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Abstract:  

Rapid evolution of advantageous traits following abrupt environmental change can help 
populations grow and avoid extinction through evolutionary rescue. Here, we provide the first 
genetic evidence for rapid evolution in bat populations affected by white-nose syndrome (WNS). 
By comparing genetic samples from before and after little brown bat populations were decimated 
by WNS, we identified signatures of soft selection on standing genetic variation. This selection 
occurred at multiple loci in genes linked to hibernation behavior rather than immune function, 
suggesting that differences in hibernation strategy have allowed these bats to survive infection 
with WNS. Through these findings, we suggest that evolutionary rescue can be a conservation-
relevant process even in slowly reproducing taxa threatened with extinction.  
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Many North American bat species are currently facing extinction due to white-nose syndrome 

(WNS), an infectious disease caused by the introduced fungal pathogen Pseudogymnoascus 

destructans (1, 2). P. destructans infects bats during hibernation; it creates lesions in wing 

membranes, disrupts homeostasis and depletes energy stores by altering metabolism and 

increasing the frequency of arousal from torpor (1, 3). Some remnant populations of one species, 

the little brown bat (Myotis lucifugus), have returned to neutral or positive growth in recent years 

after abundance declines of up to 98% (4). Furthermore, some populations are beginning to 

display the classic U-shaped trajectory associated with evolutionary rescue (5, 6). Recent 

analyses of population declines and infection rates suggest that host resistance is the driving 

mechanism behind these population trajectories, rather than alternative mechanisms such as host 

tolerance, demographic compensation, or reduced pathogen virulence (7). What remains unclear 

is whether this resistance results from the acquisition of adaptive immunity or from selection of 

genetically resistant individuals (6). Only the latter mechanism is consistent with evolutionary 

rescue. 

 To identify WNS-induced genetic changes, we performed whole genome sequencing on 

132 individuals from four hibernating colonies (hibernacula) within the epicenter of WNS 

emergence (Northeastern US, Fig. 1A). Two hibernacula, Hibernia Mine (Hibernia) and Walter 

Williams Preserve (Williams), were sampled both pre-infection by WNS (2008 and 2009, 

respectively) and post-infection by WNS (2016, Fig. 1B). One hibernaculum, Greeley Mine 

(Greeley), was sampled pre-WNS (2008); and another, Aeolus Cave (Aeolus), was sampled post-

WNS (2016). We used probabilistic methods that explicitly account for depth of coverage (Table 

S1) to identify a total of 31,517,948 SNPs (single nucleotide polymorphisms) and to calculate 

allele frequencies through time for SNPs across the genome. 

 We found little geographic structure at a genome-wide level, including low pairwise FST 

values (pre-WNS samples 0.0176 +/- 0.000033, post-WNS samples 0.0143 +/- 0.000333) and 

weak population structure that did not correspond to geography (Fig. 2A, B). A lack of 

population structure is consistent with previous studies demonstrating near-panmixia over 

evolutionary time in bat populations east of the Rocky Mountains (8, 9), likely because even a 

small number of bats moving between hibernacula reduces population structure on an 

evolutionary timescale (10). Despite near-panmixia over evolutionary time, most bats have 

fidelity to mating sites and hibernacula on ecological timescales (11). Admixture proportions 
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indicated that two of the bats from Williams may have originated from a second evolutionary 

population (Fig. 2B). To avoid confounding population changes with signatures of selection, we 

removed these two bats, plus two other potentially genetically divergent bats (Fig. 2A), from 

calculations of allele frequency for the results presented in the main paper (Fig. 4, but see Fig. S4 

for results with all bats included). Further, we found little genome-wide temporal structure as a 

result of WNS (FST comparing pre-WNS populations to post-WNS populations, Hibernia: 0.016, 

Williams: 0.017). We therefore do not find any genetic evidence to suggest that pre-WNS 

populations were replaced by individuals from other populations (Fig. 2). 

 Demographic declines were dramatic within the smaller Hibernia colony, with an estimated 

population size of 26,438 individuals in 2009, declining by 98% from 2009-2015, and returning 

to pre-WNS survival rates and a slow but positive population growth rate after 2015 (Fig. 1B, 

Fig. S1). Steep but less dramatic declines from 87,401 individuals in 1999 to 16,673 individuals 

in 2010 (80% decline) were followed by partial recovery of the population at the larger Williams 

colony (Fig. 1B). Tajima’s D is a genetic statistic that typically increases after a population 

bottleneck as rare variants are lost (and intermediate frequency alleles become more common). 

The effects tend to be strongest in populations that reach the smallest sizes (12). We observed 

that Tajima’s D increased through time in the smaller and more heavily bottlenecked Hibernia 

population, but decreased slightly in the relatively more abundant and rapidly recovering 

Williams population (Mann-Whitney U test p<0.001 for both populations, Fig. 3).  

To test for parallel signals of selection in populations from Hibernia and Williams, we 

compared allele frequency changes through time against a null model of genetic drift and 

sampling variance. This approach identified 62 SNPs with significantly greater allele frequency 

changes than would be expected from genetic drift and sampling variance alone (Table S5, Fig. 

4A, B). The candidate SNPs were present at low to moderate frequencies in pre-WNS 

populations from both Hibernia and Williams and at low to intermediate frequencies in the pre-

WNS Greeley population (Fig. 4D). These starting allele frequencies are consistent with a soft 

selective sweep from standing genetic variation, a likely method of selection given the short 

timescale of WNS infection, mortality, and recovery. The short timeframe makes novel mutation-

derived hard sweeps unlikely. Soft selection has recently been proposed as a common and 

possibly dominant method of selection, though one that has been largely overlooked by genome 

scans because detection is difficult when temporal genetic data are lacking (13). Sampling the 
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same sites through time therefore provides a method for detecting selection that would otherwise 

be nearly invisible (14).  

Post-WNS allele frequencies in Hibernia, Williams and Aeolus ranged from intermediate to 

high, suggesting incomplete selective sweeps at some loci and near-complete sweeps at others 

(Fig. 4E). Pre-WNS frequencies of candidate SNPs were highest in Williams and post-WNS 

frequencies were lowest at Aeolus, which suggests that—while some degree of parallel selection 

is occurring across multiple populations—selection is not acting to the same degree on the same 

loci in all populations affected by WNS. Such signatures are consistent with soft selection for 

traits controlled by many loci (13). As further evidence against hard selection, genomic regions 

surrounding SNPs putatively under selection did not show classic signatures of hard selection, 

such as changes in π and Tajima’s D (Figs. S2 and S3). 

 We further tested whether parallel changes in allele frequencies across Hibernia and 

Williams could be explained by dispersal between populations. However, we found that 

migrating individuals would have to make up >52% of each population (Table S4). Mark-

recapture data collected at Hibernia over the last seven years found that 95% of bats banded at 

this hibernaculum were subsequently recaptured in later years (Table S3).  Furthermore, biannual 

surveys of Williams have shown that <0.02% of bats at Williams (out of 16,000) have been 

detected migrating from Hibernia.  No bats from Williams have been found at Hibernia (Tables 

S2 and S4). This result suggests that selection acted in situ and largely independently in each 

population after WNS infection.  

 Sixteen of the 62 candidate SNPs under selection were located in annotated regions of the 

genome (Table S5). These SNPs were all located in presumed introns. Introns can play important 

regulatory roles, and mutations in introns have been associated with numerous diseases (15). 

Introns have a higher mutation rate due to lower evolutionary constraint and may be good 

candidates for selection on standing genetic variation. 

Functional annotation suggested that selection has acted on hibernation behavior, with 

most (10 of 16) annotated genes involved in regulating processes associated with hibernation 

(Table S6). Three genes (SORCS3, PCDH17, and KREMEN1) were associated with neural 

regeneration and plasticity and may regulate the neural changes involved in hibernating 

mammals: shrinking of neurons, inhibition of neurogenesis, and reduction of synapses, all of 

which are rapidly reversed upon arousal from hibernation (16). Hibernating mammals have been 
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proposed as a model system for both neuroprotection (17) and reversing neurodegenerative 

diseases (18). Genome wide association studies have linked many of these genes to human 

neurodegenerative diseases such as Parkinson’s, Alzheimer’s, and neuratypical phenotypes 

(Table S6), though their particular function in bats remains unclear. 

 We identified several SNPs in genes associated with insulin regulation and fat 

accumulation (REPS2, SOX5, ADCY3, CMIP; Table S6). Hibernating bats undergo significant 

changes in insulin levels, fat accumulation, and metabolism throughout the hibernation cycle (19, 

20), essentially experiencing a reversible form of type 2 diabetes (21). Although slightly below 

our significance threshold, it is important to note that we identified a SNP with allele frequency 

changes greater than 0.45 in both Hibernia and Williams populations, low frequency in (pre-

WNS) Greely and high frequency in (post-WNS) Aeolus within a gene previously associated 

with ground squirrel hibernation (EXOC4) (22). Contrary to other studies of disease-induced 

selection, we found only one candidate SNP in a gene involved in immune system function 

(MASP1, part of the complement pathway). 

 When hibernating bats are infected with P. destructans, the frequency of torpor arousal 

increases and metabolism is altered (23), which prematurely depletes fat stores and leads to 

mortality (3, 23). Selection on hibernation-related neural and metabolic genes in this host-

pathogen system is therefore a logical but unintuitive consequence of WNS infection. Disease-

induced arousal may be a failed attempt to fight off the pathogen by re-activating the immune 

system (24), but an increased immune response and production of anti-P. destructans antibodies 

is not correlated with survival and is therefore likely only reducing energy reserves (25). 

Furthermore, European bats that harbor P. destructans but do not display signs of WNS 

frequently have lower levels of anti-P. destructans antibodies than uninfected bats (26). 

Intriguingly, big brown bats (Eptesicus fuscus), which have suffered much smaller population 

declines, increase their torpor duration when exposed to P. destructans (27). Our results suggest 

that differences in hibernation strategy may be the key to host survival and that evolutionary 

rescue may have altered hibernation behavior in little brown bats. Two of the genes identified 

here (PCDH17 and REPS2) have been previously found to be differentially expressed in bat 

wing tissue when infected with P. destructans (28). Further research will be needed to directly 

link these genetic changes to changes in gene expression and hibernation phenotypes.  
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 Surviving individuals may have the potential to rescue little brown bat populations and 

ultimately return them to stable population levels (6). Characterizing the full suite of adaptive 

alleles present will require detecting SNPs likely under selection in other populations given that 

differences in pre-WNS genetic variation determines which alleles are available for selection.  

Management decisions (e.g., whether to deploy treatments for P. destructans or to protect 

populations from other detrimental factors) can be informed by knowing the frequency of 

resistant individuals in both uninfected and infected populations. The deployment of vaccines or 

treatments for P. destructans may be most needed in populations with low evolutionary potential 

(29). This study suggests that evolutionary rescue may be occurring in other instances of 

pathogen-induced selection. By closely observing wild populations of non-model organisms, we 

can document unique natural experiments that help to expand our understanding of how and 

when natural selection occurs.  
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Materials and Methods 
Mark-recapture  

 We began mark-recapture research at Hibernia Mine in 2010, one year after white-nose 

syndrome (WNS) emergence at the site. During annual surveys from 2010-2017, we captured 

and marked 1,262 (476 females, 786 males) little brown bats with unique 2.9-mm or 2.4-mm 

lipped alloy bands (Porzana Ltd., Icklesham, UK). We classified all bats as adults, as it is not 

possible to accurately determine age class after an individual’s first summer.                                                   

 Population monitoring activities were carried out under the authority of a cooperative 

agreement between the New Jersey Division of Fish and Wildlife (formerly NJ Division of Fish, 

Game and Shellfisheries) and the US Fish and Wildlife Service dated June 23, 1976. National 

White-nose Syndrome Decontamination Protocols (30) were followed during all visits. We 

analyzed encounter histories of individuals using Cormack-Jolly-Seber (CJS) models in Program 

MARK (31) and examined the effects of sex, year, and time since WNS arrival on annual 

survival. We developed 24 a priori candidate models containing combinations of constant, 

yearly, time trend, and sex-specific effects on annual survival and recapture probabilities, 

including a global model that included time-dependent and sex-specific survival and recapture. 

To test for goodness of fit, we used a parametric bootstrapping procedure with 500 simulations 

of our penultimate model and calculated a variance inflation factor of ĉ = 1.26. Because we 

detected slight overdispersion in our data, we used small-sample corrected Quasi-Akaike’s 

Information Criterion (QAICC) adjusted by ĉ = 1.26 (32). We ranked candidate models by 

ΔQAICC and Quasi-Akaike weights (w), which represent the relative likelihood of the model, 

given the data (33). To reduce model selection bias and uncertainty, we averaged all models 

contributing to cumulative w ≥ 0.85 (top five models) and calculated parameter estimates based 

on weighted averages of the parameter estimates in the top models (32, 34). Model results 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 6, 2019. ; https://doi.org/10.1101/470294doi: bioRxiv preprint 

https://doi.org/10.1101/470294
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

12 
 

confirmed previously published findings (35) of a linear increase in annual survival with time 

since WNS arrival. Recapture rates averaged ~0.40 for both sexes. 

To determine the post-WNS growth rate of the remnant Hibernia population, we 

incorporated our survival estimates into seven 2-stage Lefkovitch matrices (35-37). Each matrix 

represented one study year from 2010-2016:  

��� � �� � �� �� � �� � ��
�� �� � 

where S represents survival of female little brown bats; B represents the probability that a female 

returns to a maternity colony to breed; and subscripts j and a indicate values for juveniles or 

adults, respectively. Little brown bats have a single pup each year and are sexually mature by the 

end of their first summer, so we held fecundity (Fe) constant for both age classes at Fe = 1. We 

assigned probability of breeding for adults and juveniles to values of Bj = 0.38 and Ba = 0.85, 

respectively, based upon published estimates generated from either 15 years of pre-WNS mark-

recapture data or post-WNS adult reproductive rates (2, 38, 39). We fixed juvenile survival as a 

constant proportion of adult survival (Sj = 0.47 * Sa; 2). We then calculated the dominant 

eigenvalue of each matrix. We projected the Hibernia little brown bat population through the 

2010-2016 matrices and then continued the projection an additional 93 years using the 2016 

matrix. We ran a 10,000-iteration Monte Carlo simulation, allowing Sa and Bj to vary 

stochastically based on random number generation from beta distributions specified from the 

means and variances of each survival parameter. From this procedure, we generated a mean 

stochastic yearly growth rate of λ = 1.03.  

 

Sample collection 

We collected tissue samples at two timepoints, before (pre-WNS) and after (post-WNS) 
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disease-induced population declines. We collected pre-WNS samples from frozen specimens 

collected in the first year of disease emergence at Walter Williams Preserve, Ulster County, New 

York (2008, n=23); Hibernia Mine, Morris County, New Jersey (2009, n=19); and Greeley Mine, 

Windsor County, Vermont (2009, n=19). We collected post-WNS samples from live individuals 

within the remnant populations at Hibernia Mine (n=22) and Walter Williams Preserve (n=20), 

and from Aeolus Cave (Bennington County, Vermont, n=26) in 2016. At the time of post-WNS 

sampling, Greeley Mine was inaccessible. Sample collection followed Simmons (2008). Briefly, 

a 2-mm wing tissue biopsy was taken (Miltex) and placed in RNALater (Ambion). Samples were 

collected under IACUC Protocol #15-068 (Rutgers University) and appropriate state permits. 

 

Library preparation and sequencing 

DNA was extracted using the QIAGEN Blood and Tissue kit with the addition of RNase A to 

remove RNA contamination and following recommendations to increase the concentration of 

DNA (10 min elution step, smaller volume of elution buffer).  Fragmented DNA was identified 

using 1.5% gel electrophoresis and when fragments <1 kbp were present, a cleanup step was 

performed with AMPure XP beads (Agencourt). DNA concentration was measured using a Qubit 

HS DNA Assay (Invitrogen).   

Library prep was performed using the Illumina Nextera kit following the low-coverage whole 

genome sequencing protocol developed by Therkildsen and Palumbi (2016), modified from 

Baym et al. (2015).  Briefly, samples were fragmented and adapters were added using 

tagmentase in a 2.5 μl volume. Because the ideal concentration of DNA given the size of the M. 

lucifugus genome was determined to be 10 ng/μl, which was above the concentration for many 

of our samples, we added an additional step to dilute the tagmentase for low concentration 

samples using 10xTB. 

A two-step PCR procedure was then conducted using the KAPA Library Amplification kit 

and the Nextera index kit (primers N517-N504 and N701-N706) with a total of 12 cycles (8+4) 

to add a unique combination of barcodes to each sample and to amplify the resulting libraries. 

We then purified and size selected these products with AMPure XP beads, quantified the 

concentration of each library using a Qubit HS DNA Assay, and examined the fragment size 

using an Agilent BioAnalyzer chip. Finally, we pooled the resulting libraries together in equal 

concentrations by mass. These pools were sequenced in 7 rapid runs (each of 2 lanes/run) on the 
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Illumina HiSeq 2500 at the Princeton University Lewis-Siegler Institute.  We achieved an 

average depth of coverage of 2.42 +/- 1.24. This depth of coverage allowed us to call SNPs and 

calculate population-level allele frequencies using established methods that take genotype 

uncertainty into account (43, 44). We did not need nor attempt to call individual genotypes. 

Individual-based but low coverage approaches such as these have increased efficiency, precision, 

and cost-effectiveness for estimating allele frequencies as compared to higher coverage 

approaches (41, 45), which can place undue confidence in what are actually sequencing or PCR 

errors. Furthermore, this approach eliminates non-equimolar DNA errors or stochastic 

amplification differences associated with Pool-seq approaches (46, 41, 47).  

 

Code Availability 

All scripts and notebooks can be found at https://github.com/sagw/WNS_WGS/ and relative 

paths referenced below are to be appended to this base path.  

 

Bioinformatics 

 To remove exact duplicate sequences (likely optical duplicates), we ran FastUniq in 

paired-end mode. We then used Trimmomatic v0.36 in paired-end mode to remove Illumina 

adapters, remove reads with an average phred score below 33, trim any reads where a 4 basepair 

sliding window phred score fell below 15, and discard trimmed reads shorter than 30 basepairs.  

We filtered contaminant sequences using fastqscreen v0.95 

(https://www.bioinformatics.babraham.ac.uk/projects/fastq_screen/) with Bowtie2. Reads were 

screened against the human genome (ch38), all bacterial genomes, all fungal genomes including 

P. destructans, and all viral genomes available from NCBI 

(ftp://ftp.ncbi.nlm.nih.gov/genomes/genbank/). All reads were tagged for contaminants using 

fastqscreen. Less than 10% of reads were removed from unpaired reads using fastqscreen in filter 

mode and from paired reads using a custom script (Scripts/pfilter.py).  

We mapped resulting paired and unpaired reads to the Myotis lucifugus 2.0 genome 

(ftp://ftp.ensembl.org/pub/release-87/fasta/myotis_lucifugus/dna/) using Bowtie2 in very 

sensitive local mode (48).We then sorted sam files, converted to bam, and removed duplicate 

sequences using Picard (https://broadinstitute.github.io/picard/) (MarkDuplicates). We used 

Bedtools (49)  to calculate percent coverage and discarded samples with reads that covered 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 6, 2019. ; https://doi.org/10.1101/470294doi: bioRxiv preprint 

https://doi.org/10.1101/470294
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

15 
 

<20% of the genome. These filters resulted in 132 samples with an average coverage of 0.5x. we 

used GEM (50) to determine mappability of the reference genome. Only regions with a 

mappability score of 1 were used (1.7 out of 2.2 gigabases). Finally, we removed repeat regions 

as determined using RepeatMasker (51).  

 

SNP calling and summary statistics 

Following previous studies using low-coverage data (e.g., (52), (53)), we called SNPs over 

all samples using ANGSD (v0.92) with the following parameters: the samtools model was used 

to estimate genotype likelihoods from the mapped reads (-GL 1), major and minor alleles and 

frequency were estimated from genotype likelihoods (-doMaf 1 -doMajorMinor 1). We used the 

following quality filters (requires -doCounts 1): a minimum quality score of 20, minimum 

mapping score of 30, minimum number of individuals with data of 68 and max depth over all 

individuals of 1320. We used a cut-off p-value of 10-6 (Likelihood Ratio Test).  See 

Notebooks/Angsd_all_SNPs for all details.  

We calculated genotype likelihoods for called SNPs with ANGSD in beagle format (-doGlf 

2). These likelihoods were used with PCAngsd to 1) calculate a covariance matrix 2) determine 

the number of significant principal components (D) using Shriner’s implementation of Velicer’s 

minimum average partial (MAP) test, and 3) determine admixture proportions using non-

negative matrix factorization with the number of ancestral populations (K) calculated as D+1 

(54). The PCA and admixture proportions were then visualized using R (see 

Notebooks/Angsd_all_SNPs and Notebooks/Angsd_all_PCA_graphs).  

In order to calculate FST between subpopulations, we first calculated unfolded sample allele 

frequencies with ANGSD using the reference genome to polarize the alleles for each 

subpopulation (-doSaf 1).  We then created the following joint site frequency spectra with the 

ANGSD program realSFS: Hibernia pre-post, Williams pre-post, Hibernia-Williams-Greeley 

pre, Hibernia-Williams-Aeolus post. An average FST was calculated across the entire genome and 

in a sliding window across the genome. See Notebooks/Angsd_all_FST. 

We used the per-population sample allele frequencies to create unfolded site frequency 

spectra for each population. The sample allele frequencies and site frequency spectra were then 

used to calculate θ (population mutation rate) across the genome (-doThetas 1), and then 

calculate θw, π, and Tajima’s D both across the genome and in a sliding window with the 
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ANGSD program thetaStat (do_stat -win 1000 -step 1 -type 1). See Notebooks/Angsd_all_thetas.  

We estimated minor allele frequencies for each called SNP in each subpopulation using the 

previously inferred major and minor alleles (-doMajorMinor 3). Allele frequency was summed 

over 3 possible minor alleles weighted by probabilities (-doMaf 2).  Maximum depth was set at 

270. See Notebooks/Angsd_all_SNPs. 

 

Identifying SNPs putatively under selection 

For the Hibernia and Williams colonies (excluding outlier bats, see Fig. 1), change in minor 

allele frequency was calculated from MAFs (method 2) as mafpost-mafpre. We considered SNPs 

with a high change in allele frequency as those with changes greater than 0.5 or less than -0.5 in 

both Hibernia and Williams (in the same direction). To separate SNPs with high allele frequency 

changes due to sampling error or genetic drift from those under selection, we developed locus-

specific null models for allele frequency change. We first accounted for sampling error by using 

ANGSD to calculate minor allele frequencies from 100 bootstrapped file lists for Hibernia pre-

WNS and post-WNS and Williams pre-WNS and post-WNS. Wright-Fisher simulations (1000 

for each value) were then performed to estimate genetic drift over the two generations that have 

elapsed between pre- and post-WNS samples (55, 56). We assumed the two generations had 

effective population sizes of 424 and 296, respectively. These values were calculated from the 

more reliable Hibernia census data using method described by Waples (57), where average 

lifespan is 15 years, age to maturity is 1 year and generation time is 6 years (38). Hibernia has a 

smaller population size and using these data likely overestimated drift and made our test more 

conservative. P-values were calculated for each SNP as p=(r+1)/(n+1), where r was the number 

of times the simulated post-WNS allele frequencies were greater than sampled bootstrapped 

post-WNS allele frequencies, and n was the total number of simulations (58). All analyses can be 

found in Notebooks/All_AlleleFreqChange.ipynb.    

 Because there is no evidence of significant bat migration between colonies in the time 

frame of this study (even if populations were panmictic in evolutionary time), the NJ and NY 

populations were considered independent and combined p-values were calculated using the sum 

log method in the R package metap (59). To account for multiple hypothesis testing, significance 

was then determined using the Benjamini-Hochberg method. Values were ranked from smallest 

to largest and the largest p-value with the p<(i/m)Q was used as the significance cut off, where i 
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was rank, m was the number of SNPs in both Hibernia and Williams, and Q was our chosen false 

discovery rate of 0.2.   

The immigration rate that would be required to achieve the observed allele frequency 

changes was calculated as % immigrants = 100*(Fpost1-Fpre1)/(Fpost2-Fpre1), where % 

immigrants is percent immigrants in population 1 post-WNS, Fpost1 was allele frequency in 

population 1 post-WNS, Fpre1 was allele frequency in population 1 pre-WNS, Fpost2 was allele 

frequency in population 2 post-WNS.  

The NCBI Myotis Lucifugus Annotation Release 102 was used to identify putative genes that 

contained the candidate SNPs and the Ensembl Variant Effect predictor was used to identify the 

location of SNPs within genes.   
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Fig. 1. Four hibernacula were sampled across time and are experiencing different rates of 

population recovery. A) Location of hibernacula sampled in the northeast United States. B) 

Population trajectories for Williams and Hibernia, color coded according to A). Vertical lines 

represent the time of initial reports of WNS for each hibernaculum. The dotted line represents 

missing data for Williams because population estimates were not made between 1999 and 2010 

(1999 is the presumed pre-WNS baseline). The triangles indicate sampling points for each 

hibernaculum. Population estimates were not available for Greeley and Aeolus. 
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Fig. 2. Population structure of little brown bats in the northeastern United States does not 

correspond to geography or time.  A) PCA plot shows four potential genetically divergent bats 

(inset) and a lack of population structure in the majority of individuals (with divergent bats 

removed, main figure). MAP analysis identified one significant principal component (PC 1). B) 

Admixture plot showing two populations, which was the most likely value determined by MAP 

analysis. Colors denote different inferred ancestral origin populations. The four potentially 

divergent bats from the PCA are marked at the top of the admixture plots.  
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Fig. 3. Change in Tajima’s D reflects differences in population declines in Hibernia and 

Williams. Density plots of Tajima’s D calculated in sliding windows across the genome in A) 

Hibernia and B) Williams from samples pre- (solid line) and post- (dotted line) infection with 

WNS. Mean Tajima’s D across the entire genome is noted for each hibernaculum.  
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Fig. 4. SNPs with signals of soft selection were located throughout the genome, were present 

at low to intermediate frequencies prior to WNS infection, and swept to incomplete or 

nearly complete fixation after WNS. A) Change in allele frequency between pre- and post-

WNS samples from Hibernia and Williams. Scaffolds are displayed in the order of the MyoLuc 

2.0 assembly. Significant SNPs at FDR=0.2 are highlighted in green. B, C) –log10 P-values for 

SNPs with a positive (B) or negative (C) change in allele frequency greater than 0.5 in both 
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Hibernia and Williams. Scaffolds are colored along x axis. Significant SNPS are highlighted in 

green.  D) Density plots of allele frequencies for significant candidate SNPs (solid lines) and for 

SNPs randomly chosen throughout the genome (dotted lines) at each site pre-WNS and E) post-

WNS.  
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