Skip to main content
bioRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search
New Results

Early Brain Imaging can Predict Autism: Application of Machine Learning to a Clinical Imaging Archive

Gajendra J. Katuwal, Stefi A. Baum, Andrew M. Michael
doi: https://doi.org/10.1101/471169
Gajendra J. Katuwal
1Rochester Institute of Technology, Rochester, NY
2Geisinger Health System, Lewisburg, PA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Stefi A. Baum
1Rochester Institute of Technology, Rochester, NY
3University of Manitoba, Manitoba, Canada
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Andrew M. Michael
1Rochester Institute of Technology, Rochester, NY
2Geisinger Health System, Lewisburg, PA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Preview PDF
Loading

Abstract

A comprehensive investigation of early brain alterations in Autism Spectrum Disorder (ASD) is critical for understanding the neuroanatomical underpinnings of autism and its early diagnosis. Most previous brain imaging studies in ASD, however, are based on children older than 6 years – well after the average age of ASD diagnosis (~46 months). In this study, we use brain magnetic resonance images that were collected as part of clinical routine from patients who were later diagnosed with ASD. Using 15 ASD subjects of age three to four years and 18 age-matched non-ASD subjects as controls, we perform comprehensive comparison of different brain morphometric features and ASD vs. non-ASD classification by Random Forest machine learning method. We find that, although total intracranial volume (TIV) of ASD was 5.5 % larger than in non-ASD, brain volumes of many other brain areas (as a percentage of TIV) were smaller in ASD and can be partly attributed to larger (>10 %) ventricles in ASD. The larger TIV in ASD was correlated to larger surface area and increased amount of cortical folding but not to cortical thickness. The white matter regions in ASD had less image intensity (predominantly in the frontal and temporal regions) suggesting myelination deficit. We achieved 95 % area under the ROC curve (AUC) for ASD vs. non-ASD classification using all brain features. When classification was performed separately for each feature type, image intensity yielded the highest predictive power (95 % AUC), followed by cortical folding index (69 %), cortical and subcortical volume (69 %), and surface area (68 %). The most important feature for classification was white matter intensity surrounding the rostral middle frontal gyrus and was lower in ASD (d = 0.77, p = 0.04). The high degree of classification success indicates that the application of machine learning methods on brain features holds promise for earlier identification of ASD. To our knowledge this is the first study to leverage a clinical imaging archive to investigate early brain markers in ASD.

Acknowledgement

The authors would like to thank Chao Zhang, Chase Doughtery, and Viraj Adduru for their help in quality check of the brain images used in this study.

Copyright 
The copyright holder for this preprint is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY 4.0 International license.
Back to top
PreviousNext
Posted November 16, 2018.
Download PDF
Email

Thank you for your interest in spreading the word about bioRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
Early Brain Imaging can Predict Autism: Application of Machine Learning to a Clinical Imaging Archive
(Your Name) has forwarded a page to you from bioRxiv
(Your Name) thought you would like to see this page from the bioRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Early Brain Imaging can Predict Autism: Application of Machine Learning to a Clinical Imaging Archive
Gajendra J. Katuwal, Stefi A. Baum, Andrew M. Michael
bioRxiv 471169; doi: https://doi.org/10.1101/471169
Reddit logo Twitter logo Facebook logo LinkedIn logo Mendeley logo
Citation Tools
Early Brain Imaging can Predict Autism: Application of Machine Learning to a Clinical Imaging Archive
Gajendra J. Katuwal, Stefi A. Baum, Andrew M. Michael
bioRxiv 471169; doi: https://doi.org/10.1101/471169

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Bioinformatics
Subject Areas
All Articles
  • Animal Behavior and Cognition (4235)
  • Biochemistry (9140)
  • Bioengineering (6784)
  • Bioinformatics (24008)
  • Biophysics (12132)
  • Cancer Biology (9537)
  • Cell Biology (13782)
  • Clinical Trials (138)
  • Developmental Biology (7638)
  • Ecology (11707)
  • Epidemiology (2066)
  • Evolutionary Biology (15513)
  • Genetics (10648)
  • Genomics (14329)
  • Immunology (9484)
  • Microbiology (22849)
  • Molecular Biology (9095)
  • Neuroscience (49005)
  • Paleontology (355)
  • Pathology (1483)
  • Pharmacology and Toxicology (2570)
  • Physiology (3848)
  • Plant Biology (8332)
  • Scientific Communication and Education (1471)
  • Synthetic Biology (2296)
  • Systems Biology (6194)
  • Zoology (1301)