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Abstract  

A major focus of ecology is to understand and predict ecosystem function across 

scales. Many ecosystem functions are only measured at local scales, while their 

effects occur at a landscape level. Here, we investigate how landscape-scale 

predictions of ecosystem function depend on intraspecific competition, a fine-scale 

process. Specifically, we experimentally investigated the effect of intraspecific 

density of shredding macroinvertebrates on associated leaf litter decomposition, a key 

function in freshwater ecosystems. Across two species, we found that leaf processing 

rates declined with increasing density following a power law, likely due to 

interference competition. To demonstrate consequences of this nonlinearity, we 

upscaled estimates of leaf litter processing from shredder abundance surveys in 10 

replicated headwater streams. In accordance with Jensen’s inequality, applying 

density-dependent consumption rates reduced estimates of catchment-scale leaf 

consumption up to 60-fold versus using density-independent rates. Our work 

highlights the need for spatially-explicit upscaling which accounts for intraspecific 

interactions.	
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Introduction  

 In an era of ongoing global change, a growing focus of ecology is to 

understand what controls ecosystem functioning, and to predict future scenarios of 

ecosystem function and services. Biodiversity is an important determinant of 

ecosystem functioning because of the traits, functions, and dynamics of individual 

species (Tilman et al. 2014; Eisenhauer et al. 2016; Grace et al. 2016). The number of 

species in an ecosystem determines its functioning not just by summing these traits 

and functions, but also through the interaction between organisms, which can be 

synergistic or antagonistic (Gessner et al. 2010; Carrara et al. 2015). Thus, the relative 

abundance of species is important because the presence of a strongly-dominant 

species, for example, can influence the relationship between biodiversity and 

ecosystem function (Dangles and Malmqvist 2004; Isbell et al. 2013).  

 However, despite the clear effect of dominant species on ecosystem function, 

the density of organisms is rarely explicitly considered when estimating ecosystem 

function. This is surprising, because intraspecific, density-dependent interactions are 

recognized as important in almost all disciplines of ecology. For example, they are a 

key requirement for the maintenance of biodiversity according to modern coexistence 

theory (Chesson 2000; McPeek 2012), and many aspects of population dynamics are 

controlled by density (Hassell et al. 1976; Brook and Bradshaw 2006). Logically, 

then, the functions performed by organisms are also under density-dependent control, 

in which case ecosystems with differing abundances of a particular species could have 

different dynamics, function, and fates. It is also a surprising gap because variation in 

intraspecific density is ubiquitous in nature: there is considerable variation in species 

abundances through space and time (Hanski 1990). 	
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 Thus, density-dependent control of ecosystem function is not just potentially 

substantial in magnitude, but could be widespread. Yet, the consequences of this 

mechanism for landscape-level ecosystem function remain unexplored. Understanding 

the shape of a density-ecosystem function (henceforth DEF) relationship is crucial, as 

non-linear relationships abound and affect the accuracy of upscaling (Harvey 2000). 

Analogous to functional- and temperature-response curves, non-linear DEF 

relationships would mean that upscaling based on knowledge of ecosystem function at 

one scale could greatly over- or under-predict gross rates at a broader scale (Ruel and 

Ayres 1999; Kingsolver 2009; Denny and Benedetti-Cecchi 2012).  	

 Decomposition in freshwater ecosystems may be a particularly relevant 

context for DEF relationships. Decomposition regulates resource cycling, and is 

particularly important in aquatic systems where terrestrial detritus can make up a large 

portion of resource fluxes (Gounand et al. 2018). Communities of species contributing 

to decomposition are characteristically less complex than in freshwater than terrestrial 

ecosystems (Hieber and Gessner 2002), and as a result density variation in those few 

species could have a large impact (Jonsson and Malmqvist 2003; Klemmer et al. 

2012).  Yet decomposition is less frequently considered in ecosystem function 

frameworks than terrestrial biomass production (Cardinale et al. 2011), where a 

greater diversity of species contribute to ecosystem function through time. This may 

be one reason why DEF relationships have rarely been explored: biomass is often 

considered an ecosystem function rather than an explanatory mechanism.	

 Here, we investigate the relationship between intraspecific density of two 

aquatic macroinvertebrate shredders and their rate of leaf litter processing. We then 

use these DEF relationships to upscale leaf litter processing estimates to catchment 

levels based on spatial variance in intraspecific density observed across multiple 
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independent headwater stream networks.  Previous upscaled estimates of the effect of 

shredder species turnover on ecosystem function assumed density-independence of 

leaf processing rates and furthermore assumed equal densities throughout a catchment 

(e.g., Piscart et al. 2011). By contrast, we incorporate spatial variance in abundances 

for two reasons. First, a previous meta-analysis of laboratory studies indicated 

density-dependence in per-capita leaf consumption rates (Little and Altermatt 2018a). 

Secondly, in this group of shredding macroinvertebrates typically one species 

dominates locally, but the dominant species varies in abundance over orders of 

magnitude within a catchment (Welton 1979; Van den Brink et al. 1991; Altermatt et 

al. 2016; Little and Altermatt 2018b). This creates an ideal scenario to test the concept 

of a DEF relationship whereby the abundance of these key taxa, rather than species 

richness, could control decomposition and thus would need to be considered in 

upscaling predictions. 	

 

Methods 

Study Organisms 

 We experimentally assessed effects of intraspecific density on leaf shredding 

rates by two freshwater amphipod (Crustacea, Amphipoda) species: Gammarus 

fossarum (Koch), a relatively small species native to Central Europe, and 

Dikerogammarus villosus (Sowinsky), a relatively large species native to the Ponto-

Caspian region which has recently invaded many regions worldwide (Van den Brink 

et al. 1991; MacNeil et al. 2012). Collection and maintenance of study organisms are 

described in the Supplementary Material.	

 

Mesocosm Experiments 
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 Mesocosms were built from 2 L plastic containers with 0.4 m2 of bottom 

surface area, placed in a flowing-water rack system with a mixture of stream and tap 

water. Conditioned naturally senescent alder leaves totalling 1.5 g (dry weight) were 

placed in each mesocosm. For each species, mesocosms were set up with fixed 

densities of the target amphipod species: 50 replicates with one individual, 20 

replicates with two individuals, 10 with five individuals, 10 with 10 individuals, six 

with 20 individuals, and six with 30 individuals per mesocosm. This 30-fold density 

range is smaller than the >100-fold density range commonly observed in stream 

reaches (Little and Altermatt 2018b). The unbalanced number of replicates for each 

density was chosen because per-mesocosm leaf consumption was expected to be more 

variable in replicates with fewer amphipods.  

 The leaf consumption experiments were run for 19 (G. fossarum) and 12 (D. 

villosus) days, respectively, at which point leaves from the mesocosms were collected 

and dried for 48 h at 60 ˚C, then weighed to calculate mass loss from the beginning of 

the experiment. Amphipods were counted every two to three days throughout the 

experiments to track mortality; overall, survival was 89.3% for G. fossarum and 

95.1% for D. villosus. These mortality estimates were used to calculate an average 

amphipod density (individuals per square meter) that the mesocosm experienced over 

the length of the experiment. At the end of the experiment, amphipods were 

sacrificed, dried for 48 h at 60 ˚C, and weighed. Individuals which died during the 

course of the experiment were assigned the global average weight of all amphipods 

across the experiment. The average daily biomass in a mesocosm (mg m–2) was then 

calculated as the average density multiplied by the average weight of all individuals in 

the mesocosm. Two outliers were removed from the G. fossarum dataset and three 

from the D. villosus dataset, because their consumption rate estimates were over three 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 15, 2018. ; https://doi.org/10.1101/470591doi: bioRxiv preprint 

https://doi.org/10.1101/470591
http://creativecommons.org/licenses/by/4.0/


	 7	

standard deviations from the mean and also substantially higher than any we had 

measured in previous experiments (Little and Altermatt 2018a), and we did not feel 

we could rule out measurement error as an explanation.	

 

DEF models  

 For both amphipod species, we tested for the effects of density on leaf 

consumption using nonlinear models in R version 3.5.0 (R Core Team, Vienna, 

Austria). Initial data exploration and linear models using transformed and non-

transformed data showed that these relationships were linear in log-log space (see 

Supplementary Material for details, and Figure S1). Therefore we created negative 

exponential models using the gNLS function in the ‘nlme’ package version 3.1-137 

(Pinheiro et al. 2013) and weighted data points by the variance in the response 

variable, since there was higher variance around high estimates of leaf litter 

consumption across the experiment. For each species we created separate models of 

the relationships between amphipod density and per-amphipod daily leaf 

consumption, and between amphipod biomass and biomass-adjusted daily leaf 

consumption.	

 

Upscaling to Real Catchments	

 We upscaled estimates of leaf litter processing to the catchment level by 

pairing the derived DEF equations with spatially resolved population density data 

from field surveys. We had previously assessed amphipod abundance in ten 

headwater stream catchments in eastern Switzerland predominantly inhabited by G. 

fossarum, where D. villosus was present only rarely at the outlets (Altermatt et al. 

2016; Little and Altermatt 2018b); the species is more common in rivers (Van den 
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Brink et al. 1991). The goal of upscaling was to demonstrate the consequences of 

nonlinear DEF relationships, so since shape of the relationship was similar in the two 

species, we performed the analysis based only on the G. fossarum DEF function. The 

full details of the field surveys are described in Little and Altermatt (2018b), but 

briefly, sampling points were established in April 2015 in every ~250 m section of 

each stream. Amphipods were collected using a kicknet and their density was 

estimated on a logarithmic scale (0, 1–10, 11–100, 101–1000, or >1000 individuals 

per 1 meter-long stream segment). Below, we refer to these abundance estimates as 

‘bins’.  

 For upscaling, we longitudinally divided each stream’s mapped watercourse 

(Swisstopo 2007) into one-meter segments and used two different methods to estimate 

the total abundance of amphipods in the catchment: inverse distance weighted 

interpolation and proportional estimation. We simulated spatial abundances of 

amphipods 1000 times per catchment using each method, and averaged over the 

simulations to extract catchment-wide predictions of abundance and processing (see 

below).	

 Inverse distance weighting (IDW) produces interpolated data that varies 

smoothly in space as a function of distance from measured sampling points, based on 

the assumption that points close to each other are more similar. Each IDW simulation 

began by assigning the catchment’s sampling points (n = 9–15, depending on the 

catchment) to a random abundance value within their observed abundance bin (e.g., a 

random number between 11 to 100 for a bin with 11–100 individuals). Then using the 

package ‘gstat’ (Pebesma 2004), each one-meter segment was assigned an abundance 

based on its distance from these 9–15 assigned points. 	
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 With the proportional estimation method, we removed the assumption that 

nearby reaches are more similar to each other and instead focused only on capturing 

the observed variation in surveyed abundances. With this method, we recorded the 

proportion of a catchment’s sampling points which belonged to each abundance bin 

(i.e. proportion of sampling points with zero amphipods, proportion with 1–10 

amphipods, etc.) and created a probability distribution of abundance bin assignment 

for the catchment. For a simulation, every one-meter stream segment was randomly 

assigned to an abundance bin based on this probability function, and then the 

segments were assigned random abundances from within the range of their assigned 

bins (e.g., assigned to the 1–10 amphipod bin, and then assigned a random number 

between 1 and 10). 	

 For each simulation, the one-meter segments were summed to produce a 

catchment-level abundance estimate. The 1000 simulations per catchment (per 

method) were summarized with means and 95% confidence intervals.  

 We estimated whole catchments’ total leaf litter processing rate per day based 

on these abundance estimates, under two scenarios. In Scenario 1, we multiplied the 

global average processing rate from the G. fossarum density experiment (i.e., average 

across all densities) by the total population size of the catchment, a common way to 

upscale consumption estimates (for example, Piscart et al. 2011). In Scenario 2, we 

used the spatially-varying amphipod densities derived from the two estimation 

methods, and applied the experimentally-derived G. fossarum DEF function from to 

each one-meter stream segment before summing to the catchment level.  

 

Results 
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 Our experimental data fit negative power laws relating per-capita consumption 

rates to density (for fitting details, see Supplementary Material). This was true both 

when relating individual density to per-capita leaf consumption (Figure 1), and 

density of biomass to biomass-adjusted leaf consumption (Figure S4). To confirm that 

these derived relationships explained the density-dependent relationship with per-

capita consumption rates, we calculated predicted per-mesocosm total leaf 

consumption along a continuous gradient of amphipod densities. These curves (solid 

lines in right panels of Figure 1) reasonably matched the actual per-mesocosm leaf 

consumption rates, while linear extrapolations based on density-independent, constant 

per-capita consumption rates overestimated total leaf consumption by orders of 

magnitude for any density greater than a few amphipods per square meter (Figure 1). 

 Next, we performed upscaling to estimate amphipod abundance in the ten 

study catchments. Estimates of whole-catchment abundance ranged from hundreds 

(808 in Dorfbach) to millions (1.46 million in Mannenbach) of amphipods using the 

inverse distance weighted estimation method (Table 1), and from thousands (1,590 in 

Dorfbach) to millions (1.43 million in Seebach) using proportional estimation (Table 

S2).  

 In an example catchment, the Chesselbach (for all other catchments, Table 1, 

Table S2, and Figures S5–S13), inverse distance weighted interpolation from 13 

sampling points (Figure 2) produced an estimate of ~720,000 amphipods in the 

catchment (mean of 1000 simulations: 720,719; 95% CI 709,980–731,456). Using the 

mean experimental per-capita consumption rate (12 mg amphipod–1 day–1) to derive 

leaf processing (Scenario 1) yielded a mean of 8.8 kg of leaf litter processed per day. 

Applying the experimentally-derived negative exponential DEF relationship to the 

spatially-varying interpolated densities in the catchment (Scenario 2) resulted in a 
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markedly lower predicted processing rate, in this case a mean of 0.3 kg per day. 

Indeed, in all but one (the most sparsely occupied) catchment, estimates of total leaf 

litter processing were lower using the experimentally-derived DEF relationship than 

when using a density-independent processing rate (Table 1). The mismatch was 

substantial: not accounting for density dependence resulted in leaf processing rates up 

to 60 times higher in some catchments. Results were similar when based on 

proportional abundance estimations (Table S2). 

 

Discussion 

 As ecology moves towards a more predictive science, a central challenge is 

that the underlying mechanisms leading to an observed response – for example, 

ecosystem function – are occurring at a different scale (Levin 1992). In this context, 

the nonlinear relationships abundant in nature present challenges for upscaling. Often, 

it may be necessary to incorporate variance in the explanatory variable, not simply 

mean values, for predictions to be accurate (Ruel and Ayres 1999; Melbourne and 

Chesson 2005; Denny and Benedetti-Cecchi 2012). Using experimental manipulations 

at the level of individual small organisms, we found that local population density had 

a strong effect on leaf litter processing rates of two dominant freshwater detritivores, 

and thus their per-capita contribution to ecosystem function. At the reach scale, the 

shape of this density-ecosystem function (DEF) relationship meant that estimated 

ecosystem function was similar across stream reaches, even when there was 

substantial spatial heterogeneity in organismal abundances. At the landscape scale, 

that is, the scale of riverine networks (Altermatt 2013), the shape of this nonlinear 

relationship had strong implications for upscaled predictions of ecosystem function, 

because population density increases much faster than its corresponding ecosystem 
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function. As a result, ecosystem function predictions based on our experimentally-

derived DEF relationship were more than an order of magnitude lower than 

predictions made using more simplistic, mean-based estimates. Thus, neglecting the 

role of density may systematically bias estimates of ecosystem function. 	

 Intraspecific competition for resources is an essential regulator of population 

dynamics. Here, we demonstrate that intraspecific density could also regulate leaf 

litter processing, a key ecosystem function globally providing terrestrial resources to 

freshwater ecosystems (Gounand et al. 2018). Previously, leaf litter processing was 

shown to vary nonlinearly with abundance of macroinvertebrates, which was 

attributed to intraspecific resource competition at high densities (Klemmer et al. 

2012). However, in our experiments, resources were not limiting, and per-capita leaf 

processing decreased even at relatively low densities. Thus, we find it more likely that 

interference competition (Schoener 1983) generated these nonlinearities. In the 

broader context of upscaling, however, both types of competition are important as 

they could shape DEF relationships.   

 One main consequence of a nonlinear DEF relationship is that predictions at 

the landscape scale become challenging. This is especially relevant for organisms that 

are known to vary in their abundance locally over several orders of magnitude, such 

as the dominant shredders studied here. In our case, neglecting the role of density 

would lead to vast overestimates of ecosystem function; in other contexts (species, 

relationships, and functions) the reverse may be true. Connecting nonlinear population 

dynamics and spatial heterogeneity led to the development of scale transition theory 

(Melbourne and Chesson 2005; Chesson 2012), which has been applied to populations 

and communities and should be expanded to ecosystem-level processes.  
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 Our results expand the current understanding of biodiversity effects on 

ecosystem function (BEF) to include density-dependent effects on ecosystem function 

(DEF), recognizing that non-linear dependencies are prevalent and important (Grace 

et al. 2007; Tilman et al. 2014). In fact, the two frameworks are related: release from 

intraspecific competition has been discussed as a mechanism through which 

increasing species richness accelerates ecosystem function (Jonsson and Malmqvist 

2003; Weis et al. 2007; Patrick 2013). Connecting plot- and patch-level results to real, 

complex ecosystems and larger scales is recognized as one of the biggest challenges 

in ecosystem function research, with some debate as to the success of efforts to date 

(Hewitt et al. 2007; Snelgrove et al. 2014; Eisenhauer et al. 2016; Wardle 2016). Our 

results suggest that in some contexts, DEF may be more important than BEF, but that 

this does not diminish the need for upscaling to be spatially explicit or to account for 

organisms’ interactions.	
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Tables 

Table 1. Total amphipod abundance estimated using inverse distance weighted 

interpolation based on field sampling (n = number of sampling points in catchment, l 

= total stream length in the catchment), and two different upscaled estimates to whole-

catchment leaf litter processing rates (grams/day). Briefly, Scenario 1 assumes 

density-independent per-capita processing; Scenario 2 assumes spatially-varying 

abundances and density-dependent leaf consumption calculated for each stream reach 

based on its particular abundance. Estimates are means of 1000 simulations, with 95% 

confidence intervals shown in parentheses. 

 
Stream name 

Total 
Abundance 

Scenario 1 
Processing  

Scenario 2 
Processing  

Chesselbach 

n = 13, l = 4.5 km 

720,719  

(± 1,035) 

8,194.7 

(± 122.1) 

315.4 

(± 0.5) 

Dorfbach 

n = 15, l = 4.3 km 

808  

(± 6) 

9.2  

(± 0.3) 

9.8 

(± 0.1) 

Eschlibach 

n = 12, l = 4.1 km 

1,135,006  

(±1,249) 

12,905.2  

(± 145.9) 

312.6 

(± 0.49) 

Hepbach 

n = 13, l = 3.8 km 

231,020  

(±622) 

2,626.7  

(± 67.6) 

178.3 

(± 0.7) 

Imbersbach 

n = 11, l = 3.3 km 

139,222  

(±613) 

1,583.0  

(± 45.1) 

119.0 

(± 1.2) 

Mannenbach 

n = 15, l = 4.8 km 

1,464,130  

(±1,408) 

16,647.4  

(± 178.1) 

378.0 

(± 0.6) 

Seebach 

n = 11, l = 3.2 km 

1,370,115  

(±1,250) 

15,578.4  

(± 139.1) 

260.4 

(± 0.3) 

Tobelmühlibach 

n = 12, l = 3.7 km 

696,563  

(±1,081) 

7,920.0  

(± 107.8) 

239.9 

(± 0.5) 

Unnamed Stream 1 

n = 9, l = 2.8 km 

518,543  

(±849) 

5,895.9  

(± 120.8) 

172.1 

(± 0.6) 

Unnamed Stream 2 

n = 10, l = 3.6 km 

317,053  

(±672) 

3,604.9  

(± 64.2) 

234.3 

(± 0.4) 
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Figures 
 

 

Figure 1. Negative exponential relationships (left panels) between density and per-

capita consumption rates for G. fossarum (consumption = 38.6*density-0.87) and D. 

villosus (consumption = 49.7*density-0.81) in mesocosm experiments. Gray shading 

shows the 95% confidence interval of the model fit. Right panels show the total daily 

leaf litter consumption per mesocosm, overlaid by expected values from the negative 

exponential functions derived at left (solid lines), constant per-capita consumption 

rates calculated by averaging all mesocosms (dotted line), and constant per-capita 

consumption rates calculated only from mesocosms with one individual amphipod 

each (dashed line). Note the different x- and y-axis ranges for the two species.	
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Figure 2. Hotspots of abundance (top panel) and leaf litter processing (bottom panels) 

in the Chesselbach stream catchment (outlined in yellow), based on upscaling 

abundance data from 13 sampling points up to longitudinal abundance distributions 

using inverse distance weighted interpolation. Daily processing rates were calculated 

by multiplying the interpolated abundance in a 1 m section of stream length by either 

the average per capita consumption rate of G. fossarum (middle panel) or the 

experimentally-derived negative power function relating G. fossarum density to per-

capita leaf litter consumption (bottom panel). This figure shows the mean of 1000 

simulations of the interpolation process. Because stream reaches with higher densities 

of individuals have the lowest per-capita processing rates, the spatial distribution of 

leaf litter processing under this scenario is very different than the spatial distribution 

of amphipod abundance, with the effect of homogenizing ecosystem function in space 

despite having heterogeneous biomass. Data sources: swisstopo (2010, 2014), 

Vector25 and TLM3D, DV 5704 000 000, reproduced by permission of 

swisstopo/JA100119. 
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Supplementary Material 

Methods 

Experimental details 

The experiments were first performed on Gammarus fossarum in November 2016. 

We collected G. fossarum by kicknet from Sagentobelbach in Dübendorf, Switzerland 

(47.39° N, 8.59° W). Only adults were brought to the laboratory, where they were 

placed in large holding containers of ~500 individuals, gradually brought up to 18 °C, 

and acclimated for two and a half days with ad libitum alder (Alnus glutinosa 

(Gaertner)) leaves conditioned for six days in stream water to establish natural 

microbial and fungal communities. In January 2017, we repeated the experiment with 

D. villosus individuals collected by kicknet from Lake Constance at Kesswil, 

Switzerland (47.60° N, 9.32° W). 

 For both focal species, we distributed individuals into experimental units so 

that medium and large individuals were equally represented in all replicates. With 

respect to sex, unless one divides individuals into males and females by separating 

precopulatory pairs, a microscope is necessary to identify sex. This is impractical in 

the field, and handling can injure the individuals. We instead assumed that subsequent 

allocation of individuals to treatments was random across the experiment. 

 

Data exploration and analysis 

 Because the measures of density had long right tails, we explored density-

consumption relationships which log-transformed this variable. We first used linear 

models to create (1) simple linear models, (2) linear models with log-transformed 

density data, and (3) linear models with log-transformed density and log-transformed 

consumption data. For this analysis, any zero values of consumption were replaced 
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with 0.01 to enable log-transformation; fitting of nonlinear models (see below) used 

original data with zeros. To determine which type of model best fit the data, we 

examined diagnostic plots and tested each model’s residuals for normality using a 

Shapiro-Wilkes test. Non-normal residuals taken to indicate poor model fit, and we 

planned to use this initial comparison to determine which of three strategies to use for 

fitting the data: (1) if simple linear models had residuals that met assumptions of 

normality and homoscedasticity, we would use these models; (2) if the models with 

log-transformed density fit best we would re-fit the data using generalized linear 

models (GLM) with a log link function, and (3) if the third models fit best we would 

re-fit the data using non-linear least square models (NLS). However, we used 

normality of residuals in combination with other diagnostics to determine the best 

model for the data. Data were linear in log-log space for both species (Figure S1). 

 

 

Figure S1. The association between density and per-capita consumption rate is linear 
in log-log space, for both G. fossarum and D. villosus, and both when measuring 
density as individual abundance or as biomass. 
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 For G. fossarum, the simple linear model (scenario 1 above) was the only 

model with normal residuals (Table S1). However, diagnostics indicated that this 

model did not fit the data well (Figure S2).  

 

Table S1. In order to determine the shape of the density-consumption relationship, 
residuals of different models (linear-linear, linear-log, and log-log) were tested for 
normality using a Shapiro-Wilkes test, where the null hypothesis is normality of the 
distribution. The G. fossarum dataset comprised 97 observations, and the D. villosus 
dataset 96 observations. 

Model specification 

Shapiro  

W statistic 

Shapiro  

p-value 

Model 

Adjusted R2 

G. fossarum, individual density    

consumption ~ density 0.98 0.09 0.45 

consumption ~ log(density) 0.92 < 0.001 0.73 

log(consumption) ~ log(density) 0.31 < 0.001 0.45 

G. fossarum, biomass density    

consumption ~ density 0.59 < 0.001 0.13 

consumption ~ log(density) 0.63 < 0.001 0.52 

log(consumption) ~ log(density) 0.37 < 0.001 0.44 

D. villosus, individual density    

consumption ~ density 0.94 < 0.001 0.46 

consumption ~ log(density) 0.97 0.04 0.77 

log(consumption) ~ log(density) 0.98 0.30 0.96 

D. villosus, biomass density    

consumption ~ density 0.90 < 0.001 0.37 

consumption ~ log(density) 0.94 < 0.001 0.73 

log(consumption) ~ log(density) 0.98 0.21 0.96 
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Figure S2. Diagnostic plots for the simple linear model of per-amphipod consumption 
rates as a function of density. 
 

While the residuals of the third model (on log-transformed density and consumption 

data) did not meet the assumption of normality according to the Shapiro-Wilkes test 

(Table S1), the other diagnostics indicate that the log-log model fit the data best other 

than three outliers where no leaf litter had been consumed (Figure S3).  
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Figure S3. Diagnostic plots for the linear model of log-transformed per-amphipod 
consumption rates as a function of log-transformed density. 
 

While deviating from normality, these observations did not have such high leverage 

(Cook’s distance, red lines in Figure S3) to exclude them, and would only make the 

nonlinear fit estimates more conservative by pulling down estimated consumption 

rates at low densities (Figure 1). Thus, we chose nonlinear model fits for both species. 

 For the D. villosus, only the third linear model scenario (with log transformed 

density and consumption data) had normal residuals (see Table S1 above).  

 Therefore, we developed NLS models for both species. Parameter estimates 

from the linear models of transformed data were used as starting values for the NLS 

models. 95% confidence intervals for the model fits were generated by making 

100,000 samples of coefficient estimates based on the approximate variance-

covariance matrix extracted from the gNLS. 
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Results 

 

Figure S4. Negative exponential relationships between biomass and leaf litter 

consumption rates in experimental mesocosms for G. fossarum (consumption = 

40.3*biomass-0.92) and D. villosus (consumption=44.7*biomass-0.83). 
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Table S2. Total amphipod abundance estimated using proportional estimation based 
on field sampling (n = number of sampling points in catchment, l = total stream length 
in the catchment), and three different upscaled estimates to whole-catchment leaf litter 
processing rates (grams/day). Briefly, Scenario 1 assumes density-independent per-
capita processing; Scenario 2 assumes spatially-varying abundances in a catchment 
with leaf consumption calculated for each stream reach based on its particular 
abundance. Estimates are means of 1000 simulations, with 95% confidence intervals 
shown in parentheses. 
 
 

Stream name 

Total 

Abundance 

Scenario 1 

Processing  

Scenario 2 

Processing  

Chesselbach 

n = 13, l = 4.5 km 

692,825  

(± 1,035) 

7,877.5 

(± 11.8) 

272.2 

(± 0.1) 

Dorfbach 

n = 15, l = 4.3 km 

1,587  

(± 6) 

18.0 

(± 0.1) 

13.6 

(± 0.0) 

Eschlibach 

n = 12, l = 4.1 km 

1,179,563 

 (± 1,249) 

13,411.8 

(± 14.2) 

272.6 

(± 0.1) 

Hepbach 

n = 13, l = 3.8 km 

186,550  

(± 622) 

2,121.1 

(± 7.1) 

139.3 

(± 0.1) 

Imbersbach 

n = 11, l = 3.3 km 

166,930  

(± 613) 

1,898.0 

(± 7.0) 

53.7 

(± 0.1) 

Mannenbach 

n = 15, l = 4.8 km 

1,351,796 

 (± 1,408) 

15,370.1 

(± 16.0) 

334.3 

(± 0.1) 

Seebach 

n = 11, l = 3.2 km 

1,434,449 

 (± 1,250) 

16,309.9 

(± 14.2) 

250.1 

(± 0.1) 

Tobelmühlibach 

n = 12, l = 3.7 km 

738,789  

(± 1,081) 

8,400 

(± 12.3) 

183.4 

(± 0.1) 

Unnamed Stream 1 

n = 9, l = 2.8 km 

361,717  

(± 849) 

4,112.8 

(± 9.6) 

74.0 

(± 0.1) 

Unnamed Stream 2 

n = 10, l = 3.6 km 

322,401  

(± 672) 

3,665.7 

(± 7.6) 

220.1 

(± 0.0) 
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Figure S5. Hotspots of abundance (top panel) and leaf litter processing (bottom 
panel) in the Dorfbach stream catchment (outlines in yellow), based on upscaling 
abundance data from 15 sampling points up to longitudinal abundance distributions 
using inverse distance weighted interpolation. Processing rates (per day) were 
calculated by multiplying the interpolated abundance in a 1 m section of stream length 
by the experimentally-derived negative power relating G. fossarum density to per-
capita leaf litter consumption. This figure shows the mean of 1000 simulations of the 
interpolation process. Data sources: swisstopo (2010, 2014), Vector25 and TLM3D, 
DV 5704 000 000, reproduced by permission of swisstopo/JA100119. 
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Figure S6. Hotspots of abundance (top panel) and leaf litter processing (bottom 
panel) in the Eschlibach stream catchment (outlines in yellow), based on upscaling 
abundance data from 12 sampling points up to longitudinal abundance distributions 
using inverse distance weighted interpolation. Processing rates (per day) were 
calculated by multiplying the interpolated abundance in a 1 m section of stream length 
by the experimentally-derived negative power relating G. fossarum density to per-
capita leaf litter consumption. This figure shows the mean of 1000 simulations of the 
interpolation process. Data sources: swisstopo (2010, 2014), Vector25 and TLM3D, 
DV 5704 000 000, reproduced by permission of swisstopo/JA100119. 
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Figure S7. Hotspots of abundance (top panel) and leaf litter processing (bottom 
panel) in the Hepbach stream catchment (outlines in yellow), based on upscaling 
abundance data from 13 sampling points up to longitudinal abundance distributions 
using inverse distance weighted interpolation. Processing rates (per day) were 
calculated by multiplying the interpolated abundance in a 1 m section of stream length 
by the experimentally-derived negative power relating G. fossarum density to per-
capita leaf litter consumption. This figure shows the mean of 1000 simulations of the 
interpolation process. Data sources: swisstopo (2010, 2014), Vector25 and TLM3D, 
DV 5704 000 000, reproduced by permission of swisstopo/JA100119. 
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Figure S8. Hotspots of abundance (top panel) and leaf litter processing (bottom 
panel) in the Imbersbach stream catchment (outlines in yellow), based on upscaling 
abundance data from 11 sampling points up to longitudinal abundance distributions 
using inverse distance weighted interpolation. Processing rates (per day) were 
calculated by multiplying the interpolated abundance in a 1 m section of stream length 
by the experimentally-derived negative power relating G. fossarum density to per-
capita leaf litter consumption. This figure shows the mean of 1000 simulations of the 
interpolation process. Data sources: swisstopo (2010, 2014), Vector25 and TLM3D, 
DV 5704 000 000, reproduced by permission of swisstopo/JA100119. 
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Figure S9. Hotspots of abundance (top panel) and leaf litter processing (bottom 
panel) in the Mannenbach stream catchment (outlines in yellow), based on upscaling 
abundance data from 15 sampling points up to longitudinal abundance distributions 
using inverse distance weighted interpolation. Processing rates (per day) were 
calculated by multiplying the interpolated abundance in a 1 m section of stream length 
by the experimentally-derived negative power relating G. fossarum density to per-
capita leaf litter consumption. This figure shows the mean of 1000 simulations of the 
interpolation process. Data sources: swisstopo (2010, 2014), Vector25 and TLM3D, 
DV 5704 000 000, reproduced by permission of swisstopo/JA100119. 
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Figure S10. Hotspots of abundance (top panel) and leaf litter processing (bottom 
panel) in the Seebach stream catchment (outlines in yellow), based on upscaling 
abundance data from 11 sampling points up to longitudinal abundance distributions 
using inverse distance weighted interpolation. Processing rates (per day) were 
calculated by multiplying the interpolated abundance in a 1 m section of stream length 
by the experimentally-derived negative power relating G. fossarum density to per-
capita leaf litter consumption. This figure shows the mean of 1000 simulations of the 
interpolation process. Data sources: swisstopo (2010, 2014), Vector25 and TLM3D, 
DV 5704 000 000, reproduced by permission of swisstopo/JA100119. 
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Figure S11. Hotspots of abundance (top panel) and leaf litter processing (bottom 
panel) in the Tobelmühlibach stream catchment (outlines in yellow), based on 
upscaling abundance data from 12 sampling points up to longitudinal abundance 
distributions using inverse distance weighted interpolation. Processing rates (per day) 
were calculated by multiplying the interpolated abundance in a 1 m section of stream 
length by the experimentally-derived negative power relating G. fossarum density to 
per-capita leaf litter consumption. This figure shows the mean of 1000 simulations of 
the interpolation process. Data sources: swisstopo (2010, 2014), Vector25 and 
TLM3D, DV 5704 000 000, reproduced by permission of swisstopo/JA100119. 
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Figure S12. Hotspots of abundance (top panel) and leaf litter processing (bottom 
panel) in the Unnamed Stream #1 catchment (outlines in yellow), based on upscaling 
abundance data from 9 sampling points up to longitudinal abundance distributions 
using inverse distance weighted interpolation. Processing rates (per day) were 
calculated by multiplying the interpolated abundance in a 1 m section of stream length 
by the experimentally-derived negative power relating G. fossarum density to per-
capita leaf litter consumption. This figure shows the mean of 1000 simulations of the 
interpolation process. Data sources: swisstopo (2010, 2014), Vector25 and TLM3D, 
DV 5704 000 000, reproduced by permission of swisstopo/JA100119. 
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Figure S13. Hotspots of abundance (top panel) and leaf litter processing (bottom 
panel) in the Unnamed Stream #2 catchment (outlines in yellow), based on upscaling 
abundance data from 10 sampling points up to longitudinal abundance distributions 
using inverse distance weighted interpolation. Processing rates (per day) were 
calculated by multiplying the interpolated abundance in a 1 m section of stream length 
by the experimentally-derived negative power relating G. fossarum density to per-
capita leaf litter consumption. This figure shows the mean of 1000 simulations of the 
interpolation process. Data sources: swisstopo (2010, 2014), Vector25 and TLM3D, 
DV 5704 000 000, reproduced by permission of swisstopo/JA100119. 
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