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ABSTRACT 

This work investigates the suitability of deep residual neural networks (ResNets) for studying 

neuroimaging data in the specific application of predicting progression from mild cognitive 

impairment (MCI) to Alzheimer’s disease (AD). We focus on predicting the subset of MCI individuals 

that would progress to AD within three years (progressive MCI) and the subset of MCI individuals 

that do not progress to AD within this period (stable MCI). This prediction was conducted first as a 

standard binary classification task by training a ResNet architecture using MCI individuals only, 

followed by a modified domain transfer learning version that additionally trained on the AD and 

cognitively normal (CN) individuals. For this modified inter-MCI classification task, the ResNet 

architecture achieved better than state-of-the-art performance in predicting progression to AD 

using structural MRI data alone (> 7% than the second best performing method), within 1% of the 

state-of-the-art performance considering learning using multiple structural modalities as well, and 

a significant performance improvement over the classical support vector machine learning 

framework (p = 2.5762 x 10-8). The learnt surrogate (i.e. cross-validation-fold-specific) models and 

the final predictive model (trained on all data) in this modified classification task showed highly 

similar peak activations, significant correspondence of which in the medial temporal lobe and other 

areas could be established with previous reports in AD literature, thus further validating our 

findings. Our results highlight the possibility of early identification of modifiable risk factors for 

understanding progression to AD using similar advanced deep learning architectures. 
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INTRODUCTION 

Dementia is vastly underdiagnosed in most health systems mainly due to lack of 

educational/awareness programs and accessibility to dementia diagnostic, treatment and care 

services (Bradford et al. 2009; Connolly et al. 2011; Wilkins et al. 2007). Diagnosis typically occurs 

at relatively late stages, following which the prognosis is poor in most cases since even the state of 

the art (FDA-approved) medications in these stages are, at best, only modestly effective in 

alleviating cognitive and behavioral symptoms of the disease. As such, early therapeutic 

interventions can not only help improve cognitive and behavioral function of the elderly patients, 

but also empower them to take important decisions about their health care while they can, and 

significantly improve their overall quality of life. 

The most widely reported form of dementia in the elderly population is Alzheimer’s disease (AD) 

that features progressive, irreversible deterioration in memory, cognition and behavioral function. 

Mild cognitive impairment (MCI) has been identified as an intermediate condition between typical 

age-related cognitive deterioration and dementia (Markesbery 2010). This condition often leads to 

some form of dementia (not necessarily AD) and hence is often referred to as the prodromal stage 

of the disease. However, in absence of an exact (i.e. narrower) prodrome for AD, this broader 

population of MCI is currently an attractive target for testing preventive treatments of AD. As 

mentioned before, the currently approved preventive medications are effective only over a limited 

(early) time period (Casey, Antimisiaris, and O’Brien 2010); as such, the modest effectiveness and 

extremely high costs of these drugs has been a matter of constant debate especially in terms of cost 

to benefit balance. Hence patients showing MCI symptoms must ideally be diagnosed at early stages 

and be followed up on a regular basis to identify potential risks of progression to AD (or other types 

of dementia). Several studies are currently focused in this direction with a remarkable increase in 

collection and processing of multimodal neuroimaging, genetic, and clinical data. As a 

straightforward example, there are as many as thirty-four different live datasets that can be 
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accessed from the Global Alzheimer’s Association Interactive Network (GAAIN) funded by the 

Alzheimer’s Association (GAAIN Data 2017). Today, out of these splendid data collection efforts, it 

is especially the longitudinal studies that act as a bridge between clinical and neuropathological 

models (Markesbery 2010).  

The structural magnetic resonance imaging (sMRI) neuroimaging modality enables tracing of brain 

damage (atrophy, tumors and lesions) and assists in ruling out any possible causes of dementia 

other than AD. This modality has additional advantages for its non-invasive nature, high spatial 

resolution, and ease of availability. Over the last two decades, several studies have contributed to 

the identification of potential AD biomarkers and prediction of progression to AD using sMRI data 

independently or in a multimodal pipeline (Arbabshirani et al. 2017; Falahati, Westman, and 

Simmons 2014; Rathore et al. 2017; Weiner et al. 2017). At the same time, the neuroimaging 

community has increasingly started to witness successful application of standard (i.e. classical) and 

advanced (i.e. deep or hierarchical) machine learning (ML) approaches to extract discriminative 

and diagnostic information from the high dimensional neuroimaging data (Litjens et al. 2017; Plis et 

al. 2014; Shen, Wu, and Suk 2017; Vieira, Pinaya, and Mechelli 2017). ML approaches are being 

increasingly preferred also because they allow for information extraction at the level of the 

individual thus making them capable of assisting the investigator in diagnostic and prognostic 

decision-making of the patients. The ML methods could range from standard classification 

frameworks (for example, logistic regression or support vector machines) that usually require 

manual feature engineering as a preliminary step to deep learning architectures that automatically 

learn optimal data representations through a series of non-linear transformations on the input data 

space. The last few years have seen an emergence of deep structured or hierarchical computational 

learning architectures to learn data representations that enable classification of brain disorders as 

well as predicting cognitive decline. These architectures hierarchically learn multiple levels of 

abstract data representations at the multiple cascaded layers, making them more suitable to learn 
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subtle differences in the data. Some popular deep learning architectures including multilayer 

perceptron, autoencoders, deep belief nets, and convolutional neural networks have indeed been 

applied for AD classification and predicting progression of MCI patients to AD (Chen et al. 2015; 

Falahati, Westman, and Simmons 2014; Li et al. 2015; M. Liu, Zhang, and Shen 2014; S. Liu et al. 

2015; H. Il Suk, Lee, and Shen 2015; H. Il Suk and Shen 2013a). 

Convolutional neural networks (CNNs) are a class of feed-forward artificial neural networks that 

have absolutely dominated the field of computer vision over the last few years with the success of 

strikingly superior image classification models based on models including AlexNet (Krizhevsky, 

Sutskever, and Hinton 2012), ZF Net (Zeiler and Fergus 2014), VGG (Simonyan and Zisserman 

2015), GoogleNet (Szegedy et al. 2015), and recently ResNet (He et al. 2016a). Deep CNN models 

typically stack combinations of convolutional, batch normalization, pooling and rectifier linear 

(ReLU) operations as a mechanism to reduce number of connections/parameters in the model 

while retaining the relevant invariants, and this entire network is typically followed by a fully 

connected layer that supports inter-node reasoning. The deep residual neural network (ResNet) 

learning framework as proposed by He et al., 2016a has a similar baseline architecture as the deep 

CNNs but additionally features parameter-free identity mappings/shortcuts that simplifies gradient 

flow to lower layers during the training phase. Additionally, each block of layers learns not only 

from the activations of the preceding block but also from the input to that preceding block. 

Additionally, in the original work (He et al. 2016a), these models have been shown to enable ease 

and simplification of neural network architecture training, thus allowing them to increase network 

depth and effectively enhance the overall learning performance. These networks essentially 

improve optimization of the “residual” mappings as compared to the collective and unreferenced 

original mappings (He et al. 2016a) as we will discuss next in more detail in the methods section. 

Enhanced performance of the ResNet architecture within the broader imaging community 

motivated us to explore its diagnostic and prognostic suitability using neuroimaging data in this 
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work. In a systematic approach, we first comprehensively evaluate the diagnostic and prognostic 

performance of the ResNet architecture implemented in an open-source Pytorch GPU framework 

(Pytorch Resnet Architecture 2017) on a large dataset (n = 828; see Figure 1 for detailed 

demographics) featuring cognitively normal (CN), MCI and AD classes. Following this, we focus on 

prediction of progression to AD within the MCI class (i.e. predicting which MCI subjects would 

progress to AD within 3 years) to test the predictive performance of our learning architecture and 

robustness of our final predictive model (generated by fine-tuning on all available data) by 

comparing surrogate models (i.e. models for each cross-validation fold) with the final predictive 

model, and after that focus on the human brain regions maximally contributing to the prediction of 

MCI subjects progressing to AD as suggested by the implemented framework. Finally, we present a 

qualitative analysis of these results discussing the degree of success (in comparison to previously 

tested machine learning approaches), limitations and future scope of the evaluated framework to 

study the diseased brain. 

METHODS 

Structural MRI Data 

Data used in the preparation of this article were obtained from the Alzheimer’s Disease 

Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). The ADNI was launched in 2003 as a 

public-private partnership, led by Principal Investigator Michael W. Weiner, MD. The primary goal 

of ADNI has been to test whether serial magnetic resonance imaging (MRI), positron emission 

tomography (PET), other biological markers, and clinical and neuropsychological assessment can 

be combined to measure the progression of mild cognitive impairment (MCI) and early Alzheimer’s 

disease (AD). For up-to-date information, see www.adni-info.org.  

This study worked with all structural MRI scans available in the ADNI 1/2/GO/3 phases (as of 

November 6, 2017) that passed specific class selection criterion and the image preprocessing 
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pipeline quality check. Normal aging controls with no conversions in a minimum of 3 years of 

follow-up from their baseline scans were retained in the cognitively normal (CN) class. Subjects 

diagnosed as MCI with no conversions/reversions in a minimum of 3 years of follow-up from their 

baseline visit were grouped into the stable MCI (sMCI) class, while those converting to AD (multiple 

conversions excluded) within 3 years were grouped into the progressive MCI (pMCI) class. Subjects 

diagnosed as AD at baseline and showing no reversions in a minimum of 2 years of follow-up were 

retained in the AD class. Only the baseline scan for each subject was used in all analyses. Detailed 

scanning parameters could be accessed from ADNI data resource webpage (ADNI MRI Protocols). A 

total number of 830 subjects passed this criterion with further elimination of only 2 subjects that 

failed the image preprocessing pipeline quality analysis thus resulting in a total sample size of 828 

subjects for this work. Figure 1 shows the clinical and demographic characterization of these 

studied CN, sMCI, pMCI and AD classes. 

Structural Data Pre-processing 

Image pre-processing was performed via the statistical parametric mapping 12 (SPM12) toolbox. 

The structural MRI images were segmented to identify the gray matter brain areas which were 

spatially normalized and finally smoothed using a 3D Gaussian kernel to 6 mm full width at half 

maximum (FWHM). The smoothed 3D gray matter images (with a voxel dimension of 160 x 195 x 

170) were fed into the deep learning model for diagnostic and prognostic classification. A quality 

analysis correlation check was conducted with the population mean thresholded image to eliminate 

outlier (poorly registered) scans. This quality check discarded only 2 subjects thus retaining 828 

out of the 830 subjects that satisfied the selection criterion which we use for the different 

diagnostic and prognostic classification tasks in this paper.  
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Feature and Class Scores Extraction 

A non-linear, deep residual neural network (ResNet) learning framework (He et al. 2016a) was 

used to extract a series of relatively lower dimensional features from the very high dimensional 

smoothed 3D images to enhance diagnostic classification as well as identify brain regions affecting 

progression from MCI to AD. Similar to the deep CNNs, the deep ResNets are small blocks of 

multiple convolutional and batch normalization layers followed by a non-linear activation function 

(typically a rectified linear unit approximated by max�0, x�). While traditional neural networks 

(NNs) learn to estimate a layer’s or a small stack of layers’ output activation (�) as a function (	) of 

the input image or activation (
) such that � �  	�
�, ResNets, on the other hand, feature shortcut 

identity mappings of input space so as to enable layers to learn incrementally, or in residual 

representations, with the activations approximated as � �  	�
�    ��
�  �  	�
�    
, where ���� 

is the identity function (He et al. 2016a, 2016b). As such, the latter layers in the ResNets learn not 

only from the output of the previous layer but also from the input to the preceding residual block, 

thus gaining extra information at each block in comparison to the traditional NNs. The shortcut 

connection approach in these networks is similar to that suggested in the “highway networks” 

(Srivastava, Greff, and Schmidhuber 2015), but differs in being parameter-free (i.e. shortcut 

connections are identity) as compared to highway networks where shortcut connections are data 

dependent and parameterized. It has been recently shown (Xie et al. 2017) that the aggregated 

transformations in this framework allow for substantially stronger representation powers in a 

homogenous, multi-branched architecture that strikingly requires setting a very small number of 

hyperparameters. We adapt this model to evaluate the architecture’s performance in pair-wise 

(binary), mixed-class (binary but using all data by fusing more similar classes hence using more 

data for training) and multi-class (4-way) diagnostic classifications as shown in Table 1. While we 

focus on the progression of the MCI class to the AD class, all other binary classification tasks were 
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undertaken to confirm appropriateness of learning trends (in terms of classification performance 

and class separability) in the diagnostic classification of the several disease stages. 

In this study, we use a modified form of an open-source Pytorch implementation of this learning 

framework (Pytorch Resnet Architecture 2017) evaluated for different depths, and reducing the 

final fully-connected layer to class probabilities to verify classification performance and 

appropriateness for the studied neuroimaging data. The 3D input data (smoothed gray matter 

maps) are fed into the deep learning ResNet framework (Figure 2) which has a series of 3D 

convolutional units (CUs), 3D batch-normalization units (BNUs) and non-linear activation units 

(Rectifier Linear Units or ReLUs) followed by a max-pooling unit (MPU) from where features are 

fed to the following residual blocks (RBs). Each RB has two small stacks of layers, also termed 

building blocks (BBs), with each BB having two CUs, two BNUs and 1 ReLU in the same specific 

order (CU-BNU-ReLU-CU-BNU). Following the original recommendation (Ioffe and Szegedy 2015) 

BNUs were adopted following every CU and before any activation functions. The activation at the 

output of the final residual block adder is fed into an average pooling (AP) unit for dimension 

reduction, and subsequently flattened (from 3D to 1D) to feed a fully connected (FC) layer featuring 

512 output nodes. This relatively lower dimensional flattened feature space at the output of the 

first FC layer (FC1) is fed into a second FC layer (FC2) to estimate the diagnostic class 

probabilities/scores.  

Training and testing routines were implemented on an NVIDIA CUDA parallel computing platform 

(accessing 3 independent servers each with 4 GeForce GTX 1080 11 GB GPUs) using GPU-

accelerated CUDA toolkit/compilation and Pytorch python package tensor libraries. The Adam 

stochastic optimization algorithm (Kingma and Ba 2015) was preferred for its computational 

efficiency, relatively low memory requirements, and suitability for problems with large 

data/parameters size. A batch size of 16, fixed learning rate parameter of 0.001 and L2 weight 

decay parameter of 0.01 were chosen for the final model selection, and all further classifier 
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performance and feature estimation routines based on a preliminary analysis on the CN vs. AD 

classification task that suggested (1) insignificant effect of batch-size on learner performance, and 

(2) the above values of learning rate and L2 weight decay parameter through a grid-search cross-

validation analysis. Due to the GPU device memory constraints, we tested only for batch sizes of 2, 

4, 8 and 16 and since batch-size did not noticeably affect performance, the maximum batch-size of 

16 was chosen to speed up computations (as compared to batch sizes 2, 4 and 8). Subsequently, 

ResNet’s performance for different model depths (number of residual blocks) was compared to 

choose the appropriate model depth for consistent comparison across several classification tasks as 

demonstrated in Table 1. 

Architecture Depth Selection, Regularization and Validation 

The ResNet architecture with different depths (D = 1, 2, 3, 4; where D is the number of residual 

blocks) was tested for diagnostic classification performance for the CN vs. AD classification task. We 

retained the architecture depth with the best performance as suggested in this analysis (D = 3) for 

all other classification tasks for consistent comparison. Figure 2 illustrates the modular structure of 

the selected framework, whereas Figure 3 shows a comparison of the model performances at 

different depths. As shown in Figure 2, following the MPU, this architecture featured three RBs 

followed by two FCUs; hence, in all, thirteen convolutional and two fully connected layers were 

used in this fifteen layer model. Use of BNUs, default L2 weight decay (regularization) in the Adam 

Optimizer, repeated stratified k-fold cross-validation for the diagnostic and prognostic classification 

tasks and early stopping were measures undertaken to prevent any overfitting and reduce 

classification performance bias. This chosen architecture was then used to extract the features and 

class probability scores for the different binary/mixed-class/multi-class classification tasks as 

discussed in the following section. 
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Diagnostic/Prognostic Classification Tasks 

Classification performance for the different binary diagnostic and prognostic classification tasks 

(CN vs. AD, CN vs. pMCI, sMCI vs. AD, sMCI vs. pMCI, CN vs. sMCI, and pMCI vs. AD) for the 4 studied 

groups was evaluated (Tasks TA1 through TA6 in Table 1). Additionally, mixed-class inter-MCI 

(Task TB: CN+sMCI vs. pMCI+AD; training on all CN and AD data plus 80% of sMCI and pMCI data; 

testing on 20% sMCI and pMCI data) and multi-class (Task TC: 4-way) classification tasks were 

performed to enhance classification performance and extract additional information than that 

conveyed by the binary classifiers respectively. Notably the mixed inter-MCI class classification task 

was evaluated to explore any additional benefits of domain transfer learning (Cheng et al. 2015) i.e. 

if training the classifier with more data samples (i.e. all CN and AD datasets) resulted in an 

improvement in the classification performance. While all other classification tasks were conducted 

to evaluate the framework performance as compared to frameworks used in similar studies in the 

recent literature, only the mixed/modified inter-MCI classification task that assumes the highest 

clinical relevance (in terms of learning about progression to AD) was focused on to seek evidence of 

the most affected brain areas while progressing to AD. All classification tasks were conducted using 

repeated (n = 10), stratified 5-fold cross-validation procedures. Classification performance metrics 

including accuracy, sensitivity, specificity, and balanced accuracy were computed, and additionally 

complemented by conducting the receiver operating characteristic (ROC) curve analysis to estimate 

the area under the curve (AUC) performance metric for the several undertaken classification tasks. 

Model Verification: Testing Filter Weights and Activations 

Following the preceding performance analysis of the several diagnostic and prognostic 

classification tasks, we focused only on the modified inter-MCI prognostic classification task (Table 

1, Task TB) for identification of the most discriminative brain regions in progression to AD. We will 

refer to the models trained for each cross-validation fold as surrogate models and fine-tune the 
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final predictive model on all data. In this iterative learning approach, the surrogate models were 

additionally regularized by use of a validation-error-based early stopping mechanism to avoid 

overfitting and impose control over the increase in generalization error. As such, the model training 

phase was simply terminated at a point (iteration number) whereon there was no significant 

increase in the model performance (in terms of validation accuracy). The number of epochs 

parameter suggested by the early stopping method was averaged over the cross-validation folds, 

and the final predictive model was run for this averaged parameter value to allow learning of the 

final predictive model in a totally unsupervised way. Once the final predictive model was generated, 

additional tests were performed on filter weights and output activations at the first convolutional 

layer for each of the surrogate models as well as the final predictive model to ensure proper 

training which we discuss next.  

During the training phase, the network iteratively learns the data and updates the filter weights in 

the multiple channels of convolutional layers to minimize the training error. Likewise, as in case of 

any CNN architecture, resembling (i.e. highly correlated or redundant) filters almost certainly 

indicate over-parametrization, or incorrect updating of the loss function and thus inappropriate 

learning directionality. Hence, we performed a similarity analysis on the weights of the 64 (size 3 x 

3 x 3) filters learnt at the first convolution layer as a simple sanity check. Next, while inference on 

discriminative brain regions was done from the features from the final predictive models that 

trained on all data, projections estimated from the surrogate models must ideally be similar to 

confirm similar learning trends i.e. robustness of the extracted features. To inspect this, we 

compared the activations at the output of the first convolutional layer (post batch-normalization 

and non-linear activation) for the multiple surrogate models with the final predictive model. 

Finally, the brain regions most discriminative of likely progression to AD were localized by 

projecting the sub-sampled mean activations at the output of the first convolutional layer (batch-

normalized and post non-linear activation) back to the brain space.  

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 10, 2018. ; https://doi.org/10.1101/470252doi: bioRxiv preprint 

https://doi.org/10.1101/470252
http://creativecommons.org/licenses/by-nc-nd/4.0/


RESULTS 

Architecture Depth Selection 

In a repeated (n=10), stratified 5-fold cross-validation framework, the CN and AD datasets were 

evaluated for 100 epochs. The stratified cross-validation procedure was performed on the pooled 

CN and AD classes to study the effect of adding depth to the implemented architecture (i.e. further 

convolutional layers or residual blocks). This analysis reported significant improvement in 

validation accuracy by a model that used 3 residual blocks (D3: depth = 3) as compared to a model 

that used 2 residual blocks (D2: depth = 2; p = 1.6996e-07) and a model that used 1 residual block 

(D1: depth = 1; p = 4.5633e-13). Adding another residual block (i.e. depth = 4) did not result in 

significant improvement in performance; hence, we’ve settled on the D3 model and validated it in 

the several classification/prediction tasks, as will be shown in the forthcoming sub-sections. In this 

particular analysis, the models were run for 100 epochs for each depth and used the exact same 

training and test datasets in each of the cross-validation folds for consistency in performance 

comparison. A comparison of training error, training loss and validation error for the different 

depths is shown in Figure 3A. Additionally, the 512-dimensional feature space at the output of the 

first fully connected layer in the ResNet model was projected onto a two-dimensional space using 

the t-distributed stochastic neighbor embedding (tSNE) algorithm (der Maaten et al. 2008) to 

visualize class separation differences with model order. We show projections from a surrogate 

model (from a sample cross-validation fold) for a sample epoch around which the D3 model clearly 

exhibits significant differences in validation accuracy (Figure 3B); projections from other surrogate 

model (from other cross-validation folds) and other epochs beyond the significant difference 

showing epoch could be expected to exhibit a similar pattern because of evidence from results in 

Figure 3A. 
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Binary Diagnostic/Prognostic Classification 

The performance of the validated (depth = 3) deep learning framework on pair-wise (binary) 

classification tasks was compared to identify how well the pMCI and AD populations separated 

from the CN and sMCI populations. These binary classification tasks were conducted using repeated 

(n = 10), stratified 5-fold cross-validation procedures and model training was conducted with an 

early stopping with a patience level of 20 epochs (20% of the set maximum number of epochs) to 

prevent overtraining the model. The results in Figure 4 reflect a clear trend with the average (cross-

validated over 50 folds) classification metrics for the classification of CN or sMCI classes from pMCI 

or AD classes distinctly higher than the average metrics for the CN vs. sMCI and pMCI vs. AD 

classification tasks. Specifically, for the first four classification tasks (CN vs. AD, CN vs. pMCI, sMCI 

vs. AD, and sMCI vs. pMCI), we report a cross-validated median accuracy of 91%, 86%, 86% and 

77% respectively. The reported sensitivity for these tasks is 85%, 79%, 81% and 71% respectively, 

whereas the reported specificity is 95%, 92%, 90% and 82% respectively. The appropriate 

separability trend across the different classes and genuinely high classification metrics as 

compared to previous findings in literature (reviewed recently in (Moradi et al. 2015 and Vieira et 

al., 2017) in such a large heterogenous sample clearly highlight the usefulness of the used deep 

learning model. 

For further introspection into the diagnostic ability of the binary classifiers, we estimated the 

classification-task-specific receiver operating characteristic (ROC) curves. A comparison of the area 

under the ROC curve (AUC) metric confirmed a similar trend as suggested in the previous analysis 

(Figure 4) as illustrated in Figure 5. We report a cross-validated AUC of 0.93 for CN vs. AD, 0.87 for 

CN vs. pMCI, 0.89 for sMCI vs. AD and 0.81 for the sMCI vs. pMCI classification tasks. These initial 

results indicate high suitability of the evaluated framework for our desired objective; further 

possible improvement in prediction of progression to AD was explored with the mixed-class 
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prognostic classification analysis as discussed in the next section. This is followed by a thorough, in-

depth comparison of our prediction performance with previous literature.   

Mixed-class Prognostic Classification 

The sMCI vs. pMCI classification task could be considered as the most clinically relevant task 

amongst the several binary classification tasks since identifying MCI subjects who are highly likely 

to progress to AD is very crucial; hence, in this specific analysis we focus on exploring ways to 

improve separability between these two classes. A recent study (Cheng et al. 2015) explored 

advantages of domain transfer learning to enhance MCI conversion prediction rates which is similar 

to what we pursue in the section. In general, training the learner with more data is highly likely to 

improve its classification/prediction performance on unseen data since the learning model 

assimilates the additional variability provided by the previously unseen datasets and adjusts its 

weights accordingly for more generalized training (i.e. decrease in generalization error). In a 

scenario where availability of MCI data is severely limited, we hypothesized that training the 

learner with all data from the CN and AD classes (or domains) together with some part of the two 

MCI classes (or domains), and then testing with the remaining part of the MCI classes (or domains) 

could enhance classification performance. For this analysis, we conducted the above discussed 

modified form of repeated (n=10) stratified 5-fold cross-validation and report significantly 

improved cross-validated median accuracy of 83%, sensitivity of 78%, and specificity of 87% 

(Figure 6A), and a cross-validated mean AUC of 0.88 (Figure 6B). The results clearly reflect 

substantial improvement (6% in accuracy, 7% in sensitivity, 5% in specificity and 7% in AUC) with 

the addition of domain transfer learning in the training phase. Finally, the performance of this 

modified inter-MCI case was confirmed as a significant improvement over a standard machine 

learning approach such as the classical support vector machine (SVM) classifier (p = 2.5762 x 10-8) 

applied on the same training/testing cross-validation folds . In this specific analysis, for estimating 

the performance of the SVM classifier, the classical univariate feature selection procedure using F-
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test (ANOVA) was implemented for dimension reduction following which the optimal value of the 

penalty (cost) parameter in the linear SVM was estimated. The boxplots for the accuracies for the 

different cross-validation folds using the Resnet and SVM models are shown in Figure 6C. 

Comparison with previous literature 

In this section, we compare the prediction performance of AD progression in our study (modified 

inter-MCI task) to previous deep learning work in recent literature (Table 2). In order to identify 

previous studies that used deep learning on neuroimaging data to study psychiatric or neurological 

disorders, we conducted a search on PubMed (May 25, 2018) using search terms very similar to a 

recent review (Vieira, Pinaya, and Mechelli 2017). Specifically, the following search terms were 

used: (“deep learning” OR “deep architecture” OR “artificial neural network” OR “autoencoder” OR 

“convolutional neural network” OR “deep belief network”) AND (neurology OR neurological OR 

psychiatry OR psychiatric OR diagnosis OR prediction OR prognosis OR outcome) AND 

(neuroimaging OR MRI OR “magnetic resonance imaging” OR “fMRI” OR “functional magnetic 

resonance imaging” OR PET OR “positron emission tomography”). Following this, we manually 

screened these articles to identify the relevant subset of studies that applied deep learning to study 

MCI to AD progression. A comparison of prediction using MRI data only confirms the superior 

performance of our method as compared to other undertaken approaches. Using just MRI data, the 

prediction accuracy obtained in our study (82.7%) is more than 7% greater than the second best 

performer (using MRI data only) that used a multiscale deep NN in a very recent study (Lu et al. 

2018). Considering use of multiple modalities, only H. Il Suk et al., 2015 (83.3% using MRI, PET and 

CSF modalities) and Lu et al., 2018 (82.93% using MRI and PET) report slightly higher performance 

as compared to our study. Interestingly, despite using multiple modalities, the methods used in 

these two particular studies report only marginal improvements (0.6% and 0.2% respectively) over 

our unimodal analysis. Working with multiple modalities generally enhances the prediction 

performance (variably from 3% to greater than 20% in studies included in Table 2), so it would be 
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reasonable to expect further improvement in prediction performance through our method if 

complimentary information from an additional modality is leveraged. 

Furthermore, Moradi et al., 2015 (see Table 7 in their manuscript) and Korolev et al., 2016 (see 

Table3 in their manuscript) did extensive comparisons of other (non-deep-learning) studies and 

showed their respective approaches to result in better precision than other approaches in previous 

literature. Moradi et al. 2015 studied progression with ADNI data (large sample of 825 subjects) 

using a regularized logistic regression approach to report classification accuracy of 74% using MRI 

biomarker only and 82% using their aggregate biomarker that used the patient age and clinical 

scores as features in addition to the MRI biomarker. Korolev et al. 2016 worked with only ADNI-1 

MCI subjects (n = 259) to predict progression to AD from MCI using a probabilistic, kernel-based 

pattern classification approach to report a prediction accuracy of 79.9% using MRI and clinical 

(cognitive and functional) scores. Our method predicted more accurately (82.7%) using a large 

sample of 828 subjects (MRI data alone) than these two multimodal, non-deep-learning studies and 

all studies reviewed in these two studies. 

Multi-class (4-way) Diagnostic/Prognostic Classification 

For the multi-class (4-way) case, the learning framework scored a cross-validated median accuracy 

of 54% that is higher than recent studies evaluating such a 4-way classification (as reviewed in 

Table 2 in Vieira, Pinaya, and Mechelli 2017). Although this accuracy level is substantially higher 

than chance (25%), the appropriateness of the data trends learnt in this much harder classification 

problem was further confirmed by in-depth ROC and feature projection analyses as discussed next. 

As an extension of binary ROC analysis, for each class, we estimated a single ROC curve by 

comparing it to all other classes (i.e. one vs all comparison). ROC curves for the multi-class case can 

also be estimated by micro-averaging which measures true and false positive rates by considering 

each element of each class as a binary prediction, or by macro-averaging which essentially averages 
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over the several class-specific classification metrics. In this analysis, the AD and CN classes reported 

a higher AUC followed by the micro-averaged and macro-average cases, whereas the pMCI and 

sMCI classes showed lower AUC (Figure 7A).  

In the multi-class feature projection analyses (Figure 7B and 7C), the 512-dimensional features at 

the output of the first fully-connected layer in the employed framework were projected onto a two-

dimensional space using the tSNE algorithm (der Maaten et al. 2008). The tSNE algorithm embeds 

similar observations as nearby points and non-similar observations as distant points with high 

probability; so more similar classes could be expected to cluster in vicinity of each other in the 

projection space. This projection analysis was performed to confirm the learning directionality of 

validated models in our multi-class classification case expecting majority observations for more 

similar classes being projected/clustered together. Figure 7B demonstrates projections from a 

sample surrogate model (i.e. model validated for a sample cross-validation fold). Although the 

classes are not separable in the projection space, yet a clear pattern can be traced easily across the 

projection spectrum. More specifically, we can observe classes ordered in increasing severity of 

disease from left to right (i.e. CN, sMCI, pMCI and AD in this specific order) although some outlier 

observations do exist. The disease severity or the class pattern is further confirmed by coloring the 

same two-dimensional projections (as in Figure 7B) with the six clinical (cognitive and functional) 

scores (Figure 7C). The MMSE and RAVLT clinical scores reveal a clear increase across the spectrum 

(left through right), whereas the FAQ, CDRSB, ADAS11 and ADAS13 clinical scores (by nature of 

score characterization) reveal a clear decrease across the same spectrum.  

Model Validation for the Mixed Class (modified inter-MCI) Classification Task 

The mixed class (i.e. modified sMCI vs. pMCI) binary classification task was focussed on to identify 

the most discriminative brain regions in early AD. To ensure proper learning in the training phase, 

additional tests were performed to filter weights and output activations at the first convolutional 
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layer. As in the case of any CNN architecture, similar (i.e. highly correlated) filters almost certainly 

indicate incorrect convergence of the loss function and thus an inappropriate local minimum. To 

control for that, we performed a similarity analysis on the weights of the 64 (size 3 x 3 x 3) filters 

learnt at the first convolution layer as a sanity check. More specifically, the filter weights for each of 

the channels in the first convolutional layer were compared pair-wise in each of the 50 surrogate 

models as well as the final predictive model. Boxplots in columns 1 to 50 in Figure 8A show the 

pair-wise correlations of filter weights for each of the 50 surroagte models, whereas those for the 

final predictive model are shown in the boxplot in column 51. Since low pair-wise correlations in 

the learnt 64 filters in each of these 51 models were observed, it can be concluded that the trained 

model indeed learnt the local minima. 

While inference on discriminative brain regions was done from the features of the final predictive 

models that were trained on all data, ideally, projections of data samples into the representation 

space estimated by the surrogate models must be similar to confirm similar learning trends and 

robustness of the extracted features. For this comparison, the final predictive model and the 50 

surrogate models for this classification task were compared in the mean activations across the 64 

channels at the output of the first convolutional layer (batch-normalized and post non-linear 

activation). A pairwise similarity (i.e. correlation) comparison of the 3D activation maps across 

these 51 models is shown on the left in Figure 8B, whereas the comparison of the similarity in 

activation maps for the 50 surrogate models to the activation maps from the final predictive model 

is shown on the right in the same panel. In both cases, a very high median correlation value was 

observed thus confirming similar discriminative features extracted across different surrogate 

models and the final predictive model.  
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Localizing Abnormalities: Discriminative Brain Regions 

Peak activations of the identified brain regions which are most discriminative of progression of MCI 

to AD were localized by projecting the sub-sampled mean activations at the output of the first 

convolutional layer (batch-normalized and post non-linear activation) back to the brain space. 

Notably, the activations at the output of the first convolutional layer could be expected to be fine-

tuned to small degrees in the deeper layers. However, we restricted our analysis to the first layer 

since there is a substantial loss of spatial resolution as we go deeper into the networks, and 

estimating and back-propagating the relative importance of the features at each layer needs 

dedicated developmental efforts that are outside the scope of the current work. Hence, we restrict 

our abnormality localization analysis to features at the output of the first convolutional layer.  The 

brain regions at the peak activations were identified in correspondance to the AAL brain atlas. 

Figure 8C illustrates the spatial maps at the most activated saggital, coronal and axial slices as 

tracked from the final predictive model for the modified sMCI vs. pMCI classification task. In this 

figure, hotter (towards the red spectrum) colors imply higher mean activations, while cooler 

(towards the blue spectrum) colors imply lower mean activations. Specifically, peak activations 

were observed in the sub-cortical regions including hippocampus, amygdala, caudate nucleus, 

putamen and thalamus, cortical regions including anterior cingulate gyrus and middle cingulate 

gyrus, temporal regions including fusiform gyrus, temporal pole, and temporal inferior gyrus, 

frontal superior/middle gyrus, cerebellum, parietal regions including angular gyrus, precuneus and 

supramarginal gyrus, and occipital regions including calcarine, cuneus and lingual gyrus. In the 

discussion section, we will discuss these discriminative brain regions in correspondance to several 

previously reported findings in the AD/MCI literature.  
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DISCUSSION 

In this work, we extensively test the ability of the ResNets to learn abstract neuroanatomical 

alterations in structural MRI data. The tested deep learning architecture provided close to the state 

of the art prognostic classification performance following which we focused on the inter-MCI 

classification task to predict the MCI sub-group who would progress to AD within three years. The 

principle progression analysis of our work is the mixed-class (i.e. modified) inter-MCI classification 

task where we used principles of domain transfer learning (additionally training with data from 

other domains). This particular analysis bears high clinical relevance. Importantly, on the MRI data 

alone we achieved classification accuracy of 82.7% which is a significant improvement over state of 

the art with either MRI based (75.44% as reported in Lu et al., 2018) and very close to state of the 

art performance with multimodal results (83.3% as reported in H. Il Suk et al., 2015). The accuracy 

in this modified inter-MCI class classification task is significantly higher than that in the standard 

inter-MCI case which suggests the performance improvement was also enabled by additional 

training information acquired from other (AD and CN) domains. Furthermore, the learning 

directionality and trends were verified in the multiclass case by projecting the features at output of 

the first fully-connected layer onto a two-dimensional surface. The projection/clustering class 

sequence in Figure 7B and 7C support the appropriateness of the extracted features and their 

association with the clinical scores, thus confirming the high learning capacity and potential of this 

deep architecture. The learning directionality and trends were further validated by additionally 

testing for similarity in the filter weights and activations at the first convolutional layer (Figure 8A 

and 8B) for the different surrogate models and the final predictive model. Notably, the reported 

performance metrics were obtained from a large dataset (n = 828), a rigorous cross-validation 

procedure featuring 10 repeats and a sufficiently large (20%) test size in each of the folds (i.e. a 

total number of 50 large-sized stratified folds). These results evince that the ResNets can be 

considered well-suited to neuroimaging data and future studies to uncover further potential of such 
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or similar architectures must be undertaken. Next, we discuss the discriminative brain regions 

suggested by the ResNet in context to previous findings in literature. 

Discriminative brain regions 

AD is characterized by serious trouble in performing familiar tasks, solving problems, planning, 

reasoning, judgement and thinking, and generally features increased confusion and discomfort in 

speech, vision, reading, focusing, and spatial or temporal perception. Struggling with these 

symptoms, the person undergoes mood and personality changes and increasingly loses interest in 

favorite activities and social life. A sizable amount of previous work has related the above 

mentioned cognitive, behavioral and emotional phenomenon to specific structural changes in the 

brain, which we discuss next in particular context to the discriminative brain regions identified by 

the ResNet framework.  

The hippocampus and amygdala subcortical regions in the medial temporal lobe have been 

consistently reported as most prominent discriminative regions in early AD. Hippocampus is 

strongly related to memory formation and recall, and recent evidence suggests more pronounced 

hippocampal atrophy in the progressive MCI class (Braak and Braak 1991b; Burton et al. 2009; 

Costafreda et al. 2011; Devanand et al. 2007; Kantarci et al. 2009; Risacher et al. 2009; Visser et al. 

2002; Walhovd et al. 2010). Similarly, structural changes in amygdala, a brain region mainly 

responsible for emotional experiences and expressions, have been related to personality changes, 

for example, increased irritability and anxiety, in AD (Poulin et al. 2011; Unger et al. 1991; Whitwell 

et al. 2008). Other highly activated subcortical regions included thalamus and the dorsal striatum 

(putamen and caudate). While the main function of thalamus is to relay motor and sensory signals 

to the cerebral cortex, and regulate consciousness and sleep, the dorsal striatum is believed to 

contribute directly to decision-making subjective to desired goals. Observed aberrations in the 

dorsal striatum (putamen and caudate) and thalamus regions are typical of subjects with AD 
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(Aggleton et al. 2016; Braak and Braak 1991a; Cho et al. 2014; Jiji et al. 2013; De Jong et al. 2008) 

with impairments in the thalamus in AD associated to deteriorating consciousness, bodily 

movement and coordination, attentional, and motivation levels and impairments in the dorsal 

striatum associated to very slow or absent decision-making abilities.  

Apart from the above widely studied and highly discriminative medial temporal lobe, we also 

report peak activations in the fusiform gyrus, inferior temporal gyrus and temporal pole regions on 

the temporal lobe. These regions have been known to be associated with pattern (e.g. face, body, 

object, word, color, etc.) recognition and reported to be affected by AD in a few previous studies 

(Chan et al. 2001; Galton et al. 2011). In the frontal lobe, peak activations were observed in the 

superior and middle frontal gyrus. These regions are also associated with decision making and 

problem solving, reportedly highly damaged in AD (Johnson et al. 2005; Sluimer et al. 2009; Whitwell 

et al. 2008) and are believed to lead to higher lethargy levels, bizarre/inappropriate behavior and 

situations of being stuck in a certain condition (repeating same things over and over again).  

Besides the above discussed frontotemporal networks, AD is characterized by decline in important 

parietal networks such as precuneus (Apostolova and Thompson 2008; Bailly et al. 2015; Fennema-

Notestine et al. 2009; Scahill et al. 2002; Walhovd et al. 2010; Whitwell et al. 2008), and the angular 

and supramarginal gyrus regions (Walhovd et al. 2010; Yun, Kwak, and Lee 2015). Cerebellum, a 

critical brain region in several motor, cognitive and behavioral functions, is also more recently 

being increasingly suggested as a direct contributor to cognitive and neuropsychiatric deficits in AD 

(Guo et al. 2016; Jacobs et al. 2017; Schmahmann 2016) with deteriorating cerebellum health 

resulting in several symptoms such as lack of balance and coordination, tremors, slurred speech 

and abnormal eye movements in the elderly. 

Cortical regions including anterior cingulate gyrus and middle cingulate gyrus that are primarily 

responsible for higher cognitive (i.e. decision-making) and emotional (e.g. social interactions, 
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empathy, etc.) processes have also been suggested to be highly vulnerable in AD (Bailly et al. 2015; 

Fennema-Notestine et al. 2009; Huang et al. 2002; Jones et al. 2006; Killiany et al. 2000; Scahill et al. 

2002). Finally, damages to the occipital lobe are associated with increased misinterpretations of the 

surrounding environment (e.g. hallucinations, illusions, misidentification, misperceptions, etc.) and 

occipital regions comprising the calcarine, cuneus and lingual gyrus regions have indeed been 

reported to be compromised in progression to AD. 

The above discussed findings add further evidence that the localized abnormal patterns in the brain 

structure could play a significant role in prediction of early AD biomarkers and are of potential 

clinical application. In fact, a few of the discriminative regions that we report are rarely used as 

prognostic biomarkers to study conversion of MCI to AD; our work and the citied literature in this 

particular discussion provide a compelling evidence of including these additional biomarkers to 

allow for a complete characterization of the structural changes in AD progression.  

Limitations and future scope 

Here we note some basic limitations of our work that could be addressed in the future depending 

on algorithmic computational tractability, and availability of data resources and data processing 

algorithms. As with other neuroimaging studies, the foremost limitation is a limited training data 

size. In generic image processing applications, this limitation is often addressed with data 

augmentation procedures by using simple rotation, translation, scaling and other data 

transformations (also see Castro et al., 2015 and Ulloa et al., 2015 for more elaborate data 

augmentation examples with structural MRI). We expect even further increases in performance 

with employing such techniques in the future work. This broadens perspectives for our models that 

are already performing at or above the state of the art. Interestingly, a recent study  (Casanova, Hsu, 

and Espeland 2012) demonstrated an increase in classification performance with increase in 

sample size using ADNI structural MRI data. Similarly, in our work as well, we saw a substantial 
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increase in performance with more training data being fed to the ResNet framework in the modified 

inter-MCI class classification task as compared to the standard inter-MCI class classification task. 

This makes a strong case to test use of multiple datasets to extract features in a pooled or separate 

fashion, and then use the pooled or separate information to train the machine learning framework. 

With increasing data availability and standardization in data preprocessing and pooling 

procedures, further substantial improvement in diagnostic and/or prognostic classification 

performance could be expected in future multi-study deep learning research efforts. 

Due to the computationally expensive nature of training deep CNNs, few limitations in regards to 

computational tractability within realistic study time remain. This tends to restrict extensive fine-

tuning of each involved hyperparameter through random or grid search analysis on multiple 

hyperparameters and additionally backing up statistical trends using methods such as Monte-Carlo. 

As such, the most important hyperparameters must be prioritized and optimized to estimate 

generic performance trends of the algorithm within the realistic study period. For this specific 

work, we optimized the initial learning rate and L2 weight decay parameter on a sample cross-

validation fold using extensive grid analysis, and retained the values for other dataset partitions. 

Although the same hyperparameters would likely achieve close to actual performance on other data 

folds, yet this fine-tuning could have a small effect on the performance of the respective surrogate 

models (e.g. reported performance metrics could be slightly lower than the original) but also on 

that of the final predictive model. It must be noted that this limitation is for performance 

quantification only; it is least likely to affect the qualitative analysis (e.g. localizing discriminative 

brain regions) by a significant margin.  

Choosing stopping criterion for learning a classifier typically involves a tradeoff between 

generalization error and learning time. While this study approximated the stopping criterion with 

information across all cross-validation folds, further detailed introspection using relatively 

unestablished but promising variants of early stopping criterion could be explored in future 
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investigations (Prechelt 1998). Similarly, effect of algorithmic variations in bottleneck residual 

block structures (size and depth), training time, and loss optimization procedures could be 

understood in future studies to further enhance the prediction performance. Finally, while we focus 

on activations at the output of the first convolutional layer, we could expect sequential fine-tuning 

of such activations as we move down in the architecture. This however happens at the cost of 

substantial loss of spatial resolution. Independent frameworks are now being proposed to study 

multi-layer relevance propagation (Bach et al. 2015; Lapuschkin et al. 2016) in 2D image processing 

applications using deep CNN or ResNet frameworks. In fact, multi-layer relevance propagation is 

currently an independent, rich research topic as it is equally important to understand/interpret the 

predictions as predicting itself, and even more so in medical applications. However, interpreting 

these deep non-linear models and optimally representing extracted features is not trivial. In 

absence of a framework to allow for fine-tuned optimal representations of the features/activations 

in the used architecture, we restricted our analysis to the activations at the first convolutional layer 

as these representations could be considered as a good representation of the discriminative 

features that are further fine-tuned to small degrees at each layer. Nonetheless, it would be 

interesting to explore any significant activation changes with more deep relevance propagation 

frameworks once they become available.  

Several other approaches for enhancing predictive performance of AD progression could be 

explored in future work. Diagnosis for the subjects is currently established through clinical scores 

but diagnosis-specific neuroanatomical or neurofunctional abnormalities might actually not show 

in each subject in each class due to the heterogeneous nature of age-related dementia. In such a 

scenario, it could be interesting to constrain this heterogeneity by training the machine learning 

model on the most homogeneous samples (i.e. samples most representative of the given class) and 

then evaluate change in the performance of the diagnostic/prognostic classification or change in 

the feature space of interest. Another approach could be to fuse the low-dimensional clinical scores 
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used to make the clinical diagnosis with the MRI features space to further enrich feature learning 

process. This approach has reportedly resulted in enhanced performance in few studies as also 

suggested in Table 2. Other widely used low dimensional features chosen by experts (e.g. 

volumetric MRI features or similar features from other modalities) could also further enhance 

diagnostic/prognostic performance. 

Recent literature reflects ample evidence of advantages of multimodal studies in understanding 

brain structure and/or function and decode brain complexities (Abrol, Rashid, et al. 2017; Calhoun 

and Adali 2009; Calhoun and Sui 2016). Indeed, few previous multimodal studies have reported 

prediction performance improvements due to training the same machine learning framework with 

multiple modalities as compared to a single studied modality for studying AD/MCI (Lorenzi et al. 

2016; Toledo et al. 2013; Zhang et al. 2011) as is also evident from Table 2. Due to this evidence 

from other explored machine learning neuroimaging studies, a performance improvement is highly 

likely if features for multiple modalities are extracted through the ResNet framework and further 

fused using a data fusion algorithm to generate a collective feature space for predicting chances of 

progression to AD.  

Interestingly, fusion of features from multiple structural (MRI, PET and CSF) modalities (structure-

structure fusion) has been much more frequently explored than fusion of feature space from one or 

more of these structural modalities to feature space from a functional neuroimaging modality 

(structure-function fusion) such as fMRI. One of the reasons for the relatively less explored 

structure-function fusion in AD/MCI literature could be the significantly smaller number of fMRI 

datasets as compared to data from the structural modalities. Nonetheless, structure-function fusion 

could be highly interesting and several robust fMRI features such as amplitude of low frequency 

fluctuation (ALFF) maps, or static/time-varying functional connectivity (FC) maps exist. Of specific 

interest in fMRI is the time-varying FC feature space that have recently been shown to be replicable 

(Abrol et al. 2016), statistically significant and robust against variation in data grouping, 
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decomposition and analysis methods (Abrol, Damaraju, et al. 2017), and also more discriminative of 

diseased brain conditions (Rashid et al. 2016) than static FC. As such, future works featuring such 

promising deep learning models could seek performance gains not only from structure-structure 

fusion coupled with information in cognitive/functional scores but with structure-function fusion 

as well. 

Conclusion 

This work shows that the ResNet architecture showed performance beyond the state of the art in 

predicting progression to AD using MRI data alone, and within 1% of the state of art performance 

considering multimodal studies as well. This clearly reflects the high potential of this deep 

architecture for studying progression to AD and neuroimaging data in a broader sense. The 

prognostic classification performance was exceptional despite several limitations as outlined in the 

discussion section and addressing these limitations in future work could highly likely result in 

further improvement in performance of this relatively newer machine learning framework. The 

most discriminative brain regions as highlighted by the ResNet framework confer with previous 

findings in AD/MCI literature to a high degree, and regions for which there is insufficient evidence 

must be investigated further to enhance the set of potential AD biomarkers. The ResNet 

architecture could be explored in future for learning from multiple modalities for investigating any 

possible improvements in diagnostic and prognostic classification and identification of more 

specific multi-modal biomarkers for AD or other brain conditions. We conclude that our results 

further strengthen the expectations and high likelihood of discovery of modifiable risk factors for 

understanding biomarkers of progression to AD early, especially through use of advanced 

neuroimaging data processing methods such as the one explored in this work. 
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FIGURE LEGENDS 

Figure 1: A comparison of data demographics and average clinical scores for the studied classes. 

This study included all subjects in the ADNI repository that passed the minimum selection criterion 

(minimum follow-up time, conversion or reversion rules) and pre-processing qualitative analysis. 

Only the baseline scan for each subject was used for all analyses in this study. Clinical scores for 

diagnosis: MMSE: Mini-Mental State Exam; FAQ: Functional Activities Questionnaire; CDRSB: 

Clinical Dementia Rating Sum of Boxes; ADAS: Alzheimer’s Disease Assessment Scale; RAVLT: Rey 

Auditory Verbal Learning Test. 

Figure 2: A deep residual neural network learning framework is composed of multiple residual 

blocks that are small stacks of convolutional and batch normalization layers followed by non-linear 

activation functions such as rectified linear units. In this study, as suggested by the data (Figure 3), 

we use a model with 3 residual layers for evaluating diagnositic classification performance and 

progression to AD. 

Figure 3: (A) Repeated (n=10) stratified k-fold (k = 5) cross-validation was performed on the 

pooled cognitively normal (CN) and Alzheimer’s Disease (AD) classes to study the effect of adding 

depth (i.e. adding further convolutional layers or residual blocks) in the implemented framework. 

Significant improvement in validation accuracy was reported by a model that used 3 residual blocks 

(D3: depth = 3) as compared to a model that used 2 residual blocks (D2: depth = 2; p = 1.6996e-07) 

and a model that used 1 residual block (D1: depth = 1; p = 4.5633e-13). Adding another residual 

block (i.e. depth = 4) did not result in a significant improvement in performance; hence, we’ve 

settled on the D3 model and validated it in the several classification/prediction tasks for a 

consistent comparison. For this specific analysis, all models were run for 100 epochs and used the 

exact same training and test datasets in each of the cross-validation folds for consistency in 

performance comparison. (B) The feature spaces at output of the first fully connected layer in the 
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three surrogate models (for a sample cross-validation fold at the epoch demonstrated by the 

vertical black line in Figure 3A) were projected onto a two-dimensional space demonstrate 

additional separation enabled by addition of residual blocks in the ‘D3’ model as compared to the 

‘D2’ and ‘D1’ models. The ‘Tr’ abbrevation corresponds to the training samples whereas ‘Te’ 

corresponds to the samples used to test the learnt model. 

Figure 4: Six possible binary diagnostic and prognostic classification tasks from the four studied 

classes were considered. A repeated (n = 10), stratified 5-fold cross-validation procedure was 

condicted for each of these classification tasks. The ResNet framework was trained independently 

for each classification task for a maximum of 100 epochs but with an early stopping with a patience 

level of 20 epochs (20% of the set maximum number of epochs) to prevent overtraining the model. 

Classification performance was quantified using the accuracy, sensitivity, specificity, and balanced 

accuracy metrics. Each boxplot shows a spread of the specific reported metric over the 50 cross-

validation folds. The first four classification tasks in specific order as in the legend (CN vs. AD, CN 

vs. pMCI, sMCI vs. AD, and sMCI vs. pMCI) could be considered more clinically relevant and reported 

a cross-validated median accuracy of 91%, 86%, 86% and 77% respectively, sensitivity of 85%, 

79%, 81% and 71% respectively, and specificity of 95%, 92%, 90% and 82% respectively. The 

performance in the binary classification tasks is comparable or better than previously assessed 

machine learning architectures while the number of samples is much higher in this specific study. 

We further explore possible improvements in prediction of progression to AD in the ‘Mixed-class 

prognostic classification’ section. 

Figure 5: Receiver operating characteristic (ROC) curves were estimated for each of the 

classification tasks to further evaluate the diagnostic ability of the trained ResNet framework. As 

expected, the reported area under the curve (AUC) metric follows a similar trend as in Figure 4 thus 

further adding evidence to the superior performance of the tested architecture for the undertaken 

analysis. 
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Figure 6: Mixed-Class Prognosis Classification. A modified form of repeated (n = 10), stratified 5-

fold cross-validation procedure was conducted to evaluate the separability of the two MCI sub-

classes. Hypothesizing an improvement with an increase in amount of training data provided by 

other classes (analogous to domain transfer learning), the learner was trained with all datasets 

from the CN and AD classes (or domains) in addition to the crossvalidation-fold-respective training 

sMCI/pMCI datasets followed by testing on the crossvalidation-fold-respective testing sMCI/pMCI 

datasets. (A) and (B) A significant improvement for all studied classification metrics (6% in 

accuracy, 7% in sensitivity, 5% in specificity and 7% in AUC) was observed for this mixed-class 

classification task as compared to the standard inter-MCI class classification task (i.e. sMCI vs. pMCI 

classification task as shown in Figure 4 and bottom left panel in Figure 5). (C) The mixed-class 

classification task reported a significant performance improvement over the classical SVM model 

with a p-value of 2.5762e-8. 

Figure 7: Multi-class ROC and Classification Projection Analysis. (A) For the multi-class 

classification, ROC analysis for each class was performed by comparing observations from that class 

to all other classes (i.e. one vs all comparison). Additionally, micro-averaged and macro-averaged 

ROC estimates were computed to find singular performance metrics for multi-class classification. 

Higher AUC was reported by the AD and CN classes followed by the micro-averaged and macro-

average cases, while both MCI classes reported lower AUC. (B) and (C) A feature projection analysis 

was conducted to confirm appropriateness of the learning directionality in the multi-class 

classification task. In this analysis, the features at the output of the first fully-connected layer in a 

sample surrogate multi-class model were projected onto a two-dimensional space using the tSNE 

algorithm. Barring few outliers, the projections of the observations are appropriately ordered by 

disease severity in terms of diagnostic label (panel B) and clinical scores (panel C). In panel B, the 

‘Tr’ abbrevation in the figure legend corresponds to the training samples whereas ‘Te’ corresponds 

to the test samples. In panel C, the following clinical scores were used:- MMSE: Mini-Mental State 
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Exam, FAQ: Functional Activities Questionnaire, CDRSB: Clinical Dementia Rating Sum of Boxes, 

ADAS: Alzheimer’s Disease Assessment Scale, and RAVLT: Rey Auditory Verbal Learning Test. 

Figure 8: (A) The filters for the first convolutional layer were compared in each of the 50 surrogate 

models (columns 1 to 50 in panel A) as well as the final predictive model (column 51 in panel A) for 

the modified sMCI vs. pMCI (i.e. mixed-class) classification task. Low pair-wise correlations in the 

learnt 64 filters in each of these 51 models confirms appropriate learning directionality of the 

mixed-class framework in the training phase. (B) The mean activations/features at the output of the 

first convolution layer (normalized and post non-linear activation) were projected back to the brain 

space to localize activations contributing most to the classification. The 3D activation maps were 

compared pairwise-across the 51 models pairwise (correlation boxplot on left in panel B); 

additionally, the 3D activation maps for the 50 surrogate models were compared to the maps from 

the final predictive model (correlation boxplot on right in panel B). In both cases, a very high 

median correlation value was observed thus confirming similar features being extracted across the 

different models. (C) This panel shows the spatial maps of the brain regions corresponding to the 

peak activations identified by the final predictive model. Hotter (towards red) color imply higher 

mean activations, while cooler (towards blue) colors imply lower mean activations. The 

discriminative brain regions at these peak activations were identified in correspondence to the AAL 

brain atlas. 
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TABLE 1 
 

Table 1: Diagnostic/prognostic classification tasks evaluated through the deep ResNet architecture. Standardized 10-repeat, 5-
fold (stratified) cross-validation (CV) framework was employed on each of the mentioned tasks except for the mixed-class task 
(Task TB below) that varied in that the AD and CN classes were also used for training but only the MCI population was used for 
testing. Classification task TC corresponds to the multi-class classification task where a four-way classification was performed 
using the same standardized cross-validation procedure. 

Task   Class 1 Class 2 Class 3 Class 4 5-fold stratified CV (10 repeats) 

TA1   CN AD - - Standard Binary 

TA2   CN pMCI - - Standard Binary 

TA3   sMCI AD - - Standard Binary 

TA4   sMCI pMCI - - Standard Binary 

TA5   CN sMCI - - Standard Binary 

TA6   pMCI AD - - Standard Binary 

TB   CN, sMCI pMCI, AD - - Modified Binary; Split MCI only 

TC   CN sMCI pMCI AD Standard 4-way 
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TABLE 2 
 

Table 2: Comparison of MCI to AD prediction accuracy using ADNI dataset.  

Study Sample Size Conversion 

Period 

Architecture Cross-validation Accuracy (%) 

This work CN = 237 

sMCI = 245 
pMCI = 189 

AD = 157 

 

36 months 

 

Residual  

Neural Network 

Repeated (n = 10) 

Stratified 5-Fold  

82.7 (MRI) 

H. Il Suk et al., 

2015 
 

CN = 52 

sMCI = 56 
pMCI = 43 

AD = 51 

 

18 Months Stacked Auto-Encoder Repeated (n = 10) 

10-Fold 

69.3 (MRI) 

83.3 (MRI+PET+CSF) 

H.-I. Suk, Lee, 

& Shen, 2015 

 

CN = 52 

sMCI = 56 

pMCI = 43 
AD = 51 

 
CN = 229 

sMCI = 236 

pMCI = 167 
AD = 198 

 

18 Months 

 

 
 

 
18 Months 

 

Deep sparse multi-task 

learning 

 
 

 
Deep sparse multi-task 

learning 

Repeated (n = 10) 

10-Fold 

 
 

 
Repeated (n = 10) 

10-Fold 

69.8 (MRI) 

74.2 (MRI+PET) 

 
 

 
73.9 (MRI) 

Li et al., 2015 CN = 52 

sMCI = 56 

pMCI = 43 
AD = 51 

 

18 Months 

 

Multi-layer perceptron Repeated (n = 10) 

10-Fold 

57.4 (MRI+PET+CSF) 

H. Il Suk & 
Shen, 2013b 

CN = 52 
sMCI = 56 

pMCI = 43 
AD = 51 

 

18 Months 
 

Stacked Auto-Encoder + 
Multi-task learning 

Repeated (n = 10) 
10-Fold 

55 (MRI) 
75.8 (MRI+PET+CSF 

         +SCORES) 

H.-I. Suk, Lee, 
Shen, & 

Initiative, 

2017 

CN = 186 
sMCI = 167 

pMCI = 226 

AD = 226 
 

-- Same -- 
 

18 Months Multi-Output Linear 
Regression + Deep 

Convolution Neural 

Network (CNN) 
 

Joint Linear and 
Logistic Regression + 

Deep CNN 

Repeated (n = 10) 
10-Fold 

 

 
 

Repeated (n = 10) 
10-Fold 

 

 

73.28 (MRI+SCORES) 
 

 

 
74.82 (MRI+SCORES) 

Shi, Zheng, Li, 

Zhang, & Ying, 
2018 

CN = 52 

sMCI = 56 
pMCI = 43 

AD = 51 

 

18 Months Stacked Deep 

Polynomial Network 

Repeated (n = 5)  

10-Fold 
 

78.88 (MRI+PET) 

H. Il Suk, Lee, 

& Shen, 2014 

CN = 101 

sMCI = 128 

pMCI = 76 
AD = 93 

 

Unmentioned Deep Boltzmann 

Machine 

10-Fold 72.42 (MRI) 

75.92 (MRI+PET) 

Lu, Popuri, 

Ding, 

Balachandar, 
& Beg, 2018 

CN = 360 

sMCI = 409 

pMCI = 217 
AD = 238 

0 to 36 

Months 

Multiscale Deep Neural 

Network 

10-Fold 75.44 (MRI) 

82.93 (MRI+PET) 
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45.7
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1.9
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3D Convolutional Unit 

3D Batch Normalization Unit 

Rectifier Linear Unit 

Max Pooling (MP) Unit 

Average Pooling (AP) Unit 

Fully Connected (FC) Unit 
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3D Gray  
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Increasing Depth (D) by Residual Blocks 
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A. 

B. 
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A. B. C. 
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C. 

A. B. 

MMSE FAQ ADAS11

RAVLT ADAS13CDRSB
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A. 

1:50 - Surrogate Models (SMs) ; 51 - Predictive Model (PM)

B. 

SMs + PM

(Pair-wise)

SMs vs. PM
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