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1 SUMMARY	

Docking	calculations	can	be	used	to	accelerate	drug	discovery	by	providing	predictions	of	the	
poses	of	candidate	ligands	bound	to	a	targeted	protein.	However,	studies	in	the	literature	use	
varied	docking	methods,	and	it	is	not	clear	which	work	best,	either	in	general	or	for	specific	
protein	targets.	In	addition,	a	complete	docking	calculation	requires	components	beyond	the	
docking	algorithm	itself,	such	as	preparation	of	the	protein	and	ligand	for	calculations,	and	it	is	
difficult	to	isolate	which	aspects	of	a	method	are	most	in	need	of	improvement.		To	address	
such	issues,	we	have	developed	the	Continuous	Evaluation	of	Ligand	Protein	Predictions	
(CELPP),	a	weekly	blinded	challenge	for	automated	docking	workflows.	Participants	in	CELPP	
create	a	workflow	to	predict	protein-ligand	binding	poses,	which	is	then	tasked	with	predicting	
10-100	new	(never	before	released)	protein-ligand	crystal	structures	each	week.	CELPP	
evaluates	the	accuracy	of	each	workflow’s	predictions	and	posts	the	scores	online.	CELPP	is	a	
new	cyberinfrastructure	resource	to	identify	the	strengths	and	weaknesses	of	current	
approaches,	help	map	docking	problems	to	the	algorithms	most	likely	to	overcome	them,	and	
illuminate	areas	of	unmet	need	in	structure-guided	drug	design.		
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2 INTRODUCTION	
The	discovery	of	a	small	molecule	that	binds	a	disease-related	protein	with	high	affinity	

is	a	key	step	in	many	drug	discovery	projects.	In	the	pharmaceutical	industry,	this	step	has	been	
estimated	to	require	over	three	years	of	work	on	average,	at	a	net	cost	per	launched	drug	
rivaling	that	of	clinical	trials.1	The	process	is	perhaps	most	efficient	when	a	high-resolution	
structure	of	the	targeted	protein	is	available,	such	as	from	X-ray	crystallographic	studies.	In	this	
setting,	structure-based	computational	methods	may	be	used	to	accelerate	the	discovery	of	
high	affinity	ligands.2-13	The	computational	challenge	of	structure-based	ligand	design	may	be	
considered	to	comprise	two	main	components.	The	first	is	prediction	of	the	bound	
conformation,	or	pose,	of	a	candidate	ligand,	typically	by	fast,	ligand-protein	docking	
algorithms.14-28		The	second	involves	using	the	predicted	pose	to	assess	the	candidate	ligand’s	
binding	affinity	for	the	targeted	protein,	or	at	least	to	rank	its	affinity	relative	to	the	affinities	of	
other	compounds	one	contemplates	purchasing	or	synthesizing.	Both	components	have	been	
the	subject	of	intensive	research	and	development	in	both	academic	and	commercial	
settings.29-44	Nonetheless,	computational	methods	for	pose	prediction	and	affinity	ranking	have	
yet	to	fulfill	their	perceived	promise,	as	neither	is	yet	fully	reliable.45-51	In	fact,	it	is	surprisingly	
difficult	even	to	compare	the	reliability	of	various	methods	in	a	consistent	manner,	and	this	
limitation	makes	it	correspondingly	difficult	to	make	and	verify	technical	progress.	Part	of	the	
challenge	of	rigorously	comparing	methods	relates	to	reproducibility	(or	lack	thereof)	of	the	
complicated	and	highly	variable	end-to-end	computational	experiments	required	for	pose	and	
affinity	prediction.52	To	address	these	issues,	the	community	has	seen	a	dramatic	uptick	in	the	
use	and	availability	of	automated	workflows	that	clearly	memorialize	a	particular	experiment	
and	provide	different	approaches	for	their	execution	and	deployment.53-57	

Further,	although	many	performance	comparisons	have	been	published,	the	results	can	
be	difficult	to	interpret.47,	58-68	For	example,	new	docking	algorithms	are	frequently	published	
along	with	a	comparison	against	existing	methods,	but	this	comparison	is	often	secondary	to	
the	description	of	the	new	algorithm,	and	hence	not	fully	developed.	Additionally,	different	
methods	are	typically	tested	against	different	sets	of	protein-ligand	complexes,	so	a	consistent	
set	of	comparisons	may	not	be	available.	Finally,	even	when	a	study	carries	out	careful	
benchmarking	of	multiple	methods	against	a	common	dataset,	the	dataset	often	contains	
protein-ligand	cocrystal	structures	that	have	already	been	published.	Such	retrospective	studies	
are	suboptimal,	because	they	risk	unintentional	bias	and	because	structures	in	the	test	set	
might	have	been	used	previously	in	training	the	docking	algorithms.69		

Several	initiatives	have	addressed	these	limitations	through	prospective,	or	blinded,	
prediction	challenges.	In	such	challenges,	researchers	evaluate	methods	against	a	common	set	
of	test	cases	for	which	the	experimental	structures	are	withheld	until	after	the	computational	
predictions	have	been	made.	Prior	blinded	challenges	include	the	GSK	challenge,47	CSAR,66,	70-73	
and	GPCRDOCK.74-76	Similarly,	in	recent	years,	the	Drug	Design	Resource	(D3R)	has	run	blinded	
prediction	challenges	called	the	Grand	Challenges.45,	46	These	efforts	have	led	to	useful	
benchmarking	strategies,	provided	insight	about	best	practices,	and	sometimes	yielded	
unexpected	results	regarding	the	effectiveness	of	various	technical	approaches.		However,	such	
episodic	challenges	have	not	been	large	and	systematic	enough	to	afford	statistically	
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meaningful	distinctions	among	individual	methods	or	to	support	an	efficient	cycle	of	
development	and	evaluation	that	can	persistently	accelerate	progress	in	the	field.			

Here,	we	introduce	a	new	blinded	prediction	challenge	which	overcomes	these	
limitations	by	taking	advantage	of	ongoing	available	data	streams	and	advances	in	data	
science.77-79	The	Continuous	Evaluation	of	Ligand	Protein	Predictions	(CELPP)	challenge	uses	the	
Protein	Data	Bank’s	(PDB)80-84	weekly	publication	of	a	list	of	structures	slated	for	imminent	
release	into	the	public	domain	as	the	basis	for	a	weekly,	pose-prediction	challenge.	This	rolling	
challenge	is	akin	to	the	Continuous	Automated	Model	Evaluation	(CAMEO)	protein	structure	
prediction	challenge,85	which	served	as	its	inspiration.	The	following	sections	detail	the	
structure	of	the	CELPP	challenge,	the	automation	used	to	enable	smooth	weekly	operations,	
initial	results	for	a	number	of	docking	workflows,	and	implications	and	directions	for	this	
community	science	project.	

3 METHODS	

3.1 OVERVIEW	OF	THE	CELPP	BLINDED	CROSS-DOCKING	CHALLENGE	
Each	week	(Figure	1),	in-house	CELPP	scripts	download	the	list	of	new	PDB	entries	to	be	

released	five	days	later	and	identify	those	which	contain	protein-small	molecule	cocrystal	
structures	suitable	for	automated	docking	calculations	(https://github.com/drugdata/D3R).	At	
this	stage,	the	only	information	available	about	each	of	these	structures,	called	target	
complexes,	is	the	identity	of	the	ligand,	the	amino	acid	sequence	of	the	protein,	and	the	pH	of	
the	mother	liquor	from	the	crystallographic	study.	Additional	scripts	then	search	existing	PDB	
entries	for	crystal	structures	of	each	target	protein	and	extract	up	to	five	structures	appropriate	
for	docking	calculations,	as	detailed	in	Section	3.2.1.	These	protein	structures	are	incorporated	
into	the	weekly	CELPP	data	package,	along	with	the	ligand	identities,	crystallization	pH	values,	
and	additional	information	(Section	3.2.2).	CELPP	participants	download	the	data	package,	run	
their	own	workflows	to	predict	the	ligand	binding	poses,	and	submit	their	predictions	to	a	
personal,	password-protected	web	directory	before	the	deadline;	i.e.,	shortly	before	release	of	
the	new	PDB	entries	containing	the	actual	crystallographic	poses.	Following	the	deadline,	D3R	
scripts	evaluate	the	submitted	predictions,	send	the	evaluation	results	to	each	participant,	and	
add	the	results	to	running	statistics	available	online	(http://drugdesigndata.org/about/celpp).	

It	should	be	evident	from	this	description	that	CELPP	presents	what	is	known	as	a	cross-
docking	challenge,	i.e.,	the	protein	structure	into	which	the	ligand	is	docked	was	previously	
determined	either	with	a	different	ligand	or	with	no	ligand	at	all.17,	86,	87	This	may	be	contrasted	
with	the	self-docking	problem,	in	which	the	ligand	is	docked	back	into	the	protein	structure	
resolved	in	complex	with	the	same	ligand.	Cross-docking	is	typically	more	difficult,	because	the	
protein	structure	used	has	not	adapted	to	the	ligand	being	docked,	and	indeed	may	be	in	a	
conformation	that	the	ligand	does	not	fit	well.	However,	cross-docking	is	arguably	a	more	
important	problem	than	self-docking,	because	it	models	the	real-world	applications	of	docking	
methods,	where	the	entire	purpose	of	docking	is	to	avoid	having	to	determine	cocrystal	
structures	for	every	ligand	of	interest	in	a	drug	discovery	project.	
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The	success	of	a	docking	calculation	depends	not	only	on	the	algorithm	itself,	but	also	
on	other	methods	and	parameters	in	the	overall	workflow.	For	example,	in	cross-docking,	one	
of	the	most	important	decisions	is	what	existing	structure	of	the	protein	to	use	in	the	
calculation.45,	46	Additional	issues	arise	in	the	preparation	of	the	protein	and	ligand	structures	
for	docking.	For	the	protein,	it	is	often	necessary	to	decide	how	to	resolve	ambiguously	
assigned	electron	density,	whether	to	remove	or	retain	specific	solvent	molecules,	how	to	
account	for	crystallization	artifacts	(such	as	non-natural	solvents,	crystal	contacts,	and	non-
physiologic	temperature),	whether	to	select	alternate	side-chain	conformations,	and	how	to	set	
the	protonation	states	of	titratable	residues.62,	88-91	For	the	ligand,	issues	may	include	
assignment	of	protonation	and	tautomer	states,	and	the	conformations	of	flexible	rings.88,	92,	93			

	

	
Figure	1.	The	CELPP	week.	The	CELPP	week	begins	with	the	publication	of	PDB	pre-release	data	on	Friday	evening.	Challenge	
data	preparation	runs	Friday	evening	and	Saturday,	and	the	upcoming	week’s	challenge	package	is	made	available	to	
participants	by	the	beginning	of	Sunday.	Submissions	are	then	accepted	until	Tuesday	at	3:01	pm.	Evaluation	of	the	predictions	
begins	on	Tuesday	evening,	following	release	of	the	new	PDB	entries	used	in	the	challenge.	Times	are	in	the	Pacific	time	zone.	

3.2 HOSTING	THE	CHALLENGE	

3.2.1 Selection	of	target	complexes	and	receptor	structures	
Every	Friday,	the	PDB	provides	files	(http://www.wwpdb.org/files/)	listing	the	new	

crystal	structures	that	will	be	released	the	at	the	end	of	the	following	Tuesday	(Figure	1).	For	
each	forthcoming	PDB	entry,	this	pre-release	notification	contains	the	PDB	ID,	the	protein	
sequence(s),	the	identities	of	the	ligands,	if	any,	in	the	form	of	InChi	strings,94	and	the	pH	at	
which	the	structure	was	determined.	To	be	designated	as	a	CELPP	“target”,	a	structure	must	
include	a	single	druglike	ligand	(see	below).	There	also	must	be	at	least	one	X-ray	crystal	
structure	of	the	same	protein	extant	in	the	PDB	to	serve	as	a	suitable	“candidate”	for	cross-
docking,	and	the	target	must	have	only	one	unique	protein	sequence,	to	avoid	situations	in	
which	the	target	and	candidate	ligands	are	bound	to	different	binding	sites.	(See	Figure	2.)	A	
ligand	is	considered	drug-like	if	it	is	not	a	single	metal	ion	or	typical	solvent	molecule,	and	if	it	is	
not	on	an	exclusion	list	of	common	cosolutes	and	cofactors	(e.g.,	Zn++,	ethylene	glycol,	and	
NADH;	see	Scheme	S3).	We	also	exclude	ligands	with	more	than	100	self-symmetries	(i.e.,	
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automorphs),	because	evaluating	symmetry-corrected	root-mean-square	deviations	between	
predicted	and	crystal	poses	becomes	excessively	time-consuming	in	such	cases.95	Finally,	we	
include	one	“standard”	target,	PDB	ID	1FCZ,	in	the	challenge	package	each	week	to	monitor	
workflow	stability.	

Candidate	structures	for	use	in	the	docking	challenge	are	identified	by	using	the	
sequence	comparison	program	blastp96	to	find	PDB	entries	with	>95%	sequence	identity	and	
>90%	sequence	coverage	of	the	target	sequence	(Figure	2).	The	resulting	proteins	are	then	
further	filtered	to	a	set	that	were	determined	by	X-ray	crystallography	(rather	than	NMR,	for	
example)	and	which	comprise	only	a	single	unique	protein	sequence.	For	each	target,	up	to	five	
candidate	structures	meeting	these	criteria	are	selected	from	the	PDB	for	use	as	receptors	in	
the	cross-docking	challenge.		The	five	candidates,	which	are	chosen	to	test	the	effects	of	
various	criteria	for	selecting	the	receptor	used	in	cross-docking,	are	as	follows:	

● Largest	Maximum	Common	Substructure	(LMCSS):	This	candidate	complex	contains	the	
ligand	with	the	largest	maximal	common	substructure	to	the	target	ligand.	The	center	of	
mass	of	the	ligand	in	this	complex	is	used	to	suggest	the	binding	pocket	for	all	five	
candidates	for	this	target.	In	the	case	that	two	candidate	complexes	tie	for	the	largest	
maximal	common	substructure,	the	highest-resolution	candidate	structure	is	used.	

● Smallest	Maximum	Common	Substructure	(SMCSS):	This	candidate	complex	contains	
the	ligand	with	the	smallest	maximal	common	substructure	to	the	target	ligand.	In	the	
case	that	two	candidate	complexes	tie	for	the	smallest	maximal	common	substructure,	
the	highest-resolution	candidate	is	used.	

● Highest	Tanimoto	Similarity	(hiTanimoto):	This	candidate	complex	contains	the	ligand	
with	the	highest	ligand	Tanimoto	score,	using	the	RDKit	default	fingerprint	method,97	to	
the	target	ligand.	In	the	case	that	two	candidate	complexes	tie	for	the	highest	mutual	
Tanimoto	score,	the	highest-resolution	candidate	is	used.	This	candidate	sometimes	is	
the	same	as	the	LMCSS	candidate.	

● Highest	Resolution	Holo	(hiResHolo):	This	candidate	complex	has	the	highest	
crystallographic	resolution	limit	of	any	determined	with	a	druglike	ligand.	

● Highest	Resolution	Apo	(hiResApo):	This	candidate	receptor	structure	has	the	highest	
crystallographic	resolution	limit	of	any	for	this	protein	determined	with	no	druglike	
ligand.	
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Figure	2.	CELPP	Target	Selection	and	Challenge	Package	Generation.	CELPP	downloads	the	publicly-available	PDB	

pre-release	information	and	then	processes	the	new	entries	to	assemble	the	weekly	challenge	package.	Boxes	and	arrows	
indicate	processing	steps,	two-way	arrows	indicate	filtering	steps,	clouds	indicate	internet-accessible	file	platforms,	and	the	
dark	grey	box	indicates	the	weekly	challenge	data	package,	in	which	each	target	is	one	subdirectory.	See	main	text	for	details.	

3.2.2 Generation	of	the	challenge	data	package	
After	the	processing	described	in	Section	3.2.1	has	been	completed,	the	results	are	

incorporated	into	a	common	data	package	for	use	by	CELPP	participants.	This	typically	becomes	
available	in	a	public	Box.com	folder	by	00:00	Pacific	Time	on	Sunday	(Figure	1).	For	each	target,	
the	challenge	data	package	(Figure	2)	contains:	
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● Structures	of	the	candidate	proteins	in	PDB	format,	aligned	to	the	LMCSS	structure	
coordinates	but	otherwise	unmodified	from	the	PDB	entries	from	which	they	were	
drawn	

● PDB	structure	of	the	LMCSS	ligand,	drawn	from	the	LMCSS	candidate	structure	
● The	suggested	binding	pocket	center	(center	of	mass	of	the	LMCSS	ligand)	in	.txt	format	
● SMILES,	InChI,	and	2D	MOL	files	of	the	target	ligand	
● A	parseable	text	file	containing	the	PDB	ID	of	the	forthcoming	entry,	the	crystallization	

pH,	the	HETID	of	the	target	ligand,	and	additional	information	about	the	candidate	
cocrystal	structures,	such	as	their	PDB	IDs	and	crystallographic	resolution	limits.	See	
Scheme	S1	for	sample.		
	

3.2.3 Evaluation	of	Predictions	
After	the	close	of	the	submission	window	and	release	of	the	experimental	cocrystal	

structure	by	the	PDB	(Figure	1),	automated	scripts	evaluate	the	pose	predictions	by	calculating	
the	symmetry-corrected	RMSD	of	each	predicted	ligand	pose	relative	to	the	crystallographic	
pose,	using	Schrödinger	and	OpenEye	tools	(Scheme	S2).	When	the	crystal	structure	has	
multiple	instances	(protein	chains)	of	the	target	protein,	the	predicted	pose	is	assigned	the	
lowest	RMSD	that	can	be	achieved	by	aligning	the	predicted	protein-ligand	complex	to	each	
instance	of	the	chain,	as	detailed	in	Scheme	S2.	

3.3 PARTICIPATING	IN	CELPP	

3.3.1 Enrollment	and	Information	
In	order	to	obtain	upload/download	credentials	for	CELPP	data,	one	must	register	as	a	

CELPP	participant.	Information	for	how	to	participate	in	CELPP	is	available	at	the	D3R	website	
(https://drugdesigndata.org/about/celpp),	including	links	to	a	CELPP	Developers	User	Group	on	
Google	Groups	and	to	the	CELPP	GitHub	Wiki.		

3.3.2 Developing	a	Prediction	Workflow	
Based	on	the	typical	throughput	of	CELPP	challenges,	CELPP	participants	should	

construct	a	pose-prediction	workflow	that	can	process	up	to	100	targets	in	the	63-hour	
submission	window	(Figure	4A).	This	requires	executing	up	to	100	ligand	preparation	tasks,	400-
500	protein	preparation	tasks,	and	400-500	docking	tasks.	Although	CELPP	participants	may	
choose	to	submit	results	for	only	a	subset	of	the	targets	posed	each	week,	doing	so	makes	it	
difficult	to	compare	different	methods	on	an	equal	footing,	so	participants	are	encouraged	to	
work	with	all	targets	each	week.	To	help	participants	construct	their	workflows,	D3R	provides	a	
workflow	template,	called	CELPPade	(Figure	3,	https://github.com/drugdata/cookiecutter-
pycustomdock).	CELPPade	handles	the	download,	unpackaging,	repackaging	and	upload	of	the	
CELPP	challenge	data,	letting	the	participant	focus	on	implementing	their	docking	solution	by	
writing	a	few	specific	methods	in	Python.	

	The	five	user-written	Python	functions	in	CELPPade	are	located	in	three	files	(Figure	3,	
protein_prep.py,	ligand_prep.py,	and	dock.py).	These	five	functions	mirror	the	stages	in	a	
general	pose	prediction	workflow:	protein	and	ligand	structure	preparation,	protein	and	ligand	
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file	format	conversion,	and	docking.	Each	function	receives	input	filenames	as	arguments,	and	
participants	are	responsible	for	populating	the	function	bodies	with	commands	to	run	the	
respective	stage	of	their	workflow.	Participants	can	implement	their	docking	workflow	in	these	
functions	using	Python	commands,	or	using	Python’s	interfaces	to	the	command	line	to	execute	
shell	commands.	Once	implemented,	CELPPade	is	able	to	run	these	functions	in	sequence	on	
each	prediction	target	in	the	current	CELPP	challenge	week.	Combined	with	the	download	and	
upload	scripts	bundled	in	CELPPade,	implementing	these	five	functions	results	in	a	functioning	
CELPP	workflow.	

We	also	provide	a	tutorial	that	follows	the	creation	of	a	model	docking	workflow	based	
on	CELPPade.	This	docking	workflow	uses	Chimera	DockPrep98	to	prepare	both	the	protein	and	
ligand,	and	AutoDock	Vina	to	carry	out	pose	prediction.20,	99,	100	The	model	workflow	provides	
examples	of	running	shell	commands	from	within	Python,	uses	software	that	is	free	for	use	by	
academic	labs,	and	can	run	on	most	64-bit	Linux	systems	with	Python,	Chimera,	RDKit,	
OpenBabel,	and	Autodock	Vina	installed.98-101	Note	that	participants	are	not	required	to	use	the	
CELPPade	template;	it	is	provided	only	as	a	convenience.		

Even	if	a	participant	does	not	use	the	full	CELPPade	package,	two	helper	scripts	it	
contains	may	be	of	interest.	The	first,	getchallengedata.py,	helps	participants	access	the	
correct	challenge	data	package	each	week.	It	reads	the	Box.com	login	credentials	of	
participants	from	the	user’s	customized	file	ftp_config	and	uses	these	to	access	the	online	
folder.		It	then	reads	the	file	latest.txt	file	in	the	Box.com	folder	to	determine	the	name	of	
the	most	recent	challenge	package,	downloads	the	package,	and	unzips	it	in	the	user’s	local	
folder.	The	last	script,	packdockingresults.py,	takes	as	input	a	formatted	directory	of	
docking	results	generated	by	the	participant,	compresses	the	directory	into	a	tar	file,	and	
uploads	the	tar	file	to	the	participant’s	private	submission	folder.	These	scripts	facilitate	
automation	by	providing	straightforward	upload/download	functionality	for	CELPP	data,	
independent	of	the	specific	details	of	the	prediction	workflow.	
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Figure	3.	The	CELPPade	workflow	template.	Vertical	arrows	indicate	functions,	rectangles	indicate	files	passed	between	steps,	
and	clouds	represent	internet-accessible	folders.	The	large	grey	box	indicates	the	steps	that	are	run	on	the	participant’s	
computer.	Different	colors	indicate	script	files	for	different	steps	of	pose	prediction,	and	names	ending	in	()	indicate	python	
functions	that	are	implemented	by	participants.	The	output	files	from	protein_prep.py	and	ligand_prep.py	is	not	strictly	
required	to	be	in	mol2	format,	but	adopting	this	format	will	improve	interoperability	of	steps	from	diverse	workflows.	

	

3.3.3 Definition	and	Submission	of	Predictions	
For	each	pose	prediction,	for	a	given	candidate	structure,	a	valid	submission	comprises	

the	receptor	structure	in	PDB	format	and	the	ligand	structure	in	MOL	format,102,	103	with	ligand	
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coordinates	in	the	receptor	frame	of	reference.	Participants	may	choose	not	to	use	any	of	the	
provided	candidate	receptor	structures	for	docking	but	must	inform	us	in	this	case.	Strict	
adherence	to	these	file	formats	is	required,	and	deviation	from	them	may	result	in	improper	
scoring	or	disqualification	of	the	submitted	prediction.	Using	the	CELPPade	workflow	template	
will	ensure	that	the	docking	results	directory	is	appropriately	formatted	for	upload.	Pose	
predictions	are	uploaded	to	an	online,	password-protected	Box.com	folder	provided	by	D3R.	
This	upload	must	be	completed	before	15:00	U.S.	Pacific	time	on	Tuesday	to	be	considered	
valid	for	scoring.		

3.3.4 Score	Reporting	
Scores	are	emailed	directly	to	participants	and,	in	the	near	future,	will	be	publicly	

accessible	at	the	CELPP	website.	Participants	may	choose	to	remain	anonymous,	in	which	case	
their	methods	and	results	will	be	posted	without	identifying	information.	

	
Table	1.	Baseline	docking	workflows.	Methods	used	for	protein	preparation,	ligand	preparation,	and	docking	in	the	D3R	in-
house	workflows.	(Versions:	Chimera	1.10.1,	RDKit	2016.3.3,	MGLTools	1.5.7,	AutoDock	Vina	1.1.2,	Schrodinger	2015-3	release,	
Omega	2.5.1.4,	FRED	3.0.1,	RBDock	2013.1/901)	

Workflow	Name	 Protein	Prep	Method	 Ligand	Prep	Method	 Docking	Algorithm	

Autodock	Vina	
Chimera	DockPrep98,	99	and	
AutoDock	Tools	
prepare_receptor4.py104	

RDKit	3D	coordinate	
generation,97	Chimera	
DockPrep,98,	99	and	
AutoDock	Tools	
prepare_ligand4.py104	

AutoDock	Vina20	

Glide	 Schrödinger	PrepWizard88,	105	 Schrödinger	LigPrep106	 Schrödinger	Glide	SP107-109	

OE	Fred	 HETATM	removal	and	OpenEye	
receptor_setup110	 OpenEye	Omega111	 FRED68,	110,	112	

rDock	 HETATM	removal,	Chimera	
DockPrep,98,	99	rbcavity113	

RDKit	3D	coordinate	
generation97	 rbdock113	

	

3.4 BASELINE	DOCKING	WORKFLOWS	
To	illustrate	CELPP,	test	our	procedures,	and	provide	a	baseline	of	performance,	we	

have	used	the	CELPPade	template	(Section	3.3.2)	to	create	four	in-house	CELPP	workflows,	
based	on	the	Autodock	Vina,20	FRED,68,	112		Glide,107,	108	and	rDock113,	114	docking	suites.	These	
use	the	protein	and	ligand	preparation	tools	that	accompany	the	respective	docking	codes	
where	possible,	and	open-source	tools	otherwise	(Table	1).	These	workflows	represent	default	
implementations	of	their	respective	methods.	To	standardize	the	testing,	all	workflows	are	set	
to	consider	the	same	docking	region.	Algorithms	that	require	a	docking	box	are	set	to	use	a	
15x15x15	Å	region,	and	software	that	requires	a	sphere	is	set	to	use	a	10	Å	radius	region.	As	we	
have	made	no	effort	to	optimize	the	workflows,	their	performance	may	not	be	reflective	of	the	
best	performance	the	algorithms	can	provide.	All	of	the	in-house	prediction	workflows	are	
available	on	GitHub.	In	addition,	the	AutoDock	Vina	workflow	has	been	documented	in	a	
tutorial	on	CELPP	workflow	development.	This	can	be	accessed	on	the	D3R	GitHub	page,	as	
noted	in	Section	3.3.2.	
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4 RESULTS	

4.1 SCALE	AND	CHARACTER	OF	THE	CELPP	CHALLENGE	
During	a	66-week	period	spanning	parts	of	2017	and	2018,	1,989	targets	met	the	CELPP	criteria	
(Section	3.2.1)	and	were	submitted	to	outside	participants	and	our	in-house	workflows	(Section	
3.4).	To	permit	meaningful	analysis,	the	initial	data	discussed	in	this	paper	have	been	filtered	to	
include	only	targets	for	which	at	least	3	workflows	submitted	predictions	in	the	LMCSS	
category,	and	at	least	one	LMCSS	prediction	achieved	an	RMSD	under	8	Å	(Table	S1).	Future	
analyses	will	allow	more	sophisticated	selections	and	comparisons.	Most	weeks	saw	20-50	
targets,	and	the	maximum	number	of	targets	per	week	has	remained	below	100	(Figure	4,	top).	
The	ligands	to	be	docked	had	an	average	of	27	heavy	atoms	and	5	rotatable	bonds.	The	
distributions	of	these	descriptors	are	provided	in	the	bottom	panel	of	Figure	4,	and	the	full	list	
of	PDB	IDs	and	ligand	SMILES	strings	is	provided	in	the	SI.	In	some	cases,	the	selection	criteria	
for	the	candidate	categories	yielded	the	same	PDB	structure	in	different	categories	for	a	target	
complex.	For	example,	the	PDB	structure	with	the	largest	maximum	common	substructure	
(LMCSS)	to	the	target	ligand	may	also	be	the	one	with	the	highest	Tanimoto	similarity	index	
(hiTanimoto).	The	frequency	of	these	overlaps	is	shown	in	Figure	S1.	Because	apo	structures	are	
not	always	available,	there	are	fewer	candidate	structures	in	that	category.	
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Figure	4:	Characteristics	of	CELPP	weekly	challenges.	Top)	Number	of	CELPP	targets	per	week	(66	weeks	total).	Bottom)	
Characteristics	of	CELPP	target	ligands	(n=1,989).	Each	dot	represents	one	target	ligand,	and	histograms	above	and	to	the	right	
show	the	distribution	of	characteristics	on	each	axis.	Uniformly	distributed	random	values	in	the	range	[-0.5,	0.5]	were	added	to	
X	and	Y	coordinates	to	better	show	point	density.	Numbers	of	rotatable	bonds	and	heavy	atoms	were	calculated	from	InChI	
strings	using	RDKit.97	

4.2 POSE	PREDICTION	PERFORMANCE	TO	DATE	
The	performance	records	of	three	anonymous	early-adopting	external	participants	(one	

of	them	submitting	the	results	from	two	distinct	workflows)	and	the	four	in-house	workflows	
over	a	66-week	period	spanning	2017	and	2018	already	provide	number	of	informative	and	
illustrative	analyses.	Previous	studies	of	pose	prediction	have	generally	considered	a	ligand	
RMSD	within	2	Å	of	the	crystal	pose	to	be	useful	for	compound	design.20,	45-47	In	the	CELPP	
dataset,	the	median	prediction	RMSD	for	the	best-case	prediction	categories	(LMCSS	and	
hiTanimoto)	is	around	5	Å	(Figure	5,	middle).	In	these	categories	at	best	20%	of	pose	
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predictions	are	accurate	to	within	2	Å	RMSD,	and	only	about	40%	are	accurate	to	within	4	Å	
RMSD	(Figure	S2).		These	rates	are	significantly	worse	than	those	seen	in	a	prior	blinded	
challenge,47	where	about	34%	of	the	top	scoring	poses	generated	by	various	docking	codes	had	
RMSDs	less	than	2	Å,	when	averaged	across	all	protein	targets.	However,	it	is	important	to	note	
that	all	participants	in	the	prior	study	were	provided	with	receptor	structures	hand-picked	and	
prepared	by	human	experts	to	accommodate	the	ligands	to	be	docked.	In	contrast,	CELPP	
receptors	are	selected	automatically	and	are	not	prepared	by	system	experts.	The	CELPP	
success	rates	are	on	par	with	those	found	in	the	pose-prediction	components	of	the	recent	D3R	
Grand	Challenge	3,	which	yielded	a	corresponding	success	rate	of	16%.	Much	as	in	CELPP,	
Grand	Challenge	participants	are	not	provided	with	expertly	selected	and	prepared	receptor	
structures.		

	A	finer-grained	analysis	reveals	that	most	methods	provide	rather	similar	levels	of	
accuracy	(Figure	5,	top),	based	on	median	RMSD,	with	rDock	and	one	External	Participant	
performing	noticeably	worse.	Focusing	on	the	performance	of	various	methods	when	provided	
high-similarity	structures	(LMCSS	and	hiTanimoto	categories;	see	next	paragraph),	we	observe	
that	two	anonymous	public	participants	performed	slightly	better	than	other	methods,	as	
measured	by	the	fraction	of	RMSDs	in	the	0-2	Å	range	(Figure	S2).	The	in-house	OE	Fred	and	
Vina	workflows	yield	rather	similar	results,	with	GLIDE	variants	and	rDock	trailing	slightly	by	this	
metric.	As	noted	above,	the	in-house	workflows	are	not	tuned	for	optimum	results	and	thus	
may	not	reflect	the	best	performance	these	algorithms	can	provide.		

The	extensive	data	set	provided	by	CELPP	also	allows	quantification	of	important	trends	
that	have	been	previously	noted.45,	46	First,	docking	into	a	receptor	determined	with	a	
chemically	similar	ligand,	as	determined	by	the	maximum	common	substructure	(LMCSS)	or	the	
fingerprint	Tanimoto	similarity	index	(hiTanimoto),	more	than	doubles	the	success	rate	(RMSD	
<	2Å),	relative	to	docking	into	a	structure	determined	without	a	bound	ligand	(hiResApo)	
(Figure	S2).	Docking	into	the	highest	resolution	structure	solved	with	any	ligand	(hiResHolo)	and	
into	the	structure	with	the	least	similar	ligand,	based	on	maximum	common	substructure	
(SMCSS),	yielded	results	of	intermediate	accuracy.		Similar	results	are	observed	for	the	
individual	methods	(Figure	S2).	Second,	docking	results	tend	to	be	less	accurate	for	ligands	with	
more	rotatable	bonds,	but	this	challenge	can	be	overcome	by	docking	into	a	protein	structure	
determined	with	a	highly	similar	ligand	(Figure	5,	bottom).	Best	docking	results	are,	therefore,	
obtained	either	when	the	number	of	rotatable	bonds	is	less	than	2	or	when	the	fraction	of	the	
heavy	atoms	in	the	target	ligand	that	are	in	its	maximal	common	substructure	with	the	
candidate	ligand	(the	MCSS	ratio)	is	above	0.8.	The	worst	results	are	obtained	for	target	ligands	
with	>10	rotatable	bonds	and	an	MCSS	ratio	lower	than	about	0.5.	In	the	best-case	scenarios,	
where	the	candidate	structure	has	0	or	1	rotatable	bonds	and	an	MCSS	ratio	of	at	least	0.8,	
automated	docking	workflows	can	achieve	a	median	RMSD	of	around	3	Å.	In	more	difficult	
cases,	with	MCSS	ratios	between	0.4	and	0.5	and	7	rotatable	bonds,	the	median	RMSD	rises	to	
about	6	Å.		

The	“standard”	target,	1FCZ,	is	included	in	the	challenge	package	each	week.	As	1FCZ	is	
an	existing	PDB	structure,	the	LMCSS	category	poses	a	self-docking	challenge	where	the	correct	
ligand	pose	is	publicly	known	(results	from	1FCZ	are	excluded	from	the	general	dataset).	All	
workflows	regularly	achieve	RMSD	values	below	1	Å	in	the	LMCSS	category	for	1FCZ	(Figure	S3).	
Three	internal	and	two	external	workflows	behave	deterministically	on	this	target,	returning	
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the	same	poses	each	week.	One	internal	workflow	(rDock)	and	two	external	workflows	return	
different	poses	each	week.	These	inconsistent	results	indicate	a	potential	source	of	uncertainty	
for	method	comparison.	The	Glide	workflow	implemented	in	CELPP	does	not	produce	a	
prediction	for	1FCZ,	as	the	size	of	the	docking	region	used	for	all	methods	in	this	study	is	
smaller	than	its	recommended	value.	However,	when	run	with	its	default	size	docking	box,	the	
GLIDE	workflow	consistently	produces	a	pose	with	an	RMSD	of	0.4	Å.		
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Figure	5.	Results	of	CELPP.	Top)	Performance	by	participant	or	in-house	method,	combining	predictions	from	all	candidate	
categories.	Middle)	Performance	by	candidate	category,	combining	predictions	from	all	participants	and	in-house	methods.	
Black	line	indicates	median,	orange	line	indicates	mean.	The	number	above	each	plot	indicates	the	fraction	of	predictions	above	
10	Å.	Bottom)	Median	prediction	RMSD	as	a	function	of	number	of	rotatable	bonds	and	MCSS	ratio.	The	MCSS	ratio	is	defined	
as	the	fraction	of	the	heavy	atoms	in	the	target	ligand	that	are	in	its	maximal	common	substructure	with	the	candidate	ligand.	
Data	are	taken	from	all	participant	and	in-house	method	predictions	in	LMCSS	and	SMCSS	categories.	White	indicates	no	data.	 
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5 DISCUSSION	
The	CELPP	challenge	introduced	here	is	a	powerful	new	cyberinfrastructure	tool	to	

evaluate	and	improve	protein-ligand	pose	prediction	technologies.	Unlike	prior	blinded	
prediction	challenges	in	this	field,	CELPP	sets	a	new	challenge	each	week,	each	with	dozens	of	
new	ligand-protein	complexes	to	model,	and	provides	rapid	and	consistent	feedback	for	
participants.		The	>1,900	individual	challenge	cases	set	by	CELPP	in	one	66-week	period	far	
exceeds	the	number	of	cases	set	by	all	prior	blind	pose-prediction	challenges,	and	the	CELPP	
challenge	is	ongoing.		

The	high	throughput	nature	of	CELPP	provides	a	dramatic	increase	in	the	statistical	
power	of	analyses	for	docking,	and	thus	enables	sharper	distinctions	among	methods.	We	
anticipate	new	insights	into	not	only	the	core	docking	algorithms,	but	also	key	procedural	
details,	such	as	how	crystallographic	water	molecules	and	protonation	states	are	treated.	We	
also	plan	to	look	for	characteristics	of	protein	targets	and	ligands	that	correlate	with	the	
performance	of	specific	methods.	For	example,	some	algorithms	may	do	better	for	hydrophobic	
sites	or	for	specific	protein	families,	such	as	serine	proteases.	Such	statistical	analyses	will	help	
practitioners	choose	methods	suited	for	their	specific	applications	and	set	meaningful	
expectations	for	the	quality	of	predictions	on	new	systems.	In	parallel,	we	will	scan	for	cases	
where	multiple	methods	do	poorly,	checking	for	situations	in	which	CELPP’s	automated	
procedures	may	generate	inappropriate	challenges,	such	as	where	a	cofactor	is	present	in	the	
candidate	but	not	in	the	target.	The	volume	and	tempo	of	the	CELPP	challenge	also	allow	its	use	
in	iterative	optimization	of	pose	prediction	methods.	Thus,	we	anticipate	that	CELPP	will	help	
drive	the	development	of	increasingly	predictive	docking	workflows.	

It	is	worth	noting	that,	if	a	participant’s	pose-prediction	method	were	to	change	over	
time,	it	would	become	impossible	to	collect	full	statistics	for	a	single,	defined	method.	It	will	
therefore	be	useful	to	distinguish	between	those	methods	which	are	locked	in	for	a	period	of	
time,	and	for	which	meaningful	statistics	therefore	can	be	obtained,	from	those	which	are	
mutable,	such	as	when	CELPP	is	used	to	guide	ongoing	improvements	in	a	pose-prediction	
method.	Perhaps	the	best	way	to	address	this	will	ultimately	be	for	participants	to	package	
their	stable	methods	into	shareable	workflows,	using	technologies	such	as	Docker115	and	
Singularity116	,	which	can	then	be	executed	automatically	on	machines	hosted	by	the	CELPP	
project.	Participants	also	would	benefit	by	not	having	to	manage	the	processes	or	allocate	
computer	time	for	the	calculations.	Ideally,	such	workflows	would	produce	consistent	results	
and	be	structured	into	modular	steps	with	standardized	I/O,	as	this	would	enable	the	creation	
and	benchmarking	of	new	strategies	that	recombine	steps	from	various	workflows.	Such	
derivatization	of	workflows	could,	for	example,	make	it	possible	to	evaluate	how	various	ligand-
preparation	methods	affect	the	quality	of	the	final	pose	predictions.	This	direction	promises	to	
build	a	beneficial	culture	of	generating	methods	that	are	rigorously	evaluated	through	ongoing	
blinded	challenges	and	that	are	readily	shared,	so	that	effective	methods	can	easily	be	put	to	
use.		
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