light + tone” would then be s = (0, 1).

The stimulus vector (s) is then combined with a matrix of association weights (W ) to

form a vector (z) that predicts the value of each possible action:

z = W s, i.e. zk =
∑
i

Wkisi for all actions k. (1)

Each association weight (Wki) represents the amount that cue i contributes to the

predicted reward for action k.

The learner then decides which action to take based on their estimated values. In
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REWARD EFFECTS ON ATTENTION 8

most of the experiments we consider here, the participant is given full feedback about each

response option. Thus the particular response rule we use does not affect learning, and

some other plausible one could be used instead. To determine choice probabilities we use a

softmax function (Bridle, 1990; Luce, 1959) with a parameter ξ that determines how

deterministic decisions are:

P (action k) = eξzk∑
j e

ξzj
. (2)

After choosing an action, the learner is given feedback in the form of a reward vector

(r). For example, in a category learning task we might have r = (1, 0) if the stimulus

belongs to category 1 and r = (0, 1) if it belongs to category 2. The actual rewards (r) are

compared to the predicted rewards (z) to form a vector of prediction errors (δ):

δ = r− z. (3)

These prediction errors drive learning by modifying the association weights:

∆W = λδsT , i.e. ∆Wki = λδksi for all actions k and cues i, (4)

where the learning rate parameter λ ∈ (0, 1) determines how much new learning impacts

the association weights. This rule adjusts the association weights to reduce the amount of

prediction error. If a cue is absent (si = 0) then nothing is learned about it. If a cue is

present (si = 1) and the reward for action k was greater than expected (rk > zk ⇔ δk > 0)

then the corresponding association weight (Wki) increases, but if the reward was less than

expected (δk < 0) then the association weight decreases.

Now we shall describe how one can augment this model with attention. For each cue

i, we assume that there is a non-negative attention weight (ai). These attention weights act

to magnify or reduce the effective sizes of the cues that make up the stimulus vector. In

each of the above equations, we replace si with aisi. Thus cues that receive more attention

have a greater impact on predictions

zk =
∑
i

Wkiaisi (5)
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REWARD EFFECTS ON ATTENTION 9

and have faster effective learning rates

∆Wki = λδkaisi = (aiλ)δksi. (6)

In some models, attention affects only the learning rate (“associability”) of cues

(Equation 6), but not prediction (Equation 5) (e.g., Mackintosh, 1975). It is hopefully clear

why such models would produce similar results. Indeed, in many cases a model in which

attention affects only learning can be easily “translated” (via reparameterization)2 into an

equivalent model in which attention affects both learning and prediction (see the Appendix

for one example). We prefer to model attentional effects on both prediction and learning,

because then Equation 6 follows from Equation 5 by gradient descent on squared error.

That is, the effect of attention on learning rate can be seen as a rational consequence of its

effect on prediction.

Attention has been viewed as a limited resource by some researchers (Kruschke,

2001), but not others (Mackintosh, 1975). The modeling framework we have just described

can accommodate both views. So far we have not specified how the attention weights (ai)

interact with each other or change with experience. Letting the attention weights be

independent models the hypothesis of unconstrained attention, whereas forcing them to

compete models the hypothesis of limited attention (e.g., Kruschke, 2001). In the next two

subsections, we shall present two alternative models of the predictiveness theory that differ

in exactly this respect and show that the one with limited attention can explain a broader

range of data.

Modeling Attention Based on Predictiveness. We now have a formal theory

of how attention affects learning. However, we still need to know where attention itself

comes from. If we simply assign higher attention weights to more “predictive” cues by

hand then our modified Rescorla-Wagner model will produce the correlation effects
2If one sets attention in the “learning plus prediction” model to be the square root of attention in the

“learning only” model then the models behave in the same way. This exact equivalence holds only if attention

is independent of the current stimulus vector (e.g. it does not hold for CompAct, a model described below).
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REWARD EFFECTS ON ATTENTION 10

described above: the correlated cues will develop larger association weights and have a

greater effect on behavior. However, for a complete theory we need to develop an attention

learning rule that somehow automatically calculates how “predictive” each cue is and uses

this information to determine the cues’ attention weights (ai).

One standard approach to deriving incremental learning rules, including ones for

learning attention (e.g., Kruschke, 2001), is by gradient descent on squared error. This is a

mathematical procedure to gradually determine what set of attention weights yields the

most accurate predictions of outcomes. After each trial, the model asks itself “how could I

have adjusted attention to reduce my error?” This is the same principle used in multi-layer

neural networks to obtain the backpropagation algorithm (Rumelhart, Hinton, & Williams,

1986). Thus, the “predictiveness” of a cue for a given model can be defined as the extent to

which paying more attention to that cue makes the model’s predictions more accurate in

the current task. Rather than having attention directly determined by some objective

notion of predictiveness, learning by gradient descent defines predictiveness with respect to

the current knowledge state of the model, and predictiveness determines changes in

attention.

Perhaps the simplest such learning rule arises when the attention weights (ai) are

independent of each other and of which stimuli are present on a given trial, as in the basic

model of Equation 5. In that case, gradient descent gives us:

∆ai = −µ ∂

∂ai

∑
k

1
2δ

2
k

= µ
∑
k

δk ·Wkisi

(7)

where µ ∈ (0, 1) is an attention learning rate.

With a little interpretation, we can see that this learning rule captures a sort of

predictiveness. Suppose that δk is negative, i.e. the magnitude of outcome k was less than

expected. If Wkisi was also negative, then cue i foretold this outcome and hence should

receive more attention, which indeed it does under Equation 7 (negative × negative =
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REWARD EFFECTS ON ATTENTION 11

positive). On the other hand if Wkisi was positive then cue i made the prediction worse,

and hence attention to i decreases (negative × positive = negative). This suggests that we

re-write Equation 7 in the following equivalent form:

∆ai = µ
∑
k

sign(δkWkisi)|δk||Wkisi|. (8)

If sign(δkWkisi) = 1 then cue i was a “good predictor” for outcome k, because its

contribution to the prediction served to reduce the prediction error, and hence it receives

more attention. The reverse is true when sign(δkWkisi) = −1, i.e. when cue i was a “bad

predictor” because its contribution increased prediction error. The magnitude of the

increase or decrease in attention reflects the overall amount of prediction error (|δk|), and

this makes sense: large errors require large shifts in attention to correct them. The amount

of attention change also depends on the size of cue i’s prediction (|Wkisi|). We can also see

that this attention learning rule (Equation 7 or 8) produces attention weights that reflect

the covariance between unexpected outcomes (δk) and cue predictions (Wkisi). It is thus

reasonable to interpret ∑k δk ·Wkisi as the predictiveness of cue i on a particular trial.

Note that this notion of predictiveness does not reflect any purely objective statistics about

the learner’s environment (e.g. conditional probabilities of outcomes given cues, or

correlations between cues and outcomes), but rather the relationship between cues and the

learner’s own performance (i.e., prediction error).

It should be clear that this learning rule will produce the correlation effects described

above. Consider any of the non-correlated cues in stage 1 (refer to Table 1), e.g. cue V.

Because of the symmetry of the task, |δk||WkV sV | will be similar on A + V and B + V

trials, but sign(δkWkV sV ) for each k will alternate between these two trial types. Thus any

attention gained by cue V on one trial will be wiped out on another. In contrast, a

correlated cue such as A will consistently gain attention: δkWkAsA has the same sign

(positive, for each k) on A + W and A + V trials, leading to a consistent increase in

attention. We thus see that Equation 7/8 formalizes our notion of learning attention based
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REWARD EFFECTS ON ATTENTION 12

on “predictiveness”.

The Highlighting Effect and Competitive Predictiveness. When we add a

competitive element to attention learning (i.e. assume that attention is limited), the

predictiveness principle gains the ability to explain a far broader range of phenomena,

beyond correlation effects. One of these is highlighting, a phenomenon showing that the

cues present on a trial influence each other’s attention learning (Kruschke, 1996, 2009). As

an illustration of this phenomenon, we shall consider Experiment 2 from Kruschke (1996),

which is outlined in Table 2.

This highlighting task has three types of cue: “perfect early” (PE1 and PE2),

“perfect late” (PL1 and PL2) and “imperfect” (I1 and I2). Each of the “perfect” cues

indicates a single correct response. For example, whenever the participant sees cue PE1,

the correct response is always E1. The imperfect cues are paired with the perfect ones in

such a way that either of two responses could be correct for each imperfect cue. For

example, I2 + PL2 means response L2 is correct, but I2 + PE2 indicates response E2. The

perfect early, perfect late, imperfect structure is duplicated, so we have I1 and I2, etc.

For the first half of the task, participants are only shown PE1 + I1 and PE2 + I2 trials

(hence the “early” designation). In the second stage, the late cues (PL1 + I1 and PL2 + I2)

are added to the early ones, with all trial types having equal frequency. The key finding is

that when given the test stimulus PE1 + PL1, participants mostly choose L1 (the outcome

associated with PL1) despite having received more training trials with cue PE1 (and the

same pattern is observed with regard to PE2 and PL2). This result suggests that PL1/PL2

received more attention than PE1/PE2, leading to the formation of stronger associations.

What would cause this difference in attention? The simple predictiveness model

(Equation 7) cannot account for it: the early and late cues have the same perfectly

predictive relationship with their respective responses. Do we need to abandon this model

of attention learning, or can it be modified so that it explains highlighting?

We could modify our simple predictiveness model so that attention changes are

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 15, 2018. ; https://doi.org/10.1101/469809doi: bioRxiv preprint 

https://doi.org/10.1101/469809
http://creativecommons.org/licenses/by-nc-nd/4.0/


REWARD EFFECTS ON ATTENTION 13

determined by the predictiveness (defined in the sense of Equation 7) of the cue in question

relative to the predictiveness of other cues present at the same time. This idea captures the

intuition of attention as a limited resource over which cues must compete. In particular

suppose that, if one cue is a bad predictor, then attention to its companions tends to

increase, and if that cue is a good predictor then attention to its companions tends to

decrease:3

ai increases with
∑
k

δkWkisi and (9)

ai decreases with
∑
k

δkWkjsj for all j 6= i. (10)

Note that Equation 9 is just the simple predictiveness learning rule described above (see

Equation 7). However, Equation 10 introduces a new competitive element to attention

learning.

Kruschke (2001) has implemented this competitive learning rule in a model called

EXIT, which reproduces highlighting and other related phenomena. However, EXIT also

has a complex set of additional mechanisms, viz. exemplar-mediated attention and rapid

attention shifts. We therefore prefer to present a new model called CompAct

(“Competitive Activation”), which implements only the competitive attention rule. In

addition to its simplicity, CompAct better aligns with the other models we consider,

making the theoretical comparisons we want to do more transparent.

CompAct belongs to the class of attention-modified Rescorla-Wagner models we

define above with Equations 5 and 6. In CompAct, the attention weights (ai) depend on a

set of pre-attention weights (ηi) as well as on the current stimulus (i.e., cue compound),

and they act to normalize the stimulus vector:

ai = ηi∑
j |ηjsj|

⇒
∑
i

|aisi| = 1. (11)

Thus cues compete for activity (by which we mean aisi), which is always normalized to 1.
3Recall that sj = 0 for absent cues, so the only cues relevant to attention change are those present in the

current trial.
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REWARD EFFECTS ON ATTENTION 14

The attention weights are a function of the whole stimulus, i.e. ai depends on the values of

sj for all other cues j.

This competition between cues for activation also leads to a competitive learning rule

for attention when we derive the latter using gradient descent. The learning rule for

attention is based not on a directly, but rather on the pre-attention weights (η) from which

a is derived. This learning rule (derived in the Appendix) is

∆ηi = −µ ∂

∂ηi

∑
k

1
2δ

2
k

= µ
1∑

j |ηjsj|
∑
k

[
(1− |si|ai)δkWkisi − |si|

∑
j 6=i

aj(δkWkjsj)
]
,

(12)

Because of the way a is defined, 1− |si|ai ≥ 0 and |si|aj ≥ 0. Thus this learning rule

embodies the principle of competitive predictiveness expressed in Equations 9 and 10.

If there are only two cues and s1 = s2 = 1, then 1− a1 = a2, so Equation (12) reduces

to

∆η1 = µ
a2∑
j |ηj|

∑
k

δk(Wk1 −Wk2). (13)

Thus, attention updating is proportional to the difference between the two cues’

association weights. The contribution of each outcome k is to shift attention toward the

cue with the greater association weight if prediction error (δk) is positive, and vice versa if

prediction error is negative.

The competitive attention learning rule embodied in CompAct (Equation 12) can

explain highlighting. (What follows is essentially a simplified version of the explanation in

Kruschke 2001 using the EXIT model.) Looking at plots of simulated prediction errors and

association weights helps us to see this more clearly (Figure 1a). In the first half of the

task (trials 1− 75), the I cues form strong associations with the “early” outcomes, i.e.

I1 → E1 and I2 → E2 (Figure 1a, top left panel). When I1 and I2 are paired (respectively)

with PL1 and PL2 in the second half of the task, the learner thus incorrectly predicts that

E1 or E2 is the correct response (see bottom right panel). The difference between the PL
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cue association (blue line) and I cue association (maroon line) is large and negative, while

prediction error (black line) is large and negative. We thus see that attention to the PL

cue increases (see Equation 13), while attention to the I cue decreases. Using Kruschke’s

terminology, we can say that the incorrect I1 → E1 and I2 → E2 associations highlight cues

PL1 and PL2. Attention to PL1 and PL2 is thus higher than attention to PE1 and PE2

(Figure 1b), and this makes predictive strength (Wkiaisi) greater for the PL cues (c.f.

Equation 5). Consequently, the model chooses the responses associated with the PL cues

when given conflicting cue pairs at the end of the experiment.

This principle of competitive predictiveness embodied in CompAct and EXIT can

explain not only correlation and highlighting effects, but many other learning phenomena.

These include learned inattention after blocking (Kruschke, 2001) and even so-called

“Pearce-Hall” effects, in which what seem to be the less predictive cues receive more

attention (Haselgrove, Esber, Pearce, and Jones 2010; the simulation result will be

demonstrated in a forthcoming paper). The competitive predictiveness principle used by

EXIT and CompAct is thus a simple and parsimonious explanation for many attentional

learning phenomena in the domain of discrete outcomes.

Value Effects on Attention

The “Alien Slot Machine” Effect. The theory of competitive predictiveness

described above seems to be sufficient for explaining attentional effects in tasks with

discrete outcomes. However, there is an important class of value-driven effects on attention

that some researchers have claimed to be inexplicable by any predictiveness mechanism

(Le Pelley et al., 2016, 2013). In visual search tasks, cues associated with large rewards

capture visual attention (Anderson, Laurent, & Yantis, 2011), even when this impairs

performance (Le Pelley, Pearson, Griffiths, & Beesley, 2015). Le Pelley et al. (2013) have

demonstrated such a value effect in a learning setting, using a modified classification task

similar to those described above. In brief, cues associated with large rewards received more
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attention (in stage 2) than did those associated with small rewards, even though all of

these cues were equally good predictors of the correct response. Their “alien slot machine”

task worked as follows.

The goal of a classification task is usually expressed in terms of maximizing accuracy

rather than obtaining the most possible reward. However, a two-category classification task

can also be described as a reward learning task with two actions (viz. “classify as Category

A” and “classify as Category B”) with the participant receiving a reward of 1 unit (or any

other positive value) for correct classification decisions and a reward of 0 units (or some

other fixed lesser value, e.g. -1) for incorrect classification decisions. The outcome coding

used in Table 1 illustrates how this can be done for each stage of the correlation effect

experiment described above.

Le Pelley et al. (2013) modified this design by making one action yield more reward

(when correct) than the other (see Table 3). Participants were told that they were playing

an alien slot machine that paid out in two different currencies, one of which was worth 150

times as much as the other (represented as actions I and II, respectively). The machine

paid out only if the participant guessed the correct currency.

After stage 2 training with two new currencies (which had unknown and hence from

the participants’ perspective equal values), Le Pelley and colleagues found that

participants’ responses were more influenced by the cues that had been associated with

high value in stage 1 (A and B) than those that had been associated with low value (C and

D). Thus, even though all these four cues were perfect predictors for the category labels

(currency names) in stage 1 (as well as the amount of reward), it can be inferred that the

cues associated with the more valuable outcomes received more attention. This conclusion

was supported by eye-tracking data: participants spent more time looking at cues A and B

than at C and D during stage 2 training.

Derived Attention Can Explain Value and Correlation Effects, but Not

Highlighting. Le Pelley and colleagues have a simple explanation for the alien slot
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machine effect, viz. that attention is derived directly from current cue associations

(Le Pelley et al., 2016). This derived attention model is based on the same extended

Rescorla-Wagner framework as above (Equations 1, 3, 4 and 6) and makes a very simple

proposal for the determinants of attention. On each trial, the attention vector is obtained

via the current association weights. The simplest form of this is to make attention equal to

the total magnitude of all the cue’s association weights (i.e., summed over all responses).

We set a lower bound (amin) to ensure that each cue receives at least some attention,

because otherwise the model can never learn about a cue that starts with null association

weights. Thus the derived attention theory can be embodied in the following formula for

attention weights:4

ai = max
{
amin,

∑
k

|Wki|
}

(14)

Under this model, a cue will tend to receive more attention if it predicts a large

outcome. This explains the attentional capture effects described above (if we assume

subjects learn cue-reward associations in visual search tasks and that a also controls visual

attention), as well as the alien slots effect. Derived attention also predicts correlation

effects: cues that do not consistently predict outcomes will acquire small association

weights and hence receive little attention. However, derived attention does not explain

highlighting: the E cues in that design will have stronger associations and receive more

attention than the L cues (simply by virtue of receiving more training trials), leading to

the opposite of the empirical result (see Figure 2).

4In the original formulation, attention affects only learning and not prediction (Le Pelley et al., 2016). In

order to more easily compare the derived attention model to other models, we prefer to simulate a version

in which attention also affects prediction (as in Equation 5). We show in appendix C that it actually does

not matter: both versions are equivalent.
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Summary: Do We Need Different Mechanisms to Explain Different

Phenomena?

Based on the findings reviewed thus far, it appears that we have two different

attention mechanisms that each explain different learning phenomena. Both competitive

predictiveness and derived attention can explain correlation effects, which are the most

basic phenomena of learned attention. However, it is not obvious how a cue that is

perfectly correlated with a large outcome is more predictive than a cue that is also

perfectly correlated with a small outcome, so how can any sort of predictiveness theory

explain value effects such as those in the alien slot machine experiment? On the other

hand, derived attention can easily explain these value effects, but it cannot account for

highlighting. Le Pelley et al. (2016) thus suggest that a hybrid model with both types of

attentional mechanism may be the best solution.

We, however, shall show that it is sufficient to assume only one mechanism, viz.

competitive predictiveness. We first describe experiments (1-a and 1-b) that replicate the

basic alien slot machine phenomenon under some minor modifications of the task. Next, in

Simulation 1 we show that this resulted is predicted by CompAct and the simple

predictiveness model, as well as the derived attention model. We then examine a new

reward structure in which the difference in reward between correct and incorrect responses

is greater for low value cues than for high value cues. In Simulation 2, we show that the

derived attention model and CompAct make contrary predictions with regard to this new

experimental design. The derived attention model (as well as the simple predictiveness

model) predicts that participants will still attend more to the high value cues, but

CompAct predicts that mechanisms analogous to those used by Kruschke to explain

highlighting (Kruschke, 2009) will draw their attention to the low value cues instead. We

confirm CompAct’s seemingly paradoxical prediction in Experiments 2-a and 2-b. Our

conclusion is that derived attention is neither necessary nor sufficient to explain value

effects on attention, whereas competitive predictiveness is sufficient to explain both these
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and many other phenomena.

Experiment 1-a

Experiment 1-a sought to replicate the alien slot machine effect of Le Pelley et al.

(2013), using a modified task design that enabled us to separately manipulate rewards

associated with correct and incorrect responses. This affordance becomes critical in

Experiments 2-a and 2-b below. To do this, we modified the cover story so that, instead of

predicting which of two currencies the slot machine would pay on each trial, the subject’s

task was to select among two alternative buttons on the machine (see Figure 3). Each

button held a different reward, both of which were revealed after the subject made a

selection. This modification also enabled rewards to be balanced between the two

responses, as explained below.

Table 4 shows the design of the experiment. The key features of Le Pelley et al.’s

(2013) design are retained: In stage 1, two of the relevant cues (A and B) predict large

rewards and two (C and D) predict small rewards. In stage 2, these cues are equally

predictive of rewards of equal magnitude. Thus the critical test trials (A + C and B + D)

provide a test of how the reward structure in stage 1 affected attention during stage 2. In

particular, if subjects learn to attend to high value cues during stage 1, then on these test

trials they should select the responses associated with those cues in stage 2.

Method

Participants. Participants were recruited using Amazon Mechanical Turk

(n = 30). They were compensated with a base payment of $1.67 plus a bonus payment of

up to $2.50 based on performance. The task required between 10 and 30 minutes to

complete for most participants.

Apparatus and Materials. The experiment was written in Javascript and

managed using PsiTurk (https://psiturk.org/). Data analysis was performed using R with

the ggplot2 package for making graphs (https://cran.r-project.org/web/packages/ggplot2).
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Design. We modified the design of Le Pelley et al. (2013) in several ways, as shown

in table 4. First, we arranged payoffs such that the two high value cues (A and B) were not

associated with the same action. Instead, one high value cue (A) and one low value cue (C)

indicated that action I gave the best payout, while cues B (high value) and D (low value)

were associated with action II. The purpose of this arrangement was to equalize the average

value of each action, which simplifies the theoretical analysis and prevents unmotivated

participants from merely choosing a single action on all trials (as they might if one action

had a much greater average payoff than the other). To do this, we discarded the part of the

cover story from Le Pelley et al. (2013) in which the responses were identified with alien

currencies of different values, and instead asked subjects to select between two buttons

displayed on the slot machine. This also freed us to change the reward for incorrect

responses to 1 instead of 0 in order to encourage participants to process the value of each

outcome and not merely whether they were “right” or “wrong”. We also changed the other

payoffs: participants received 100 points for a correct answer on high value trials (indicated

by cue A or B) and 2 points for a correct answer on low value trials (cue C or D). We thus

refer to this reward structure as a 100/1 vs. 2/1 design, whereas experiment 1 of Le Pelley

et al. (2013) (Table 3) can be called a 150/0 vs. 1/0 design.

An unfortunate result of this new reward structure was that the “irrelevant” cues (V,

W, X and Y) conveyed information about which choice was better on any given trial. This

made the design less comparable to Le Pelley et al.’s (2013) original, in which these cues

were completely uninformative. Our design still featured cues associated with large rewards

(A and B) compared to cues associated with small rewards (C and D), the central feature

of the original alien slots design. Nevertheless, we refined our design in Experiment 1-b (see

below).

Procedure. Participants were given instructional text before each stage. They were

told to imagine themselves as space explorers playing a series of “alien slot machines” for

“space credits” that would be converted into real world cash at the end of the experiment.
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On each trial, the participant saw a schematic slot machine, with a pair of cues and text

prompting him or her to choose from two buttons corresponding to two keys on the

computer keyboard (see Figure 3, left). After making a response, the participant was told

how much money he or she won for that response and how much money he or she would

have won for making the other response, in slightly faded text (see Figure 3, right). These

reward amounts were presented both numerically and by a picture of that number of coins.

Each cue was a picture of an “alien fruit” labeled with a nonsense word. The fruits

and their names were designed to be as distinct from each other as possible, particularly

with regard to fruit color (pilot experiments showed that some participants tended to

group purple fruits together, for example). Fruit pictures and names were randomly

assigned to act as cue A, cue B etc., separately for each participant. Each trial type within

a stage occurred once, in random order, before being repeated. The different slot machine

in each stage was represented by a slightly different background color.

In order to ensure that we analyzed data only from people who learned the task, we

added performance criteria for the various stages and a very simple introductory stage.

This tutorial stage is shown in Table 5 and was the same for all experiments in this report.

After completing the tutorial, participants moved on to the main experiment. In order to

continue past the tutorial, stage 1 and stage 2, participants needed to reach a criterion

level of performance (respectively 8, 8 and 10 consecutive correct choices). We thus only

had test trial data from participants who learned the correct response contingencies in each

stage of the experiment.

In the final (test) stage, participants were told that they would be tested on the

machine from stage 2, winning a base prize of 500 Space Credits for each correct answer.

For some of the cue pairs (“old concordant” and “new concordant”), both cues had been

paired with the same correct response. These were used as a check that participants still

remembered stage 2 associations and were properly following instructions.

The critical test stimuli were the “discordant” pairs A + C and B + D, for which the
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stage 2 reward structure did not clearly indicate a correct response. In these pairs, one cue

had predicted high value and the other low value during stage 1, and the cues were

associated with opposing responses during stage 2. Participants who paid equal attention

to the high value cues (A and B) and low value cues (C and D) should not favor one

response over the other. However, a participant who attended more to the high value cues

would form stronger A → III and B → IV associations than C → IV or D → III

associations. This would be reflected in their responses to the discordant stimuli: they

would tend to choose response III when shown A + C and response IV when shown B + D

(as indicated in the “predicted” column of Table 4). Participants who paid more attention

to the low value cues would show the opposite pattern. We thus used responses on the

discordant test stimuli as an indicator of how participants distributed their attention.

In addition to recording participants’ choices in the test stage, we collected a

confidence rating for each choice. We tried to make participants feel more invested in their

confidence ratings by giving them a monetary value. This procedure was explained in a

short tutorial prior to the test stage. After meeting the performance criterion in stage 2,

participants were told they could now “hedge their bets” after choosing an action by

reserving a portion of their winnings to be paid in case they had made the wrong choice.

For example, if the participant chose to reserve 30%, then the payoff for that trial would be

70% of the reward for the chosen action and 30% of the reward for the non-chosen action

(see Figure 4 for screenshots). They could reserve 0, 10, 20, 30, 40 or 50 percent of their

winnings this way, thereby yielding six confidence levels, with a choice to reserve less

money interpreted as indicating greater confidence. Participants completed eight further

trials of stage 2 using this confidence rating system before using it in the test stage.

The test stage was run for two blocks, with each stimulus presented once per block in

random order. Participants were told that they had entered a “special bonus round” in

which they would be tested on their knowledge of the machine. No feedback was given

during this stage, to prevent further learning. After completing the entire experiment, each

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 15, 2018. ; https://doi.org/10.1101/469809doi: bioRxiv preprint 

https://doi.org/10.1101/469809
http://creativecommons.org/licenses/by-nc-nd/4.0/


REWARD EFFECTS ON ATTENTION 23

participant was told how much he or she had won and asked to rate their engagement in

the task and its difficulty on scales from 0 to 10.

In addition to the base pay, each participant was paid a bonus equal to the

proportion of possible space credits won times a multiplier based on the stage of the task

reached ($0.25, $0.50, $0.75, or $2.50). For example, a participant who completed the

entire experiment and won 75% of all possible space credits would receive a bonus of

$2.50× 0.75 ≈ $1.88. The payments were based on the proportion of space credits won

(total divided by maximum possible) in order to avoid punishing participants who learned

the task quickly.

Analysis. Responses on concordant test trials were coded as +1 (correct) or −1

(incorrect). Responses on discordant test trials were coded as +1 (consistent with greater

attention to A and B) or −1 (consistent with greater attention to C and D). Confidence

was coded on a scale from 1 to 6, with 6 being the most confident (i.e., reserving 0% of

winnings). The response and confidence values were multiplied to produce a

response-confidence score on each trial. Scores from each discordant trial type (A + C and

B +D ) were averaged, and these averages were added together to form an aggregate

measure of attentional focus, ranging from -12 to 12. A positive total score for discordant

stimuli indicated greater attention to high value cues (A and B), whereas a negative score

indicated greater attention to low value cues (C and D). Scores from old concordant trials,

new concordant trials with high value cues, and new concordant trials with low value cues

were treated similarly, to obtain measures of adherence to the task (see Table 4 for an

explanation of these trial types).

Results and Discussion

Out of 30 participants, 4 failed to meet the learning criterion in stage 0, 14 passed

stage 0 but failed stage 1, and 12 passed all stages. The results presented here are from

those 12 participants. The discordant scores were greater than zero on average, indicating
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greater attention to the high value cues (A and B) than to the low value cues (C and D)

(M = 5.04, SD = 7.26, d = 0.69, t11 = 2.40, p < .05). Scores for the concordant test

stimuli were also positive, confirming that the participants applied what they had learned

in stage 2 to the test stage (old concordant: M = 9.79, SD = 4.27, d = 2.29, t11 = 7.94,

p < .0001; new A/B concordant: M = 7.50, SD = 6.07, d = 1.24, t11 = 4.28, p < .01; new

C/D concordant: M = 5.54, SD = 5.02, d = 1.10, t11 = 3.82, p < .01). Choice proportions

in the test stage are given in Table 8.

In conclusion, this experiment successfully replicated Le Pelley et al.’s (2013) alien

slot machine effect, using somewhat different methods and rewards and a different

participant population. Aside from independently confirming that result, Experiment 1-a

shows that our modified methods are appropriate for investigating outcome value effects on

learning.

Experiment 1-b

Experiment 1-b was a nearly exact replication of Experiment 1-a, with one

modification to the irrelevant cues in stage 1 so that they would not carry any information

about the correct response or rewards (see Table 6).

Method

Participants. Participants were recruited using Amazon Mechanical Turk

(n = 60). They were compensated with a base payment of $2.00 plus a bonus payment of

up to $2.50 based on performance. The task required between 10 and 30 minutes to

complete for most participants.

Apparatus and Materials. These were identical to those used in Experiment 1-a.

Design. This was a revised version of the 100/1 vs. 2/1 design used in experiment

1-a with half as many “irrelevant” cues. This ensures that those cues (X and Y) truly are

irrelevant in that they do not indicate which action will result in a better payout. The

design is outlined in table 6.
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Procedure. Aside from the altered design described above, the methods were

identical to those of experiment 1-a.

Results and Discussion

Out of 60 participants, 10 successfully completed the entire task (17 failed at stage 0,

25 at stage 1 and 6 at stage 2). Discordant scores were positive on average, indicating

greater attention to the high value cues (M = 4.50, SD = 6.00, d = 0.75, t9 = 2.49,

p = .032). As before, scores for the concordant test stimuli were also positive (old

concordant: M = 10.15, SD = 3.96, d = 2.56, t9 = 8.11, p < .0001; new A/B concordant:

M = 7.75, SD = 3.57, d = 2.17, t9 = 6.87, p < .0001; new C/D concordant: M = 7.35,

SD = 5.21, d = 1.41, t9 = 4.46, p = .002), indicating good adherence to the task. Choice

proportions in the test stage are given in table 8.

We thus replicated the value effect obtained in Experiment 1-a, giving us more

confidence that this is a real effect (especially given the small sample sizes). Both

Experiments 1-a and 1-b can be viewed as conceptual replications of Le Pelley et al.’s

(2013) finding that when the reward for one correct response is greater than that for the

other, and rewards for incorrect choices are small and equal, cues associated with high

values receive more attention.

Simulation 1

Having replicated the alien slot machine effect (Le Pelley et al., 2013), we wished to

determine whether a derived attention mechanism was necessary to explain it. We

therefore simulated the simple predictiveness model and CompAct, along with the derived

attention model, on a wide array of parameter values to determine whether they were

capable of behaving in the same way as real participants in Le Pelley et al. (2013) as well

as our Experiment 1-b. This exhaustive approach was practical because each of the models

has only one or two parameters relevant to learning. The choice consistency parameter ξ
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does not affect learning when full reward feedback is given (as it is in these tasks), and

merely scales choice probabilities.

Method

Simulations were performed in R (https://cran.r-project.org). The models were

defined by the equations given in the introduction: Equations 2-7 for simple predictiveness,

Equations 2-6 and 11-12 for CompAct, and Equations 2-6 and 14 for derived attention.

Because ξ merely scales choice probabilities, we fixed it at 2 for both models. The two

other parameters of the simple predictiveness model and CompAct (λ and µ) are by

definition restricted to the range [0, 1]: we divided the interval from 0.05 to 0.95 evenly by

intervals of 0.05, giving us a grid of 361 points. We used this same range of λ values for the

derived attention model and let amin = 0.1. The initial attention weights for the simple

predictiveness and derived attention models were set at ai = 0.1, and CompAct was

initiated with ηi = 1.

We generated 10 random trial sequences for each experiment design, with 122 trials

in stage 1 and 24 trials in stage 2, and used these for all three models. The number of trials

in each stage matched Le Pelley et al.’s (2013) design, and was similar to what participants

experienced on average in our experiments. In both the simple predictiveness and derived

attention models, association weights can grow so large that they present computational

difficulties and cause model predictions to change dramatically from one run to another.

To ameliorate this tendency, we divided reward values by 100 in our simulations and

capped attention weights at a maximum value of 1.5. The unknown reward values in stage

2 of Le Pelley et al.’s (2013) experiments were simulated as 1 (i.e. 2/3 of the higher valued

currency in stage 1).

To determine whether each model qualitatively behaves like human participants, we

examined choice probabilities on A + C and B + D test trials. We obtained an index of

attentional preference for the high value cues (A and B, positive values) over the low value
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cues (C and D, negative values) using the following formula:

choice index = P (III|A+ C) + P (IV |B +D)− P (IV |A+ C)− P (III|B +D) (15)

where P (III|A+ C) is the probability of choosing action III given stimulus A + C, etc.

These probabilities were taken directly from the softmax choice function (Equation 2).

This choice index is the same as the aggregate measure of attentional focus used to analyze

the human data, except that the simulated data are not multiplied by confidence ratings

(see below). For each model and experiment design, we report the highest and lowest

choice index (averaged across all 10 runs) among all tested parameter values, along with

the accompanying parameter values and the attention weights at the end of stage 1 (ai for

the simple predictiveness and derived attention models, and ηi for CompAct). We can thus

see whether the models are highly flexible—able to fit various patterns of data—or make

firm predictions that do not depend on particular parameter values.

Results

When simulated on the original alien slot machine design (Le Pelley et al., 2013), all

three models behaved in the same fashion as human learners, paying more attention to the

high value cues (A and B), and exhibiting a positive choice index under all parameter

values. Details are given in Table 9.

The same result was obtained when the models were simulated on our Experiment

1-b. All three models preferred the actions associated with the high value cues (A and B),

under all parameter values, just as the human learners did (see results reported below).

Again this was explained by the models’ greater attention to the high value cues. Details

are presented in Table 10.

For both experimental designs, each of the models behaved qualitatively in the same

way as human participants (paying more attention to cues A and B than to C and D)

across the entire range of parameter values. Thus Le Pelley et al.’s (2013)’s alien slot

machine effect is a definite prediction of all three models.
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Discussion

Le Pelley and colleagues claim that a derived attention mechanism is needed to

account for the alien slot machine effect (Le Pelley et al., 2016). In this simulation we show

that this is not the case: both competitive (CompAct) and non-competitive predictiveness

models strongly predict greater attention to the high value cues (A and B). In both

models, attention to cue i increases as a function of the term ∑
k δkWkisi (Equations 7 and

12). The association weights (Wki) and prediction errors (δk) are larger on trials with the

high value cues than those with the low value cues, driving larger increases in attention. In

conclusion neither the original alien slots experiment (Le Pelley et al., 2013) nor our

Experiments 1-a and 1-b allow us to distinguish which model is correct.

Simulation 2

As shown in Simulation 1, all three of the models which we are considering (simple

predictiveness, CompAct and derived attention) predict the alien slot machine effect

demonstrated by Le Pelley et al. (2013) and replicated in our Experiments 1-a and 1-b. We

therefore require a new experimental design, about which the models make different

predictions. Such a design is summarized in Table 7. We test the model predictions

obtained in this section in Experiments 2-a and 2-b.

Our new design is summarized in Table 7. It differs from that of Experiment 1-b in

that the reward for an incorrect choice on high value trials (cues A and B) is increased to

95, while the reward for correct choices on low value trials (cues C and D) is increased to

50. Thus the difference in reward between the correct and incorrect actions is small on high

value trials (100− 95 = 5) and large on low value trials (50− 1 = 49). We call this design

“100/95 vs. 50/1”.

These changes to the reward structure cause our theories to make different

predictions as to which cues will receive the most attention. The derived attention model

predicts that the cues with larger associations in stage 1 (A and B) will receive more
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attention, which will carry over to affect learning in stage 2 (just as in Le Pelley et al. 2013

and our Experiments 1-a and 1-b). However, if attention is based on competitive

predictiveness, we expect the larger difference between rewards for the two response

options on C and D trials to yield more attention to those cues. Observe that in

Experiments 1-a and 1-b (and the experiments of Le Pelley et al.) the difference between

rewards is confounded with the overall magnitude of reward, making it impossible to

determine which factor is driving attention.

Why would the competitive predictiveness theory predict that greater difference

between rewards leads to more attention? The key is the irrelevant cues X and Y. Due to

the symmetry of the experimental design, cues X and Y cannot distinguish which response

is correct. That is, their prediction (Wkisi) will be approximately the same for both the

correct and incorrect responses (see the maroon curves in the upper half of Figure 5a). On

high value trials, both of the rewards are so large and close together that the prediction (δk)

is large and positive, at least early in learning (Figure 5a, top two panels). Thus δkWkisi is

positive for X and Y, i.e. they are “good predictors”. This causes these cues to compete for

attention with the truly relevant cues (A and B), reducing the rate at which the latter gain

attention. In other words, on high value trials, most of the predictive work to be done is

anticipating the overall reward level for both actions, as opposed to differentiating the

rewards between actions. Cues X and Y are just as suited to this job as are A and B.

During low value trials, on the other hand, the reward for an incorrect choice is only

1. Cues X and Y substantially over-predict this, causing δkWkisi to be negative and hence

X and Y to be “bad predictors” and lose attention (see Figure 5a, bottom right panel).

This lost attention to X and Y is gained by C and D, much like in the highlighting

experiment described above (c.f. Figure 1). Meanwhile, prediction error for the correct

action rapidly decreases to nearly zero, so cues X and Y do not gain attention via this

response, even though they have large association weights (Figure 5a, bottom left panel).

In other words, most of the predictive work on low-value trials lies in differentiating the
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outcomes for the two actions, which X and Y cannot do but C and D can.

In conclusion, according to the competitive predictiveness theory cues X and Y

“highlight” cues C and D, but they compete for attention with A and B. The simulations

confirm this. These competitive dynamics are not a factor for the simple predictiveness or

derived attention models, which predict (in contrast to the competitive predictiveness

theory) that the high value cues (A and B) will receive more attention than the low value

cues (C and D).

Method

Methods were identical to those in Simulation 1, except that the task design was

taken from Table 7.

Results and Discussion

The simple predictiveness and derived attention models paid more attention to the

high value cues (A and B), whereas CompAct paid more attention to the low value cues (C

and D). As shown in Table 11, these results were obtained over the entire range of

parameter values. That is, each model behaved in qualitatively the same way, regardless of

parameter values. Thus the task design in Table 7 is effective in distinguishing competitive

predictiveness from the other two theories.

Experiment 2-a

Experiment 2-a used the same task design as Simulation 2 (Table 7), to test the

contrasting model predictions demonstrated in that simulation. In particular, we test

whether humans participants behave like the simple predictiveness and derived attention

models, paying attention to the cues associated with high overall reward value (A and B),

or like CompAct, paying more attention to the cues associated with greater reward

difference between the responses (C and D).
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Method

Participants. Participants were recruited using Amazon Mechanical Turk

(n = 60). They were compensated with a base payment of $2.00 plus a bonus payment of

up to $2.50 based on performance. The task required between 10 and 30 minutes to

complete for most participants.

Apparatus and Materials. These were identical to those used in the other

experiments.

Design. The experimental design is described in simulation 2 and summarized in

Table 7.

Procedure. The procedure was the same as in the other experiments.

Results and Discussion

Out of 60 participants, 15 successfully completed the entire task (19 failed at stage 0,

22 at stage 1 and 6 at stage 2). Discordant scores were negative at a marginal level of

significance, suggesting greater attention to the low value cues (C and D) (M = −2.33,

SD = 4.74, d = 0.49, t14 = −1.91, p = .077). This result, if replicated, provides evidence

for the competitive predictiveness principle as opposed to simple predictiveness or derived

attention. Accurate learning and understanding of the test procedure were indicated by

results from old concordant (M = 9.47, SD = 4.77, d = 1.98, t14 = 7.68, p < .001), new

A/B concordant (M = 3.60, SD = 5.22, d = 0.69, t14 = 2.67, p = .018) and new C/D

concordant (M = 5.10, SD = 6.15, d = 0.83, t14 = 3.21, p = .006) trials. Choice

proportions in the test stage are given in Table 8.

In summary, we found preliminary evidence that participants paid more attention to

the low value cues (C and D) than to the high value cues (A and B). This is directly

contrary to the predictions of the simple predictiveness and derived attention models, but

can be explained by competitive predictiveness (as implemented in CompAct). The 100/95

vs. 50/1 reward structure causes the irrelevant cues X and Y to compete for attention with
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cues A and B on high value trials but highlight cues C and D on low value trials. This

effect of outcome value on attention can thus be explained by the same mechanism that

Kruschke (2009) has proposed underlies highlighting effects.

Experiment 2-b

Experiment 2-b was an attempt to independently replicate the result of experiment

2-a (more attention to the low value cues C and D) with a larger sample.

Method

Participants. Participants were recruited using Amazon Mechanical Turk

(n = 139). They were compensated with a base payment of $2.00 plus a bonus payment of

up to $2.50 based on performance. The task required between 10 and 30 minutes to

complete for most participants.

Apparatus and Materials. These were identical to those used in the other

experiments.

Design. The design was identical to that of Experiment 2-a.

Procedure. The procedure was the same as in the other experiments.

Results and Discussion

Fifty-seven out of 139 participants successfully completed the whole experiment (18

failed at stage 0, 49 at stage 1 and 10 at stage 2). Mean discordant scores were negative

(M = −1.76, SD = 5.23, d = 0.34, t56 = −2.55, p = .014). Scores for the old concordant

(M = 9.39, SD = 4.44, d = 2.12, t56 = 15.97, p < .0001), new AB concordant (M = 3.75,

SD = 5.10, d = 0.73, t56 = 5.55, p < .0001) and new CD concordant (M = 4.84,

SD = 5.95, d = 0.81, t56 = 6.14, p < .0001) test item pairs were all positive. Choice

proportions in the test stage are given in Table 8.

We thus successfully replicated the result of Experiment 2-a, viz. that participants

pay more attention to the low value cues (C and D) in the 100/95 vs. 50/1 design. This
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result provides evidence for competitive predictiveness and against derived attention.

General Discussion

Summary of Findings

The present work resolves an important tension in previous work on attention

learning, between findings of attention driven by cue predictiveness and of attention driven

by association strength. As evidence for the latter, Le Pelley et al. (2016) point to the

result that cues associated with larger rewards received more attention in a certain

associative learning task (Le Pelley et al., 2013). They proposed that theories of attention

learning based on a principle of predictiveness must thus be supplemented by a form of

attention derived directly from association strength. We challenge this argument on two

grounds, one empirical and the other theoretical. After replicating their “alien slots” effect

(Experiments 1-a and 1-b), found using our 100/95 vs. 50/1 experimental design that this

effect can be reversed (Experiments 2-a and 2-b). Thus attention is not merely based on

the overall size of rewards, but is affected by the difference between the rewards obtained

after different responses.

Second, our simulations showed that, contrary to initial intuitions, both

non-competitive and competitive predictiveness models can produce the original alien slots

effect (greater attention to cues associated with larger rewards) without any additional

derived attention mechanism. However, the non-competitive predictiveness and derived

attention models could not account for our Experiment 2 results, leaving the competitive

predictiveness theory (embodied by CompAct and EXIT) as the only one capable of

explaining all of our findings. We confirmed through further simulations (reported in the

Appendix) that all three models can produce correlation effects, but only the competitive

predictiveness model can explain highlighting effects. This suggests that highlighting and

the results of the various alien slots experiments are produced by the same mechanism, viz.

attention learning through competitive predictiveness.
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Methodological Considerations

The present experiments are subject to a significant methodological concern: only

about 40% of participants were able to complete the task and thus provide usable data.

Aside from the expense and inconvenience, this raises the question as to whether our

findings apply only to particularly motivated or capable participants. One reason to expect

that our results hold more generally is that we replicated the original alien slots effect

(Le Pelley et al., 2013) in Experiments 1-a and 1-b using the same inclusion criteria as in

Experiments 2-a and 2-b. Le Pelley et al. ran participants for a fixed number of trials and

included all subjects in their analysis; thus our performance criterion method does not

appear to have qualitatively affected the results. Because of these differences in procedure,

it is not clear whether our participants performed worse than those in Le Pelley et al.’s

initial study. The average of their participants’ choice accuracy did improve over training,

but only reached a final level of around 60-80% in different conditions. A simple way to

test whether our results hold generally would be to collect test trial data from all

participants (not just those who reached a criterion level of performance), running them for

a fixed number of trials like in Le Pelley et al.’s study.

The stage 1 task may be difficult because it requires the participant to keep track of

many cues at once. Task difficulty has been found to increase with the number of cues

(Collins, Brown, Gold, Waltz, & Frank, 2014). Other researchers have reported low

performance in a correlation effect design similar to that given in table 1 (Mitchell et al.,

2012). They solved the problem by breaking up stage 1 training into separate subtasks,

giving participants alternating blocks with only half of the stimuli. Such a procedure could

be implemented in our experiments by providing different distractor cues for high value

and low value trials. In other words, instead of pairing C and D with X and Y (as in table

6 or 7), we would use new cues V and W. Simulations of CompAct and the derived

attention model (not reported here) show that this would not qualitatively change their

predictions. The theoretical analysis of these “separate irrelevant cue” designs would be
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similar to that of our existing ones, but simpler. It is worth noting that none of the models

examined here predicts that performance will drop with the number of cues present in the

experiment or in any stage thereof (as opposed to the number of cues present on a single

trial): this suggests a separate line of investigation relating associative learning to working

memory. Relatedly, we might also observe higher overall performance if we give memorable

labels to the response options (Lupyan et al., 2007).

Theoretical Analysis

As our simulations make clear, models of attention learning based on predictiveness

(viz., CompAct and EXIT, as well as the simple predictiveness model) reproduce the

original alien slot machine effect as well as our modified replications (Experiments 1-a and

1-b). We thus do not need to add any derived attention mechanism to these models in

order to account for value effects on attention. This is a nice outcome: theoretical

simplicity is always desirable.

This result may seem paradoxical: the high value cues (A and B) and low value cues

(C and D) all consistently indicate which action is best, so one is tempted to consider them

all equally predictive. The problem with this reasoning is that “predictiveness” needs to be

more precisely defined. When we deal with discrete outcomes such as “action 1 is better

than action 2” or “the stimulus belongs to category 1”, it is easy to define the

predictiveness of cues in terms of conditional probabilities or mutual information between

the cue and outcome. However, defining predictiveness in terms of probabilities breaks

down when either the outcome or cue becomes a continuous variable, and the former is the

case in alien slot machine experiments. Indeed, this simple notion of predictiveness is not

even fully adequate for discrete outcomes, as it ignores redundancy between cues (as in

blocking) and interaction effects (e.g. in “exclusive or” category structures).

Predictiveness cannot be defined solely in terms of the environment, because models

differ in how they combine cues to generate expectations. The optimal allocation of
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attention for a model built on one principle may be very different from that for a model

built on another principle. After all, a cue is “predictive” only to the degree to which it

helps to form accurate predictions of outcomes, which depends on how those predictions

are generated. For example, in some exemplar models, predictions are based on summed

similarity to previous stimuli (cue combinations), and attention works by moderating how

stimulus dimensions contribute to the similarity calculation (Nosofsky, 1986). This is quite

different from the models presented here, and might lead to different optimal attention

allocations, even for the same task design.

For the predictiveness models considered here, based in the Rescorla-Wagner

architecture, we have proposed a common notion of predictiveness in terms of error

reduction. Specifically, the learning rule for attention is defined by (stochastic) gradient

descent on squared prediction error (1
2
∑
k δ

2
k). The resulting update shifts the attention

weights toward those values that minimize prediction error on the previous trial (and hence

hopefully on future trials as well). It thus seems reasonable to say that the attention shifts

that come from gradient descent are based on predictiveness. Note, however, that this

predictiveness is relative to the current knowledge state of the learner, rather than to some

objective description of the environment. Thus for example in blocking (Kamin, 1968) a

cue might be “non-predictive” from the learner’s perspective, even if objectively it is

perfectly correlated with the outcome.

In a modified Rescorla-Wagner model (Equation 5), the Chain Rule for computing

derivatives implies that the gradient will always include the following factor (see Equations

7 and 12):

− ∂

∂ai

(
1
2

∑
k

δ2
k

)
=
∑
k

δk ·Wkisi. (16)

The term on the right-hand side is related to the covariance between cue predictions

(Wkisi) and unexpected outcomes (δk), which can naturally be interpreted as the degree to

which cue i predicts things (relative to the learner’s current knowledge).

Thus it seems reasonable to define cue i’s predictiveness as ∑k δk ·Wkisi in any
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modified Rescorla-Wagner model. This clarifies what we mean when we say that changes in

attention are determined by predictiveness. This notion of predictiveness can be applied

equally well to situations involving discrete outcomes (e.g., highlighting) or continuous

outcomes (e.g., alien slots). In the simple predictiveness model, this is the sole determinant

of attention learning (Equation 7). When we compute the gradient based on CompAct’s

more complex competitive attention rule (Equation 11) we naturally obtain a learning rule

based on competitive predictiveness, i.e. the relative size of ∑k δk ·Wkisi for different cues

(Equation 12). This predictiveness term also shows up in the learning rules for other, even

more complex models based on the same principles (e.g., Kruschke, 2001).

This analysis also suggests that derived attention and simple predictiveness are not so

different as they might appear: both are driven by the magnitude of association weights

(Wki). For simplicity, consider a case in which there is only one outcome being predicted

(so we can omit the subscript k and refer to association weights by wi for each cue i). Also

assume that the cue-reward contingencies remain constant, so that the sign of wi tends to

remain the same. Then according to the derived attention model, changes of attention to

cue i are determined by

∆ai = ∆|wi| = |wt+1
i | − |wti| = sign(wi)

(
wt+1
i − wti

)
= sign(wi)∆wi ∝ δ sign(wi)si. (17)

The attention learning rule of the simple predictiveness model differs only by a factor of

|wi|:

∆ai ∝ δwisi = δ sign(wi)|wi|si = |wi|
(
δ sign(wi)si

)
. (18)

The simple predictiveness and derived attention models therefore have very similar

attention learning rules. This helps to explain why these two models make the same

qualitative predictions in all the experiments considered here (see Tables 9-13), including

ones where their predictions are empirically supported (correlation effects, Le Pelley et al.

2013, Experiments 1-a and 1-b) and ones where they are not (Experiments 2-a and 2-b,

highlighting).
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Thus the critical contrast is not between derived attention and predictiveness, but

rather between predictiveness with competition (as in CompAct) or without competition

(as in the simple predictiveness model). It is competition which allows CompAct and EXIT

to explain highlighting and the result of our Experiment 2 (the 100/95 vs. 50/1 design), as

well as other phenomena.

Thus our main contribution is to show that attention learning based on predictiveness

can explain value-based effects, contrary to previous claims (Le Pelley et al., 2013), and

furthermore that competitive predictiveness provides a unified explanation for a wide

variety of attentional phenomena in associative learning. Although these links between

theory and data are new, the idea that attention is based on competitive predictiveness is

not (Kruschke, 2001; Mackintosh, 1975). What is special about our new “competitive

activation” model (CompAct) compared to other models that embody this principle?

CompAct can be seen as a simplified version of Kruschke’s EXIT model (Kruschke,

2001). In EXIT, attention to cues is based on a complex exemplar-mediated similarity

comparison, meaning that similar stimulus vectors will receive similar attention weights.

Thus the simple notion of “attention to a cue” is not present in EXIT: attention depends

on the stimulus in question and could differ for different parts of the stimulus space. There

is some evidence that such effects exist (Aha & Goldstone, 1992), but they are not

encountered in most learning experiments. One might feel therefore that CompAct’s

mechanism is preferable, as it makes theoretical analysis far simpler. EXIT also shifts

attention by a large amount on each trial prior to association learning, and then retains

only a small amount of that shift as permanent attention learning. In CompAct, all

attention shifts constitute permanent learning, and they occur simultaneously with

association learning. So far, we have not found that EXIT’s rapid attention shifts make

any difference to model predictions, although the issue bears further study. Finally, EXIT

includes a parameter which determines the amount of competition between cues by

adjusting the norm according to which the stimulus vector is normalized (CompAct always
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uses the L1 norm). This mechanism can also be incorporated in CompAct, but for this

paper have decided to keep attentional competition fixed, for the sake of simplicity. In all

of our simulations so far, we have found that CompAct can explain everything that EXIT

does using only the principle of competitive attention. We conjecture that EXIT’s

additional mechanisms (exemplar-mediated attention and rapid attention shifts) are

unnecessary, but this question requires more thorough study. At any rate, CompAct’s

simplicity makes it easier to analyze why it behaves as it does in any given task.

Mackintosh’s (1975) model also embodies the competitive predictiveness principle,

and thus ought to be compared to CompAct. The principal difference is that Mackintosh’s

model uses cue-specific prediction errors to learn associations, rather than the combined

prediction errors used by CompAct (and EXIT). These cue-specific prediction errors are

used to determine cues’ “predictiveness” and hence the learning rule for attention. In

Le Pelley et al.’s (2016) implementation of Mackintosh’s ideas, the learning rule for

attention is as follows (adapted to our notation):

∆ai = µ
∑
k

∣∣∣∣∣∣rk −
∑
j 6=i

wkjsj

∣∣∣∣∣∣− |rk − wkisi|
 . (19)

Comparing this to CompAct’s learning rule (Equation 12), we see that the two models

implement the same competitive principle in somewhat different ways (Kruschke, 2001, has

previously pointed out this similarity in reference to EXIT). Nevertheless, in simulations

we have found that Mackintosh’s model—implemented as in Le Pelley et al.

(2016)—cannot produce highlighting effects or the complex value effect observed in our

Experiment 2. Analyzing this result here would take us too far afield, but it does suggest

that CompAct provides a better implementation of the competitive predictiveness idea.

Conclusions

Correlation effects, highlighting and many other learning effects can be explained by

the theory that cues compete for attention based on how “predictive” they are, with

predictiveness being related to the correlation between cue predictions and unexpected
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outcomes. We have shown here that this principle (as embodied in CompAct) can also

explain simple value effects on attention, in which cues associated with large rewards

receive more attention. Models in which attention is derived directly from association

strengths can explain these value effects, but not highlighting. We have replicated a simple

value effect experimentally, and also demonstrated that the effect depends on relative

rewards between alternative response options in a manner predicted by competitive

predictiveness (in particular by CompAct) but not by derived attention. We thus conclude

that the competitive predictiveness principle embodied in CompAct is sufficient to account

for a broad array of learning phenomena, and that we do not require any additional derived

attention mechanisms.
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Appendix

Simulations of Correlation and Highlighting Effects

We simulated CompAct, the simple predictiveness model and the derived attention

model on experimental designs that produce correlation and highlighting effects: Le Pelley

and McLaren (2003) as in Table 1, and Kruschke (1996) as in Table 2. Simulation details

were the same as reported above, save that we capped attention weights at a maximum

value of 1 rather than 1.5. This was necessary to prevent the behavior of the derived

attention model from fluctuating wildly at larger values of λ. The reward for correct

responses was coded as 1 and the reward for incorrect responses as 0.

For quantifying the correlation effect in our simulation of Le Pelley and McLaren

(2003), we created a correlation effect index defined by

correlation effect index = P (III|A+ C) + P (IV |B +D)− P (III|V +X)− P (IV |W + Y )

where P (III|A+ C) is the probability of choosing response III given the test stimulus

A+ C, etc. Higher values of this index indicate greater attention to the predictive cues (A,
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B, C and D) relative to the non-predictive cues (V, W, X and Y). The results are given in

Table 12. Observe that all three models produce a correlation effect under all parameter

values.

We created a choice index for the highlighting effect (Kruschke, 1996, Experiment 2)

defined by

highlighting index = P (L1|PE1+PL1)+P (L2|PE2+PL2)−P (E1|PE1+PL1)−P (E2|PE2+PL2)

where P (E1|PE1 + PL1) is the probability of choosing response E1 when presented with

the compound cue PE1 + PL1, etc. Positive values of the highlighting index indicate a

highlighting effect. The results are given in Table 13. Note that CompAct is the only one

of the three models simulated that can produce a highlighting effect.

Derivation of CompAct’s Attention Learning Rule

Attention is learned by gradient descent on squared error. Using the chain rule, we

see that
∂

∂ηi

1
2
∑
k

δ2
k =

∑
k

δk
∂

∂ηi
(rk − zk)

= −
∑
k

δk
∂

∂ηi
zk

= −
∑
k

δk
∂

∂ηi

∑
l

Wklalsl

= −
∑
k

δk
∑
l

Wklsl
∂al
∂ηi

. (20)

We now must calculate ∂al

∂ηi
:

∂al
∂ηi

= ∂

∂ηi


∑

j

|ηjsj|

−1

ηl



=

 ∂

∂ηi

∑
j

|ηjsj|

−1
 ηl +

∑
j

|ηjsj|

−1
∂ηl
∂ηi

=

−
∑

j

|ηjsj|

−2
∂

∂ηi

∑
j

|ηjsj|

 ηl +
∑

j

|ηjsj|

−1

I{i=l}
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=
∑

j

|ηjsj|

−1
I{i=l} −

∑
j

|ηjsj|

−1

|si|ηl

 , (21)

where I{i=l} equals unity if i = l and is zero otherwise.

Substituting this result into Equation 20, we see that

∂

∂ηi

1
2
∑
k

δ2
k = −

∑
k

δk
∑
l

Wklsl
∂al
∂ηi

= −
∑
k

δk
∑
l

Wklsl

∑
j

|ηjsj|

−1
I{i=l} −

∑
j

|ηjsj|

−1

|si|ηl



= −
∑

j

|ηjsj|

−1∑
k

δk

Wkisi −
∑
l

Wklsl

∑
j

|ηjsj|

−1

|si|ηl



= −
∑

j

|ηjsj|

−1∑
k

δk

[
Wkisi − |si|

∑
l

Wklalsl

]

= −
∑

j

|ηjsj|

−1∑
k

δk

(1− |si|ai)Wkisi − |si|
∑
l 6=i

Wklalsl



= −
∑

j

|ηjsj|

−1∑
k

(1− |si|ai)δkWkisi − |si|
∑
l 6=i

δkWklalsl

 . (22)

Multiplying by −µ, we see that we have obtained the learning rule given in equation 12.

Equivalence of Different Versions of the Derived Attention Model

In this paper, we simulate the derived attention model with the assumption that

attention (a) controls both learning (Equation 6) and expectancy (Equation 5). This

makes it easier to compare derived attention to the simple predictiveness model and

CompAct. However, Le Pelley and colleagues (Le Pelley et al., 2016) assume that attention

does not affect expectancy, i.e. their simulations use Equation 1 to determine the model’s

expectations of reward, rather than Equation 5. We do not want the reader to be

distracted by this difference, as it is irrelevant to the issues we investigate here.

In fact, as we shall show, these two versions of the derived attention model are

formally equivalent. That is, if we set their attention and association weights such that
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they initially make the same predictions, then they will continue to make the same

predictions after experiencing any sequence of stimuli and rewards.

First, we must determine under what conditions the two versions of the model make

the same predictions. We shall designate the model in which attention controls learning

and expectations Model 1, and the one in which attention controls only learning Model 2.

Quantities associated with Model 2 shall be distinguished by having a tilde (∼) placed over

them. Recall that the expectation of reward in Model 1 is given by

zk =
∑
i

Wkiaisi (23)

and in Model 2 by

z̃k =
∑
i

W̃kisi. (24)

Thus we have zk = z̃k for all possible s if and only if

W̃ki = Wkiai. (25)

We can accomplish this at the start of learning by choosing appropriate initial association

weights, e.g. Wki = W̃ki = 0. Initializing weights at zero can be seen as representing a lack

of knowledge about novel stimuli. Note that equality of expectancy (zk = z̃k) also implies

equality of prediction error (δk = δ̃k).

Now assume that Equation 25 is satisfied at the beginning of a trial. It will also be

satisfied after that trial if the following condition holds:

W̃ki + ∆W̃ki = (Wki + ∆Wki)ai ⇔ ∆W̃ki = ∆Wkiai ⇔ λδkãisi = (λδkaisi)ai (26)

which is satisfied if

ãi = a2
i . (27)

Now let ai = ∑
k |Wki| and ãi = ∑

k |W̃ki| as in Equation 14 (here we ignore the lower

bound amin). Using Equation 25, we see that

ãi =
∑
k

|W̃ki| =
∑
k

|Wkiai| = ai
∑
k

|Wki| = a2
i
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and thus Equation 27 is satisfied. In other words, if both models start with null association

weights (or any other values satisfying Equation 25), then after any sequence of stimuli and

outcomes they will always be related by Equations 25 and 27, which in turn implies they

will always generate the same expected outcomes (z = z̃) and hence the same predicted

response probabilities.
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Stage 1 Stage 2 Test Stage

Cues I II Cues III IV Cues Preferred

A + V 1 0 A + X 1 0 A + C III (strong)

A + W 1 0 B + Y 0 1 B + D IV (strong)

B + V 0 1 C + V 1 0 V + X III (weak)

B + W 0 1 D + W 0 1 W + Y IV (weak)

C + X 0 1 E + F 1 0 E + H neither

C + Y 0 1 G + H 0 1 F + G neither

D + X 1 0 I + J 1 0 I + J III

D + Y 1 0 K + L 0 1 K + L IV
Table 1

Design of experiment 1 from Le Pelley & McLaren (2003). Each row within each stage

indicates a trial type, with + indicating a conjunction of cues (e.g., cues A and V presented

together). Response options are indicated by I and II (stage 1) and III and IV (stage 2 and

test stage). The rightmost two columns for stages 1 and 2 indicate which response is

rewarded for each trial type. The rightmost column for the test stage shows the empirical

result, namely which response subjects tend to select.
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Stage 1 Stage 2 Test

Cues E1 E2 L1 L2 Cues E1 E2 L1 L2 Cues E L

PE1 + I1 1 0 0 0 PE1 + I1 1 0 0 0 I .80 .12

PE2 + I2 0 1 0 0 PE2 + I2 0 1 0 0 PE .93 .01

PL1 + I1 0 0 1 0 PL .03 .92

PL2 + I2 0 0 0 1 PE + PL .32 .65
Table 2

Illustration of the highlighting effect (Kruschke, 1996, Experiment 2). The rightmost four

columns for stages 1 and 2 indicate which response is rewarded for each trial type. The

rightmost two columns for test show the empirical response proportions in that stage. Due

to the symmetry of the design, the test results for I1 are averaged with I2, PE1 with PE2,

etc. The critical finding is that participants tend to choose the “late” outcome (L1 or L2)

on PE + PL test trials.
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Stage 1 Stage 2 Test Stage

Cues I II Cues III IV Cues Preferred

A + V 150 0 A + D usp. 0 A + C III

A + W 150 0 B + C 0 usp. B + D IV

B + X 150 0 E + F usp. 0

B + Y 150 0 G + H 0 usp.

C + V 0 1

C + W 0 1

D + X 0 1

D + Y 0 1
Table 3

Le Pelley et al. (2013) Experiment 1: Reward value biases attention. Each row within each

stage indicates a trial type, with + indicating a conjunction of cues (e.g., cues A and V

presented together). Response options are indicated by I and II (stage 1) and III and IV

(stage 2 and test stage). The rightmost two columns for stages 1 and 2 indicate which

response is rewarded for each trial type. The right column for the test stage shows the

empirical result, namely which response subjects tend to select. The abbreviation “usp.”

stands for “unspecified”; subjects were merely told these responses were correct, and they

presumably treated these outcomes as positive rewards of unknown value.
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Stage 1 Stage 2 Test Stage

Cues I II Cues III IV Cues Predicted Trial Type

A + V 100 1 A + D 100 0 A + C III discordant

A + W 100 1 B + C 0 100 B + D IV discordant

B + X 1 100 E + F 100 0 E + F III old concordant

B + Y 1 100 G + H 0 100 G + H IV old concordant

C + V 2 1 A + E III new A/B concordant

C + W 2 1 B + G IV new A/B concordant

D + X 1 2 D + F III new C/D concordant

D + Y 1 2 C + H IV new C/D concordant
Table 4

Early version of the 100/1 vs. 2/1 design, as used in Experiment 1-a. The “predicted’

column lists the responses preferences predicted on the basis of previous research (Le Pelley

et al., 2013), on the assumption that subjects would attend to high value cues during stage

1 and that this would affect their learning during stage 2.
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Cues Action 1 Action 2

Φ + Φ 1 0

Θ + Θ 0 1
Table 5

Design of the tutorial stage used in all of our experiments.
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Stage 1 Stage 2 Test Stage

Cues I II Cues III IV Cues Predicted Trial Type

A + X 100 1 A + D 100 0 A + C III discordant

A + Y 100 1 B + C 0 100 B + D IV discordant

B + X 1 100 E + F 100 0 E + F III old concordant

B + Y 1 100 G + H 0 100 G + H IV old concordant

C + X 2 1 A + E III new A/B concordant

C + Y 2 1 B + G IV new A/B concordant

D + X 1 2 D + F III new C/D concordant

D + Y 1 2 C + H IV new C/D concordant
Table 6

100/1 vs. 2/1 design used in Experiment 1-b. The “predicted” column lists the responses

preferences predicted on the basis of previous research (Le Pelley et al., 2013), on the

assumption that subjects would attend to high value cues during stage 1 and that this would

affect their learning during stage 2.
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Stage 1 Stage 2 Test Stage

Cues I II Cues III IV Cues Predicted Trial Type

A + X 100 95 A + D 100 0 A + C ? discordant

A + Y 100 95 B + C 0 100 B + D ? discordant

B + X 95 100 E + F 100 0 E + F III old concordant

B + Y 95 100 G + H 0 100 G + H IV old concordant

C + X 50 1 A + E III new A/B concordant

C + Y 50 1 B + G IV new A/B concordant

D + X 1 50 D + F III new C/D concordant

D + Y 1 50 C + H IV new C/D concordant
Table 7

100/95 vs. 50/1 design used in Experiments 2-a and 2-b. The derived attention theory

predicts greater attention to the “high value” cues (A and B) whereas competitive

predictiveness models predict the opposite (hence the question marks in the “predicted”

column).
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Experiment 1-a Experiment 1-b Experiment 2-a Experiment 2-b

Cues III IV III IV III IV III IV

A + C .67 .33 .68 .32 .33 .67 .39 .61

B + D .21 .79 .32 .68 .60 .40 .54 .46

E + F .92 .08 .82 .18 .93 .07 .90 .10

G + H .00 1.00 .05 .95 .13 .87 .08 .92

A + E .79 .21 .91 .09 .57 .43 .62 .38

B + G .17 .83 .18 .82 .27 .73 .32 .68

D + F .75 .25 .77 .23 .80 .20 .69 .31

C + H .29 .71 .18 .82 .27 .73 .22 .78
Table 8

Proportions of choices in the test stage of each experiment.
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Maximum Choice Index

Model Parameters Choice Index A/B Atn. C/D Atn.

Simple Predictiveness λ = 0.35, µ = 0.75 1.51 1.47 0.11

CompAct λ = 0.4, µ = 0.95 0.59 1.60 1.11

Derived Attention λ = 0.35 1.51 1.21 0.10

Minimum Choice Index

Model Parameters Choice Index A/B Atn. C/D Atn.

Simple Predictiveness λ = 0.05, µ = 0.05 0.08 0.36 0.10

CompAct λ = 0.05, µ = 0.05 0.02 1.09 1.01

Derived Attention λ = 0.05 0.06 0.28 0.10
Table 9

Results of simulation 1 for the original alien slot machine experiment (Le Pelley et al.,

2013). A/B atn. is the average of attention to cues A and B at the end of stage 1 (a for

simple predictiveness and derived attention models, η for CompAct). C/D atn. is the same

for cues C and D. Choice index (ranging from -2 to 2) is defined in the text; positive values

indicate greater attention to cues A and B, while negative values indicate greater attention

to cues C and D. Names of models consistent with empirical data are printed in bold type.
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Maximum Choice Index

Model Parameters Choice Index A/B Atn. C/D Atn.

Simple Predictiveness λ = 0.9, µ = 0.95 1.53 1.00 0.12

CompAct λ = 0.4, µ = 0.95 0.42 1.34 1.06

Derived Attention λ = 0.3 1.51 0.99 0.10

Minimum Choice Index

Model Parameters Choice Index A/B Atn. C/D Atn.

Simple Predictiveness λ = 0.05, µ = 0.05 0.02 0.20 0.10

CompAct λ = 0.05, µ = 0.05 0.01 1.04 1.01

Derived Attention λ = 0.05 0.01 0.14 0.10
Table 10

Results of simulation 1 for Experiment 1-b. A/B atn. is the average of attention to cues A

and B at the end of stage 1 (a for simple predictiveness and derived attention models, η for

CompAct). C/D atn. is the same for cues C and D. Choice index (ranging from -2 to 2) is

defined in the text; positive values indicate greater attention to cues A and B, while

negative values indicate greater attention to cues C and D. Names of models consistent

with empirical data are printed in bold type.
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Maximum Choice Index

Model Parameters Choice Index A/B Atn. C/D Atn.

Simple Predictiveness λ = 0.15, µ = 0.35 1.23 1.20 0.42

CompAct λ = 0.05, µ = 0.05 -0.01 0.98 1.00

Derived Attention λ = 0.15 1.33 1.13 0.27

Minimum Choice Index

Model Parameters Choice Index A/B Atn. C/D Atn.

Simple Predictiveness λ = 0.05, µ = 0.05 0.05 0.30 0.12

CompAct λ = 0.15, µ = 0.95 -0.92 0.41 1.51

Derived Attention λ = 0.75 0.06 1.15 0.70
Table 11

Results of simulation 2, for Experiments 2-a/b. A/B atn. is the average of attention to

cues A and B at the end of stage 1 (a for simple predictiveness and derived attention

models, η for CompAct). C/D atn. is the same for cues C and D. Choice index (ranging

from -2 to 2) is defined in the text; positive values indicate greater attention to cues A and

B, while negative values indicate greater attention to cues C and D. Names of models

consistent with empirical data are printed in bold type.
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Maximum Correlation Effect Index

Model Parameters Cor. Effect Index Pred. Cue Atn. Non-Pred. Cue Atn.

Simple Predictiveness λ = 0.95, µ = 0.95 0.76 0.96 0.31

CompAct λ = 0.25, µ = 0.95 0.48 1.41 0.24

Derived Attention λ = 0.95 0.70 0.99 0.60

Minimum Correlation Effect Index

Model Parameters Cor. Effect Index Pred. Cue Atn. Non-Pred. Cue Atn.

Simple Predictiveness λ = 0.05, µ = 0.05 0.01 0.20 0.15

CompAct λ = 0.05, µ = 0.05 0.01 1.04 0.96

Derived Attention λ = 0.05 0.00 0.14 0.14
Table 12

Simulation results for the correlation effect (Le Pelley & McLaren, 2003). Pred. cue atn. is

the average of attention to cues A, B, C and D at the end of stage 1 (a for simple

predictiveness and derived attention models, η for CompAct). Non-pred. cue atn. is the

same for cues V, W, X and Y. The correlation effect index (ranging from -2 to 2) is defined

in appendix A; positive values indicate greater attention to predictive than to non-predictive

cues. Names of models consistent with empirical data are printed in bold type.

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 15, 2018. ; https://doi.org/10.1101/469809doi: bioRxiv preprint 

https://doi.org/10.1101/469809
http://creativecommons.org/licenses/by-nc-nd/4.0/


REWARD EFFECTS ON ATTENTION 60

Maximum Highlighting Index

Model Parameters HL Effect Index Early Cue Atn. Late Cue Atn.

Simple Predictiveness λ = 0.95, µ = 0.95 -0.05 0.80 0.84

CompAct λ = 0.25, µ = 0.95 0.14 1.04 1.40

Derived Attention λ = 0.5 0.00 1.00 0.59

Minimum Highlighting Index

Model Parameters HL Effect Index Early Cue Atn. Late Cue Atn.

Simple Predictiveness λ = 0.4, µ = 0.3 -0.62 1.00 0.48

CompAct λ = 0.05, µ = 0.05 -0.08 1.01 1.04

Derived Attention λ = 0.9 -0.02 1.00 0.78
Table 13

Simulation results for highlighting (Kruschke, 1996, Experiment 2). Early cue atn. is the

average of attention to cues PE1 and PE2 at the end of the experiment (a for simple

predictiveness and derived attention models, η for CompAct). Late cue atn. is the same for

cues PL1 and PL2. The highlighting index (ranging from -2 to 2) is defined in appendix A;

positive values indicate a highlighting effect. Names of models consistent with empirical

data are printed in bold type.

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 15, 2018. ; https://doi.org/10.1101/469809doi: bioRxiv preprint 

https://doi.org/10.1101/469809
http://creativecommons.org/licenses/by-nc-nd/4.0/


REWARD EFFECTS ON ATTENTION 61

(a) Associations and prediction error (b) Attention weights

Figure 1 . Simulation of CompAct on a highlighting design (Kruschke, 1996, Experiment

2). Parameters were as follows: λ = 0.1, µ = 0.5, ξ = 2.0. Associations and attention

weights have each been combined according to the symmetry of the design: e.g. the red line

in the top left panel of the left graph includes both PE1 → E1 associations and PE2 → E2

associations. For PE1 + I1 trials the correct response is E1 and by “incorrect response” we

mean L1 (not E2 or L2); this is similar for the remaining trial types. Note that PL+ I

trials do not occur until the second stage of the experiment (trial 76). CompAct attends

most strongly to the PL cues, leading it to select response L in the critical PE + PL test

trials (not shown), as do human participants.
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(a) Associations and prediction error (b) Attention weights

Figure 2 . Simulation of the derived attention model on a highlighting design (Kruschke,

1996, Experiment 2). Parameters were as follows: λ = 0.1, amin = 0.1, ξ = 2.0. Associations

and attention weights have been combined together according to the symmetry of the

design: e.g. the red line in the top left panel of the left graph includes both PE1 → E1

associations and PE2 → E2 associations. For PE1 + I1 trials the correct response is E1 and

by “incorrect response” we mean L1; this is similar for the remaining trial types. Note that

PL+ I trials do not occur until the second stage of the experiment (trial 76). The derived

attention model attends most strongly to the PE cues, leading it to select response E in

the critical PE + PL test trials (not shown), in contrast to human participants.
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Figure 3 . Screenshots of the task, before choice (left) and during feedback (right).
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Figure 4 . Screenshots of the test stage.
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(a) Associations and prediction error (b) Attention weights

Figure 5 . Simulation of CompAct on stage 1 of Experiment 2. Parameters were as follows:

λ = 0.1, µ = 0.5, ξ = 2.00. Reward values were divided by a factor of 100. Different

associations have been combined together according to the symmetry of the design: e.g.

the red line in the top left panel includes both A → I associations and B → II associations.
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