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 2 

Abstract 1 

 2 

Acquiring a sufficiently powered cohort of control samples can be time consuming or, 3 

sometimes, impossible. Accordingly, an ability to leverage control samples that were already 4 

collected and sequenced elsewhere could dramatically improve power in all genetic association 5 

studies. However, since majority of the genotyped and sequenced human DNA samples to date 6 

are subject to strict data sharing regulations, large-scale sharing of, in particular, control samples 7 

is extremely challenging. Using insights from image recognition, we developed a method allowing 8 

selection of the best-matching controls in an external pool of samples that is compliant with 9 

personal genotype data protection restrictions. Our approach uses singular value decomposition 10 

of the matrix of case genotypes to rank controls in another study by similarity to cases. We 11 

demonstrate that this recovers an accurate case-control association analysis for both ultra-rare 12 

and common variants and implement and provide online access to a library of ~17,000 controls 13 

that enables association studies for case cohorts lacking control subjects. 14 

 15 

Introduction 16 

 17 

 Traditionally, genetic association studies require construction of a dataset consisting of 18 

both case and control genotypes. With this, one tries to eliminate all potential biases (technical 19 

or ancestral) between case and control cohorts, ensuring that discovered associations are 20 

phenotype-driven. While technical biases could be significantly diminished without explicit 21 

sharing of sensitive individual-level data by using the same sequencing technology and data 22 
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 3 

processing standards for case and control cohorts, adjusting for population stratification requires 1 

researchers to either spend funds for sequencing study-specific controls (reducing the size of the 2 

case cohort) or file extensive paperwork to obtain what are sometimes a limited number of 3 

external control samples (roughly matched on ancestry and technology and consented for 4 

sharing) from public databases like dbGAP1. Moreover, re-using publicly available genetic data 5 

often requires each research team to process the data independently, performing redundant 6 

technical routines. The theoretical possibility of utilizing ancestry landscape for association 7 

studies without sharing genotypes was recently explored by UNICORN project2, proposing 8 

rigorous definition of a subject’s ancestry in a numerical way, but practical implementation of 9 

such concepts is lacking. Similarly, Guo et al3 recently proposed a methodology for usage of 10 

databases like gnomAD or ExAC as controls through calibration of association test statistics using 11 

benign variants, yet this approach is limited in ability to select matching control subjects for an 12 

association study. 13 

 In this work, we used insights from image recognition algorithms4 and developed a 14 

rigorous methodology for matching background variation in independent datasets without 15 

explicit genotype sharing. Specifically, we used singular value decomposition (Supplementary 16 

Figure S1) which expresses original matrix of genotypes as multiplication of three matrices: ! =17 

#$%&; where U – is an orthogonal basis of principal directions (with the 1st direction chosen along 18 

the largest variance in the original data, S – a diagonal matrix of singular values and V – is a matrix 19 

of principal components that provides coordinates of original samples in the basis of matrix U. 20 

Importantly, for a given genotype matrix G of cohort of cases, left singular vectors matrix - U, can 21 

be used alone to reconstruct original matrix of genotypes, and therefore can be shared 22 
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 4 

unrestrictedly with remote database/control server since it does not contain any information on 1 

the individual level data, rather only providing information about variance directions in case 2 

cohort as a whole. We show that given several first vectors of matrix U derived from the case 3 

cohort data, one can project control genotypes on such case-derived basis and subsequently rank 4 

controls by their similarity to case cohort. Accordingly, optimal control cohort can be chosen by 5 

taking maximum number of controls that is still able to maintain null distribution of the 6 

association test statistic5. 7 

 We performed tests both on genotyping array data and large-scale exome sequencing 8 

dataset confirming successful control selection. Additionally, we matched same exome samples 9 

from 1000 Genomes project processed through different variant discovery pipelines in two 10 

different ways to a set of controls showing that given exome capture concordance joint 11 

processing is not required for returning sufficient set of matched controls. Finally, we illustrate 12 

method performance with rare-variant association study in early onset breast cancer cohort, 13 

performed without genotype sharing. We use the proposed approach to make freely accessible 14 

a set of 16,946 controls that can be used by researchers worldwide without sharing data 15 

restrictions. Specifically, we provide an R-package for case cohort data transformation 16 

(SVDFunctions) at the local machine and accompanying online portal called SVD-based Control 17 

Repository (SCoRe, www.dnascore.net), which selects a set of optimal controls and outputs 18 

corresponding control summary allele counts to enable association studies.  19 

 20 

Results 21 

 22 

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 14, 2018. ; https://doi.org/10.1101/470450doi: bioRxiv preprint 

https://doi.org/10.1101/470450
http://creativecommons.org/licenses/by-nc/4.0/


 5 

Framework for control matching without genotype sharing 1 

Following the standard workflow for genetic association studies – only autosomal LD-2 

pruned DNA variants should be used for ancestral matching6,7. This ensures that downstream 3 

analysis reflects global LD structure rather than local LD. Case genotypes for common autosomal, 4 

LD-pruned variants could be represented as a genotype matrix (with entries “0”,”1”,”2” -5 

corresponding to the number of alternative alleles in a genotype). With singular value 6 

decomposition (SVD) one can obtain an orthogonal basis of principal directions in cases (U matrix, 7 

Figure 1). Coordinates of principal directions (left singular vectors), especially a limited number 8 

of them, on their own cannot be used to recover individual level genotypes. They represent 9 

orthogonal directions within original data with the largest variance and do not contain any 10 

information of where original samples are located in this space. For reconstruction of the original 11 

matrix one needs to have some information about all three pieces of decomposition result8. From 12 

the matrix approximation properties of the SVD it is known that the first singular vector 13 

represents “dominating” direction of the data matrix. Thus, if folded back to case genotypes, 14 

vectors ui should be similar in global LD structure to the case cohort.  15 

It is established that these methods perform well if the following conditions are met: each 16 

sample could be well characterized by a few of the first singular vectors; an expansion in terms 17 

of the first few singular vectors discriminates well between the sample ancestries4; cases 18 

represent a relatively homogenous ancestral cluster (that is, if you are conducting a meta-analysis 19 

across two diverse ancestries, you should run the two case groups separately). Therefore, we can 20 

compute how well a prospective control sample can be represented in the basis of case cohort. 21 

This can be done by computing residual vector in the least squares problem of the type: 22 
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where z – a prospective control sample genotype vector, ui – left singular vectors of the case 2 

genotype matrix SVD, k – first few singular vectors. Norm of the residual vector in this case could 3 

be computed as ‖(8 − ##&)-‖:. SVD requires access to raw genotypes so must be completed 4 

locally and limited basis of the left singular vectors {uk} could be unrestrictedly shared. External 5 

samples that allow general research use could be stored on the remote control server (Figure 1) 6 

accepting anonymous SVD-processed data from local case clients. Remote control server then 7 

estimates residual norm for every prospective control and creates ranking for the representation 8 

quality in the basis of case cohort. Case allele frequencies need to be supplied to the control 9 

server for defining appropriate size of control set. For every control residual vector norm 10 

threshold an association test should be performed using allele frequencies for DNA variants used 11 

for matching and genomic inflation factor5 estimated. Largest set of controls delivering 12 

acceptably null distribution of the test statistic (lGC£1.05) should be then taken as a matched set 13 

of controls. Allele frequencies for variants of interest should then be computed in matched 14 

control dataset and could be shared with client to run full-scale association test (Toy example of 15 

case-control study with 2 cases and 2 controls is explained at Supplementary Figure S2). Unlike 16 

individual level data, such summary statistic sharing from most consented resources is routinely 17 

allowed9,10. 18 

 19 

1000 genomes. OMNI array genotyping data 20 
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 7 

To validate our approach, we used 1000 genomes genotyping data. Entire dataset was subjected 1 

to per genotype and per individual quality check procedures (Supplementary Figure S3). Final 2 

dataset consisted of 10,000 LD-pruned autosomal variants and 1,708 non-related samples (Figure 3 

2A). To simulate an association study we divided the dataset into 100 “cases” of European 4 

ancestry (as provided by 1000 genomes project annotation) and “control pool” of 1608 samples 5 

that included 359 European samples (Figure 2A,B). We simulated an association study without 6 

genotype sharing by separating every case cohort from control candidates (Figure 2C). For a case 7 

group SVD was computed and top 5 left singular vectors were used for control matching 8 

purposes. Residual vector norm was computed for every control, ranking controls by similarity to 9 

case cohort (Figure 2D) and separating ancestries (Figure 2E). Choosing different residual norm 10 

thresholds allows to create different pools of controls of variable matching quality (Figure 2D,E). 11 

Indeed, PCA plot built using shared genotypes confirmed that increase in residual vector norm 12 

threshold results in departure from original European case cluster delivering poor control 13 

matching quality (Figure 2F). To select optimal threshold value, allele frequency of variants in 14 

cases is used to estimate association test statistics and genomic control factor for different 15 

residual vector norm thresholds (Figure 2G,H). Largest control pool size with null distributed 16 

association test statistics (e.g. lGC£1.05) was selected as optimally matched set (Figure 2I). 100 17 

simulation instances with random 100 “case” cohorts (100 European samples each) yielded on 18 

average selection of 428 controls (SD=26.6) with estimated mean genomic inflation lGC=1.049 19 

(SD=8.76x10-4) (Figure 2J).  These control sets covered nearly all European samples in Control 20 

Pool and also selected a small number of controls annotated in 1000 Genomes as Latin-21 

Americans (though still keeping genomic inflation factor below 1.05). In 100 random selections 22 
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 8 

of “case” cohort (100 European samples each), we identified a group of Latin-Americans 1 

recurrently selected for a matched control set (Supplementary Figure S4A). It appears to be the 2 

closest to Europeans on PCA (Supplementary Figure S4B). Selection of samples with non-3 

matching ancestry annotation is bound to the statistical power of the association testing used for 4 

genomic inflation estimation, thus, the more cases are used for association testing the fewer 5 

controls of non-matching ancestry annotation are selected (Supplementary Figure S4C). Though, 6 

with any set of case cohort genomic inflation factor is below 1.05 implying neglectable effect on 7 

further phenotypic association test results (Supplementary Figure S4D).  8 

Furthermore, such SVD-based approach can be used for creating an easy-to-use ancestry 9 

predictor that yield large confidence results (Supplementary Methods, Supplementary Figure 10 

S5, SVDFunctions R-package available at https://github.com/alexloboda/SVDFunctions). 11 

 12 

Exome sequencing data 13 

Further, we sought to test how this approach performs in exome sequencing data with 14 

relatively small number of LD-pruned DNA variants. We used an aggregated set of whole exome 15 

sequences consented for joint variant calling resulting in 37,607 samples to build a test dataset 16 

(Supplementary Table S1). Further, a subset of LD-pruned variants used for PCA in ExAC 17 

database9 was subjected to quality check: only genotypes with DP>10, GQ>20 and variants with 18 

less than 500 missing genotypes were allowed, resulting in 4,561 DNA variant left for analysis. 19 

Samples were further analyzed for relatedness and related samples were removed: in pairs of 20 

samples with ;< < 0.2 only one sample was randomly kept (Supplementary Methods). Final 21 

dataset consisted of 32,677 whole exome sequences (Figure 3A). Similarly, to the experiment 22 
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 9 

with genotyping data that was described above, we randomly selected 3,000 European samples 1 

as a “case” set and leftover 29,677 samples became a disjoined pool of controls (Figure 3B). We 2 

used first 5 singular vectors to estimate residual norm for every sample in the control set and 3 

create a control ranking (Figure 3C), which distinctly separated ancestral groups (Figure 3D). 4 

Increase in residual norm results in departure from targeted European control cluster and 5 

inflation of the association test statistic (Figure 3E,F). Optimal control set size was defined as a 6 

largest set of controls with genomic inflation factor less or equal to 1.05 or the smallest inflation 7 

factor if no values below 1.05 are available (Figure 3G). In 100 random selections of “case” cohort 8 

(3000 Europeans each) on mean control set size was 17,435 (SD=921.97) with genomic inflation 9 

factor mean lGC=1.056 (SD=0.012) (Figure 3H). 10 

We analyzed how number of selected for analysis singular vectors affects size of matched 11 

controls cohort. Upon increase in number of singular vectors, more variance could be explained 12 

in limited reconstruction of the original matrix (e.g. if both U, S, V matrices are available for 13 

original genotype matrix, its reconstruction using first several vectors of U matrix would capture 14 

the variance better if more vectors are used, Supplementary Figure S6A,B). Though, since in our 15 

algorithm no matrix reconstruction is performed, there is no significant dependence of matched 16 

controls cohort size on the size of the case-derived basis (Supplementary Figure S6C,D). Thus, it 17 

is reasonable to use only first few singular vectors to increase computation speed. 18 

 19 

Controlling for technical bias 20 

In the above examples, genotyping or sequencing data was processed in the uniform way 21 

and in case of exomes – variants were called jointly, an action which is impossible without explicit 22 
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genotype sharing. Thus, we looked into effects of technical biases on the remote case-control 1 

matching. We used publicly available 1000 genomes Phase 3 data10 to select 46 samples (CEU 2 

ancestry), that were also present in our exome control pool dataset and attempted to match 3 

them to a control group. For this analysis control pool dataset was modified to exclude all 1000 4 

genomes samples. Samples with known cancer phenotype were also excluded for further use of 5 

this data as a public database of controls (Supplementary Figure S7A). Both “external” and jointly 6 

processed 1000 genomes samples were acceptably matched to a group of controls 7 

(Supplementary Figure S7B-D), with exactly the same 5963 control candidates selected for both 8 

case groups and 1 additional control matched to “internal” cases. Important to note, that 9 

external 1000 genomes exomes were sequenced using similar to control pool’s Agilent exome 10 

capture kit. Therefore, we conclude that separate variant calling does not introduce major 11 

technical biases within the proposed approach. 12 

One the level of experimental design, difference in DNA sequence capture used for exome 13 

sequencing are known to introduce major effects in variant calling and cannot be cross-used for 14 

association tests even if variants are jointly called9,11. The proposed approach will automatically 15 

treat platform-based bias as a kind of “ancestry”-matching and control candidates from the same 16 

sequencing platform would be prioritized over other options. However, in this initial release of 17 

17,000 we only provide the control samples sequenced with Whole Exome Agilent 1.1 RefSeq 18 

plus 3 boosters capture. Being the most represented capture in ExAC (~77%)9 covers a major part 19 

of sequenced samples to date.  20 

Additional data quality metrics: depth, missing data rate could be directly shared between 21 

control server and case client. Even with direct sharing of genotypes further work needs to be 22 
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done to get a gold-standard association study: lining up depth and accuracy at every site, gene, 1 

exon. While control platform described here will ensure ancestral and platform matching it is up 2 

to a researcher to match quality metrics and conduct careful statistical analysis. 3 

 4 

Breast Cancer Cohort Analysis 5 

We implemented presented methodology in combination of R-package (SVDFunctions) 6 

for data preprocessing and online SVD-based Control Repository (SCoRe) platform 7 

(www.dnascore.net) and performed a gene-based association study for a cohort of early onset 8 

breast cancer patients (dbGAP: phs000822.v1.p1): 291 non-related cases matching quality 9 

standards were further used for analysis. Genotype matrix and summary genotype counts of 10 

cases were constructed for 4,561 LD-pruned DNA variants that are available for matching through 11 

SCoRe. 1,930 controls were matched to the case cohort with lGC=1.07 (Figure 4A). To ensure that 12 

not only the targeted DNA variants are matched we inquired SCoRe to return summary allele 13 

counts for various variant classes found in cases: common synonymous variants (that were not 14 

used for matching), rare synonymous variants grouped by gene (singletons in cases, implying 15 

MAF<0.00172). Null distribution of the test statistic in both inquiries confirmed case-control 16 

matching in both common and rare variant background variation (Figure 4D,E). Further, rare 17 

(MAF<0.00172) protein-truncating variants (PTV) gene burden was examined. 1930 genes had at 18 

least 1 PTV variant in cases (Bonferroni corrected significance threshold 0.05/1930 = 2.56x10-5). 19 

These genes were submitted to SCoRe to obtain summary gene-based counts of PTVs in matched 20 

controls and further, association test was performed locally using Fisher’s exact test (Figure 4F) 21 
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re-discovering BRCA1 as a susceptibility gene (with 12 carriers in 291 case and 7 carriers in 1930 1 

controls; Fisher test P=6.36x10-7).  2 

Strikingly, despite the complex ancestral structure of case cohort with substantial amount 3 

of Ashkenazi samples (Figure 4B), we identified a set of controls that were matched as a single 4 

batch with lGC=1.07 (Figure 4C). This was very different when compared to conventional 5 

genotype sharing association study: due to complex ancestral structure in cases, matching of 6 

controls as a single batch is largely impeded. We used K-means clustering to identify matching 7 

batches (Supplementary Figure S8A, B) so that all of them return null-distributed test statistic 8 

(using same variants as were used for SCoRe-based matching, Supplementary Figure S8C-F). 9 

Using batch-based matching with fully shared genotypes, we identified a total of 6,415 controls 10 

(out of 16,946 candidate controls in SCoRe) to the same case group in jointly called dataset. 11 

Statistical power was estimated for Fisher’s exact test using multiple odds ratios for 12 

SCORE and conventional genotype sharing tests (Figure 4G), implying 291 case cohort and single-13 

batch matched control cohorts of 1930 and 6415 samples, respectively (with disease prevalence 14 

12.4%12). We also estimated power for separate batches in a non-stratified analysis set up (Figure 15 

4H). The results show that SCoRe performs significantly better in a single-batch analysis than a 16 

shared genotype study and is producing sufficient number of controls to effectively saturate a 17 

power of the study in terms of size of control cohort.  18 

 19 

Web-portal for Case-Control Matching 20 

We established a public online platform with 16,946 non-cancer controls available for 21 

matching (Supplementary Table S2). We provide a list of variants available for matching in 22 
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control pool, and a R-package(SVDFunctions) for local generating of the case genotype matrix 1 

from standard PLINK13 binary file format and a code to generate SVD and allele counts data that 2 

could be uploaded to the matching portal. Available at www.dnascore.net. 3 

We set a hard threshold on minimal number of matched controls (500 samples) to deliver 4 

allele frequencies to a user and controls are selected in batches of 10. This ensures only 5 

anonymous summary allele frequencies are disclosed from control cohort. Quires to the 6 

database could be asking for variant based frequencies or cumulative counts of rare variants per 7 

gene. For variant-based quires we limit return to common variants (MAF>1%) to avoid disclosing 8 

unique DNA variants that would readily disclose a genotype.  9 

 10 

Discussion 11 

 Statistical power is a key to successful association study and control set size is often a 12 

limiting factor. Despite potential availability of control sets through public repositories, large 13 

efforts should be put into processing case and control datasets jointly before even preliminary 14 

results of an association study could emerge. Practically, this often becomes infeasible for the 15 

small cohort studies limited to data access or computational power. Assembly of large case-16 

control datasets is generally done by international consortia (ExAC, PGC, IBD Genetics 17 

Consortium, etc.) as this requires a lot of effort and generous funding. We provide a large pool 18 

of exome sequences and a tool enabling rapid selection of matched control sets without 19 

genotype sharing that ultimately provides allele frequency statistics required for performing 20 

association tests. Nearly no effort is required from the user side to get all information needed for 21 

association study, facilitating future discovery of associated genes and DNA variants.  22 
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Local cohorts assembled at hospitals as a part of clinical screening procedures or genetic 1 

counselling often have very modestly sized or none control sets and stringent sharing regulation. 2 

Our platform enables case-control study design and boosts statistical power for such patient 3 

cohorts. Especially, for rare mendelian phenotypes where assembly of well-powered case-control 4 

cohort is impeded by low disease prevalence. 5 

Finally, hundreds of thousands samples were subjected to exome or genome sequencing 6 

to date in the world. However, all this data exists in isolated pieces limiting potential benefit for 7 

genetic studies. We provide a repository of the software codes used for running the matching 8 

platform so that it could readily be implemented by large data holders – National biobank 9 

initiatives and international disease consortia to let community benefit from large-scale genetic 10 

resources. This is also critically important for advancing genetic association studies in situations 11 

when explicit data sharing is not permitted or very challenging in the international settings, thus 12 

potentially providing insights into rare sample collections that were not available so far. Finally, 13 

approach developed in this work creates a path to creating unified central repository that would 14 

encompass all studies published in dbGAP and make it accessible to association studies run in 15 

any design and cohort. 16 

  17 

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 14, 2018. ; https://doi.org/10.1101/470450doi: bioRxiv preprint 

https://doi.org/10.1101/470450
http://creativecommons.org/licenses/by-nc/4.0/


 15 

Methods 1 

 2 

1000 genomes OMNI-array genotyping data 3 

Raw genotypes were downloaded from 1000 genomes FTP site at: 4 

ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/supporting/hd_genotype_chip/ 5 

Dataset was subjected to variant and samples quality check, according to the standard 6 

genotyping data handling protocol (Supplementary Figure S2)6,7. Quality check was performed 7 

with PLINK package13. Code for converting binary PLINK format files into genotype matrix used 8 

for matching is available through a control matching web-portal at 9 

 10 

Exome Sequencing Data 11 

Whole exome libraries were prepared using Whole Exome Agilent 1.1 RefSeq plus 3 boosters 12 

capture kit and protocol, automated on the Agilent Bravo and Hamilton Starlet. Libraries were 13 

then prepared for sequencing using a modified version of the manufacturer's suggested 14 

protocol, automated on the Agilent Bravo and Hamilton Starlet, followed by sequencing on the 15 

Illumina HiSeq 2000.  We used an aggregated set of samples consented for joint variant calling 16 

resulting in 37,607 samples (Supplementary Table S1). All samples were sequenced using the 17 

same capture reagents at the Broad Institute and aligned on the reference genome with BWA14 18 

and the best-practices GATK/Picard Pipeline, followed by joint variant calling with all samples 19 

processed as a single batch using GATK v 3.1-144 Haplotype Caller15–17. The resulting dataset 20 

had 7,094,027 distinct variants. Variant effect predictor was used for variant annotation18. 21 
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Early onset breast cancer cohort used for association study is available through dbGAP 1 

(phs000822.v1.p1). 2 

1000 genomes sequencing data was downloaded from 3 

ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/ 4 

 5 

Software 6 

Software pipeline was developed using R-language and libraries19–21. PLINK/SEQ library was 7 

used for operations with sequencing data22.  8 

Source code, usage examples and manual are available at supplemental materials and online: 9 

www.dnascore.net and https://github.com/alexloboda/SVDFunctions. 10 

 11 

  12 
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Figure Legends 1 

Figure 1. Scheme of an association study without genotype sharing. Individual level genotype 2 

data is subject to data sharing restrictions. SVD-based processing creates anonymous data 3 

describing variation in case genotypes without storing individual data that could be shared with 4 

no restrictions. Remote server with a pool of controls selects a set of controls genotype 5 

variation matching cases, estimates allele frequency for sites to be used for association study 6 

and delivers results to the user. 7 

 8 

Figure 2. Case Study 1: Simulated Case-Control Study with 1000 Genomes OMNI Genotyping 9 

Array Data. (A) Breakdown of ancestries present in the dataset and case-control study set up: 10 

random 100 European samples are selected as “cases” and the rest of the data is tested as 11 

prospective controls; (B) Conventional PCA showing European samples selected as case group; 12 

(C) Scheme of data handling simulating association study without genotype sharing; (D) Ranking 13 

of controls by quality of representation in case basis; (E) Distribution of residual vector norms 14 

for prospective controls; (F) Conventional PCA shows that greater values of residual vector 15 

norms correspond to greater departure from European cluster; (G) Quantile-Quantile plots for 16 

multiple thresholds demonstrate increasing inflation; (H) Optimal residual vector norm 17 

threshold should deliver λGC<1.05; (I) Optimal threshold selection scheme; (J) Matching 18 

experiment summary results. 19 

 20 

Figure 3. Case Study 2: Simulated Case-Control Study with 32,677 Exomes. (A) Breakdown of 21 

ancestries present in the dataset and case-control study set up: random 3000 European 22 
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samples are selected as “cases” and the rest of the data is tested as prospective controls; (B) 1 

Conventional PCA showing European samples selected as case group; (C) Ranking of controls by 2 

quality of representation in case basis; (D) Distribution of residual vector norms for prospective 3 

controls; (E) Conventional PCA shows that greater values of residual vector norms correspond 4 

to greater departure from European cluster; (F) Quantile-Quantile plots for multiple thresholds 5 

demonstrate increasing inflation; (G) Optimal residual vector norm threshold should deliver 6 

λGC<1.05; (H) Matching experiment summary results. 7 

 8 

Figure 4. Case Study 3: Early-onset Breast Cancer Association Study. (A) Experimental 9 

workflow for obtaining matched controls data from SCoRe online platform; (B) Principal 10 

component analysis of breast cancer cohort (EOBC) performed jointly with 1000 genomes 11 

European samples. Multiple European sub-ancestries are present in case cohort, including 12 

substantial Ashkenazi group; (C) QQ-plot obtained from SCoRe platform for 1930 matched 13 

controls; (D) QQ-plot of association study performed on common (MAF>5%) synonymous 14 

variants found in cases with control allele frequencies obtained from SCoRe; (E) QQ-plot for 15 

gene-burden test for rare synonymous (singletons in cases, corresponds to MAF<0.00172) with 16 

gene-level summary allele counts obtained from SCoRe (F) QQ-plot for rare protein-truncating 17 

variants (singletons in cases, corresponds to MAF<0.00172) with gene-level summary allele 18 

counts obtained from SCoRe. BRCA1 is the top associated gene; (G) Fisher test statistical power 19 

estimate for 291 cases. Control cohorts matched with SCoRe platform and conventional 20 

stratified analysis with genotype sharing (Supplementary Figure S8) are labeled with dashed 21 

lines; (H) Fisher test statistical power for each case-control cohort: separate batches from 22 
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shared genotypes analysis, stratified analysis with shared genotypes and SCoRe platform 1 

(Supplementary Figure S8). 2 

 3 
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Fig. 1. Scheme of an association study without genotype sharing. Individual level genotype 
data is subject to data sharing restrictions. SVD-based processing creates anonymous data 
describing variation in case genotypes without storing individual data that could be shared 
with no restrictions. Remote server with a pool of controls selects a set of controls genotype 
variation matching cases, estimates allele frequency for sites to be used for association study 
and delivers results to the user.
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Fig. 2. Case Study 1: Simulated Case-Control Study with 1000 Genomes OMNI Genotyping Array 
Data. (A) Breakdown of ancestries present in the dataset and case-control study set up: random 
100 European samples are selected as “cases” and the rest of the data is tested as prospective 
controls; (B) Conventional PCA showing European samples selected as case group; (C) Scheme of 
data handling simulating association study without genotype sharing; (D) Ranking of controls by 
quality of representation in case basis; (E) Distribution of residual vector norms for prospective 
controls; (F) Conventional PCA shows that greater values of residual vector norms correspond to 
greater departure from European cluster; (G) Quantile-Quantile plots for multiple thresholds 
demonstrate increasing inflation; (H) Optimal residual vector norm threshold should deliver 
λGC<1.05; (I) Optimal threshold selection scheme; (J) Matching experiment summary results
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Fig. 3. Case Study 2: Simulated Case-Control Study with 32,677 Exomes. (A) Breakdown of 
ancestries present in the dataset and case-control study set up: random 3000 European 
samples are selected as “cases” and the rest of the data is tested as prospective controls; (B) 
Conventional PCA showing European samples selected as case group; (C) Ranking of controls 
by quality of representation in case basis; (D) Distribution of residual vector norms for 
prospective controls; (E) Conventional PCA shows that greater values of residual vector norms 
correspond to greater departure from European cluster; (F) Quantile-Quantile plots for 
multiple thresholds demonstrate increasing inflation; (G) Optimal residual vector norm 
threshold should deliver λGC<1.05; (H) Matching experiment summary results
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Fig. 4. Case Study 3: Early-onset Breast Cancer Association Study. (A) Experimental workflow for obtaining 

matched controls data from SCORE online platform; (B) Principal component analysis of breast cancer cohort 

(EOBC) performed jointly with 1000 genomes European samples. Multiple European sub-ancestries are present 

in case cohort, including substantial Ashkenazi group; (C) QQ-plot obtained from SCORE platform for 1930 

matched controls; (D) QQ-plot of association study performed on common (MAF>5%) synonymous variants 

found in cases with control allele frequencies obtained from SCORE; (E) QQ-plot for gene-burden test for rare 

synonymous (singletons in cases, corresponds to MAF<0.00172) with gene-level summary allele counts obtained 

from SCORE (F) QQ-plot for rare protein-truncating variants (singletons in cases, corresponds to MAF<0.00172) 

with gene-level summary allele counts obtained from SCORE. BRCA1 is the top associated gene; (G) Fisher test 

statistical power estimate for 291 cases. Control cohorts matched with SCORE platform and conventional 

stratified analysis with genotype sharing (Fig. S8) are labeled with dashed lines; (H) Fisher test statistical power 

for each case-control cohort: separate batches from shared genotypes analysis, stratified analysis with shared 

genotypes and SCORE platform (Fig. S8).
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