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Abstract 

Thermally-mediated ablation has utilized various energy sources, including cryothermal, 

radiofrequency (RF), microwave, laser, and high-frequency ultrasound with the goal of 

creating lesions to terminate focal sources or block reentrant wavefronts. RF- and cryo-

ablation (CR) cause cell death through different mechanisms, and leave behind tissue 

with altered thermal-electric properties. We aimed to assess the effect of sequential RF 

and CR combinations on lesion size. Left ventricular (LV) wedge preparations (n=17) 

were dissected from ten donated human hearts and four epicardial ablation protocols were 

compared: 1) RF-RF (n=7); 2) CR-CR (n=7); 3) RF-CR (n=7); and 4) CR-RF (n=7). 

Preparations were continuously paced and perfused with oxygenated Tyrode solution. 

Ablated tissue was perfused for 3 hours, sectioned, and stained with 2,3,5-

triphenyltetrazolium chloride to delineate necrosis. The effect of initial thermal-electric 

tissue properties on lesion depth during RF application was determined using a finite 

element method (FEM). CR-RF generated the deepest lesion (p<0.05) compared to 

protocols 1-3, while lesion width and area were similar among protocols.  No energy 

combination produced a transmural lesion (n=0 of 28) in LV preparations. FEM showed 

that electrical conductivity plays a more significant role in lesion creation compared to 

thermal conductivity. A 33% increase in the initial thermal and electrical tissue 

conductivity generated a 21% deeper lesion. We conclude that sequential application of 

CR followed by RF created the deepest lesion in beating human LV preparations. This 

increase in lesion depth may translate into improved therapeutic outcomes for 

arrhythmias with intramural origins.  
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Introduction 
 

Ablation is an important therapeutic option to mitigate recurrent ventricular tachycardia 

(VT) that otherwise can give rise to ventricular fibrillation and sudden cardiac death.1-6 

The goal of ablation is to terminate focal sources or block reentrant wavefronts that 

manifest in nonstructural and structural heart disease. Electrical mapping of focal origins 

allows for highly effective ablation targeting and usually requires small lesions to abolish 

the VT.1, 6 In structural heart disease, however, a surviving muscle isthmus hidden within 

the scar provides a critical segment for the reentrant circuit that can be difficult to 

consistently transect using ablation therapy.1, 3, 7-9 Intramural VT origin is a primary cause 

of ablation failure, and thus there is a need to increase lesion depth.3, 10 

 

Cryothermal and radiofrequency (RF) ablation are the two most commonly used thermal 

modalities for treating arrhythmias. Both are highly effective at causing cellular death, 

but do so through different mechanisms. When temperature abruptly drops below -40oC 

during cryoablation (CR), intracellular water freezes causing irreversible disruption of 

membranes and intracellular organelles. During the early tissue re-warming phase, ice 

crystals coalesce into larger crystals further damaging membranes and organelles.11-14 

Application of RF results in resistive heating of cardiac tissue proximal to the electrode, 

and thermal conduction contributes to the spread of tissue heating beyond the electrode-

tissue interface. An increase in tissue temperature beyond +50oC causes permanent injury 

due to denaturing of proteins and coagulative necrosis.15-17 
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These mechanisms suggest that CR and RF ablation alter the electrical and thermal 

conductivity of tissue differently, which may be exploited to increase lesion size with a 

second application of energy. An increase in lesion depth would enhance the likelihood 

of transecting the critical segment of the reentrant circuit and improve ablation therapy of 

VT. In this study, we report lesion depth, width, and size after epicardial application of 

different CR-RF combinations in perfused human ventricular preparations. A finite 

element method (FEM) was used to further investigate the effect of initial thermal-

electric tissue properties on lesion depth during RF application.  

 

Methods 

 

Donor Group 

The study was approved by Institutional Review Board of Washington University School 

of Medicine (IRB ID 201105326). Human subjects gave informed consent. Donated 

hearts (n=10) came from two sources, Barnes-Jewish Hospital (Washington University 

School of Medicine) and Mid-America Transplant Services (Saint Louis, MO).  

Explanted hearts were arrested with cold (+4-7oC) cardioplegic solution (110 NaCl, 1.2 

CaCl2, 16 KCl, 16 MgCl2, 10 NaHCO3 mmol/L) in the operating room.  

  

Experimental Preparations 

Left ventricular (LV) wedge (n=17) preparations were dissected from donated human 

hearts as previously described.18, 19 Wedge preparations were isolated from several 

aspects of the LV free wall as permitted by available coronary arteries. Epicardial fat was 
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carefully removed (Supplemental Figure I) to ensure direct contact between the energy 

source and the myocardium.  

 

Preparations were perfused via left coronary arteries and endocardially submerged with 

warm (37oC), oxygenated (95% O2, 5% CO2) Tyrode’s solution (128.2 NaCl, 1.3 CaCl2, 

4.7 KCl, 1.05 MgCl2, 1.19 NaH2PO4, 20 NaHCO3, 11.1 D-Glucose mmol/L).  Tissue was 

perfused under constant pressure (60-80 mmHg) and perfusate pH was continuously 

monitored (7.35±0.05, Oakton Instruments, Vernon Hills, IL). Both the coronary 

perfusion and superfusion temperature were maintained at 37oC using a heating bath 

circulator (NESLAB EX7, Thermo Scientific, Asheville, NC). LV wedges were paced 

(PowerLab 26T, AD Instruments, Colorado Springs, CO) at 1 Hz at twice the diastolic 

threshold and Ag/AgCl pellet electrodes (WPI, Sarasota, FL) monitored (PowerLab 26T) 

the far-field ECG throughout experimentation.  Tissue was allowed to stabilize for 20 

min before initiation of an ablation protocol.  

 

Ablation Protocol 

Ablation devices were positioned on the epicardial surface, while endocardial and 

transverse portions of the wedges were superfused with 37oC solution. Four epicardial 

ablation protocols were compared: 1) RF-RF (n=7); 2) CR-CR (n=7); 3) RF-CR (n=7); 

and 4) CR-RF (n=7). RF ablation was carried out using a Coolrail linear pen (AtriCure 

Inc., West Chester, OH) for 40 sec and CR was carried out with a cryoICE probe 

(AtriCure Inc., West Chester, OH) for 120 sec. Both probes were applied parallel to the 

tissue and there was a 2 min rest between applications. If wedge preparations were large 
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enough for two lesions, the first ablation was applied distally and the second proximally 

to the cannula.  

 

The Coolrail linear pen consists of two 30 mm long electrodes that are internally cooled, 

but not irrigated (Supplemental Figure IIA). Power is maintained at 30 W and is achieved 

within 2 sec. The cryoICE probe is 10 cm long with a 4.24 mm outer diameter 

(Supplemental Figure IIB); it is malleable, smooth, and has a thermal conductivity 

coefficient of 222 W/m.K. The probe is cooled by nitrous oxide (Joule-Thomson 

Principle) to -60oC and has an active defrost feature controlled by AtriCure Cryo Module 

(AtriCure, Inc., West Chester, OH).  

 

Tetrazolium Staining 

Tissue was perfused for an additional 3 hours after completion of an ablation protocol to 

allow adequate time for lesion development. LV wedges were sectioned at ~2 mm 

intervals perpendicular to the ablation lesion creating transmural sections of myocardium. 

Sections from the periphery of the wedge were discarded, while 3-5 sections per wedge 

remained for staining.  Sections were stained with 2,3,5-triphenyltetrazolium chloride 

(Sigma Aldrich, Saint Louis, MO) as described previously to delineate necrosis.20 

Tetrazolium was diluted in a 2-part phosphate buffer comprising of NaHPO4 (0.10 mol/L) 

and NaH2PO4 (0.10 mol/L), which were combined in a ratio of 77.4%/22.6% 

(NaHPO4/NaH2PO4). Tetrazolium was added to the phosphate buffer at 1% 

weight/volume (gm/mL). All sections were incubated for 15-20 min at 37oC and then 

photographed.  
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Lesion Quantification 

Images of tetrazolium-stained sections were converted to an 8-bit scale and thresholded 

to delineate lesions. Lesion depth, width, and surface area were quantified for all sections 

within a wedge and then averaged using custom-built software (Matlab 2012b, 

Mathworks).  

 

Computational RF Ablation Model 

Pre-ablated tissue has different thermo-electric conductivities than post-ablated tissue. 

We used FEM (COMSOL Multiphysics, Palo Alto, CA) to develop a computer model to 

test the effect of the initial thermal and electrical tissue conductivities on lesion creation 

during RF ablation.  The model was designed to mimic the epicardial ablation that was 

utilized in the in-vitro experimental conditions.   

 

Governing Equations 

The conversion of electric energy into heat injures tissue. Joule heating will cause the 

temperature of the myocardium near the ablation electrode to rise and thermal conduction 

will cause the temperature to increase deeper within the tissue. The temperature 

distribution in the modeled myocardium was determined by solving the bio-heat 

equation:21 

 

��
��

��
� � · ��� � 	 · 
 � ���� � ������� (1) 

   ��� � ���������      (2) 
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where T is temperature distribution, ρ is density (kg/m3), c is heat capacity (J/kg.K), k is 

thermal conductivity (W/m.K), J is current density (A/m2), and E is the electric field 

intensity (V/m). The subscript bl differentiates blood properties from myocardium, where 

hbl (W/m2.K) is the convective heat transfer coefficient of blood. The perfusion of blood 

within the ventricular cavity, which acts as a heat sink, is characterized by the term ω 

(1/s). The metabolic energy Qm generated by the beating heart is set to 0 W/m3.22 

 

Equation (1) is solved in a few steps. First, the potential distribution is determined by 

solving Laplace equation (3).  

� · ��� � 0 (3) 

where V is the potential distribution (V) and σ is electrical conductivity (S/m). A 500 

kHz, 30 V RF ablation was applied at one electrode, while the other served as ground. 

After V is calculated, E is computed from (4) and J from (5) 


 � ���      (4)    

	 � �
         (5) 

Next, the temperature distribution T is solved using Equation (1). Lesion size was 

determined from the +50oC contour after 40 sec of RF application.  

 

Geometry and Boundary Conditions 

The geometry of the heart was simplified to a two-dimensional region, 15 x 20 mm, or 

the average transverse section of the LV wedge preparation (Figure 1A) we created. The 

RF ablation electrodes penetrate the myocardium 0.40 mm and have a 4 mm gap between 
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them. There is a thermal insulation layer between electrodes to resemble their plastic 

encapsulation. The endocardial surface is in contact with circulating blood (37oC) and 

acts as a heat sink.  

 

The following are the initial and boundary conditions: 

T=37oC when t=0 sec in entire domain 

T=37oC when t≥0 sec at transverse boundaries 

 

The parameter values for myocardium, blood, and the electrodes are presented in 

Supplementary Table I.23, 24 The temperature-dependence of tissue properties was ignored 

during the 40 sec ablation. 

 

The myocardium is separated into two domains, d1 and d2. Domain d1 is far away from 

the ablation electrode and has constant thermal conductivity of 0.531 W/m.K and 

electrical conductivity of 0.50 S/m, while d2 is underneath the ablation electrodes and has 

varying tissue properties (Figure 1B). Domain d2 is a semicircle with a depth of 5 mm and 

width of 10 mm. The temperature within the myocardium was determined when the 

thermal and electrical conductivities of d2 were: d2 = d1 (brown), d2 = 1.33.d1 (grey), a 

linear decrease from 1.33.d1 to d1 (teal), and a sigmoidal decay from 1.33.d1 to d1 (pink). 

When electrical and thermal conductivities were tested separately within d2, the other 

parameter was set to the corresponding d1 value. 

 

Statistics 
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All data are expressed as the mean ± standard error of the mean. A p-value of 0.05 was 

considered significant. Statistically significant differences were identified using a one-

way analysis of variance (ANOVA). A post-hoc Tukey test was performed if ANOVA 

was significant.  

 
Results 

 

Figure 2A shows a representative LV wedge preparation that was ablated (Left), stained 

(Middle), and segmented (Right). The top lesion (teal) is from a CR-RF ablation, while 

the bottom lesion (pink) is from a RF-CR ablation. Tetrazolium staining clearly identifies 

necrotic tissue (white) from viable tissue (red), which is segmented for analysis. Lesion 

depth, width, and area were quantified for all ablation protocols (Figure 2B-D). CR-RF 

generated a significantly greater (p<0.05) lesion depth of 7.60±0.31 mm, while RF-RF, 

CR-CR, and RF-CR created depths of 5.38±0.37 mm, 6.23±0.57 mm, and 6.24±0.33 mm, 

respectively.  Lesion width did not differ among protocols (p=0.67).  CR-RF additionally 

generated the largest lesion area of 80.52±6.60 mm2, while RF-RF, CR-CR, and RF-CR 

created lesion areas of 52.67±1.75 mm2, 69.34±9.14 mm2, and RF-CR 57.21±7.67 mm2, 

respectively. ANOVA analysis of lesion area produced a p-value of 0.043, but a post-hoc 

Tukey test determined lesion areas were not different.   

 

LV wedge preparations were 14.9±0.6 mm thick and ranged from 9.9 mm to 21.8 mm. 

Figure 3 displays a scatter plot of tissue thickness versus lesion depth for all n=28 

ablations. No energy combination produced a transmural lesion (n=0 of 28), as 

highlighted by no circles being on the dotted line. The scatter plot also indicates that 
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tissue thickness did not influence lesion depth. Lesion creation in thin ventricular tissue 

(~10 mm) was not impacted by the endocardial 37oC heat sink compared to thicker 

tissue. The R-squared values are 0.01 for RF-RF, 0.002 for CR-CR, 0.49 for RF-CR, and 

0.03 for CR-RF.   

 

The initial electrical and thermal conductivities of cardiac tissue play a critical role in 

determining lesion extent when applying RF energy. An FEM analysis was employed 

with spatially varying thermal-electric tissue properties (Figure 1B) to quantify their 

effect on lesion size. Figure 4A displays the temperature distribution after 5, 10, 20, and 

40 sec of RF application when d2 conductivities decay sigmoidally from the epicardial 

surface. A large temperature increase is seen proximal to the ablation electrodes, which 

spreads deeper into the tissue. At 40 sec thermal conduction is unable to increase the 

initial temperature of the subendocardium above 37oC.  

 

When d2=1.33.d1 (grey), lesion depth increased by 21.0% compared to d2=d1, while the 

linear (teal) and sigmoidal (pink) changes in conductivities increased the lesion depth by 

10.9% and 14.5%, respectively (Figure 4B). Electrical conductivity played a more 

significant role than thermal conductivity in lesion creation. When thermal conductivity 

was held at its d1 value (0.531 W/m.K) and the electrical conductivity changed linearly 

and sigmoidally, lesion depth increased 8.0% (σ-blue lined) and 10.9% (σ-pink lined) 

respectively; however, when electrical conductivity was held at its d1 value (0.50 S/m) 

and thermal conductivity changed linearly and sigmoidally, lesion depth increased only 
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by 2.1% (k-blue dotted) and 3.6% (k-pink dotted). This demonstrates that lesion depth is 

primarily controlled by electrical conductivity.  

 

Discussion 

 

Several studies have investigated using multiple lesion lines to improve ablation efficacy 

or their necessity to close lesion gaps using the same energy source.25-28 This is the first 

study to examine of the effect of multiple energy sources on lesion size in the human 

heart. Implementation of CR and then RF generates a significantly larger lesion depth 

compared to all other RF-CR combinations.  The lesion width created by all RF-CR 

combinations was similar as well as the total lesion area. The substantial thickness of the 

human LV prevented any energy combinations from generating transmural lesions.  

 

A hybrid transcatheter system has previously been developed and tested in an in-vivo 

canine model that is capable of delivering RF and CR independently, sequentially, and 

simultaneously.29 Khairy et al elegantly showed that simultaneous application of CR 

(10oC) and RF (45 W) produced a greater lesion depth (6.7 mm) compared to both 

standard RF ablation (5.5 mm) and irrigated RF ablation (5.4 mm). Dissimilar to our 

findings, the sequential application of CR (-75oC) followed by RF (20 W) created a 

smaller lesion depth (4.6 mm). A possible explanation for the difference could be due to 

our utilization of a 2 min thawing period prior to RF application. In the early thawing 

phase, intracellular ice crystals coalescence and increase in size. This further disrupts 

cellular membranes decreasing tissue impedance for the subsequent RF to penetrate 
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deeper into the tissue. Application of RF while the tissue is frozen may limit the utility of 

CR-RF.  

 

To our knowledge cardiac tissue properties after CR and RF are unknown. Previously 

Haemmerich and colleagues30 measured the tissue properties after RF on a single excised 

human liver sample and showed a sizeable 270% increase in tissue conductivity at 10 Hz, 

but only a modest 10% increase in tissue conductivity near the RF range (1 MHz). We 

utilized an FEM simulation to test the effect of the initial tissue properties on RF 

application. Tungjitkusolmun et al22, 31 previously did innovative RF modeling and 

simulated the effect of changing myocardial tissue properties by 50 and 100%;24 

however, neither the spatial dependency of the properties nor the epicardial application of 

RF in ventricular tissue has been examined. We chose a maximum increase of 33% to 

keep conductivities in a physiological range for cardiac tissue. We demonstrated a lesion 

depth increase of 21%, which is primarily driven by the initial electrical conductivity. 

 

Experimentally, CR-RF application enhanced lesion depth by 40.5% compared to RF-RF, 

and possibly other factors besides tissue properties contribute to CR-RF’s effectiveness. 

Ice crystal formation during CR is known to shear organelles, including the sarcoplasmic 

reticulum. Upon re-warming, the increased cytosolic Ca2+ concentration may result in 

hypercontracture, or maintained sarcomere shortening. Hypercontracture would increase 

the number of myocytes in a given volume of tissue for the subsequent RF application, 

which would enhance the amount of tissue injured.  Alternatively, thawing tissue 

temperatures may act similarly to an irrigated-tip RF ablation and enhance lesion depth.32  

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 14, 2018. ; https://doi.org/10.1101/469882doi: bioRxiv preprint 

https://doi.org/10.1101/469882
http://creativecommons.org/licenses/by-nc-nd/4.0/


 16

 

Limitations 

We acknowledge a few important limitations to this study. First, all RF-CR protocols 

were performed on contracting ex vivo wedge preparations that were perfused by 

Tyrode’s solution. The experimental setup, although similar, does not entirely mimic the 

tension and motion of an intact beating human heart. In addition, we did not control for 

contact force.  Previous studies33, 34 have shown that increases in contact force will 

increase lesion size. Haines et al reported that contact force becomes insignificant for 

forces greater than 0.10 N as long as an adequate tissue-catheter interface temperature is 

maintained.35 During epicardial ablation a contact force of 0.10 N is easily achieved. In 

studies where contact force is directly related to lesion size, an increase in force is 

associated with both an increase in lesion depth and width. In this study all RF-CR 

combinations had similar lesion widths and therefore the differences in lesion depths are 

most likely not related to dissimilar contact forces.  

 

Clinical Implication 

Ablation is an essential therapeutic option to decrease recurrent ventricular tachycardia 

that otherwise can lead to ventricular fibrillation and sudden cardiac death. Intramural 

ventricular tachycardia origins require lesions to penetrate deep within the ventricular 

tissue.  Cryoablation followed by radiofrequency ablation generated the deepest lesion 

compared to all other combinations and may be more adept at transecting the surviving 

muscle isthmus hidden within the scar.  

 
Conclusion: 
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This is the first study to investigate lesion size using multiple energy sources in the 

human heart. Cryoablation followed by radiofrequency ablation generated the largest 

lesion compared to all other combinations in beating, perfused human LV preparations. 

Cryo-radiofrequency ablation could have important implications for surgical treatment of 

structural heart disease, where the surviving muscle isthmus in the ventricles can be 

difficult to transect. The exact mechanism for the increase in lesion depth still needs to be 

elucidated; likely, cryoablation increases the thermal-electric properties of the 

myocardium and thus enhances the efficacy of radiofrequency ablation.   
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Figures and Legends: 

 

 

 

 

 

Figure 1: Model geometry and spatially dependent conductivities for radiofrequency 

ablation. (A) Model geometry consists of myocardium (brown), electrodes (black), and 

blood (red). The myocardium has two domains d1 and d2, whose electrical (σ) and 

thermal (κ) conductivities are plotted in panel B. (B) d1 values are plotted brown, while 

d2 values are plotted brown (d2 = d1), grey, teal, and pink. Dashed lines are σ values and 

dotted lines k values. 
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Figure 2: Lesion quantification during different combinations of cryoablation (CR) and 

radiofrequency (RF) ablation. (A) Ablated preparation (Left), stained transverse section 

of tissue (Middle), and digitally segmented lesions (Right). CR-RF created top lesion 

(teal) and RF-CR created bottom lesion (pink). (B) Lesion depth. (C) Lesion width (D) 

Lesion area. 

*CR-RF versus RF-RF p<0.05, **CR-RF versus CR-CR p<0.05, ***CR-RF versus RF-

CR p<0.05 
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Figure 3: Lesion depth in relation to tissue thickness.  

CR= Cryoablation, RF= Radiofrequency Ablation 
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Figure 4: Modeled temperature distribution and lesion depth. (A) Example temperature 

profile at 5, 10, 20, and 40 sec using sigmoidal d2 properties (pink). Temperature 

isochrones are from 40oC to 90oC with steps of 5oC. (B) Percent change in lesion depth 

when using d2 properties.  

d1=Domain 1, d2=Domain 2, k=Thermal Conductivity, σ = Electrical Conductivity 
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