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ABSTRACT 

RUNX2 is a transcription factor critical for chondrocyte maturation and normal 

endochondral bone formation. It promotes the expression of factors catabolic to the 

cartilage extracellular matrix and is shown to be upregulated in human osteoarthritic 

cartilage and in murine articular cartilage following joint injury. To date, in vivo studies of 

RUNX2 overexpression in cartilage have been limited to forced expression in 

osteochondroprogenitor cells preventing investigation into the effects of chondrocyte-

specific RUNX2 overexpression during development or in postnatal articular cartilage. 

Here, we used the Rosa26Runx2 allele in combination with the inducible Col2a1CreERT2 

transgene or the inducible AcanCreERT2 knock-in allele to achieve chondrocyte-specific 

RUNX2 overexpression (OE) during embryonic development or in the postnatal articular 

cartilage of adult mice, respectively. RUNX2 OE was induced at E13.5 for all 

developmental studies and resulted in a phenotype resembling chondrodysplasia at 

E18.5. Histology and in situ hybridization analyses suggest an early onset of chondrocyte 

hypertrophy and accelerated terminal maturation in the limbs of the RUNX2 OE embryos 

compared to control embryos. Additionally, RUNX2 OE resulted in enhanced TUNEL 

staining indicative of increased chondrocyte apoptosis throughout all regions of the 

growth plate. For all postnatal studies, RUNX2 OE was induced at 2 months of age. 

Surprisingly, no histopathological signs of OA or cartilage catabolism were observed even 

six months following induction of RUNX2 OE in postnatal animals. Using the 

meniscal/ligamentous injury (MLI), a surgical model of knee joint destabilization and 

meniscal injury, however, we found that chondrocyte-specific RUNX2 OE accelerates the 

progression of OA pathogenesis following joint trauma. Histomorphometry and OARSI 
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scoring confirmed decreased cartilage area two months following injury in the RUNX2 OE 

joints compared to control joints. Further, the numbers of MMP13-positive and TUNEL-

positive chondrocytes were significantly greater in the articular cartilage of the RUNX2 

OE joints compared to control joints one month following injury. Collectively, our data 

support that RUNX2 OE in growth plate chondrocytes is sufficient to promote their 

hypertrophy and terminal maturation during development. While RUNX2 overexpression 

alone is surprisingly insufficient to induce catabolic changes to the postnatal articular 

cartilage, it can accelerate the progression of post-traumatic OA. These results suggest 

that although increased RUNX2 expression may predetermine the rate of OA onset 

and/or progression following traumatic joint injury, alone this change is not sufficient to 

initiate the OA degenerative process. 
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INTRODUCTION 
 
Endochondral ossification is a carefully orchestrated process regulated by a number of 

growth factors, signaling pathways, and transcription factors. It is responsible for 

development of the long bones and driven by a process of progressive cell differentiation. 

Initially, mesenchymal progenitor cells condense and differentiate into committed 

chondrocytes, whose gene expression is largely controlled by the master chondrogenic 

transcription factor SOX9(1-3). Committed chondrocytes then begin to rapidly proliferate, 

building rudimentary skeletal elements rich in ACAN and COL2A1. The cells at the very 

center of these elements eventually exit the cell cycle and become pre-hypertrophic, 

expressing Runx2 and Ihh(4-7). These cells further mature into hypertrophic chondrocytes 

marked by their expression of Col10a1 as well as other factors that promote extracellular 

matrix (ECM) mineralization and vascular invasion. Finally, late stage hypertrophic 

chondrocytes express Mmp13. These cells eventually undergo apoptosis, or differentiate 

into cells of the osteoblast lineage, leaving behind a cartilaginous template upon which 

bone is formed and the primary ossification center established(8-11).  

Postnatally, secondary ossification centers form in the epiphyses to separate the 

transient growth plate cartilage from the permanent articular cartilage layer that lines the 

ends of the long bones. In contrast to the highly proliferative growth plate chondrocytes, 

articular chondrocytes at homeostasis are largely non-proliferative(12,13). Their matrix is 

composed of distinct zones that vary both biochemically in composition and cellularly with 

respect to chondrocyte size and gene expression, resembling the layers seen in growth 

plate cartilage during endochondral bone formation. The superficial zone cells along the 

surface of the articular cartilage have a flattened morphology and express Prg4, which 
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encodes LUBRICIN to promote joint lubrication(14,15). The middle zone (transitional/radial 

zone) cells have a rounded morphology and express matrix components COL2A1 and 

ACAN. The deep zone cells most closely resemble hypertrophic chondrocytes and 

express COL10A1 and MMP13. The middle and deep zones are separated by a 

basophilic line called the tidemark; this line segments the unmineralized and mineralized 

portions of the articular cartilage(16). Despite the fact that the zones of the articular 

cartilage are reminiscent of those in the growth plate cartilage, articular chondrocytes of 

the superficial or middle zones do not enter hypertrophy or undergo terminal maturation 

at homeostasis. However, it has been reported that during the development of 

osteoarthritis (OA), these articular chondrocytes begin to mimic growth plate 

chondrocytes and aberrantly express proteins associated with chondrocyte hypertrophy, 

such as COL10A1 and MMP13(17-20). Whether onset of hypertrophy alone is sufficient to 

promote OA pathogenesis, though, is unclear. 

  RUNX2 (also known as CBFA1) is a transcription factor that plays a critical role in 

induction of chondrocyte hypertrophy and terminal maturation as well as in osteoblast 

differentiation during endochondral bone formation. RUNX2 is expressed by both 

prehypertrophic and hypertrophic chondrocytes, as well as by cells within the 

perichondrium(4,6,21,22). In chondrocytes, direct target genes of RUNX2 include Ihh, 

Col10a1, and Mmp13, all markers of chondrocyte hypertrophy and maturation(23-26). 

Global deletion of Runx2 in mice causes a loss or severe delay of chondrocyte 

hypertrophy and a complete lack of bone formation throughout the skeletons of RUNX2-

deficient embryos(21,22,27). Interestingly, Runx2 deletion in osteochondroprogenitor cells 

leads to a long bone and vertebral phenotype that is similar to that seen in global 
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knockouts, whereas deletion of Runx2 from committed osteoblasts results in no skeletal 

abnormalities(28,29). Further, studies of RUNX2 overexpression using Col2a1-driven 

transgenes lead to accelerated and ectopic endochondral ossification due to enhanced 

chondrocyte hypertrophy and terminal differentiation(6). Overall, these results emphasize 

the importance of RUNX2 in chondrocytes for normal endochondral bone development.  

Based on the well-documented role of RUNX2 in chondrocyte maturation, several 

studies have examined the postnatal role of RUNX2 in articular cartilage, and in the 

induction of OA. While baseline RUNX2 expression in the articular cartilage is minimal, it 

is induced following traumatic joint injury, along with its downstream targets COL10A1 

and MMP13(19,30,31). Global RUNX2 haploinsufficiency as well as chondrocyte-specific 

Runx2 deletion were both shown to be chondroprotective following traumatic knee joint 

injury(30,32). Expression of matrix degrading enzymes and overall cartilage degeneration 

were decreased in both models suggesting that RUNX2 expression in chondrocytes 

contributes to the pace of OA progression. Whether RUNX2 overexpression is sufficient 

to induce postnatal OA onset, however, has not been able to be addressed by previous 

genetic models due to perinatal lethality. 

In this study, we aimed to explore the ability of chondrocyte-specific RUNX2 

overexpression to affect chondrocyte maturation during development and within the 

postnatal articular cartilage. We used the Rosa26Runx2 allele, previously shown to rescue 

bone formation in Runx2-/- embryos carrying the Col2a1Cre transgene(33), in combination 

with the inducible Col2a1CreERT2 transgene(34) or the inducible AcanCreERT2 knock-in 

allele(35) to force expression of RUNX2 specifically in immature chondrocytes during 

development or in postnatal cartilage, respectively. Using these genetic models, we found 
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that chondrocyte-specific RUNX2 overexpression resulted in chondrodysplasia of 

developing embryos, while RUNX2 overexpression in the articular chondrocytes of adult 

mice surprisingly did not induce changes to the articular cartilage at homeostasis. 

Following traumatic joint injury, however, RUNX2 overexpression resulted in more severe 

articular cartilage degeneration likely due to increased expression of MMP13 and 

enhanced apoptosis of articular chondrocytes. These data suggest that while increased 

expression of RUNX2 alone is not sufficient to promote cartilage degeneration, it can 

accelerate the development of post-traumatic OA following joint injury. 

MATERIALS AND METHODS 

Mice 

Animal studies used protocols approved by the University of Rochester Committee on 

Animal Resources. Mice were housed in a room using microisolator technology and kept 

at 70°F-73°F. They had ad libitum access to food and water at all times. Col2a1CreERT2, 

AcanCreERT2, and Rosa26Runx2 (R26Runx2) mice were previously described (33-35). Female 

R26Runx2/Runx2 mice were bred with male Col2a1CreERT2/+; R26Runx2/+ or AcanCreERT2; 

R26Runx2/+ mice to generate experimental mice heterozygous or homozygous for the 

R26Runx2 allele in combination with either the Col2a1CreERT2 transgene AcanCreERT2 knock-

in allele. Cre-negative littermate mice were used as controls. To induce RUNX2 

overexpression (OE) in embryos, pregnant females were administered tamoxifen once at 

E13.5 (0.1 mg/g body weight, IP). For postnatal and MLI studies, 2-month-old mice were 

administered tamoxifen for 5 consecutive days (0.1 mg/g body weight, IP). For the injury 

studies, meniscal/ligamentous injury (MLI) was performed as previously described on 

Cre-negative control (Control) and AcanCreERT2/+; R26Runx2/+ (RUNX2 OE) mice at 10 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 14, 2018. ; https://doi.org/10.1101/470005doi: bioRxiv preprint 

https://doi.org/10.1101/470005
http://creativecommons.org/licenses/by-nc-nd/4.0/


weeks of age (36). Briefly, a 5-mm incision was made on the medial side of the joint; the 

medial collateral ligament (MCL) was then transected and the medial meniscus detached 

at the anterior tibial attachment site. Contralateral sham joints only received the initial 

incision. Numbers of mice per experimental group are as indicated: E14.5 Col2a1CreERT2 

for histology (Cre-, n = 7; Cre+ R26Runx2+/-, n = 6; Cre+ R26Runx2/Runx2, n = 4), E18.5 

Col2a1CreERT2  for skeletal preparations (Cre-, n = 4, Cre+ R26Runx2+/-, n = 7; Cre+ 

R26Runx2/Runx2, n = 6), E18.5 Col2a1CreERT2 for histology (Cre-, n = 6; Cre+ R26Runx2+/-, n = 

3; Cre+ R26Runx2/Runx2, n = 9), 3-month-old AcanCreERT2  (Cre-, n = 5, Cre+; R26Runx2+/-, n = 

4), 8-month-old AcanCreERT2 (Cre-, n = 9; Cre+ R26Runx2/+, n = 6; Cre+ R26Runx2/Runx2, n = 5), 

3.5-month-old AcanCreERT2 with MLI at 2.5 months (Cre- males, n = 6; Cre+ males, n = 6; 

Cre- females, n = 6; Cre+ females, n = 6), 4.5-month-old AcanCreERT2 with MLI at 2.5 

months (Cre- male, n = 6; Cre+ male, n = 7; Cre- female, n = 6; Cre+ female, n = 6).  

Skeletal preparations, histology, in situ hybridization, and immunohistochemistry 

Whole mount Alcian blue/Alizarin red skeletal staining of E18.5 embryos was performed 

as described(37). For histology, embryonic tissues were fixed in 10% neutral buffered 

formalin (NBF) for 24 hours followed by decalcification in 14% EDTA (pH 7.3-7.4) for 24 

hours. Adult hindlimbs were cleaned of soft tissue and fixed in 10% NBF for 3 days 

followed by decalcification for 1 week in 14% EDTA (pH 7.4-7.6). All fixation and 

decalcification steps were carried out at room temperature. Tissues were then processed 

for paraffin embedding and sectioning at 5 microns with postnatal hindlimbs oriented 

sagittally. Embryonic tissue sections were stained with Alcian blue Hematoxylin/Orange 

G and adult tissue sections with Safranin O/Fast green to visualize cartilage, bone, and 

soft tissues. In situ hybridization of embryonic tissue sections was performed as 
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previously described using 35S-labeled riboprobes to Col10a1 and Mmp13(38,39). After 

developing, slides were counterstained with Toluidine blue. Final images were prepared 

by merging brightfield images with red pseudo-colored darkfield images.  

For MMP13, COL10A1, and RUNX2 immunohistochemistry, sections were 

deparaffinized and rehydrated. Antigen retrieval was performed in 4 mg/ml pepsin 

solution made in 0.01 N HCl for 10 minutes at 37°C (for MMP13 and COL10A1) and in 

Antigen Unmasking Solution, Citrate Based (Vector Labs) overnight at 65°C (for RUNX2).  

Following rinses with deionized water, sections were incubated with BLOXALL to quench 

endogenous peroxidases (Vector Labs) for 10 minutes and rinsed in deionized water. 

Sections were then blocked in 2.5% normal horse serum for 30 minutes and incubated 

with primary antibody for 1 hour at room temp (anti-COL10A1 diluted 1:500, Clone X53, 

Quartett) or overnight at 4°C (anti-MMP13 diluted to 4 μg/ml, ab75606, Abcam; anti-

RUNX2 diluted to 0.125 μg/ml, HPA022040, Sigma). Sections were rinsed in phosphate 

buffered saline + 0.1% tween-20 (PBST) and incubated with ImmPress HRP anti-rabbit 

IgG peroxidase polymer secondary (anti-MMP13, Vector Labs) or ImmPress HRP anti-

mouse IgG peroxidase polymer secondary (anti-COL10A1, Vector Labs) for 30 minutes. 

After subsequent rinses in PBST and deionized water, COL10A1 or MMP13 were 

detected by DAB peroxidase HRP substrate (Vector Labs). For RUNX2, the ImmPress 

Excel HRP anti-rabbit IgG peroxidase polymer secondary kit was used per manufacturer’s 

instructions (Vector Labs). All slides were counterstained using Mayer’s hematoxylin. For 

negative control slides for anti-MMP13 and anti-RUNX2 staining, rabbit IgG (Vector Labs) 

was used at a concentration of 4 μg/ml (MMP13) or 0.125 μg/ml (RUNX2). As the stock 

concentration of COL10A1 is unknown, negative control slides were incubated with 
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secondary antibody only. TUNEL staining was performed per manufacturer’s instructions 

using the In Situ Cell Death Detection Kit, Fluorescein (Sigma Roche).  

Human cartilage samples  

As previously described(40), a tissue microarray was created using 2 to 3 cores 

from 11 normal cartilage samples and 14 injured cartilage samples. An IRB-approved 

protocol was used to collect discarded cartilage tissue from orthopaedic surgery patients.  

Normal cartilage was collected from hip fracture patients.  Knee articular cartilage was 

collected from patients undergoing arthroscopic surgery 4 weeks following meniscal injury. 

No identifiers are associated with the tissues.  Tissue was fixed, decalcified, and 

processed for embedding into paraffin.   

Chondrocyte isolation and culture 

Primary chondrocytes from the sterna and ribs of P3 mice were isolated as described(41) 

and cultured in DMEM (Life Technologies) containing 10% FBS and 1% 

penicillin/streptomycin (Life Technologies). Ad5-CMV-GFP and Ad5-CMV-Cre 

adenoviruses were purchased from Baylor Vector Development Laboratory (Houston, 

TX) and used to infect the chondrocytes at a MOI of 1000. Forty-eight hours following 

infection, adenovirus was replaced with standard culture media supplemented with 50 

g/ml ascorbic acid. After an additional 48 hours, cells were either fixed with 4% 

paraformaldehyde and incubated with 1-Step NBT/BCIP Solution (Thermo Fisher 

Scientific) for detection of Alkaline Phosphatase or harvested for Western blotting or 

quantitative reverse transcription PCR. 

Western blotting 
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Western blotting was performed as described previously(40). Primary antibodies were 

used as follows: mouse anti-RUNX2 (1:500, D130-3, MBL) and mouse anti--ACTIN 

(1:5000, AC-74, Sigma-Aldrich). 

Isolation of total RNA from mouse articular cartilage 

Using scalpels, articular cartilage was shaved from the tibial plateau and frozen over dry 

ice. Using the Bullet Blender Gold (Next Advance), the cartilage was homogenized in 250 

μl of TRIzol (Thermo Fisher) with a mix of 2, 1, and 0.5 mm RNase-free zirconium oxide 

beads (Next Advance) for 10 minutes. Phases were separated using 100 μl chloroform 

per TRIzol manufacturer’s instructions (Thermo Fisher), and the aqueous layer and one 

volume of 70% ethanol were transferred to a RNeasy MinElute Spin Column from the 

RNeasy Micro Kit (QIAGEN). mRNA was then isolated per Micro Kit instructions 

(QIAGEN).  

Quantitative reverse transcription PCR 

Total RNA was isolated from cell cultures using the RNeasy Mini Kit (Qiagen) per 

manufacturer’s instructions or from mouse tibial cartilage as described above. RNA was 

reverse-transcribed into cDNA using the iScript cDNA Synthesis Kit (Bio-Rad). Real-time 

PCR was performed using a Rotor-Gene Q real-time PCR cycler (Qiagen) and the 

PerfeCTa SYBR Green SuperMix (Quanta Biosciences) according to manufacturer’s 

instructions. Primer sequences used are as follows (5’-3’): β-actin forward: 

AGATGTGGATCAGCAAGCAG; β-actin reverse: GCGCAAGTTAGGTTTTGTCA; Runx2 

forward: TGATGACACTGCCACCTCTGACTT; Runx2 reverse: 

ATGAAATGCTTGGGAACTGCCTGG. Col10a1 forward: CTTTGTGTGCCTTTCAATCG; 

Col10a1 reverse: GTGAGGTACAGCCTACCAGTTTT; Mmp13 forward: 
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GATGACCTGTCTGAGGAAG Mmp13 reverse: ATCAGACCAGACCTTGAAG; Alpl 

forward: TGACCTTCTCTCCTCCATCC; Alpl reverse: CTTCCTGGGAGTCTCATCCT 

Modified OARSI Scoring 

Semi-quantitative scoring was performed on MLI knee joint sections from mice 1 and 2-

months following MLI surgery using the grading system described previously(42). Briefly, 

3 different sections from distinct levels per MLI sample were stained with Safranin O/Fast 

green and randomized for scoring. Four independent scorers performed modified OARSI 

scoring and scores were averaged for each slide. The average score for the 3 slides from 

each sample were then averaged to obtain a final score for that sample.   

Histomorphometry 

Histomorphometry was performed using Visiopharm image analysis software (Version 

6.7.0.2590). The measure tool was used to measure limb lengths and an average limb 

length was calculated from 3-5 embryos per genotype. An image analysis application was 

designed to measure the area of mineralized (below the tidemark) and unmineralized 

(above the tidemark) articular cartilage. The measure tool was used as a ruler to measure 

the same length across the articular surface on each section, and the ROI tool was used 

to manually circle the relevant cartilage areas within the length measured. The application 

was then trained to recognize the difference between Safranin O-positive regions 

(denoted as SafO+) and negative, Fast green, regions (denoted as background) of the 

cartilage areas using the threshold method. This was done using the Contrast Red-Green 

feature; areas were marked SafO+ if they met a threshold of -10 pixel intensity or above, 

and were marked as background if they were below the -10 value. We then applied 

several post-processing corrections to allow the software to recognize the white interior 
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of chondrocytes not stained by Safranin O as portions of the SafO+ area, rather than 

background; the change by area feature was used to change any area labeled 

background 50 μm2 or smaller that was completely surrounded by SafO+ area to SafO+. 

A second change by area feature was used to change any area labeled SafO+ 50 μm2 or 

smaller that was completely surrounded by background to background; this allowed 

Visiopharm to recognize hematoxylin-stained chondrocyte nuclei as a part of the SafO+ 

area. The software was then able to calculate the area of the manually circled 

unmineralized and mineralized cartilage, as well as the SafO+ area within those regions. 

Values were averaged from three sections for both sham and MLI samples, and the MLI 

sample normalized to the sham for each animal.  

For quantification of the COL10A1+ area, an image analysis application was 

designed to determine the amount of tissue stained brown with DAB (denoted as DAB+) 

within the articular cartilage. As in the SafO application, the measure tool was used, 

followed by the ROI tool to circle the articular cartilage area within the length measured. 

The application was then trained to recognize the difference between DAB+ brown tissue 

and hematoxylin stained tissue (denoted as background) using the threshold method. 

This was done using the HDAB-DAB feature; areas were marked DAB+ if they were at or 

below this threshold. The software was then able to calculate the circled cartilage area, 

as well as the COL10A1+ area within this region.  

For MMP13+ cell counting, the stereology function of Visiopharm was used to 

manually determine the number of MMP13+ cells and total cells. For TUNEL+ cell 

counting, an image analysis application was designed on Visiopharm to recognize and 

count TUNEL+ stained cells and FITC+ stained cells within the articular cartilage using 
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the threshold method. As described above, the measure tool was used followed by the 

ROI tool to manually circle the articular cartilage area within the length measured. The 

method was programmed to recognize DAPI+ and FITC+ cells using the DAPI W and 

FITC features. Areas were marked DAPI+ if they had DAPI values at 3000 or above and 

FITC values lower than 900; areas were marked FITC+ if they had FITC values at or over 

900. All areas with DAPI values below 3000 or FITC values below 900 were marked as 

background. We then applied several post-processing corrections to allow the software 

to exclude any background positive smaller than the smallest typical area of a cell found 

within the articular cartilage (less than 10 μm2); using the change by area feature, both 

DAPI+ and FITC+ areas smaller than 10 μm2 were changed to background. The software 

was then able to calculate the number of DAPI+ and FITC+ areas within the circled ROI; 

each positive area was counted as one cell.   

Statistics 

Data are presented as the mean ± SEM. Statistical significance was determined by 

Student’s t tests or one-way ANOVA followed by Dunnett’s multiple comparisons test as 

indicated; p values less than 0.05 were considered significant.  

RESULTS 

Chondrocyte-specific RUNX2 overexpression during development leads to 

chondrodysplasia  

To evaluate the effects of chondrocyte-specific RUNX2 overexpression on skeletal 

development, we generated Col2a1CreERT2/+ embryos(34) with one or two copies of the 

R26Runx2 allele(33) (Col2a1CreERT2/+; R26Runx2/+ and Col2a1CreERT2/+; R26Runx2/Runx2, 

respectively). This allele allows expression of the MASNS isoform of RUNX2 in a Cre-
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inducible manner. Recombination was induced via administration of tamoxifen at E13.5 

and embryos were harvested at E18.5. The RUNX2-overexpressing (OE) embryos had 

shortened trunks, limbs, and domed skulls with protruding tongues, consistent with 

chondrodysplasia. Whole mount Alcian blue and Alizarin red staining revealed shorter 

axial skeletons, smaller rib cages, and shorter forelimbs and hindlimbs (Fig. 1A). Analysis 

of histological sections revealed decreases in the total length of the femora, tibiae, and 

humeri of the RUNX2 OE embryos compared to their Cre-negative control littermates (Fig. 

1B). Additionally, RUNX2 OE tibiae were bowed with increased endocortical bone 

(Supplemental Fig. 1A). Histology also showed that the columnar and hypertrophic 

zones of the RUNX2 OE embryos are hypocellular and disorganized compared to control 

littermates with some chondrocytes in the hypertrophic zone appearing abnormally large 

(Fig. 1C). Immunohistochemistry (IHC) for RUNX2 on histological sections confirmed 

RUNX2 overexpression in the mutant limbs compared to control limbs (Supplemental 

Fig. 1B).   

 In situ hybridization analyses on E18.5 humerus sections showed that the 

expression domain of Col10a1 relative to total limb length is unchanged in the RUNX2 

OE embryos compared to littermate control embryos, while that of Mmp13 is slightly 

expanded and maintained in the trabecular bone of the RUNX2 OE embryos (Fig. 1D). 

Analyses of RUNX2 OE embryos at E14.5, however, revealed an expanded Col10a1 

expression domain and early appearance of Mmp13 expression relative to control 

embryos (Supplemental Fig. 1C), suggesting early onset of hypertrophy and accelerated 

maturation to late stages of chondrocyte hypertrophy. Primary sternal chondrocytes from 

R26Runx2/Runx2 mice were infected with adenovirus encoding GFP or Cre recombinase and 
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RUNX2 overexpression was confirmed at both the mRNA and protein levels 

(Supplemental Fig. 2A, C). Increased Alkaline phosphatase staining and Col10a1, Alpl, 

and Mmp13 gene expression in these cultures provide in vitro support that the R26Runx2-

expressing chondrocytes undergo accelerated hypertrophy and terminal maturation in a 

cell autonomous manner.  

Finally, to investigate whether the hypocellularity in the E18.5 RUNX2 OE limbs 

could be due to cell death, we performed TUNEL staining on tissue sections. TUNEL 

staining was visibly increased throughout all regions of the growth plate in the RUNX2 

OE limbs and quantification of TUNEL+ cells relative to total cell numbers supported this 

observation (Fig. 1E, F).  

Postnatal chondrocyte-specific RUNX2 overexpression alone is not sufficient to 

induce articular cartilage degeneration  

RUNX2 expression is reported to be upregulated in human OA cartilage and in the 

articular cartilage of mice following traumatic joint injury(30,32,43). Using a human tissue 

microarray, we also find evidence of increased RUNX2 expression in the articular 

cartilage of patients just one month following meniscal tear (Fig. 2). Since it is well 

established that joint injury increases the risk for development of OA(44,45), we decided to 

examine whether RUNX2 overexpression alone could be sufficient to induce catabolic 

changes to the joint consistent with the onset of OA. Specifically, we generated 

AcanCreERT2/+ mice with one or two copies of the R26Runx2 allele (AcanCreERT2/+; R26Runx2/+ 

and AcanCreERT2/+; R26Runx2/Runx2, respectively). Recombination was induced via 

administration of tamoxifen at 2 months of age, a time point following the majority of rapid 

skeletal growth that occurs during early postnatal life. One week following tamoxifen 
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induction, there were no overt changes in cartilage phenotype, but RUNX2 IHC did show 

increased RUNX2 expression within the articular cartilage of RUNX2 OE mice (Fig. 3A, 

B). Additionally, quantitative RT-PCR from mRNA isolated from the tibial articular 

cartilage confirmed this finding, showing a significant increase in Runx2 expression in the 

RUNX2 OE group (Fig. 3C). Surprisingly, at 8 months of age (6 months following 

tamoxifen induction), histology reveals that there are still no overt phenotypic changes to 

the articular cartilage of the RUNX2 OE mice relative to control mice, despite evidence 

that RUNX2 is still expressed in the articular chondrocytes at this time (Fig. 3D, E).  

Postnatal chondrocyte-specific RUNX2 overexpression promotes accelerated 

articular cartilage degeneration following joint injury  

It was shown previously that global haploinsufficiency or chondrocyte-specific loss of 

Runx2 can inhibit the progression of post-traumatic OA following traumatic joint injury(30,32). 

Since we did not find that RUNX2 OE alone in articular chondrocytes was sufficient to 

promote cartilage degeneration, however, we next tested whether chondrocyte-specific 

RUNX2 OE could affect the progression of OA in the injured joint environment. 

Specifically, we induced Cre-mediated recombination in both male and female Cre-

negative control and RUNX2 OE (AcanCreERT2/+; R26Runx2/+) mice at 2 months of age using 

tamoxifen and subjected the mice to sham or MLI surgery at 2.5 months of age. Knee 

joints of control and RUNX2 OE mice were harvested 2 months following injury. 

Histologically, male RUNX2 OE mice showed enhanced articular cartilage degradation 

following MLI when compared to control mice, while sham sections did not reveal any 

detectable differences in the articular cartilage (Fig. 4A). To quantitatively assess the 

histological differences between male control and RUNX2 OE mice, modified OARSI 
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scoring and manual histomorphometry were performed. MLI sections from RUNX2 OE 

mice showed significantly higher OARSI scores than those from control mice, and also 

showed reductions in overall tibial cartilage area (Fig. 4B, C). Tibial histomorphometric 

changes were seen in both the unmineralized and mineralized regions of the articular 

cartilage (Fig. 4D). SafO+ cartilage area was specifically reduced in the unmineralized 

tibial cartilage. 

In contrast, female RUNX2 OE mice did not show differences in articular cartilage 

degradation in response to MLI relative to control mice (Supplemental Fig. 3A). This 

histological finding was confirmed by OARSI scoring and manual histomorphometry, 

which revealed no significant changes between the control and RUNX2 OE female mice 

following injury (Supplemental Fig. 3B-D).  

 In order to examine early molecular changes underlying the articular cartilage 

phenotype seen in the male RUNX2 OE mice 2 months following MLI, we performed a 

second set of sham or MLI surgeries on control and RUNX2 OE mice and harvested their 

knee joints one month following injury. Histology revealed decreased Safranin O staining 

within the tibial articular cartilage of the RUNX2 OE mice relative to controls, but these 

changes did not result in significant differences in modified OARSI score or manual 

histomorphometric measurements (Fig. 5A, B). We then performed 

immunohistochemistry for MMP13 and COL10A1, known downstream targets of RUNX2 

in cartilage tissue(24,26,46,47). Quantification of the MMP13 staining revealed a significant 

increase in MMP13+ chondrocytes present in the tibial articular cartilage of the RUNX2 

OE mice (Fig. 5D, E). This increase in MMP13+ cells was primarily due to the increase in 

positive cells from the unmineralized region of the articular cartilage, as cell numbers were 
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not significantly altered in the mineralized cartilage region (Fig. 3D). There was not a 

significant change in COL10A1-stained cartilage area in the RUNX2 OE mice.  

Finally, given the increase in chondrocyte apoptosis due to RUNX2 OE during 

development, we next examined whether RUNX2 OE affected the amount of apoptotic 

cell death following traumatic joint injury. TUNEL staining was visibly increased within 

both the tibial and femoral articular cartilage of the RUNX2 OE mice relative to control 

mice following MLI and quantification of TUNEL+ cells relative to total articular 

chondrocyte numbers supported this observation (Fig. 6A, B).  

DISCUSSION 

Our findings provide further confirmation that RUNX2 expression in growth plate 

chondrocytes during development promotes onset of hypertrophy and terminal 

maturation, resulting in chondrodysplasia. Previous models of exogenous RUNX2 

expression in non-hypertrophic chondrocytes have relied on transgenic expression from 

the Col2a1 promoter or expression of the R26Runx2 allele in osteochondroprogenitor cells 

using a non-inducible Col2a1-Cre(6,27,33). It is documented that Col2a1 expression during 

development is not restricted to chondrocytes, but is first expressed in 

osteochondroprogenitor cells, those destined to become either chondrocytes or 

perichondrial pre-osteoblasts, prior to E12.5(48-50). Therefore, it is possible that RUNX2 

overexpression in this cell population may be at least partially responsible for the 

accelerated onset of hypertrophy observed in Col2a1-Runx2 transgenic mice, as RUNX2 

is known to drive FGF18 production in the perichondrium, inhibiting proliferation and 

promoting hypertrophy of neighboring chondrocytes(51). Our model uses the Col2a1-

CreERT2 transgene to drive expression of the R26Runx2 allele in a chondrocyte-specific 
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manner by allowing induction of Cre-recombination at E13.5 (34,38,52). We found a slight, 

but significant, decrease in femur, tibia, and humerus length as well as disorganization of 

the proliferative and hypertrophic growth plate zones at E18.5 using this system. At E14.5, 

the hypertrophic zone and Col10a1 expression domains were expanded and the Mmp13 

expression domain detectable in the R26Runx2-expressing embryos. At E18.5, the Mmp13 

expression domain appeared elongated at the chondro-osseous junction with increased 

expression in the trabecular bone, while the Col10a1 expression domain was no longer 

expanded relative to total limb length. Collectively, these data suggest that RUNX2 

expression in non-hypertrophic chondrocytes can accelerate onset of hypertrophy as well 

as late stages of chondrocyte maturation. The increased Mmp13 expression in the 

trabecular bone is interesting and could be due to continued expression of exogenous 

RUNX2 in osteoblasts that are originally derived from targeted growth plate chondrocytes, 

as mounting evidence supports that hypertrophic chondrocytes can become osteoblasts 

during endochondral bone formation(53-55).  

Despite some differences in phenotype severity, the conclusions resulting from our 

developmental studies support those of the previous studies that investigated the effects 

of RUNX2 overexpression in non-hypertrophic chondrocytes. The differences in severity 

could be due to timing of induction, cell-type targeting specificity, or simply the level of 

exogenous RUNX2 produced. For example, Ueta, et. al. noted joint fusion and expanded 

regions of chondrocyte hypertrophy even at E18.5 in their Col2a1-Runx2 transgenic mice, 

while we and others did not(27). The R26Runx2 allele was suggested by Tu et. al. to express 

a relatively low abundance of exogenous Runx2 as they did not observe an increase in 

Runx2 message by in situ hybridization with one or even two R26Runx2 alleles(33). They did 
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observe, however, that the level of expression from the R26Runx2 allele was sufficient to 

produce a functional protein product capable of rescuing bone formation in Runx2-/- 

embryos by promoting chondrocyte hypertrophy, perichondrial bone formation, and 

primary ossification center formation. In our developmental model, we were able to detect 

RUNX2 protein by IHC in some resting zone chondrocytes of the C2T2; R26Runx2 and 

C2T2; R26Runx2/Runx2 mutant mice. RUNX2 was not detected in this cell population in 

control mice consistent with the Runx2 expression pattern reported by others(4,6). We did 

not, however, see evidence of increased expression in pre-hypertrophic or hypertrophic 

chondrocytes suggesting that the level of expression above endogenous RUNX2 in these 

populations may be minimal. Nonetheless, the R26Runx2 mouse provided the first 

opportunity to explore the role of RUNX2 in articular cartilage homeostasis and OA 

pathogenesis since other models resulted in early postnatal lethality or developmental 

defects precluding postnatal studies.  

 To our knowledge, this is the first study to assess the effects of exogenous RUNX2 

expression in non-hypertrophic chondrocytes of adult mice and to test the hypothesis that 

expression of RUNX2 alone in this cell population is sufficient to promote the onset of OA. 

Despite detectable expression of RUNX2 mRNA and protein in the articular cartilage of 

mice immediately following induction and even 6 months later, we observed no difference 

in joint phenotype when compared to Cre-negative littermate control mice. Following 

surgical destabilization and meniscal injury of the joint, however, we found a significant 

difference in the rate of progression of post-traumatic OA in male mice. At 8 weeks 

following surgery, OARSI scores and histomorphometric measurements confirmed 

enhanced cartilage degeneration in RUNX2 OE mice. While there were no significant 
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differences in OARSI scores or histomorphometric measurements 4 weeks following 

injury, we did find a significant increase in the number of MMP13+ and TUNEL+ cells 

suggesting increased cartilage catabolism and chondrocyte death in the injured RUNX2 

OE joints. While Mmp13 is a well-established direct downstream target gene of 

RUNX2(23,24), it is less clear how RUNX2 might be affecting chondrocyte apoptosis. 

RUNX2 was shown to promote apoptosis in osteosarcoma cells via induction of Bax 

expression, but it has actually been shown to inhibit apoptosis in some other cell 

types(44,56,57). Surprisingly, we did not find a significant difference in the amount of 

COL10A1 present in the cartilage matrix of the control and RUNX2 OE joints. We 

hypothesize that this might be due to decreased SOX9 expression in the injured joint(58) 

(data not shown) and the requirement of SOX9 for Col10a1 expression(59).  

Our studies included both male and female mice, but a significant difference in 

RUNX2-dependent cartilage degeneration following injury was only seen in male mice. 

Female mice, in general, develop less severe OA following traumatic knee joint injury 

than males and female-specific sex hormones offer protection against the development 

of post-traumatic OA, as ovariectomized female mice develop more severe OA following 

injury when compared to intact female mice(60,61). Similarly, in humans, the loss of 

estrogen following the onset of menopause leads to a dramatic increase in the incidence 

of OA in women(62,63). Estrogens have been shown to inhibit RUNX2 transcriptional 

activity in osteoblasts and breast cancer cells via the direct binding of estrogen receptor-

 (ER-) to the DNA-binding domain of RUNX2(64). It may be possible, therefore, that 

RUNX2 activity is inhibited in the chondrocytes of the RUNX2 OE female mice despite 

elevated RUNX2 protein expression. ER- is expressed in the articular chondrocytes of 
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both mice and humans, but whether RUNX2 activity is altered by estrogen signaling in 

chondrocytes has yet to be determined(65,66).  

Due to the lack of a phenotype in the non-injured RUNX2 OE joints even in male mice, 

we hypothesize that the injured joint environment may potentiate RUNX2 activity and that 

RUNX2 activity is normally restricted in the articular chondrocytes of the unmineralized 

cartilage at homeostasis. RUNX2 is highly regulated through protein-protein interactions 

and post-translational modifications such as phosphorylation, acetylation, and 

ubiquitination to control its protein stability and/or transcriptional activity(67-69). Signaling 

cascades activated by pro-inflammatory cytokines, oxidative stress, and mechanical 

stress all have the potential to affect RUNX2 activity within chondrocytes following joint 

injury. For example, p38 and ERK mitogen-activated protein kinases (MAPKs) are both 

known to positively regulate RUNX2 transcriptional activity in osteoblasts via direct 

phosphorylation and these kinases are activated in chondrocytes following cartilage 

injury(70-75). While it is unknown whether they directly phosphorylate RUNX2 in 

chondrocytes, treatment of human articular chondrocytes with IL-1 leads to an induction 

of RUNX2-mediated MMP13 expression in a p38-dependent manner, suggesting that it 

may be possible(76,77). GSK3 can also directly phosphorylate RUNX2 in osteoblasts, but 

on residues that inhibit transcriptional transactivation(78). Further, treatment of 

chondrocyte cultures with GSK3 inhibitors was shown to promote nuclear localization of 

RUNX2 while inhibition of GSK3 in vivo enhanced cartilage degeneration in a murine 

model post-traumatic OA(79,80). With regard to protein-protein interactions, RUNX2 binds 

to numerous other transcription factors, co-activators, and co-repressors that modulate 

its ability to affect gene expression(69). C/EBP, for example, is a potent transcriptional 
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partner of RUNX2 in regulation of Mmp13 expression and is only expressed in articular 

chondrocytes following joint injury in a HIF-2-dependent manner(23). In contrast, the 

master chondrogenic transcription factor SOX9 was shown to promote RUNX2 

degradation and to strongly suppress its activation through direct interaction(81,82).  While 

SOX9 is expressed in articular chondrocytes at homeostasis, as mentioned above, it is 

decreased in injured chondrocytes and in response to pro-inflammatory cytokine 

signaling(58,83,84). Its loss following injury could, therefore, lead to activation of RUNX2 in 

the RUNX2 OE cartilage. Further studies, of course, will be required to determine if any 

of these or other potential mechanisms are responsible for the enhanced cartilage 

degeneration of the RUNX2 OE mice following joint injury.   

Among the most important risk factors for the development OA in humans are prior 

traumatic joint injury and meniscectomy. It is estimated that approximately 12% of all 

symptomatic OA is related to prior injury and that 50% of all patients with an ACL or 

meniscus tear will develop knee OA(44,45). A recent study comparing genetic risk variant 

loci in post-traumatic OA versus non-traumatic OA shows that the genetic contribution to 

the development of knee OA is just as high following injury as in primary, non-traumatic 

OA(85). This suggests that underlying genetic variation may contribute to whether a patient 

will develop OA following injury and may even determine the rapidity of onset. 

Interestingly, large-scale genome-wide association studies (GWAS) have identified single 

nucleotide polymorphisms (SNPs) associating with OA near the RUNX2 gene locus(86). 

Additionally, hypomethylation of the RUNX2 promoter was detected in a genome-wide 

methylation study comparing normal chondrocytes and OA chondrocytes(87). Furthermore, 

OA candidate genes identified through GWAS studies include components of the WNT 
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(FRZB, DOT1L), BMP (GDF5), and TGF- (SMAD3) signaling pathways(88-91). These 

pathways converge upon RUNX2 to regulate chondrocyte maturation. These findings 

suggest that genetic or epigenetic changes in RUNX2, or in the components of pathways 

that regulate RUNX2 expression and activity, may predispose to OA. Indeed, the genetic 

model we present here supports that RUNX2 overexpression in articular chondrocytes 

can accelerate the progression OA pathogenesis only following traumatic joint injury. 
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FIGURE LEGENDS 

Fig. 1. Chondrocyte-specific RUNX2 overexpression during development leads to 

chondrodysplasia. (A) Alcian blue/Alizarin red skeletal staining of E18.5 R26Runx2/+ 

(Control), Col2a1CreERT2/+; R26Runx2/+ (C2T2; R26Runx2/+), and Col2a1CreERT2/+; 

R26Runx2/Runx2 (C2T2; R26Runx2/Runx2) embryos. (B) Femur (left), tibia (middle), and 

humerus (right) lengths from E18.5 Control, C2T2; R26Runx2/+, and C2T2; R26Runx2/Runx2 

embryos (n = 3 to 5 for all groups). *p < 0.05, **p < 0.01, ***p < 0.001, one-way ANOVA 

followed by Dunnett’s multiple comparisons test. (C) Alcian blue Hematoxylin/Orange G 

staining of humerus growth plate sections from E18.5 Control, C2T2; R26Runx2/+, and 

C2T2; R26Runx2/Runx2 embryos. Top panels are 5X images of the proximal humerus; middle 

panels are high magnification images (20X) of the proliferating and pre-hypertrophic 

zones (yellow boxes); bottom panels are high magnification images (20X) of the 

hypertrophic zone (orange boxes). (D) In situ hybridization for Col10a1 (top panels) and 

Mmp13 (bottom panels) on E18.5 Control, C2T2; R26Runx2/+, and C2T2; R26Runx2/Runx2 

proximal humerus sections. (E) TUNEL staining of proximal humerus sections from E18.5 

Control, C2T2; R26Runx2/+, and C2T2; R26Runx2/Runx2 embryos (5X images). (B) 

Quantification of TUNEL+ cell number as percentage of total cell number within the growth 

plate of the proximal humeri of E18.5 Control, C2T2; R26Runx2/+, and C2T2; R26Runx2/Runx2 

embryos (n = 3 for all groups). *p < 0.05, one-way ANOVA followed by Dunnett’s multiple 

comparisons test. 

Fig. 2. Knee joint injury leads to increased RUNX2 expression in human articular cartilage. 

Representative results of RUNX2 immunohistochemistry on a tissue microarray of normal 

human cartilage or cartilage from patients undergoing arthroscopic surgery 4 weeks 
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following meniscal injury (Post-Injury). Left panels within each group are 10X images; 

right panels are 20X images of the corresponding boxed regions. 

Fig. 3. Chondrocyte-specific RUNX2 overexpression is insufficient to induce phenotypic 

changes in the articular cartilage. (A, D) Safranin O/Fast green staining of knee joint 

sections from male R26Runx2/+ (Control) and AcanCreERT2/+; R26Runx2/+ (RUNX2 OE) mice 

injected with tamoxifen at 2 months of age daily for 5 consecutive days and harvested 48 

hours following the last tamoxifen injection at 9 weeks of age (A) or at 8 months of age 

(D). Top panels are 5X images of the knee joint; bottom panels are high magnification 

images (20X) of the boxed regions. (B, E) RUNX2 immunohistochemistry on knee joint 

sections from Control and RUNX2 OE mice at 9 weeks of age (B) and 8 months of age 

(E). Left panels are 20X images of the articular cartilage; right panels are high 

magnification images (40X) of the boxed regions. (C) Quantitative RT-PCR from tibial 

articular cartilage of Control and RUNX2 GOF mice harvested at 3 months of age 

following tamoxifen injections at 2 months of age (Control, n = 3, RUNX2 OE, n = 3). *p 

< 0.05, Student’s t-test. 

Fig. 4. Postnatal RUNX2 overexpression accelerates articular cartilage degeneration 

following meniscal-ligamentous injury (MLI) in male mice. (A) Safranin O/Fast green 

staining of knee joint sections from male R26Runx2/+ (Control) and AcanCreERT2/+; R26Runx2/+ 

(RUNX2 OE) mice injected with tamoxifen at 2 months of age and subjected to sham or 

MLI at 2.5 months of age. Joints were harvested 2 months following injury. Top panels 

are 5X images of the knee joint; bottom panels are high magnification images (20X) of 

the boxed regions. (B) Modified OARSI scoring of Control and RUNX2 OE slides from the 

knee joint receiving MLI. (C, D) Quantitative histomorphometric analyses of total tibial 
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cartilage area (C, left panel), total tibial SafO+ area (C, right panel), unmineralized and 

mineralized tibial cartilage areas (D, left panels), and unmineralized and mineralized tibial 

SafO+ areas (D, right panels) where MLI cartilage was normalized to corresponding sham 

cartilage in knee joint sections from Control (n = 6) and RUNX2 OE (n = 7) mice. *p < 

0.05, **p < 0.01, Student’s t-test.  

Fig. 5. Postnatal RUNX2 overexpression induces MMP13 expression in unmineralized 

articular chondrocytes prior to accelerating articular cartilage degeneration following MLI. 

(A) Safranin O/Fast green staining of knee joint sections from R26Runx2/+ (Control) and 

AcanCreERT2/+; R26Runx2/+ (RUNX2 OE) mice injected with tamoxifen at 2 months of age 

and subjected to sham or MLI at 2.5 months of age. Joints were harvested one month 

following injury. Top panels are 5X images of the knee joint; bottom panels are high 

magnification images (20X) of the boxed regions. (B) Cartilage degeneration in Control 

(n = 6) and RUNX2 OE (n = 6) mice was evaluated by modified OARSI scoring (top graph) 

and quantitative histomorphometric analysis (bottom graph, data normalized to 

contralateral sham control sample). (C) MMP13 (left panels) and COL10A1 (right panels) 

immunohistochemistry of knee joint sections from Control or RUNX2 OE mice subjected 

to sham or MLI at 2.5 months of age and harvested 1 month following injury (20X images).  

(D) Quantification of MMP13+ cell number as percentage of total cell number from Control 

and RUNX2 OE mice (MLI samples only, n = 4 for both groups). (E) Quantification of 

COL10A1+ cartilage area as percentage of total cartilage area from Control and RUNX2 

OE mice (MLI samples only, n = 4 for both groups). *p < 0.05, Student’s t-test. 

Fig. 6. Postnatal RUNX2 overexpression results in enhanced articular chondrocyte 

apoptosis following meniscal-ligamentous injury (MLI). (A) TUNEL staining of knee joint 
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sections from R26Runx2/+ (Control) and AcanCreERT2/+; R26Runx2/+ (RUNX2 OE) mice 

subjected to MLI at 2.5 months of age and harvested 1 month following injury (10X 

images). (B) Quantification of TUNEL+ cell number as percentage of total cell number 

from the tibial (left) or femoral (right) articular cartilage of Control or RUNX2 OE mice (MLI 

samples only, n = 4 for both groups). *p < 0.05, **p < 0.01, Student’s t-test. 
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