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Abstract 

Shotgun lipidomics enables an extensive analysis of lipids from tissues and fluids. Each 

specimen requires appropriate extraction and processing procedures to ensure good 

coverage and reproducible quantification of the lipidome. Adipose tissue (AT) has 

become a research focus with regard to its involvement in obesity-related pathologies. 

However, the quantification of the AT lipidome is particularly challenging due to the 

predominance of triacylglycerides, which elicit high ion suppression of the remaining lipid 

classes. We present a new and validated method for shotgun lipidomics of AT, which 

tailors the lipid extraction procedure to the target specimen and features high 

reproducibility with a linear dynamic range of at least 4 orders of magnitude for all lipid 

classes. Utilizing this method, we observed tissue-specific and diet-related differences in 

three AT types (brown, gonadal, inguinal subcutaneous) from lean and obese mice. 

Brown AT exhibited a distinct lipidomic profile with the greatest lipid class diversity and 

responded to high-fat diet by altering its lipid composition, which shifted towards that of 

white AT. Moreover, diet-induced obesity promoted an overall remodelling of the lipidome, 

where all three AT types featured a significant increase in longer and more unsaturated 

triacylglyceride and phospholipid species. 

The here presented method facilitates reproducible systematic lipidomic profiling of AT 

and could be integrated with further –omics approaches used in (pre-)clinical research, in 

order to advance the understanding of the molecular metabolic dynamics involved in the 

pathogenesis of obesity-associated disorders. 
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Introduction 

Adipose tissue (AT) in mammals plays a critical role in systemic energy homeostasis[1-

3]. Two main AT forms exist, the white adipose tissue (WAT), which functions primarily 

as an energy reservoir, and the brown adipose tissue (BAT), which contributes to 

thermoregulation, i.e. the production of heat to maintain body temperature stability during 

cold exposure through non-shivering thermogenesis. The expansion of AT observed in 

obesity is accompanied by local hypoxia[4-6], low-grade inflammation[7-11], development 

of systemic insulin resistance[5] and alterations in the secretion of fatty acids[12] or 

adipokines[4]. Thus, studying the regulation of lipid flux and metabolism in AT and 

changes thereof linked to obesity is important for understanding the central role of AT in 

obesity-related metabolic dysfunction.  

Quantitative lipid analysis of biological samples by direct infusion mass spectrometry has 

proven to be a powerful tool for studying lipid metabolism[13-18]. It requires comparatively 

low sample amounts (e.g. 1 µl of plasma is sufficient to quantify a lipidome with 

comprehensive coverage[19]), relatively short measurement times - a prerequisite for the 

high-throughput analysis of large sample numbers, and exhibits excellent technical 

reproducibility. The use of internal standards enables direct quantification and application 

to a wide range of sample types, such as yeast[13 16], flies[20], C. elegans[21], cellular 

samples[14 17 18] or various tissue and body fluids[19]. With regards to lipid 

quantification, ATs are particularly challenging because of their high content of neutral 

lipids (>99% triacylglycerols and cholesterol esters) that causes high ion suppression of 

the less abundant membrane lipids [9 22-24]. Previous approaches towards AT lipidomics 

analysis reported differences between BAT and WAT and demonstrated remodelling 

upon exercise or cold exposure. However, these studies applied generic methods of lipid 

extraction and measurement rather than techniques tailored to these tissues[23-26].  

Here we present a shotgun lipidomics method for the analysis for ATs with an 

unprecedented coverage of more than 300 lipid species encompassing 20 lipid classes, 

and featuring high reproducibility with a linear dynamic range of at least 4 orders of 

magnitude for all lipid classes. We not only observe clear differences between BAT and 

WAT lipidomes, but also amongst WAT subtypes, i.e. gonadal (GAT) and inguinal 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted November 14, 2018. ; https://doi.org/10.1101/470690doi: bioRxiv preprint 

https://doi.org/10.1101/470690


subcutaneous (SAT) ATs. Furthermore, our protocol allows for assessing the impact of 

high-fat diet (HFD) on the remodelling of the lipidome, characterized by a significant 

increase in longer and more unsaturated acyl chains within the triacylglycerides and 

phospholipids.  

 

Results 

Experimental design, Method performance & standardization  

Aiming at high reproducibility and standardization of the comprehensive analysis of AT 

lipids, we focused on developing a shotgun lipidomics method with an expanded dynamic 

range, high sensitivity, i.e. minimal limit of detection, and linearity. The starting material 

was AT (SAT, GAT and BAT) obtained from mice fed a control (CD) or high-fat diet (HFD). 

Typically, for preparation of tissue material for lipidomic analysis, samples are 

homogenised in aqueous buffers. However, following that standard procedure, we faced 

difficulties pipetting reproducible amounts of homogenised tissue material from the 

suspensions during aliquoting and dilution steps of the protocol, likely caused by the 

presence of large amount of fat droplets in homogenized AT samples. This reproducibility 

issue was solved by homogenization of AT in 50 vol% ethanol and subsequent dilution in 

pure ethanol (if required).   

The reproducibility of the shotgun lipidomics method for AT was assessed by 6 

repeated, independent measurements of identical aliquots of AT samples. For the 

assessment of reproducibility, only lipids present in at least 4 out of 6 replicates were 

considered. For the 276 lipids that fulfilled this requirement, the relative standard 

deviation (RSD) of each lipid molecule was calculated and plotted against its 

abundance (in pmol, Figure 1B) and the data revealed an inverse correlation between 

lipid abundance and RSD. The median technical variation is 6.8%, while 78.6% of the 

detected lipids show an RSD <15%. Taken together, the shotgun lipidomics approach 

provides a reproducible way to assess lipid abundance in the AT. 
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Figure 1. A) Linearity and proportionality assessed for total lipid content extracted from various amounts 
of SAT represented as linear regression of log-transformed lipid amounts and their intensities. B) Relative 
standard deviation (RSD) calculated for 276 lipids present in at least 4 out 6 replicates. Each lipid 
molecule RSD was calculated and plotted against its abundance (in pmol). The median technical 
variation is 6.8% (green solid line) and RSD <15% (green dotted line) was observed for 78.6% of the 
detected lipids. 

 

To determine the optimal sample amount, a range of 35 to 200 µg of wet weight SAT 

were extracted in triplicate in the presence of fixed amounts of internal standards, and 

analysed by shotgun mass spectrometry. Total lipid content showed a linear response 

over the indicated range (Figure 1) and was proportional to sample amount, yielding an 

average of 98 pmol of lipid per µg wet weight. Furthermore, lipid species profiles became 

independent of sample amount above 70 µg of wet weight (Table S1).  

The dynamic range, limit of detection (LOD) and limit of quantification (LOQ) are lipid 

class-specific parameters, which depend on differential extraction, ionisation and 

fragmentation efficiencies of the various lipid classes. In order to determine these 

parameters, lipid class-specific standards were titrated to a fixed amount of AT 

homogenate. Linearity and proportionality were assessed for 20 lipid classes by linear 

regression of log-transformed lipid amounts and their intensities, and reported as 𝑅2 and 

slope, respectively. Both, linearity and proportionality were excellent across a range of up 

to 4 orders of magnitude for all lipid classes, with values close to 1 for 𝑅2 and slope, 

respectively (Table 1 & Figure S1). LOD and LOQ were determined by weighted linear 

regression (with weights being 1/𝑥2) based on a signal-to-noise ratio of 3 for LOD and 10 

for LOQ. For most lipid classes, LOD is around 1 pmol (Table 1). Provided that an optimal 
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sample amount (100 µg of wet weight) of AT yields ~10,000 pmol of total lipid (Figure 

1A), 1 pmol of a given lipid molecule is theoretically detectable in a typical sample, which 

corresponds to 0.01 mol%. 

Table 1 Limit of detection (LOD), Limit of quantification (LOQ), and linearity for various lipid classes in AT. 

class min (pmol) lod (pmol) loq (pmol) slope R2 

CL 0,23 0,83 2,52 0,96 0,99 

Cer 0,09 0,67 2,04 0,94 1 

ST 1,83 1,71 5,17 1,05 0,9 

HexCer 0,09 0,93 2,81 0,94 0,99 

LPA 0,09 0,81 2,46 1,04 0,99 

LPC 0,23 0,70 2,11 0,97 0,99 

LPE 0,09 0,78 2,38 0,94 0,99 

LPG 0,09 0,92 2,80 0,94 0,99 

LPI 0,09 1,03 3,13 1,01 0,98 

LPS 0,09 1,42 4,32 0,99 0,92 

SM 0,23 0,95 2,87 0,96 0,99 

TAG 1,37 0,66 1,99 0,94 0,99 

CE 1,37 3,24 9,83 0,88 0,94 

DAG 0,09 0,90 2,72 0,89 0,99 

PA 0,27 0,89 2,70 1,23 0,98 

PC 0,91 0,92 2,79 0,96 0,99 

PE 0,23 1,05 3,18 0,94 0,98 

PG 0,09 0,79 2,38 1,03 0,99 

PI 0,23 1,17 3,55 0,93 0,98 

PS 0,23 1,1 3,32 1,11 0,97 

 

Tissue-specific and diet-related lipidomic trends  

Using the newly validated shotgun lipidomics method, WAT (SAT and GAT) and BAT 

samples obtained from mice fed with either control or high-fat diet were assayed. As 

expected, the vast majority (~99%) of lipids in all samples were triacylglycerides (TAG). 

Principal component analysis (PCA) shows that BAT segregates from SAT and GAT 

along the 1st principal component (PC1) (Figure 2A). This dimension, which explains 

about 28% of the variance, reveals that groups of samples differ mainly according to 

tissue type. Interestingly though, upon HFD the BAT lipidome shifts towards a more WAT-

like composition, i.e. it approaches that of GAT and SAT samples from HFD-fed mice. In 
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contrast, PC2 mainly explains diet-related differences. While both BAT clusters (CD and 

HFD) can be clearly distinguished, SAT and GAT samples overlap in the PCA reduced 

space. We therefore used a different explorative approach called Minimum Curvilinear 

Embedding (MCE)[27], an unsupervised machine learning for nonlinear dimensionality 

reduction (Figure 2B). Centered MCE was able to clearly segregate WAT samples on 

CD and, additionally, uncovered a trend of SAT and GAT samples to separate following 

HFD, though there was still a partial overlap. These findings are the consequence of a 

very limited variation between average SAT and GAT lipid species mol% in HFD cohorts, 

i.e. with a log2 fold change below 1 in almost all species (Table S2). In this experiment 

the core lipidome of AT, i.e. the species shared by all three tissue types on either diet, 

consisted of 204 lipids belonging to DAG (6), TAG (195), PC (1), PE (1), ST (1) (Table 

S3).  

PCA and MCE analyses showed that BAT lipidomes are particularly different from SAT 

and GAT; nevertheless, in all three fat depots TAGs were the major lipid class present, 

reaching 98-99% of all identified lipids regardless of diet. By excluding TAG lipids from 

the analysis, we focused on changes concerning the less abundant classes of lipids. 

Among these, DAGs were the most abundant in WAT (Figure 3), a finding likely 

associated with lipid metabolism and TAG turnover. In BAT, DAG levels are similar to 

those of PC and PE and other lipid classes like CL, LPC, PI and PG that were detected 

in BAT but remained undetectable in WAT. Importantly, cardiolipins (CL) are present in 

BAT on both diets, while absent in both SAT and GAT (Figure 3 and Table S4), most 

likely linked to the larger number of mitochondria in BAT than in WAT[28]. On CD, BAT 

contains higher amounts of glycerophospholipids and less cholesterol than WAT. On HFD 
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though, cholesterol tends to increase in BAT while it shows a significant decrease in SAT 

and GAT.  

 

Figure 2. A) Principal Component Analysis (PCA) of AT lipidomes. BAT and WAT samples clearly and 
significantly separate, with GAT and SAT samples from CD-fed mice clustering separately from GAT and 
SAT samples from HFD-fed mice. PC1 significantly segregates samples according to tissue type, and 
PC2 significantly segregates samples according to diet. Adjusted p-values (Benjamini-Hochberg 
correction) for PC1 are: < 0.001 for BAT-CD vs. BAT-HFD; < 0.001 for BAT-CD and BAT-HFD vs. GAT 
and SAT on CD and HFD; > 0.05 for GAT-CD vs. GAT-HFD and vs. SAT-HFD, and for SAT-CD vs. SAT-
HFD; nonsignificant for all other GAT vs. SAT comparisons. Comparisons along PC2 are significant 
except for GAT vs. SAT on the same diet. B) Centered Minimum Curvilinear Embedding (cMCE) on 
Spearman correlation. Dimensions 1 and 3 significantly differentiate almost all groups of samples. 
Adjusted p-values (Benjamini-Hochberg correction) for D1 are < 0.001 for all comparisons except for 
GAT-HFD vs. SAT-HFD where p-value < 0.01, and for GAT-CD vs. SAT-CD where p-value < 0.05. Along 
D3 all comparisons are significant except GAT-HFD vs. SAT-HFD. 

 

Following HFD, the acyl chain composition of TAGs (Figure 4A & S2A) in all three AT 

depots shows a significant decrease of species containing a cumulative 48-50 carbon 

atoms in their acyl chains, while TAGs with 54-56 carbon atoms increase. Interestingly in 

BAT as well, TAGs containing 52 carbon atoms decrease significantly, while no 

substantial changes are observed in SAT or GAT. The increase in length correlates with 

the increase in the number of double bonds: TAGs containing a total of 0, 1 or 2 double 

bonds in their acyl chains are more abundant following CD than HFD, where most TAGs 

contain a total number of 4 and more double bonds. TAGs with 3 double bonds display 

different trends in brown and white AT. In BAT they significantly increase upon HFD, 

reaching the average amount displayed by white depots, but they do not change in GAT, 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted November 14, 2018. ; https://doi.org/10.1101/470690doi: bioRxiv preprint 

https://doi.org/10.1101/470690


whereas in SAT they decrease significantly. In summary, TAGs become longer and more 

unsaturated when animals are on HFD and these changes are more pronounced in BAT 

than in WAT.  

 

Figure 3. Lipid class composition of white and brown adipose tissues following chow and high-fat diet 
excluding TAGs. Asterisks indicate a significant difference between CD and HFD (p-value < 0.05*, < 
0.01**, < 0.001***). The different depot types are color coded as follows: BAT green, GAT dark red, SAT 
yellow. White bars with colored border indicate cohorts on CD, colored bars indicate cohorts on HFD. 
 

 

Remarkably, the changes observed for TAGs are hardly reflected in the acyl chain 

composition of membrane lipids. Upon HFD, lipids containing 36 carbon atoms 

significantly increase in abundance, while the abundance of other lipids, both shorter and 

longer than 36, decreases regardless of the AT depot type (Figure 4B & S2B). The only 

exception concerns lipids containing 18 carbon atoms: these are lysolipids, and they 

slightly increase in BAT. The double bond composition displays different trends for white 

and brown AT, except for monounsaturated lipids, which always decrease on HFD. In 

white AT, saturated and di-unsaturated lipids decrease upon HFD, while in BAT they 

increase, and lipids containing 3 or 4 double bonds increase, while in BAT they do not 

change significantly. Polyunsaturated lipids (> 4 double bonds) are detected only in BAT, 

where they significantly decrease on HFD. In WAT depots, the length and unsaturation 

profiles of membrane lipids and triglycerides follow the same basic rules, as the relative 

increase in acyl chain length is accompanied by an increase in the number of double 
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bonds. In contrast, in BAT membrane lipids the unsaturation pattern differs from that of 

triglycerides, in that we observe an inverse behavior of mono- and di-unsaturated species 

on HFD, and a concomitant clear decrease of highly poly-unsaturated species (mean 

values and standard deviation of length and unsaturation groups are given in Table S5). 

 

 

 
 
Figure 4. Total acyl chain 
length (left side) and 
unsaturation (right side) 
profiles of: A) TAGs; B) 
membrane lipids. Lipids 
were regrouped according 
to the number of carbon 
atoms and the number of 
double bonds present in 
their acyl chains. Mean and 
standard deviation were 
calculated for each cohort 
using mol% - transformed 
data. Only length groups > 3 
mol% are represented; 
complete acyl chain length 
profiles of A and B are 
shown in the supplementary 
Figure S3. Asterisks 
indicate a significant 
difference between CD and 
HFD (p-value < 0.05*, < 
0.01**, < 0.001***). The 
different types of AT are 
color-coded as follows: BAT 
green, GAT dark red, SAT 
yellow. White bars with 
coloured border indicate 
cohorts on CD; coloured 
bars indicate cohorts on 
HFD. 

 

To further understand the diet-dependent changes affecting the lipidome of the various 

AT depots, we inspected the difference between the means (HFD-CD) of the single 

subspecies in membrane and storage lipidomes (Figure 5 and S3). By defining a 
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threshold difference of |0.5| mol%, we excluded lipids with a mean mol% < 0.5 in both 

diets. This highlights the largest differences concerning highly abundant features (i. e. 

with a mean value on either diet near or above the 75th percentile). The levels of DAGs 

containing two C18-long acyl chains, e.g. octadecenoic (18:1), octadecadienoic (18:2) 

and octadecatrienoic (18:3) FA, increase upon HFD in both WAT and BAT, and, 

simultaneously, DAGs containing either hexadecanoic (16:0) or hexadecenoic (16:1) FA 

decrease (Figure 5 A-C). A clear exception is DAG 16:0-18:2, which is more abundant in 

all three AT depots on HFD. It should be noted that in GAT and SAT, lipids with a total 

length of 36 carbons exclusively belong to the DAGs, whereas in BAT samples, C36 

species also occur in other lipid classes (PG, PI, PC). A major difference in the behaviour 

of BAT and WAT during HFD is the abundance of cholesterol. In WAT cholesterol is the 

major lipid and decreases upon HFD, whereas it accumulates in BAT upon HFD. 

Interestingly, the lipids that display the highest decrease upon HFD in BAT are three PE 

species containing eicosatetraenoic acid (16:0/20:4; 18:0/20:4; 18:1/20:4).  

The results for TAGs (Figure S3 A-C) support the length and unsaturation profiles shown 

in Figure 4. Specifically, the greatest differences concern shorter (C50 and C52 total 

length), less unsaturated subspecies in samples on CD, and longer (C52 and C54), more 

unsaturated subspecies in samples on HFD. Additional information is given by the acyl 

chain identified within each TAG: the increased abundance of C54 species in samples on 

HFD mostly concerns TAGs where the identified acyl chain comprises 18C. 

The differences in lipid composition between BAT and WAT are easily distinguished by 

both PCA and MCE. However, differences between WAT depots are much more difficult 

to discern, and only MCE succeeded in distinguishing GAT and SAT on both diets, 

remarkably identifying patterns guided by ‘private’ features, i.e. lipids exclusive to a given 

cohort (Table S6). Nonetheless, when focusing on the core lipidome, even MCE cannot 

segregate GAT and SAT, since abundance patterns are too similar on both diets (Figure 

S3, Table S3).  
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Figure 5. Subspecies level analysis of membrane lipids in fat tissues Upper panel bar plots represent 
the difference between the means of HFD and CD in the respective adipose tissues: A) BAT; B) GAT; 
C) SAT. Only species with ∆ > |0.5| mol% are shown. Lower panel bar plots represent the mean amount 
and standard deviation of the subspecies in CD and HFD cohorts. Asterisks indicate the species that 
differ significantly between diets according to the pairwise Mann-Whitney test performed on the log-
transformed dataset; p-values were adjusted according to the Benjamini-Hochberg correction for multiple 
comparisons. 
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Discussion 

 

Shotgun lipidomics allows for parallel profiling of hundreds of structurally and functionally 

diverse lipids. Nevertheless, obtaining a comprehensive, reproducible and quantitative 

lipidomics analysis of AT is particularly challenging. Here, we thoroughly characterized a 

shotgun lipidomics method for AT analysis and its validation with respect to sample 

amounts, linearity, sensitivity and reproducibility (Figure 1 & Table 1). This method 

requires about 100 µg of AT to yield about 10,000 pmol total lipid, which represents an 

optimal amount for shotgun lipidomics. It allows the detection of more than 300 individual 

lipid molecules, belonging to 20 different lipid classes, with a high dynamic range of about 

4 orders of magnitude and sensitivity in the sub-µM range, and high reproducibility below 

10% RSD. By quantitatively inspecting significant differences between the lipidomes of 

WAT and BAT from mice fed with control and high-fat diets, we provide proof of concept 

and validation. At the present stage, we cannot provide a mechanistic explanation of the 

biological processes underlying these changes, likely to be associated with the nature of 

the fatty acids consumed in the diet. We hypothesise that they are coupled to the 

physiological mechanisms by which adipocyte membranes respond to AT expansion, 

associated to positive energy balance ultimately leading to obesity. 

In HFD-fed mice, we observed an accumulation of TAGs with a total length of 54 carbons 

and a concomitant decrease of TAGs with 48-50 carbons (Figure 4A), meaning that 16-

carbon acyl chains are replaced by 18-carbon acyl chains (Figure S2). Similarly, we 

observed an overall accumulation of non-storage lipids made of acyl chains containing 

18 carbons and including various numbers of double bonds. In this regard, we noticed a 

relative increase of DAG, PC and PE species with 18:0, 18:1 and 18:2 acyl chains, 

alongside a decrease of species containing the 16-carbon acyl chain (Figure 5). These 

observations are in agreement with a previously published study on twins discordant for 

obesity, which suggested that obesity-related changes involve accumulation of 

membrane lipids containing longer and more unsaturated fatty acids than in the lean 

individuals[22]. Such a fatty-acyl composition was suggested to sustain optimal 

membrane physicochemical properties during adipocyte expansion. 
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In comparison to other tissue types the primary function of AT is to accumulate storage 

lipids is.  Excess lipids, however, are stored ectopically in other tissues such as muscle, 

liver, and pancreas, a situation culminating to metabolic dysfunction. Indeed, the 

expansion of AT in obesity has effects that go beyond body-weight gain, usually 

associated with increased levels of circulating FAs, and inflammatory mediators that are 

now recognized as a major cause of decreased insulin sensitivity. Interestingly, many 

cohort studies reported that some obese individuals display a phenotype referred to as 

‘‘metabolically healthy obesity’’, recognized by insulin sensitivity, smaller fat cells and less 

pronounced AT inflammation than those observed in insulin-resistant obese 

individuals[29-31]. It is also established that the two obesity phenotypes differ in SAT 

gene expression, AMPK activity or oxidative stress[32-34]. Thus, profiling AT lipidomes 

can advance knowledge of the processes underlying lipid metabolism and resolve 

differences of AT hypertrophy that correlate with the maintenance of a metabolically 

healthy status. The protocol presented here precisely provides the platform for addressing 

this issue.  

Some fat depots are implicated more than others in the development of insulin 

resistance[35 36]. Increasing the number of samples and identifying all three acyl chains 

of TAGs would shed light on the differences characterizing GAT and SAT, and correlate 

diet-related lipidomic patterns to metabolic parameters. This would pave the way to a 

fundamental understanding of the dynamics underlying hypertrophy of distinct WAT 

depots and the development of metabolic syndrome. 

Lipidomics analysis can also supply additional information to studies on the physiology of 

BAT and the beiging of WAT. In fact, our method could measure the lipidomes of both AT 

depots from lean and obese individuals, resolving the differences among the tested 

groups. Besides generating the distinct profiles of WAT and BAT lipidomes, as previously 

shown by others[23], the data obtained in this study also provide a snapshot of the diverse 

response of brown and white AT to overnutrition (Figures 3 & 4). As shown by PCA 

(Figure 3A), BAT on HFD shifts toward a more WAT-like composition, despite maintaining 

its identity, since it still clusters separately from WAT samples. BAT’s distinct lipidomic 

profile under HFD is achieved already at class level: its number of lipid classes, higher 
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than that of WAT, remains unchanged on HFD (Figure 3). Additionally, we do not observe 

any clear change in the total levels of DAGs, a completely different behaviour from that 

exhibited by WAT depots, where DAG levels significantly increase. On the other hand, in 

BAT on HFD, PE levels significantly drop, while cholesterol, PG, PI and SM increase. The 

similarities of BAT and WAT lipidomes following HFD are visible in the unsaturation and 

length profiles, where amounts of lipids with the same length or number of double bonds 

converge, independent of their initial differences on CD (Figure 4 & S2). The important 

and beneficial role of BAT in fatty acid oxidation and thermogenesis has mainly been 

shown in animal models[26], but recent evidence from human BAT studies was also 

published[2]. Furthermore, in specific cases human SAT undergoes browning/beiging, 

associated with an increased whole-body metabolic rate[37]. The interest in increasing 

BAT metabolism or promoting browning/beiging of WAT in humans as a potential strategy 

for the treatment of obesity and its related metabolic disorder is enormous. However, 

investigating the physiological differences of the various AT depots requires a systematic 

lipidomic analysis as an essential element of the -omics pipeline. This would provide core 

data towards elucidating AT remodelling mechanisms and thus potentially facilitate the 

development of therapeutic approaches against obesity-induced metabolic diseases. 

The presented method can easily be utilized for non-AT samples containing high amounts 

of neutral lipids, e.g. tissue samples from subjects with fatty-liver disease [38 39]. Such 

samples, under common extraction and measurement conditions, would interfere with full 

lipidomic analysis due to ion suppression. Obtaining detailed lipidomic profiles from 

patients at various stages of a disease will be crucial for investigating the aetiology of 

obesity-related pathologies. Samples rich in lipid droplets are another example[40-42]. 

Studying the biogenesis and metabolism of these organelles or lipid droplet-associated 

organelles like ER[43] or mitochondria[44] would benefit from monitoring the dynamics of 

full lipid profiles within the isolated samples. The presented approach offers a solution to 

handle these challenges.  
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Materials & Methods 

Chemicals 

Water, propan-2-ol, and methanol were purchased from Fischer Scientific. Methyl tert-

butyl ether, chloroform, ammonium bicarbonate and ammonium acetate were purchased 

from Sigma–Aldrich. All chemicals were analytical grade. Synthetic lipid standards were 

purchased from Avanti Polar Lipids, Larodan Fine Chemicals, and Sigma–Aldrich. 

Feeding of mice 

Six-weeks-old female C57BL/6 mice were fed a control diet (CD, D12450B, Research 

Diets, NJ, USA, 20% protein, 70% carbohydrates, 10% fat), or a high fat diet (HFD, 

D12492, Research Diets, NJ, USA, 20% protein, 20% carbohydrates, 60% fat) for 20 

weeks, as previously described[6 10 45]. Experiments were approved by the 

Landesdirektion Sachsen, Germany. 

Sample preparation 

ATs were homogenized directly in a Turrax homogenizer for 60 s in 0.5 ml of ice-cold 150 

mM ammonium bicarbonate and ethanol (50/50 v/v). Homogenates were subsequently 

diluted 1:10 (v/v) in ethanol and used for lipid extraction. 

Lipid extraction 

Mass spectrometry-based lipid analysis was performed at Lipotype GmbH (Dresden, 

Germany) as described[14]. Lipids were extracted using a two-step chloroform/methanol 

procedure[13]. Samples were spiked with internal lipid standard mixture containing: 

30 pmol cardiolipin 16:1/15:0/15:0/15:0 (CL), 30 pmol ceramide 18:1;2/17:0 (Cer), 

100 pmol diacylglycerol 17:0/17:0 (DAG), 30 pmol hexosylceramide 18:1;2/12:0 

(HexCer), 30 pmol lyso-phosphatidate 17:0 (LPA), 50 pmol lyso-phosphatidylcholine 12:0 

(LPC), 30 pmol lyso-phosphatidylethanolamine 17:1 (LPE), 30 pmol lyso-

phosphatidylglycerol 17:1 (LPG), 20 pmol lyso-phosphatidylinositol 17:1 (LPI), 30 pmol 

lyso-phosphatidylserine 17:1 (LPS), 50 pmol phosphatidate 17:0/17:0 (PA), 150 pmol 

phosphatidylcholine 17:0/17:0 (PC), 75 pmol phosphatidylethanolamine 17:0/17:0 (PE), 

50 pmol phosphatidylglycerol 17:0/17:0 (PG), 50 pmol phosphatidylinositol 16:0/16:0 (PI), 
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100 pmol phosphatidylserine 17:0/17:0 (PS), 100 pmol cholesterol ester 20:0 (CE), 

50 pmol sphingomyelin 18:1;2/12:0;0 (SM), 500 pmol triacylglycerol 17:0/17:0/17:0 (TAG) 

and 300 pmol cholesterol D6 (Chol). After extraction, the organic phase was transferred 

to an infusion plate and dried in a speed vacuum concentrator. 1st step dry extract was 

re-suspended in 7.5 mM ammonium acetate in chloroform/methanol/propanol (1:2:4; 

V:V:V) and 2nd step dry extract in 33% ethanol solution of methylamine in 

chloroform/methanol (0.003:5:1; V:V:V). All liquid handling steps were performed using 

Hamilton Robotics STARlet robotic platform with the Anti Droplet Control feature for 

organic solvents pipetting. 

Mass spectrometry 

Samples were analysed by direct infusion on a QExactive mass spectrometer (Thermo 

Scientific) equipped with a TriVersa NanoMate ion source (Advion Biosciences). Samples 

were analysed in both positive and negative ion modes with a resolution of 

Rm/z=200=280000 for MS and Rm/z=200=17500 for MSMS experiments, in a single 

acquisition. MSMS was triggered by an inclusion list encompassing corresponding MS 

mass ranges scanned in 1 Da increments[19]. Both MS and MSMS data were combined 

to monitor CE, DAG and TAG ions as ammonium adducts; PC, PC O-, as acetate 

adducts; and CL, PA, PE, PE O-, PG, PI and PS as deprotonated anions. MS only was 

used to monitor LPA, LPE, LPE O-, LPI and LPS as deprotonated anions; Cer, HexCer, 

SM, LPC and LPC O- as acetate adduct and cholesterol as ammonium adduct of an 

acetylated derivative[46]. 

Data analysis and post-processing 

Data were analysed with in-house developed lipid identification software based on 

LipidXplorer[47 48]. Data post-processing and normalization were performed using an in-

house developed data management system. If not stated otherwise, only lipid 

identification with a signal-to-noise ratio > 5, a signal intensity 5-fold higher than in 

corresponding blank samples, and lipids present in at least 5 out of 10 replicates was 

considered for further data analysis. 
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Data were analysed with R version 3.5 (R Core Team, 2018) using tidyverse packages 

version 1.1.1[49] and plots were created with ggplot2 version 2.2.1[50]. 

Lipid nomenclature 

When describing different lipid species the following annotations are used: Lipid class-

[sum of carbon atoms]:[sum of double bonds];[sum of hydroxyl groups], i.e. SM-34:1;2 

means an SM species with 34 carbon atoms, 1 double bond and 2 hydroxyl groups in the 

ceramide backbone. Lipid subspecies annotation contains additional information on the 

exact identity of their fatty acids. For example, PI-34:1;0(18:1;0-16:0;0) denotes 

phosphatidylinositol with a total length of its fatty acids equal to 34 carbon atoms, total 

number of double bonds in its fatty acids equal to 1 and 0 hydroxylations with C18:1 (oleic) 

and C16:0 (palmitic) fatty acids. When the exact position of fatty acids in relation to the 

glycerol backbone (sn1 or sn2) is not discernible an underscore “_” separating the acyl 

chains is used. In case the sn position is known, acyl chain information is separated by a 

slash “/”. TAG features are reported as pairs of intact ion and neutral loss of a fatty acid. 

For example, TAG-50:1;0-FA-18:1;0 refers to the neutral loss of an 18:1 fatty acid 

belonging to the intact TAG-50:1;0 molecule. 

Descriptive statistics of lipidomics data 

Lipid features present in less than 50% of the samples in a cohort were filtered in that 

given cohort. Analyses were performed in R (R Core Team 2018) on the mol%-

transformed dataset, i.e., after transforming raw data (picomol) to mole percent (each 

quantity was divided by the sum of the lipids detected in its respective sample and 

multiplied by 100). Data structure was analysed by means of Principal Component 

Analysis (PCA) using the Singular Value Decomposition function, and by means of the 

nonlinear machine learning called Minimum Curvilinear Embedding (MCE)[27]. Total 

carbon chain length and unsaturation plots result from grouping together all the lipids that 

present the same number of carbon atoms (total length) or the same number of double 

bonds (unsaturation) and calculating their mean and standard deviation in each cohort of 

samples. The difference between the means was calculated for each species by 

subtracting the mean of the controls from the mean of the treated samples (Treated minus 
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Reference). Significance was calculated by means of the non-parametric Wilcoxon test 

and p-values were adjusted after the Benjamini-Hochberg correction. Alongside R-base 

functions the following packages were used: reshape2[49]  and ggplot2[50]. 
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