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Summary 

Most genetic risk for human diseases lies within non-coding regions of the genome, which is 

predicted to regulate gene expression, often in a tissue and stage specific manner. This has 

motivated building of extensive eQTL resources to understand how human allelic variation 

affects gene expression and splicing throughout the body, focusing primarily on adult tissue. 

Given the importance of regulatory pathways during brain development, we characterize the 

genetic control of the developing human cerebral cortical transcriptome, including expression 

and splicing, in 201 mid-gestational human brains, to understand how common allelic variation 

affects gene regulation during development. We leverage expression and splice quantitative 

trait loci to identify genes and isoforms relevant to neuropsychiatric disorders and brain volume. 

These findings demonstrate genetic mechanisms by which early developmental events have a 

striking and widespread influence on adult anatomical and behavioral phenotypes, as well as 

the evolution of the human cerebral cortex.  
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Highlights 

• Genome wide map of human fetal brain eQTLs and sQTLs provides a new view of 

genetic control of expression and splicing. 

• There is substantial contrast between genetic control of transcript regulation in mature 

versus developing brain. 

• We identify novel regulatory regions specific to fetal brain development. 

• Integration of eQTLs and GWAS reveals specific relationships between expression and 

disease risk for neuropsychiatric diseases and relevant human brain phenotypes. 
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Introduction 

Neurodevelopmental and neuropsychiatric disorders, such as autism spectrum disorder (ASD) 

and schizophrenia (SCZ), are highly heritable (Geschwind & Flint, 2015; Polderman et al., 2015) 

complex conditions, with hundreds of risk loci identified through large-scale genomic studies 

(Autism Spectrum Disorders Working Group of The Psychiatric Genomics, 2017; Gratten, Wray, 

Keller, & Visscher, 2014; Pardinas et al., 2018). However, the ability to interpret these 

susceptibility variants and their contributions to disease has been hampered because many of 

these variants fall in non-coding regions of the genome or in regions of high linkage disequilibrium, 

making it challenging to both identify causal mutations and their functional impact (Gandal, Leppa, 

Won, Parikshak, & Geschwind, 2016; Nica & Dermitzakis, 2013; Schaid, Chen, & Larson, 2018). 

Given the non-coding nature of the majority of these variants, as well as their enrichment in known 

regulatory regions (as inferred through chromatin accessibility (Cockerill, 2011; de la Torre-Ubieta 

et al., 2018), evolutionary conservation (Siepel et al., 2005), and signature histone modifications 

(Schaub, Boyle, Kundaje, Batzoglou, & Snyder, 2012; Visel, Rubin, & Pennacchio, 2009)), many 

of these variants likely function through the regulation of gene expression and splicing modulation 

(Y. I. Li et al., 2016; Maurano et al., 2012; Ward & Kellis, 2012). In this regard, multiple large-

scale projects, including Roadmap Epigenomics, GTEx and Encode (Consortium, 2015; Ernst et 

al., 2011; Roadmap Epigenomics et al., 2015) have annotated regulatory regions across human 

tissues. However, little is known about how human allelic variation affects putative regulatory 

interactions during brain development, which is crucial for human higher cognition and brain 

evolution (Geschwind & Rakic, 2013; Nord, Pattabiraman, Visel, & Rubenstein, 2015; Ward & 

Kellis, 2012).  

 

Expression quantitative trait loci (eQTL) analysis seeks to identify genetic loci that control changes 

in gene expression thereby annotating gene regulatory regions. Critically, eQTL relationships are 

highly dependent on cell type and developmental stage (Consortium, 2015; Flutre, Wen, 
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Pritchard, & Stephens, 2013), which is consistent with transcriptional surveys of human brain 

development that show prominent temporal changes in expression (Colantuoni et al., 2011; H. J. 

Kang et al., 2011; Sunkin et al., 2013). Previous studies (Gilman et al., 2012; Gulsuner et al., 

2013; Parikshak et al., 2013; Willsey et al., 2013) suggest that genetic disruption of these patterns, 

particularly during prenatal cortical development, leads to developmental and neuropsychiatric 

disease, highlighting the need to map regulatory variation within this critical time point. However, 

because developmental tissues are difficult to collect, all existing brain eQTL analyses, except for 

one study of small sample size (Jaffe et al., 2018), have been performed in adult brain 

(Consortium, 2015; Fromer et al., 2016; Ramasamy et al., 2014). Therefore, to dissect the 

functional genetic variation of neurodevelopmental and early onset neuropsychiatric diseases, 

characterized by phenotypes that likely originate in utero or early postnatal life (Hannon et al., 

2016; Jaffe et al., 2016; Parikshak, Gandal, & Geschwind, 2015; Weinberger, 1987), we 

performed a well powered eQTL analysis in human cortex at mid-gestation, an epoch that 

captures crucial stages of neural progenitor proliferation and neurogenesis (M. B. Johnson et al., 

2009; Silbereis, Pochareddy, Zhu, Li, & Sestan, 2016). 

 

Here we present a map of eQTLs and spliceQTLs from fetal brain tissue to provide further 

understanding of mechanisms underlying transcriptional regulation and functional genetic 

variation in developing cerebral cortex. We have contrasted the genetic control of fetal and adult 

expression, which as expected do show substantial differences, as well as profiled the relationship 

between expression time points and disease risk. Overlap of eQTL and spliceQTL with GWAS 

identify new putative mechanisms missed by adult brain data sets, not only providing insights into 

genes and isoforms relevant to developmental risk factors, but also help to establish which 

aspects of disease risk are affecting neural progenitor proliferation and differentiation, as 

compared to later developmental processes like pruning, dendritic outgrowth, and myelination. 
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Results 

To identify genetic variants regulating gene expression in the developing brain, we performed 

high-throughput RNA sequencing and high-density genotyping at 2.5 million sites in a set of 233 

fetal brains (Figure 1). After quality control and normalization of gene expression quantifications 

and genotype imputation into the 1000 Genomes Project phase 3 multi-ethnic reference panel 

(Methods, Figure S1; (Genomes Project et al., 2015), we obtained a starting dataset of 15,925 

expressed genes (12,943 protein coding and 767 long noncoding RNAs) and 6.6 million 

autosomal single nucleotide polymorphisms (SNPs) from each individual. PCA-based (principle 

component analysis) analysis of ancestry (Methods) indicate that the donors in our study come 

from admixed ancestries of Mexican, European, African American, and Chinese descent 

(Figure S2). The resulting dataset is the first population level fetal brain expression dataset. 

 

Robust identification of fetal brain cis-eQTLs  

We identified cis-eQTLs  by testing all SNPs within a 1MB window from the transcription start 

site (TSS) of each gene using a permutation procedure implemented in FastQTL (Ongen, Buil, 

Brown, Dermitzakis, & Delaneau, 2016) while adjusting for known (RIN, sex, age, and genotype 

PCs) and inferred covariates (Methods, Figure S3), which have been shown to greatly increase 

sensitivity for cis-eQTL detection (H. M. Kang et al., 2008; Leek & Storey, 2007; Mostafavi et al., 

2013). We identified 6,546 genes with a cis-eQTL at a 5% false discovery rate (FDR), hereafter 

referred to as eGenes, 82% of which corresponded to protein coding genes (Table S1). To 

compare with studies that did not perform a permutation procedure, we discover 893,813 

nominal eQTLs at a 5% FDR. To identify additional, independent cis-eQTLs for each eGene, we 

reran the analysis while conditioning on the primary eSNP, identifying an additional 1,416 

secondary eQTLs for a total number of 7,962 eQTL identified, which represents nearly 45% of 

expressed genes (Methods). To ensure that the eQTLs identified are not driven by ancestry 

differences within our dataset, we ran eQTL analysis using two alternative methods: EMMAX, 
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which controls for population stratification using a genetic relationship matrix (H. M. Kang et al., 

2008) and METAL, which performs meta-analysis of the top SNP per gene across 

subpopulations of the samples (Willer, Li, & Abecasis, 2010). Both methods demonstrated high 

reproducibility of eQTLs identified by fastQTL, which indicates that ancestry differences are not 

driving the eQTL signal (Figure S5; Methods). 

 

eQTLs mark functionally active regulatory regions  

Positional enrichment analyses of the most significant SNP (eSNP) at each eQTL (primary and 

secondary) shows that over 20% of significant eQTLs cluster with 10kb of the TSS of its target 

gene (Figure 2B and 2C), concordant with previous studies showing that promoter variants 

have a large influence on cognate gene expression (Y. Kim et al., 2014; Stranger et al., 2007; 

Strunz et al., 2018). The overall distribution of eQTL signal is consistent with previous work 

(Consortium, 2015; Veyrieras et al., 2008), with 70% of significant eSNPs located within +-

100kb of the TSS, as well as a slight upstream bias (~56%) of significant eQTLs (Figure 2B).  

We reasoned that eQTL should be highly overlapping with putative regulatory regions defined 

by other methods and sought to test this as an external validation (Figure2A). Indeed, we find 

eQTLs are significantly enriched within regions of open chromatin identified by ATAC-seq from 

developing brain (OR=4.42, p-value < 2.2e-16) (Figure 2D; (de la Torre-Ubieta et al., 2018). 

Distal eQTLs (> 10Kb from TSS) are also enriched within 3D chromatin conformation contacts 

at the same stage of brain development (OR=2.96, p-value < 2.2e-16) (Figure 2E; (Won et al., 

2016) strengthening confidence that eSNPs are in accessible regions where transcription 

factors preferentially bind and distal eSNPs regulate their associated target eGenes (Methods).  

 

To further characterize the identified eQTLs, for each eGene, we annotated the most significant 

variant with chromatin state predictions from fetal brain tissue from the Roadmap Epigenetics 

Consortium (Roadmap Epigenomics et al., 2015), using GREGOR (Schmidt et al., 2015) 
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Methods) to test for enrichment of eQTLs among the 25 chromatin states. We observed that 

eSNPs were most significantly enriched in transcription start sites, promoters, and transcribed 

regulatory promoter/enhancers (Figure 2F, full model Figure S6A). Enrichment in these 

regulatory regions provides further evidence, in addition to the ATAC and Hi-C, that discovered 

eQTLs fall in defined regions of the genome functionally relevant to gene expression and its 

regulation, as would be predicted (Ward & Kellis, 2012). 

 

Functional characterization of eQTLs reveals mutation tolerance and regulatory drivers 

Since changes in constrained genes expressed in the developing brain are likely to have a higher 

impact on fecundity than those that are not highly constrained (Samocha et al., 2014), we 

reasoned that genes perturbed by regulatory variation would also be more tolerant to protein-

disrupting variation (Lek et al., 2016). Indeed, comparing genes harboring an eQTL to genes that 

do not have a significant eQTL, we find that eGenes are more tolerable to loss of function 

mutations and less constrained (Wilcoxon rank sum test p-value<2.2x10 -16; Figure2G). 

 

To identify putative transcription factors regulating the expression of genes within the fetal brain, 

we examined whether eSNPs identified are enriched in transcription factor and DNA binding 

protein (DBP) binding sites, using multiple cell types from the ENCODE project (Methods; 

(Arbiza et al., 2013). We found significant enrichments for 39 transcription factors and DBPs 

binding sites (Figure 2H), many with prominent known roles in brain development, including 

FoxP2, POU2F2, ELK4, NRF1, CHD8 (Bestman, Huang, Lee-Osbourne, Cheung, & Cline, 

2015; Durak et al., 2016; Eising et al., 2018; Lai, Fisher, Hurst, Vargha-Khadem, & Monaco, 

2001; Ojeda et al., 1999; Preciados, Yoo, & Roy, 2016). Many of these genes have previously 

been associated with developmental disorders. The most significantly enriched protein was 

CHD2 ( FC= 2.5, p-value= 2.5x10-143), a chromatin remodeling protein that shows the highest 

expression during early developmental periods in fetal cerebral cortex (Sunkin et al., 2013). 
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Similar to several of the other transcription factors including CHD8, FoxP2 and SMARCC2, 

haploinsufficiency in CHD2 has dramatic pathogenic consequences, and has been associated 

with risk for autism spectrum disorder (ASD), developmental delay, intellectual disability, 

seizures and epilepsy, similar to CHD8 (Carvill et al., 2013; Suls et al., 2013).  

 

Robust identification of fetal brain splice QTLs  

Effects of genetic variation on RNA splicing are known to contribute to complex disease risk, 

comparably, if not more than eQTL (Y. I. Li et al., 2016). Since there has been no systematic 

analysis of splicing in human fetal brain development, we reasoned that such analysis would be 

critical to further the understanding of the link between genetic variation and disease. We 

quantified intron clusters using Leafcutter (Y. I. Li et al., 2018), identifying 92,449 intronic 

excision clusters which mapped to 10,926 genes.  A major strength of Leafcutter is that it is 

annotation free, allowing for alternative exon discovery, which is especially important in the 

context of brain isoforms, for which annotations are known to be incomplete. Per sample intron 

abundances (PSI, percent spliced in) were then used as a quantitative molecular trait for local 

spliceQTL (sQTL) discovery in fastQTL (Ongen et al., 2016); Methods, Figure S3), identifying a 

total of 4,635 significant sQTLs (FDR < .05) in 2,132 genes (sGenes; Table S2, Figure3A). 

 

Genomic features of sQTLs distinguish them from eQTL 

Positional enrichment of the top SNP per spliceQTL (sSNP) shows clustering around the splice 

junction, with 42% of sSNPs within 10 kb of the splice junction (Figure 3A), demonstrating that 

variants proximal to splicing junctions have a large effect. In contrast to eQTL, the majority of 

sSNPs (64%) lie within the gene body (Figure 3B), consistent with expectations (Y. I. Li et al., 

2016). Splice QTLs were most strongly enriched in promoters and transcribed regions of the 

Roadmap Epigenetics Consortium chromatin states from fetal brain tissue (Figure 3C, full model 
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Figure S6B), consistent with regions functionally relevant to gene splicing mechanisms 

(Lappalainen et al., 2013; Takata, Matsumoto, & Kato, 2017). 

 

Identifying drivers of fetal brain RNA-splicing  

To identify putative splicing regulators in the human fetal brain, we checked for sSNP 

enrichment in RNA binding protein (RBP) binding sites using the CLIPdb database of publicly 

available cross-linking immunoprecipitation (CLIP)-seq datasets from 51 RBPs (Y. C. Yang et 

al., 2015). We found binding sites for 36 of the RBPs to be significantly enriched among sSNPs 

(Figure 3D; Methods), most of which do not have well characterized roles in CNS function, 

especially during neural development. Among the significant RBPs with the sSNP enrichment 

with known roles in neurodevelopment are HNRNPH, ATXN2, and SRRM4. HNRNPH is 

involved in many aspects of neurodevelopment from alternative splicing of TRF2, which is 

implicated in neuronal differentiation (Grammatikakis et al., 2016), to oligodendrocyte 

differentiation (Wang, Dimova, & Cambi, 2007). ATXN2 plays roles in proliferation and cell 

growth with known mutations in the gene itself causing neurodevelopmental phenotypes, from 

spinocerebellar ataxia, ALS and schizophrenia (Almaguer-Mederos et al., 2018; Y. E. Kim et al., 

2018; F. Zhang et al., 2014). SRRM4 is a splicing factor known to regulate alternative exons 

with increased neural inclusion and including many microexons, with loss of function in mice 

linked to numerous neurodevelopmental deficiencies (Quesnel-Vallieres, Irimia, Cordes, & 

Blencowe, 2015). 

  

eQTL and sQTL are distinct, but overlapping 

To assess sharing of eQTL and sQTLs, we next analyzed the overlap of genes harboring a 

significant eQTL compared to those with sQTLs. We found that about half of all genes with a 

spliceQTL were also an eGene (1,066 genes out of the 6,546 eGenes; Figure 3E). To 

determine the extent in which eQTL and sQTL might have overlapping effects, we performed a 
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threshold free comparison of significant sQTLs from Leafcutter (SNP and splice junction 

mapped to genes) with eQTL summary statistics to estimate the proportion of non-null 

associations among the eQTLs (Storey & Tibshirani, 2003); Methods). We find that 68% of 

sQTLs also affect total levels of gene expression; however, only 19% of eQTLs affect splice-

junction usage, suggesting mostly independent regulation of expression and splicing events, as 

has been observed in other tissues (Y. I. Li et al., 2016). This independence of expression and 

splicing regulation is also observed when comparing eSNPs and sSNPs for the same gene, as 

most of the tagged regulatory regions for expression and splicing of the same gene are distinct, 

as evidenced by the large distances between eSNP and sSNP (Fig 3).  At the same time, we 

note that there are a minority of SNPs that affect both total expression and splicing, as 

evidenced by the 47 genes with directly overlapping sQTL and eQTL (Figure 3F; Table S3). 

We also used Ensembl’s Variant Effect Predictor (VEP) (McLaren et al., 2016); Methods) which 

annotates SNP function, to compare the distributions of our splicing and expression related 

variants, finding very similar results. For example, we observe more sSNPs identified as an 

intronic variant than eSNPs, and more eSNPs being identified as upstream gene variants 

(Figure 3G). 

 

Tissue specificity corresponds to eQTL effect size 

To examine eQTL sharing among tissue types, we next examined the correlation of effect sizes 

of fetal brain eQTLs (Figure S7; (Nica et al., 2011) to those from 48 different tissue types from 

the Genotype-Tissue Expression Consortium (GTEx) (Methods; (Consortium et al., 2017). Fetal 

eQTLs found in one or more GTEx tissue types showed significantly lower effect sizes (p-value 

<2.2x10 -16) than those that were fetal specific, suggesting eQTLs active globally across tissue 

types are more constrained, whereas fetal brain specific eQTLs have greater magnitude of 

effect sizes (Figure 4A).  That fetal brain specific eQTLs are less constrained than broad eQTL 

is also supported by comparison of a measure of tolerance to loss of function mutations, pLI 
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(Lek et al., 2016), between eGenes specific to fetal brain or shared between one or more GTEx 

tissue types (Figure 4B). To assess fetal eQTL sharing between each tissue, we correlated the 

effect sizes of all significant fetal eQTLs to the same eQTL SNP-gene pair across all GTEx 

tissues (Methods). We observe the strongest Spearman’s ρ correlations of fetal brain eQTLs 

with adult brain tissue and proliferative epithelial containing tissues (Figure 4C) 

 

Fetal eQTL are distinct from those in Adult 

Another central question is related to developmental stage: how do fetal brain eQTLs compare 

with adult brain eQTLs? To address this, we first compared genes that harbor an eQTL in our 

dataset to that of GTEx adult cortex eQTLs (N=136 individuals, eGenes=6,146), a dataset of 

similar sample size, experimental design, and number of significant eQTLs (Consortium et al., 

2017). We found 2,532 eGenes that overlapped between fetal and adult, accounting for a little 

over one third of both datasets (Figure 4D). Of the eGenes that overlapped, we examined how 

many eSNPs were tagging the same region by calculating the LD between the top primary 

SNPs in the fetal and adult data in the 1000 Genomes Project phase 3 multi-ethnic reference 

panel (Methods; Genomes Project et al., 2015). We found 68% of overlapping eQTLs tag the 

same regulatory region, even if the top SNP differed (Figure 4E). To further examine the 

differences in eGenes at the different developmental time points, eGenes were annotated based 

on fetal cell type markers, identified through differential expression of single cell sequencing 

identified cell clusters (Methods; Polioudakis et al., 2018).  We find many more fetal eGenes are 

in fact fetal cell type markers compared to eGenes that either overlap with adult, or are adult 

specific (Figure 4F), which is expected given the expected cellular composition of each epoch. 

 

Integrating GWAS signal in the context of development 

A major utility of eQTL studies is to provide functional annotation of disease-associated variants, 

largely identified from GWAS. Recent studies have shown heritability for complex disorders are 
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disproportionately enriched in functional categories such as conserved regions and enhancers 

(Finucane et al., 2015). Stratified LD score regression can be layered on top of functional 

annotations to estimate the regulatory regions’ contributions to common genetic disease risk as 

assessed by GWAS. Previous work based on active chromatin during fetal development had 

suggested that liability for SCZ was significantly enriched in fetal brain, especially in the 

progenitor containing zones (de la Torre-Ubieta et al., 2018). To test this, we created eQTL 

annotation regions for fetal cortex and adult cortex by considering a 500bp window (+-250) 

around each eSNP and removed overlapping annotation windows, resulting in a comparable 

number of annotations for each epoch (6,163 fetal annotations, 5,690 adult annotations, 

Methods). Partitioned GWAS heritability for SCZ shows fetal brain eQTLs to be the highest 

enriched among all significant functional categories, with 0.2% of SNPs explaining an estimated 

4% of SNP heritability (P = 9.1x10-4 for enrichment), and adult brain eQTLs not reaching 

significance (Figure 4G), suggesting that fetal brain regulatory regions harbor a greater 

proportion of SCZ risk variant than adult. To test the robustness of this finding, we explored 

different window sizes around each eGene, removing any window that overlapped between fetal 

and adult annotations, and saw a consistent significant enrichment for fetal annotations over 

adult for SCZ GWAS loci (Figure 4H). 

 

eQTL within the context of transcriptional networks 

We reasoned that our sample size, which is several-fold larger than any previous gene 

expression study of fetal brain (H. J. Kang et al., 2011; Parikshak et al., 2013), would permit 

identification of robust sets of co-expressed genes. We applied robust weighted gene co-

expression network analysis (B. Zhang & Horvath, 2005) to construct transcriptional networks, 

identifying 19 modules (labeled by color) of co-expressed genes during mid-gestation cortical 

development (Figure 5A, Table S4). The modules identified represent genes that correspond to 

distinct biological functions defined through shared gene ontology (GO) enrichments and cell 
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type markers within the module (Figure 5B and 5C, Methods). Six of these modules are 

enriched for specific brain cell types or brain-relevant ontological terms: turquoise (fetal mitotic 

progenitors, cell division), red (fetal mitotic progenitors, outer radial glia, splicing), yellow (fetal 

neurons, splicing), blue (fetal neuron, axon guidance), greenyellow (adult neuron, synaptic 

transmission, neuron projection development), and brown (adult neuron, CA2+ transport). All of 

these modules show high preservation in an independent RNA-seq dataset of cortical 

development from 8 post conception weeks to 12 months after birth (Parikshak et al., 2013; 

Sunkin et al., 2013), supporting the notion that this window in mid-gestation, by containing a full 

range of the major cell types, from proliferating progenitors and post mitotic migrating to post 

migratory neurons, captures a substantial portion of the biological processes occurring during 

brain development (Polioudakis et al., 2018; Pollen et al., 2015).  

 

Fetal brain gene co-expression networks, which define core biological processes occurring 

during cortical development are a useful way to identify processes enriched with common risk 

variants for neurodevelopmental disorders (Parikshak et al., 2015; Parikshak et al., 2013). 

However, most risk variants lie within noncoding regions, making their assignment to genes 

difficult, especially since many regulatory interactions do not involve the closest gene (Won et 

al., 2016). We used the identified eQTLs to link noncoding variants with target genes and asked 

whether there were any modules were enriched for ASD and SCZ GWAS signal (Methods). We 

identify significant enrichments for SCZ (blue p-value = 0.000999) and a marginal trend towards 

enrichment for ASD (yellow p-value = 0.061) GWAS studies (Figure 5G and 5H, Figure S8). 

Interestingly, the blue module, which shows eQTL/regulatory region GWAS enrichment for SCZ, 

corresponds to the biological function of neurogenesis as defined by GO analysis, and includes 

key genes such as DLX1 (essential for GABAergic interneuron production), FGF2 

(anteroposterior neural patterning), LHX6 (transcriptional regulator of differentiation and 

development of neural cells), and SMAD1(progenitor proliferation and differentiation), many of 
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whose enhancer regions have not been previously defined. The yellow module, which shows 

suggestive eQTL/regulatory region GWAS enrichment for ASD, corresponds to expression 

regulation defined by GO terms of chromatin organization and mRNA splicing in fetal neurons, 

and includes key genes such as MEF2A and MEF2D (myocyte enhancer factor 2A and 2D 

transcription factors both involved in neuronal differentiation), SP2 (transcriptional repressor),  

HNRNPH3 ( heterogeneous nuclear ribonucleoprotein associated with pre-mRNA processing), 

and FOXP4 (transcription regulation in brain development). This analysis demonstrates the 

power of eQTLs, when integrated with co-expression modules, to define where common genetic 

variation associated with a disease acts through regulation of genes with similar biological 

functions and potentially similar regulatory control (e.g. transcription factors). 

 

Next, to determine if there was functional overlap in regulatory regions between common GWAS 

defined annotations above, and rare genetic variation, we examined whether genes harboring 

rare mutations associated with risk for early onset neurological disease converged on any 

biological process defined by the fetal co-expression modules (Figure 5I). We compiled lists of 

candidate genes from whole exome sequencing (WES) studies identifying rare and de novo 

genetic risk variants for ASD, SCZ, intellectual disability, and developmental disorder (Methods; 

T. N. Turner et al., 2017). Interestingly, we find only the red module enriched for rare variation 

for SCZ (nominal p-value 0.037), which is also enriched in common variation from SCZ GWAS. 

The yellow module also exhibits the most significant enrichment for rare variation for ASD (FDR 

p-value 0.011), also corresponding to the top module enriched in common variation from the 

ASD GWAS. These analyses provide evidence for overlap in the genes and pathways impacted 

by common and rare genetic variation in these disorders. 

 

SCZ TWAS  
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To further leverage these data to refine and characterize neuropsychiatric disease loci with 

developmental origins, we used an imputation-based transcription-wide association study 

(TWAS; (Gusev et al., 2016), to integrate cis-eQTLs and GWAS loci to identify genes whose 

expression is correlated with schizophrenia. The single previous TWAS for a 

neurodevelopmental disorder, SCZ, relied on blood, adipose, and adult brain signals, and did 

not have access to fetal brain eQTL (Gusev et al., 2018). Given the neurodevelopmental origin 

of these disorders (de la Torre-Ubieta et al., 2018; Gulsuner et al., 2013), we reasoned that 

these fetal data would provide new perspectives on SCZ risk. We used the summary statistics 

from Psychiatric Genomics Consortium (PGC) schizophrenia (SCZ) GWAS (Schizophrenia 

Working Group of the Psychiatric Genomics, 2014) consisting of 79,845 individuals and our fetal 

brain eQTL data set to identify genes and splicing-events whose imputed cis-regulated 

expression is associated with SCZ. Given the expression weights, PGC SCZ GWAS Z-scores, 

and linkage-disequilibrium (LD) reference panel, we computed TWAS statistics (Methods). Of 

the 2,513 genes and 4,002 introns with significant cis-heritability, we identified 39 gene-SCZ 

and 58 intron-SCZ (corresponding to 46 unique genes) significant transcriptome-wide 

associations at Bonferroni corrected p-value <0.05/2,513 for genes and p-value <0.05/4,002 for 

introns (Figure 6A, Table S5). We find 6 genes (YPEL3, SF3B1, NT5DC2, TCTN1, PCDHA2, 

NDUFA6-AS1) having both a gene-level and intron-level association.  

 

The previous TWAS study in SCZ referred to above (Gusev et al., 2018), which used the PGZ 

SCZ GWAS, identified 247 significant transcriptome-wide gene-SCZ and intron-SCZ 

associations (Gusev et al., 2018). When comparing the significant fetal brain gene-SCZ 

associations, only 7 genes overlapped between fetal-gene-SCZ and adult-gene-SCZ 

associations from all three Gusev. et al reference panels, with 3 of these 7 genes coming from 

the adult brain gene-SCZ associations (MAIP1, PCDHA2, and SF3B1) (Figure 6B). Thirteen 

genes with intron-SCZ association overlapped between the 58 fetal brain intron-SCZ 
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associations and the 80 adult brain intron-SCZ associations (Figure 6C). The three genes 

implicated by both fetal and adult TWAS gene associations are protocadherin alpha 2 

(PCDHA2), splicing factor 3b subunit 1 (SF3B1) and matrix AAA peptidase interacting protein 1 

(MAIP1; C2orf47). PCDHA2 expressed in the brain has been shown to localize to synaptic 

junctions and play a role in establishing neuronal connections. (Wu & Maniatis, 1999). SF3B1 

has been associated with SCZ from the PGC GWAS and has further support from differential 

expression in a rat psychosis model (Ingason et al., 2015). MAIP1 (C2orf47) plays a role in 

mitochondrial Ca2+ handling and cell survival and has been associated with SCZ from GWAS 

performed within a Swedish sample (N = 11,244) (Ripke et al., 2013).  

 

A major advantage of TWAS is the identification of genes that did not pass genome-wide 

significance in the GWAS study. We next examined the overlap between the 108 genome-wide 

significant GWAS loci (Schizophrenia Working Group of the Psychiatric Genomics, 2014) and 

significant TWAS associations, in order to identify new risk regions for SCZ. Of the 39 

associated genes and 58 associated splice-junctions, 30 genes and 44 splice-junctions (+-

500kb) were located within one of the 108 SCZ GWAS published associated regions (Methods), 

accounting for 27 GWAS region hotspots, with the remaining 9 genes and 14 introns identified 

by TWAS implicating novel SCZ targets accounting for 17 new risk regions. Of these 17 new 

risk regions, only 2 were previously identified (+-500k) among the 24 novel loci identified in 

Gusev et al. One of the new SCZ candidate genes that is unique to the fetal dataset is BAIAP2, 

brain-specific angiogenesis inhibitor 1-associated protein 2 involved in regulation dendritic spine 

morphogenesis (Choi et al., 2005) and is associated with childhood ADHD and Autism 

Spectrum Disorder (Liu et al., 2013; Toma et al., 2011). Similar to GWAS studies, TWAS gene-

trait association statistics in risk regions are correlated due to LD structure, and thus require 

fine-mapping for further interpretation. We applied FOCUS (Mancuso et al., 2017) to our fetal-

gene TWAS results that lie within a GWAS region to identify a credible set of causal genes at 
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the SCZ GWAS significant loci (Methods) and identified a credible gene set consisting of 20 

genes, including KCTD13 and NT5D2. KCTD13 and NT5D2 are both fetal specific hits in GWAS 

regions where adult specific hits also lie and show greater expression in prenatal time points 

compared to postnatal in the BrainSpan gene expression trajectories. (Figure 6D-G,Table S6, 

(BrainSpan, 2013)). 

 

We compared the overlap of significant GWAS regions with fetal (39 gene 58 intron) and adult 

brain (44 gene 80 introns) significant TWAS associations (Methods). At 18 loci there contained 

at least 1 gene or intron association from both fetal and adult hits. At 9 GWAS regions only adult 

TWAS gene/introns were implicated, and at 12 GWAS regions only fetal gene/introns were 

implicated (Table S7). For the 18 regions with both adult and fetal implicated gene/introns, 3 of 

these GWAS loci implicated the same gene, while 8 GWAS loci implicate the same gene that 

contains a splicing-events, consistent with expectations that using expression panels from 

different developmental time points or tissues will implicate different genes associated with 

disease variants (Gusev et al., 2018). It has been shown that tissue of the expression panel 

used in TWAS studies has a substantial influence on the results (Wainberg et al., 2017), hence 

the importance of using disease relevant tissues, which for Schizophrenia includes developing 

brain. 

 

Intracranial Volume TWAS 

Given the importance of cortical neurogenesis, which peaks during mid-gestation (H. J. Kang et 

al., 2011; Miller et al., 2014), in brain evolution and brain size (Bae, Jayaraman, & Walsh, 2015; 

Geschwind & Rakic, 2013; Kostovic & Jovanov-Milosevic, 2006; Rakic, 1995, 2009), we 

reasoned that these eQTL data would be particularly valuable in defining loci involved in 

intracranial volume in humans.  By using fetal brain expression weights, we could specifically 

highlight early acting genes with a candidate mechanism for which these genetic association 
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signals during time frame crucial to the expansion of the cerebral cortex (de la Torre-Ubieta et 

al., 2018). We leveraged the GWAS summary statistics of intracranial volume, a meta-analysis 

of Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) and Enhancing 

NeuroImaging Genetics through Meta-Analysis (ENIGMA) consortia consisting of 26,577 

individuals to perform a transcription-wide association study, as intracranial volume is directly 

related to brain growth early in brain development (Adams et al., 2016). Of the 2,513 genes and 

4,006 introns with significant cis-heritability, we identified 8 genes whose expression (NSF, 

LRRD1, LRRC37A, LRRC37A2, LRRC37A17P, CENPS, RNF123, AC068152.1) and 7 introns 

whose splicing is (NT5C2, CRHR1, LRRC37A, LRRC37A2, ARL17A, ARL17B, USP4) 

significantly associated with intracranial volume at Bonferroni corrected p-value <0.05/2,513 for 

genes and p-value <0.05/4,006 for introns (Figure 7A, Table S8, Methods). An intriguing 

candidate is NSF, an ATPase involved in vesicular transport and is implicated in having a role in 

learning, cognition, and memory. It has also been associated with schizophrenia through 

differential gene expression analysis done in prefrontal cortex and is located in a CNV, also 

including LRRC37A, LRRC37A2, ARL17A, ARL17B, associated with both dyslexia disorder and 

Parkinson's disorder (Figure 7B) (Fan et al., 2017; Latourelle, Dumitriu, Hadzi, Beach, & Myers, 

2012; Mirnics, Middleton, Marquez, Lewis, & Levitt, 2000; Veerappa, Saldanha, Padakannaya, 

& Ramachandra, 2014). Another interesting candidate is RNF123, a ubiquitin ligase involved in 

cell cycle progression found to be overexpressed in the cortex of patients with psychotic 

depression (Teyssier, Rey, Ragot, Chauvet-Gelinier, & Bonin, 2013). 

 

We also ran the TWAS using the published adult brain weights calculated from the Common 

Mind Consortium (Gusev et al., 2018).Of the 5,376 genes with significant cis-heritability, 7 

genes (NT5C2, INA, USMG5, ARHGAP27, MAPT, IGFBP2, CENPW) are significantly 

associated with intracranial volume (Bonferroni corrected p-value <0.05/5,376), none of which 

overlap the fetal identified genes, except for NT5C2 at the fetal intron level (Figure 7A). NT5C2 
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is a hydrolase that plays a role in cellular purine metabolism that has been linked to intellectual 

disability and spastic paraplegia (Darvish et al., 2017). 

Discussion  

Our analysis provides the first genome wide map of human eQTLs and spliceQTLs during 

cerebral corticogenesis, a critical epoch of brain development, expanding our understanding of 

complex gene and splicing regulation in the developing brain. We have comprehensively 

described the implicated regulatory regions defined by eSNPs and sSNPs, enabling the 

integration of developmental diversity to previous adult brain functional genomic analysis and 

genetic variant interpretation. We show that much of the genetic variation controlling regulation 

of expression and splicing in the human brain is sensitive to two distinct periods of 

developmental stage. In the context of early onset neurological and psychiatric disorders, this 

provides a new window into genetic control of gene expression and splicing regulation during a 

critical time point for disease development. 

  

We find that integrating eQTLs through regulatory region annotation with WGCNA defined 

modules from fetal brain expression shows GWAS disease enrichment for both ASD and SCZ 

among specific biological processes, indicating specific convergent biology. This substantially 

advances previous work based on rare, gene disrupting de novo mutations (Iossifov et al., 2012; 

Ruzzo et al., 2018; Sanders et al., 2012) by showing convergence in genetic risk factors, even 

at the level of common variants that lie in regulatory regions. We show genes involved in 

chromatin organization and splicing are enriched for ASD GWAS loci in their eQTL defined 

regulatory regions, similar to rare variants. For SCZ, we find neurogenesis and central nervous 

system development enrichment, parallel to fetal brain Hi-C analysis (Won et al., 2016), 

providing independent support for neurogenesis as a key process in SCZ risk. Furthermore, we 

show that SCZ GWAS enrichment from partitioned heritability significantly differs when using 
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fetal eQTL defined genome annotations versus adult eQTL defined genome annotations, 

consistently indicating the fetal annotations to be the highest enriched among all functional 

annotations. Similar significant enrichment of SCZ partitioned heritability has been shown for 

fetal brain ATAC-seq peaks (de la Torre-Ubieta et al., 2018), demonstrating the multiple lines of 

evidence that regulatory regions active in early cortical development harbor significant SCZ risk 

and are likely to be a crucial site of action for disease risk. 

 

Finally, by integrating our map of fetal gene expression and splicing regulation with the SCZ and 

intracranial volume GWAS studies through application of TWAS, we are able to identify new 

candidate genes and candidate molecular mechanisms through which these disease associated 

common variants may be acting. We discover several genes that lie in significant GWAS loci, 

but additionally, we discover new regions of the genome associated with SCZ through 

aggregation of GWAS signal among from the significant genetic cis-predictors of genes 

expression. Moreover, when comparing the implicated genes and introns from fetal brain 

expression weights with genes and introns implicated via adult brain expression weights, there 

is very little overlap. To some degree this is expected and reflects TWAS’s known sensitivity to 

the specific expression panel, as well as the differences in eGenes and effect sizes between 

fetal and adult eQTLs shown in our analysis. It does, however, highlight the importance of 

picking appropriate expression studies for a given phenotype. Here, the SCZ risk genes 

predicted by TWAS based on fetal brain expression contributes to the growing list of candidate 

genes discovered from adult expression for a more complete view of potentially casual genes 

and splicing events. These results and others (de la Torre-Ubieta et al., 2018; Won et al., 2016) 

are very consistent with the seminal framing of SCZ as a neurodevelopmental disorder 

(Weinberger, 1987). 
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In this regard, GWAS regions that yield discordant significant TWAS gene associations 

depending on the developmental time period of reference panel are interesting to consider. A 

particularly salient example is the region containing the 16p11.2 copy number variant 

associated with multiple neurodevelopmental conditions such as SCZ, ASD, ID, and BIP, 

(Bernier et al., 2017; Hanson et al., 2015; Shinawi et al., 2010; Weiss et al., 2008; W. Zhou et 

al., 2018). Here, we find KCTD13, TMEM219, and YPEL3 highlighted by fetal brain expression 

with fine mapping of this loci implicating KCTD13, MVP, and AC120114.1, whereas MAPK3 and 

DOC2A, both of which are also in the copy variant region, are implicated by adult brain 

expression. While this CNV region contains 29 genes, KCTD13 has been studied extensively 

due and has been posited as a major drivers to phenotypic changes based on experimental 

manipulation (Golzio et al., 2012; Luo et al., 2012), but the relationship is unlikely to be simple 

or involve only one gene (Escamilla et al., 2017; Golzio et al., 2012). While more work is 

necessary to understand the role of KCTD13, MAPK3, and the 16p11.2 CNV, our TWAS results 

suggest these genes may play a role in disease biology through action at different 

developmental time periods. These results further demonstrate the importance of considering 

developmental stage of brain expression and regulation when using eQTL data to interpret 

disease associated variants. They also highlight the value of using these data to further 

characterize developmental time points during which genetic disruption acts for 

neurodevelopmental and early onset neuropsychiatric diseases, suggesting that more detailed 

maps of the effects of common genetic variation effects throughout the lifespan will be of value. 
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Figure Legends 

Figure 1:  Study Design and Methodological Overview of QTL Analysis. 

RNA sequencing data from 233 fetal cortical samples was exhaustively QC’ed leaving data from 

201 samples that was integrated with genome-wide imputation of common genetic variation 

based on high-density genotyping for expression and splicing QTL discovery. eQTL and sQTL 

were independently calculated using standard methods of covariate correction (Mostafavi et al., 

2013)  QTLs were characterized based on functional enrichment, cell type specificity, and 

compared to mature brain and non-brain tissue QTLs. We integrated these fetal brain QTLS 

with GWAS of neuropsychiatric disorders, performing LDSR and TWAS, as well as with regards 

to human brain phenotypes and gene co-expression networks to identify developmental disease 

risk and important biological processes under genetic control.  

 

Figure 2:  Characterization of cis-eQTLs 

(A) A schematic showing chromatin accessibility (ATAC-seq) and chromatin interactions (Hi-C) 

are used to support eQTLs in linking genes to distal regulatory elements. 

(B) Position of primary and secondary eQTLs, annotated by their color and position as depicted 

in the key. eSNPs are shown in relation to the eGene transcription start site (TSS) as defined in 

Genecode v19. Significant eQTLs are annotated based on support from fetal brain chromatin 

contacts defined by Hi-C (Methods) and distance from the TSS.  

(C) Distribution of all primary and secondary cis-eQTLs; most lie > 10kb 3’ or 5’ to the TSS. 

eQTLs that lie within 10kb of the TSS are colored green, as depicted in (A). 

(D) Fraction of eQTLs with fetal brain ATAC support.  

(E) Fraction of distal eQTLs (eSNP is further than 10kb away from the TSS) with fetal brain Hi-C 

support. eQTLs that show Hi-C support are colored purple, while those not supported by Hi-C 

are colored blue, as depicted in (A). 
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(F) eGenes are more tolerant to loss of function, as compared with those genes expressed in 

fetal brain without significant cis-eQTL.  

(G) Fold enrichment of eSNPs by their distribution within specific fetal brain chromatin states, 

which are listed on the Y axis (ChromHMM annotations; Methods). eQTL are in active states, 

most prominently in promotors and nearby cis-regions, as expected.  

(H) Fold enrichments of eSNPs in experimentally discovered transcription factor binding sites 

from (Arbiza et al., 2013) characterize the intersection of transcriptional control elements with 

human genetic variation. 

 

Figure 3:  Characterization of sQTLs and Comparison of sQTLs to eQTLs. 

(A) Position of sQTLs in relation to the splice junction. Significant sQTLs are annotated based 

on whether the sSNP lies within (green) or outside (blue) of the corresponding sGene.  

(B) Fraction of sQTLs where the sSNP lies within vs outside its sGene.  

(C) Fold enrichment of sSNPs by their distribution within specific fetal brain chromatin states, 

which are depicted on the Y axis (ChromHMM annotations; Methods). sSNPs are most 

prominently found within promoters and transcribed regions. 

(D) Fold enrichments of sSNPs in experimentally discovered RNA binding protein binding sites 

from the CLIPdb database (Y. C. Yang et al., 2015) (Methods).  

(E) Venn diagram showing the overlap of genes containing an eQTL (6,546) vs sQTL (2,132).  

(F) Distribution of the distance in base pairs between eSNP and sSNP for genes harboring both.  

(G) Relative proportions of predicted SNP effects (VEP) between eSNPs and sSNPs. 

 

Figure 4:  Age specificity of Brain eQTLs 

(A) Distribution of effect size for all fetal eQTLs, fetal-specific eQTLs vs eQTLs identified in any 

GTEx tissue.  
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(B) Distribution of pLI scores of loss-of-function intolerance for all fetal eQTLs, including fetal-

specific eQTLs vs eQTLs identified in any GTEx tissue. 

(C) Effect size correlations (Spearman’s ρ) between significant nominal fetal eQTLs (absolute 

value of beta) and corresponding eQTL among GTEx v7 tissues. Bars are colored by the 

GTEx eQTL dataset sample size. The highest correlations are seen with brain and 

proliferative, epithelial tissues. 

(D) Venn Diagram comparing genes with an eQTL discovered in fetal cortical tissue vs adult 

cortical tissue from GTEx (Consortium et al., 2017); Methods).  

(E) Distribution of linkage disequilibrium (D’) between eSNPs of genes that overlap between 

fetal and adult datasets. This comparison shows that the majority of eQTLs are tagging the 

same region, even when the eSNP differs between the adult eQTL and fetal eQTL.  

(F) The number of fetal single cell cluster-marker genes (Methods; significantly differentially 

expressed between all other clusters with a log(FC)>0.2) containing an eQTL in fetal-specific 

eQTL data, adult-specific eQTL data, and those overlapping both datasets. Fetal = fetal specific; 

adult = adult specific; both = overlapping and found in both fetal and adult. 

(G) LD score regression annotation enrichments where annotations of fetal eQTLs and adult 

eQTLs were added to the baseline annotations by creating a 500bp window around the eSNP 

and removing any region observed in both fetal and adult annotations. An asterisk indicates 

significance at P<0.05 after Bonferroni correction for all annotation categories tested. It is 

notable that the distribution of shared QTL essentially mirrors the adult, while the fetal-specific 

show a distinct distribution, especially within primarily fetal cell types. 

(H) LD score regression enrichment of the fetal specific annotations and adult specific 

annotations with varying window size around the eSNP. Enrichment of SCZ in fetal eQTL 

annotations is consistent across window sizes.  

 

Figure 5:  Fetal Brain Co-expression Networks 
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(A) Network analysis dendrogram based on hierarchical clustering of all genes by their 

topological overlap, identifies 19 developmental modules (Methods). Colored bars below the 

dendrogram show module membership, expression covariates (Gestation week, RIN, and Sex), 

and module make up with regards to fetal specific eGenes, adult specific eGenes (identified in 

Gtex v7), or overlapping eGenes (from both fetal and adult datasets). Importantly, co-variates 

are not driving module clustering. Modules are also not enriched for eGenes, as eGene 

discovery is a function of sample size in the discovery data set and not biology specific. 

(B) Top 2 Gene Ontology biological process terms enriched for each module. The X axis depicts 

the –log10(FDR) value, the dotted black line indicates significance (-log10(0.05)) with all listed 

categories significant. 

(C) Top 2 cell types enriched for each module. The X axis depicts the –log10(FDR) value, the 

dotted black line indicates significance (-log10(0.05)). Cell type markers from human and mouse 

brain were downloaded from (Hawrylycz et al., 2015; Lein et al., 2007; Mancarci et al., 2017; 

Miller et al., 2014; Tasic et al., 2016; Winden et al., 2009; Y. Zhang et al., 2014; Y. Zhang et al., 

2016) as well as the fetal types from (Polioudakis et al., 2018) 

(D-F) Top hub genes along with edges supported by co-expression are shown for the blue, red, 

and yellow module. Hub genes are defined by being the top 30 most connected genes based on 

kME intermodular connectivity. 

(G) Per module QQ plot of SCZ GWAS SNP p-values in regulatory regions defined by eQTLs. 

The red module and the blue module show the most inflation for enrichment of SCZ GWAS hits. 

(H) Per module QQ plot of ASD GWAS SNP p-values in regulatory regions defined by eQTLs. 

ASD shows a different pattern than SCZ, with yellow module showing the most inflation for 

enrichment of ASD GWAS hits. 

(I) Per module rare variant enrichment for SCZ, ASD, ID, Developmental Disorder.  

 

Figure 6:  Fetal Brain Schizophrenia TWAS Associations 
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(A) Manhattan plot of TWAS results from both genes and intron SCZ associations, highlighting 

the significant genes (39) and introns (58) at Pbonferroni<0.05, overlaid with only the SCZ PGC 

GWAS significant hits. Key depicts significant GWAS loci (blue), significant gene level TWAS 

loci (black), and significant intron level TWAS loci (red). 

(B) Overlap of gene level TWAS hits from fetal brain-SCZ, adult brain-SCZ, adipose-SCZ, and 

whole blood-SCZ from (Gusev et al., 2018). 

(C) Overlap of intron level TWAS hits from fetal brain-SCZ and adult brain-SCZ from (Gusev et 

al., 2018).  

(D, F) Illustration of two genomic regions harboring at least one fetal TWAS hit. The Y axis 

shows Ensemble gene ID, LD, TWAS results overlapped with GWAS hits (-log10(p-value); gene 

level TWAS hits are black dots, intron level TWAS hits are red dots, and GWAS SNPs are blue 

dots) and SCZ GWAS hit (yellow line). Ensembl gene names and gene models are colored by 

significance in datasets; fetal brain gene-SCZ associations (black), fetal brain intron-SCZ 

associations (red), adult brain gene-SCZ associations (Common Mind Consortium; green). SCZ 

GWAS hits are shown in yellow, with the LD block surrounding the hit in purple defined by 

r2>0.6. 

(E, G) Corresponding BrainSpan (BrainSpan, 2013) gene expression trajectories throughout 

human life span of highlighted TWAS genes. In general, these trajectories match expectations 

in that adult genes, such as MAPK3 and DOC2A have higher adult expression, while NT5DC2 

and STAB1 have higher fetal expression and are identified in the fetal analysis, but this is not 

always the case, as for NEK4 which shows the opposite trajectory. X-axis corresponds to 

developmental periods defined in (H. J. Kang et al., 2011), where periods 1-7 span embryonic, 

early fetal, mid-fetal, and late fetal post-conceptional weeks. Periods 8-11 correspond to 

neonatal and early infancy, late infancy, early childhood, and middle-late childhood. Periods 12-

15 correspond to adolescence and adulthood. The red line represents period 8, corresponding 

to birth. 
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Figure 7:  Fetal Brain Intracranial Volume TWAS Associations 

(A) Manhattan plot of TWAS results from fetal brain gene- and intron-ICV associations and adult 

brain gene- ICV associations (CommonMind; (Gusev et al., 2016), highlighting the significant 

fetal brain genes (8) and introns (7) and adult brain genes (7) at Pbonferroni<0.05, overlaid with 

only the ICV GWAS significant hits. Key depicts significant GWAS loci (blue), significant fetal 

gene level TWAS loci (black), significant intron level TWAS loci (red), and significant adult gene 

level TWAS loci in green. 

(B) Illustration of the GWAS locus hotspot on chromosome 17 harboring 5 fetal gene-ICV 

associations (black), 3 fetal intron-ICV associations (red), adult brain gene-ICV associations 

(Common Mind Consortium; green). The Y axis shows Ensemble gene ID, LD, TWAS results 

overlapped with GWAS hits (-log10(p-value); fetal gene level TWAS hits are black dots, adult 

gene level TWAS hits are green dots, fetal intron level TWAS hits are red dots, and GWAS 

SNPs are blue dots) and SCZ GWAS hit (yellow line). Ensembl gene names and gene models 

are colored by significance in datasets; fetal brain gene-SCZ associations (black), fetal brain 

intron-SCZ associations (red), adult brain gene-SCZ associations (Common Mind Consortium; 

green). The ICV GWAS hit is shown in yellow with the LD block surrounding the hit in purple 

defined by r2>0.8. 

(C) Corresponding BrainSpan (BrainSpan, 2013) gene expression trajectories throughout 

human life span of highlighted TWAS genes. X-axis corresponds to developmental periods 

defined in (H. J. Kang et al., 2011), where periods 1-7 span embryonic, early fetal, mid-fetal, 

and late fetal post-conceptional weeks. Periods 8-11 correspond to neonatal and early infancy, 

late infancy, early childhood, and middle-late childhood. Periods 12-15 correspond to 

adolescence and adulthood. The red line represents period 8, corresponding to birth. 
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Tables 

Table S1. Related to Figure 2: Statistics for significant eQTLs, top SNP per gene. gene_id and 

hgnc_symbol is the Ensembl gene ID from GRCh37 and corresponding gene symbol. gene_chr, 

gene_start, gene_end are the genomic locations of the Ensembl gene ID from GRCh37 and 

hg19. num_var is the number of variants tested in the cis-window. beta_shape1 and 

beta_shape2 are the MLE of the shape 1 and shape 2 parameter of the Beta distribution. 

variant_id is the best SNP (smallest p-value) in the form chr_position_ref_alt in hg19 

corrdinates. tss_distance is the distance between the variant and the TSS of the gene. Chr, pos, 

ref, alt correspond to the variant in hg19 coordinates. pval-nominal is the nominal p-value of the 

association. slope is the regression coefficient associated with the nominal p-value association. 

pval_beta is the permutation p-value obtained via beta approximation. qval is the Storey & 

Tibshirani corrected permutation p-value. 

 

Table S2. Related to Figure 3: Statistics for significant sQTLs, top SNP per intron. intron_id is 

the Leafcutter intron identification in the form chr:intron_start:intron:end:cluster_id. hgnc_symbol 

is the gene symbol of the gene the intron maps to, since Leafcutter is annotation free intron 

clusters may map to multiple genes if there is overlap. intron_chr, intron_start, intron_end are 

the genomic locations of the intron in hg19 coordinates. num_var is the number of variants 

tested in the cis-window. beta_shape1 and beta_shape2 are the MLE of the shape 1 and shape 

2 parameter of the Beta distribution. variant_id is the best SNP (smallest p-value) in the form 

chr_position_ref_alt in hg19 corrdinates. tss_distance is the distance between the variant and 

the intron start. Chr, pos, ref, alt correspond to the variant in hg19 coordinates. pval-nominal is 

the nominal p-value of the association. slope is the regression coefficient associated with the 

nominal p-value association. pval_beta is the permutation p-value obtained via beta 

approximation. qval is the Storey & Tibshirani corrected permutation p-value. 
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Table S3. Related to Figure 3: 47 genes with the same top SNP both their eQTL and sQTL. 

ENSID and Gene is the Ensembl gene ID from GRCh37 and corresponding gene symbol. SNP 

is the top SNP for the eQTL and sQTL. Sqtl_pval and eqtl_pval are the corresponding FDR 

corrected p-vaules (qvalue). 

 

Table S4. Related to Figure 5: WGCNA Module Membership. ENSG and Gene is the Ensembl 

gene ID from GRCh37 and corresponding gene symbol. Gene.colors is the color of the module 

in which the gene belongs. The next 18 columns are the module kME of the corresponding 

module color.  eQTL Pvalue is the nominal p-value for the top eQTL if that gene contains a 

significant eQTL. 

 

Table S5. Related to Figure 6:  SCZ TWAS gene and intron hits. Gene is the gene symbol of the 

significant TWAS hit. Chr, gene/intron start, gene/intron end correspond to the gene or intron’s 

postion in hg19 coordinates. BEST.GWAS.ID and BEST.GWAS.Z are the most significant SCZ 

GWAS SNP in the locus and correspond Z-score of the SCZ GWAS SNP. TWAS.Z and 

TWAS.P  are the TWAS Z-score and p-value. Expression designates which expression weights 

were used, gene or intron level. 

 

Table S6. Related to Figure 6: SCZ Focus fine mapping of SCZ TWAS hits overlapping PGC 

SCZ GWAS significant regions. Gene and ID are the gene symbol and corresponding Ensembl 

gene ID from GRCh37. BLOCK is the genomic window in the form chr:region_start..region_stop 

corresponding to LD blocks around the PGC SCZ GWAS hits. RESID.Z is the TWAS Z score 

after accounting for the estimated intercept at each region. PIP is the posterior inclusion 

probability (causality probability). IN.CRED.SET marks if a gene or null model are included in 
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the 90% credible gene set. If a gene set contains the null model in the 90% credible gene set it 

is not included.  

 

Table S7. Related to Figure 6: TWAS hits overlapping GWAS regions from fetal and adult 

expression panels. Ensid and gene is the Ensembl gene ID and corresponding gene symbol. 

GWASsnp corresponds to one of the 108 PGC SCZ GWAS loci. Annotation indicates which 

expression panel the TWAS hit is coming from (fetal vs adult) and what type of expression 

(gene-level or splicing).  At 18 loci there contained at least 1 gene or intron association from 

both fetal and adult hits. At 9 GWAS regions only adult TWAS gene/introns were implicated, and 

at 12 GWAS regions only fetal gene/introns were implicated. 

 

Table S8. Related to Figure 7: ICV TWAS gene and intron hits. Gene is the gene symbol of the 

significant TWAS hit. Chr, gene/intron start, gene/intron end correspond to the gene or intron’s 

postion in hg19 coordinates. BEST.GWAS.ID and BEST.GWAS.Z are the most significant ICV 

GWAS SNP in the locus and correspond Z-score of the ICV GWAS SNP. TWAS.Z and TWAS.P  

are the TWAS Z-score and p-value. Expression designates which expression weights were 

used, gene or intron level. 
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STAR Methods 

 

Key Resources Table 

REAGENT or 

RESOURCE 

SOURCE IDENTIFIER 

Critical 

Commercial 

Assays 

  

miRNA easy-mini QIAGEN  

DNeasy Blood and 

Tissue Kit 

  

Stranded TruSeq 

kit with Ribozero 

Gold 

Illumina  

Deposited Data   

Raw and analyzed 

data: RNA-seq 

This paper  

Raw and analyzed 

data: DNA 

This paper  

Hg 19 genome 

build 

N/A ftp://ftp-

trace.ncbi.nih.gov/1000genomes/ftp/technical/refere

nce/phase2_reference_assembly_sequence/  
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Roadmap 

Epigenomics 25-

state model 

(Roadmap 

Epigenomics et 

al., 2015) 

https://personal.broadinstitute.org/jernst/MODEL_IM

PUTED12MARKS/ 

Gencode v 19 (Harrow et al., 

2012) 

https://www.gencodegenes.org/releases/19.html 

 

ENSEMBL Human 

genome assembly 

N/A ftp://ftp.ensembl.org/pub/release-

75/fasta/homo_sapiens/dna/ 

Developing human 

cortex Hi-C 

(Won et al., 2016) https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc

=GSE77565 

Developing human 

cortex ATAC-seq 

(de la Torre-

Ubieta et al., 

2018) 

https://doi.org/10.1016/j.cell.2017.12.014 

 

GTEx v7 (Consortium et 

al., 2017) 

https://www.gtexportal.org/home/datasets 

https://www.ncbi.nlm.nih.gov/projects/gap/cgi-

bin/study.cgi?study_id=phs000424.v7.p2 

HapMap3 (International 

HapMap, 2003) 

ftp://ftp.ncbi.nlm.nih.gov/hapmap/ 

1000 Genomes 

Project Phase3 

(Genomes 

Project et al., 

2015) 

ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130

502/ 

BrainSpan (BrainSpan, 

2013) 

http://brainspan.org/ 

 

Transcription 

factor binding sites 

(Arbiza et al., 

2013) 
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RNA binding 

protein binding 

sites 

(Y. C. Yang et al., 

2015) 

https://omictools.com/clipdb-tool 

Functional Gene 

Constraint Scores 

(Lek et al., 2016) http://exac.broadinstitute.org 

Software and 

Algorithms 

  

R (v3.2.1)  https://www.r-project.org/ 

FastQC N/A https://www.bioinformatics.babraham.ac.uk/projects/

fastqc/ 

RNA STAR v2.4 (Dobin et al., 

2013) 

https://github.com/alexdobin/STAR 

Picard Tools 

v1.139 

N/A http://broadinstitute.github.io/picard/ 

 

Samtools v1.2 (H. Li et al., 2009) https://samtools.github.io 

PLINK 1.9 (Chang et al., 

2015) 

https://www.cog-genomics.org/plink2 

HTseq Counts (Anders, Pyl, & 

Huber, 2015) 

https://htseq.readthedocs.io/en/release_0.10.0/ 

VerifyBamID 

v1.1.2 

(Jun et al., 2012) https://genome.sph.umich.edu/wiki/VerifyBamID 

Plinkseq v0.10 N/A https://www.atgu.mgh.harvard.edu/plinkseq 

ComBat (W. E. Johnson, 

Li, & Rabinovic, 

2007) 

https://www.bu.edu/jlab/wp-

assets/ComBat/Abstract.html 
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WGCNA (Langfelder & 

Horvath, 2008; B. 

Zhang & Horvath, 

2005)  

https://cran.r-

project.org/web/packages/WGCNA/index.html 

Beagle v4.1 (Browning & 

Browning, 2016) 

https://faculty.washington.edu/browning/beagle/bea

gle.html 

GATK v3.5 (Van der Auwera 

et al., 2013) 

https://software.broadinstitute.org/gatk/ 

HCP (Mostafavi et al., 

2013) 

https://github.com/mvaniterson/Rhcpp 

FastQTL (Ongen et al., 

2016) 

http://fastqtl.sourceforge.net 

Matrix eQTL (Shabalin, 2012) https://cran.r-

project.org/web/packages/MatrixEQTL/index.html 

EMMAX (H. M. Kang et 

al., 2008) 

http://genetics.cs.ucla.edu/emmax_jemdoc/ 

METAL 

v3.25.2011 

(Willer et al., 

2010) 

http://csg.sph.umich.edu/abecasis/Metal/ 

Leafcutter (Y. I. Li et al., 

2018) 

http://davidaknowles.github.io/leafcutter/index.html 

GREGOR (Schmidt et al., 

2015) 

https://genome.sph.umich.edu/wiki/GREGOR 

Variant Effect 

Predictor 

(McLaren et al., 

2016) 

https://uswest.ensembl.org/info/docs/tools/vep/index

.html 
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LD Score 

Regression 

(Finucane et al., 

2015) 

https://github.com/bulik/ldsc 

 

FUSION (Gusev et al., 

2016) 

http://gusevlab.org/projects/fusion/ 

FOCUS (Mancuso et al., 

2017) 

http://github.com/bogdanlab/focus/ 

GenomicRanges 

Package v1.16.4 

(Lawrence et al., 

2013) 

http://bioconductor.org/packages/release/bioc/html/

GenomicRanges.html 

Gviz Package v1.8.4 (Hahne & Ivanek, 

2016) 

http://bioconductor.org/packages/release/bioc/html/Gviz.h

tml 

biomaRt Package 

v2.20.0 

(Durinck, 

Spellman, Birney, 

& Huber, 2009) 

http://bioconductor.org/packages/release/bioc/html/bioma

Rt.html 

BSgenome.Hsapien

s.UCSC.hg19 

v1.32.0 

N/A http://bioconductor.org/packages/release/data/annotation

/html/BSgenome.Hsapiens.UCSC.hg19.html 

 

qvalue Package (Storey & 

Tibshirani, 2003) 

https://www.bioconductor.org/packages/devel/bioc/html/q

value.html 

Cqn Package 

v1.26.0 

(Hansen, Irizarry, 

& Wu, 2012) 

https://bioconductor.org/packages/release/bioc/html/cqn.

html 

Dplyr Package 

v0.7.6 

N/A https://cran.rstudio.com/web/packages/dplyr/index.html 

Qqman Package 

v0.1.4 

(S. D. Turner, 

2014) 

https://cran.r-project.org/web/packages/qqman/ 
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AnnotationDbi 

Package v1.42.1 

(Pagès, Carlson, 

Falcon, & Li, 

2018) 

https://www.bioconductor.org/packages/release/bioc/html

/AnnotationDbi.html 

flashClust Package 

v1.01-2 

(Langfelder & 

Horvath, 2012) 

https://cran.r-

project.org/web/packages/flashClust/index.html 

GenomicFeatures 

Package v1.42.1 

(Lawrence et al., 

2013) 

https://bioconductor.org/packages/release/bioc/html/Gen

omicFeatures.html 

Igraph Package 

v1.2.1 

(Nepusz & 

Csárdi, 2006) 

https://cran.r-project.org/web/packages/igraph/index.html 

Corrplot v0.84 

Package 

(Wei & Simko, 

2017) 

https://cran.r-

project.org/web/packages/corrplot/index.html 

 

Contact for Reagent and Resource Sharing 

Further information and requests for resources and reagents should be directed to and will be 

fulfilled by the Lead Contact, Daniel H. Geschwind (dhg@mednet.ucla.edu). 

 

Experimental Model and Subject Details 

Developing Human Brain Samples 

Fetal tissue was obtained from the UCLA Gene and Cell Therapy core according to IRB 

guidelines from 233 donors (post-conception weeks: 14-21) following voluntary termination of 

pregnancy. This study was performed under the auspices of the UCLA Office of Human 

Research Protection, which determined that it was exempt because samples are anonymous 

pathological specimens. Full informed consent was obtained from all of the parent donors.  
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Method Details 

 

Data Generation 

 

Total RNA and genomic DNA from human fetal brain tissue from PCW 14-21 that visually 

appeared to be cortical was extracted using miRNeasy-mini (Qiagen) and DNeasy Blood and 

Tissue Kit (DNA) or were extracted using trizol with glycogen followed by column purification. 

Library preparation via Illumina Stranded TruSeq kit with Ribozero Gold ribosomal RNA 

depletion library prep was followed by sequencing on 233 brains and genotype array data on 

212 brains was generated at the UCLA Neurogenomics Core. Pseudo-randomization to 

decrease correlation between sequencing lane and biological variables like sex and gestation 

week were performed. RNA samples were pooled, randomized, and run on 4 lanes. Ribozero, 

ribosome depleted, 50 bp paired-end RNA sequencing was performed with mean sequencing 

depth of 60 million reads on an Illumina HiSeq2500. 

 

Genotyping was performed at the UCLA Neurogenomics Core (UNGC) on either Illumina 

HumanOmni2.5 or HumanOmni2.5Exome platform in 8 batches. SNP genotypes were exported 

into PLINK format. Batches were merged and markers that did not overlap genotyping platforms 

were removed. SNP marker names were converted from Illumina KGP IDs to rsIDs using the 

conversion file provided by Illumina. Quality control was performed in PLINK v1.9 (Chang et al., 

2015). SNPs were filtered based on Hardy-Weinberg equilibrium ( --hwe 1e6), minor allele 

frequency ( --maf 0.01), individual missing genotype rate (--mind 0.10), variant missing 

genotype rate (--geno 0.05) resulting in 1,799,583 variants (Figure S1). 
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RNA-sequencing Data Processing Pipeline 

 

All raw RNAseq fastq files, 4 per sample run on different lanes, were run through FastQC 

(https://www.bioinformatics.babraham.ac.uk/projects/fastqc/). FastQC output was visually 

inspected and sequencing lanes where the “per tile sequence quality” was red were removed, 

there was no sample with more than one sequencing lane removed. Fastq files were aligned to 

the GRCH37.p13 (hg19; Homo_sapiens.GRCh37.75.dna.primary_assembly.fa: 

ftp://ftp.ensembl.org/pub/release-75/fasta/homo_sapiens/dna/) reference genome using STAR 

v2.4 (Dobin et al., 2013). SAM files were sorted, indexed, converted to BAM files and merged 

across lanes from the same sample using Samtools v1.2 (H. Li et al., 2009). Gene 

quantifications were calculated using HTSeq-counts v0.6.0 (Anders et al., 2015) using an exon 

union model on the basis of Gencode v19 comprehensive gene annotations (Harrow et al., 

2012). Quality control metrics were calculated using PicardTools v1.139 

(http://broadinstitute.github.io/picard) and Samtools. A sex incompatibility check was also 

performed using XIST expression and Y chromosome non-pseudoautosomal expression which 

are known to show different patterns of expression in males and females. A scatter plot of XIST 

expression versus the sum of expression of genes in the non-pseudoautosomal region of the Y 

chromosome showed no gender mismatches. (Figure S1)  

 

Sample Swap Identification 

 

QC’d genotypes and sample BAM files were used to identify any sample identity swaps 

between the RNA and DNA experiments using VerifyBamID v1.1.2 (Jun et al., 2012). We 

identified 4 samples where [CHIPMIX] ~ 1 AND [FREEMIX] ~ 0, indicative of unmatching RNA 

and DNA, which were removed in the VCF file. 
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Genotyping Pipeline 

 

PLINK genotype files were converted to vcf files using Plinkseq v0.10 

(https://www.atgu.mgh.harvard.edu/plinkseq). Genotypes were imputed into the 1000 Genomes 

Project phase 3 multi-ethnic reference panel (Genomes Project et al., 2015) by chromosome 

using Beagle v4.1 (Browning & Browning, 2016) and subsequently merged. Multiallelic sites 

were removed using GATK v3.5 (Van der Auwera et al., 2013). Imputed genotypes were filtered 

for Hardy-Weinberg equilibrium p-value < 1 x 10-6 and minor allele frequency (MAF) 5%. 

Imputation quality was assessed filtering variants where allelic R-squared >0.5 and dosage R-

squared >0.5 by GATK, resulting in ~6.6 million autosomal SNPs. We restricted to only 

autosomal due to sex chromosome dosage, as commonly done (Consortium, 2015). 

 

RNA-seq Quality Control and Normalization 

 

Gene counts were compiled from HTSeq Count (Anders et al., 2015) quantifications and imported 

into R version 3.2.1 for downstream analyses. Gene counts were put through quality control, 

removing genes that were not expressed in 80% of samples with 10 counts or more. Expression 

was then corrected for GC content, gene length, and quantile normalized to a standard normal 

distribution, as commonly done in QTL studies (Battle et al., 2015). Sample outliers were removed 

based on standardized sample network connectivity Z scores < 2 (B. Zhang & Horvath, 2005) 

(Figure S2F).  ComBat batch correction was performed (W. E. Johnson et al., 2007). After quality 

control and normalization, there remained 201 samples with 15,930 genes expressed (on the 

basis of Gencode v19 annotations) at sufficient levels. 
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Covariate Selection 

 

To evaluate and remove global effects of gene expression, we used PLINK v1.9 (Chang et al., 

2015) to run multidimensional scaling on the QC’d imputed genotypes and to verify ancestral 

backgrounds of the samples. We aggregated the final 201 samples with HapMap3 (International 

HapMap, 2003) of 1397 samples across 11 populations (87 ASW, 165 CEU, 137 CHB, 109 

CHD, 101 GIH, 113 JPT, 110 LWK, 86 MXL, 184 MKK, TSI 102, YRI 203). A plot of the first two 

MDs components of the merged data shows the genetic ancestry of our samples among a 

diverse reference population (Figure S2H). For eQTL analysis, the top 3 MDS components 

calculated only in the fetal brain samples were used as covariates. 

 

We also looked at the correlation of known measured biological covariates, measured technical 

covariates, as well as RNA quality control metrics from Picard tools (gestation week, RIN, sex, 

purification method, 260:230 ratio, 260:280 ratio, read depth, percent chimeras, 5’ bias, 3’ bias, 

AT dropout) with the top 10 principle components of the expression data and find the top 

principal component corresponds to the age of the sample (gestation week) and the second 

component corresponds to the RNA integrity number (RIN) (Figure S2G). 

 

To measure hidden batch effects and confounders, hidden covariate analysis was performed 

using Hidden Covariates with a Prior (HCP) (Mostafavi et al., 2013). Hidden factors were 

calculated given the known measured factors. HCP was run separately for varying number of 

inferred hidden components: 5, 10, 15, 20, 25, 30.  We included 20 HCPs in our eQTL model 

which we found to maximized eGene discovery along with gestation week, RIN, and sex (Figure 

S3A). We correlated the 20 HCPs along with gestation week, RIN, sex, and top 3 genotype PCs 

(all covariates used in the final model) with the measured factors and Picard metrics, as well as 
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the top 20 PCs of expression to gain insight to meaning of the HCPs. We see each inferred hidden 

component’s relationship to the known variables is complex and distributed across variables. 

 

cis-eQTL mapping 

 

We performed cis-eQTL mapping using FastQTL (Ongen et al., 2016), a defined cis window of 1 

megabase up- and down-stream of the transcription start site for 15,930 expressed genes, and 

correction for the following covariates: gestation week, RIN, sex, 20 HCPs, 3 genotype PCs. 

FastQTL (Ongen et al., 2016) was run in the permutation pass mode (1000 permutations) to 

identify the best nominal associated SNP per phenotype and with a beta approximation to 

model the permutation outcome (Figure S4A) and correct for all SNPs in LD with the top SNP 

per phenotype. Beta approximated permutation p-values were then multiple test corrected using 

the q-value Storey and Tibshirani FDR correction (Storey & Tibshirani, 2003). We define eQTL 

containing genes (eGenes) by having an FDR q-value <=0.05. Secondary, independent eQTLs 

were identified by rerunning permutation tests in FastQTL for every eGene conditioning on the 

primary eSNP. 

 

To look for inflation in a Q-Q plot, we randomly chose 10 genes to run eQTL analysis in trans, 

testing all SNPs genome-wide with association with gene expression using MatrixEQTL 

(Shabalin, 2012). We corrected for the same covariates as in the cis-eQTL analysis. The Q-Q 

plot of the trans-eQTLs shows no inflation, an indication that our eQTL results are not 

confounded by population stratification. (Figure S4B) 

 

EMMAX 
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To further check that our eQTLs are not due to the population differences of our samples, we 

ran cis-eQTL analysis with EMMAX (H. M. Kang et al., 2008), which accounts for population 

structure using a genetic relationship matrix. We used the emmax-kin function (-v -h -s -d 10) to 

create the IBS kinship matrix. EMMAX was run for each gene with a cis-window of +-1MB 

around the TSS, correcting for the same covariates in the FastQTL analysis. Nominal EMMAX 

p-values were corrected for multiple testing using the q-value Storey and Tibshirani FDR 

correction (Storey & Tibshirani, 2003).  

 

To assess overlap between FastQTL and EMMAX, FastQTL was also run in the nominal pass 

mode to obtain nominal p-values for all cis-SNPs tested per gene. FastQTL nominal p-values 

were also corrected for multiple testing using the q-value Storey and Tibshirani FDR correction. 

We discover 920,356 nominal eQTLs at a 5% FDR threshold. To compare nominal results, we 

defined eGenes as a gene containing a significant SNP association at FDR <=0.05. We found 

93.8% of eGenes from the FastQTL analysis was an eGene in the EMMAX analysis. 

Additionally, we compared all SNP-gene pairs tested and found 92.8% of significant SNP-gene 

associations from nominal FastQTL to be significant in the EMMAX analysis (Figure S5E-F). 

 

Meta-Analysis 

 

We split up our sample into six groups based on hierarchical clustering of the top 3 PCs of the 

genotype data. (Supplemental) The size of each group ranged from 12 samples to 47 samples 

and each group corresponded to distinct ancestries based on the MDS plots of samples merged 

with HapMap3. We performed association testing between the top SNP per gene, identified by 

FastQTL permutation pass eQTL analysis, within group using the lm() function in R, correcting 

for gestation week, RIN, age, and 20HCPs. A fixed effect meta-analysis was then run between 
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groups using METAL v3.25.2011 (Willer et al., 2010), which implements a Cochran’s Q test for 

heterogeneity. We find significant heterogeneity at 10% of our eQTLs and find 87% of our 

eQTLs are significant in the meta-analysis at FDR 0.05% (q-value) strongly suggesting our 

results are not due to population stratification (Figure S5B-D). 

 

Intron Cluster Quantifications 

 

We used Leafcutter (Y. I. Li et al., 2018) to leverage information from reads that span introns to 

quantify clusters of variably spliced introns. From the already aligned FASTQ files by STAR, 

output bam files were converted into junction files. Intron clustering was performed using default 

settings of 50 reads per cluster and a maximum intron length of 500kb. Clusters then went 

through quality control consisting of removal of clusters having zero reads in more than 10 

individuals, clusters having more than 20 reads in less than 100 individuals, and introns with 

less than 5 individuals having non-zero counts. The Leafcutter prepare_genotype_table script 

was then used to calculate intron excision ratios and to filter out introns used in less than 40% of 

individuals with almost no variation. Intron excision ratios were then standardized and quantile 

normalized. 

 

sQTL mapping 

 

Standardized and normalized intron excision ratios calculated by leafcutter was used as the 

phenotype for sQTL mapping. FastQTL (Ongen et al., 2016) was used to test for association 

between SNPs within a cis-region of +-100kb of the intron cluster and intron ratios within cluster. 

Hidden covariate analysis was performed using Hidden Covariates with a Prior (HCP) 

(Mostafavi et al., 2013) on intron excision ratios given the same known covariates used for 
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eQTL HCP calculations. We included 5 HCPs in our spliceQTL model which we found to 

maximized intron QTL (Figure S3C) discovery along with gestation week, RIN, and sex. 

FastQTL was run in the permutation pass mode (1000 permutations). Beta approximated 

permutation p-values were then multiple test corrected using the q-value Storey and Tibshirani 

FDR correction. We define sQTL as an intron having an FDR q-value <=0.05, and an sGene as 

a gene containing a significant sQTL at any intron. 

 

ATAC-seq Overlap of eQTLs 

 

Fetal brain ATAC-seq peaks were obtained from (de la Torre-Ubieta et al., 2018). We annotated 

eQTLs as being supported by ATAC if the LD block (r2 >0.8 PLINK) around its eSNP 

overlapped an open chromatin region. To test for significance, we created a null set of eQTLs 

(q-value > 0.2), annotated overlap with ATAC peaks, and then ran a Fisher’s exact test. 

 

Hi-C Overlap of eQTLs 

 

Fetal brain CP and GZ Hi-C topological association domain bed files were obtained from (Won 

et al., 2016). eSNPs located within 10kb of the eGene TSS were removed, as Hi-C cannot 

detect any chromosomal interaction less than 10kb apart. We defined any remaining eQTL as 

overlapping Hi-C if the LD block (r2 >0.8 PLINK)  around its eSNP fell in one 10kb TAD bins and 

the corresponding eGene +-2kb overlapped with the other 10kb TAD bin in either CP or GZ. To 

test for significance, we created a null set of eQTLs (q-value > 0.2), annotated overlap with Hi-

C, and then ran a Fisher’s exact test. 
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Functional enrichment of QTLs in epigenetic marks, transcription factor, and splicing factor 

binding sites. 

 

We performed functional enrichment of both eQTLs and sQTLs using GREGOR (Genomic 

Regulatory Elements and Gwas Overlap algoRithm) (Schmidt et al., 2015) to evaluate 

enrichment of variants in genome wide annotations. We downloaded the 25 state ChromHMM 

model BED files from the Roadmap Epigenetics Project (Ernst & Kellis, 2015; Roadmap 

Epigenomics et al., 2015), generated from a set of 5 core chromatin marks assayed in fetal 

brain. We downloaded consensus transcription factor and DNA-binding protein binding site BED 

files (Arbiza et al., 2013), which called consensus binding sites from multiple cell types from 

Encode CHIP-seq data which was used to computationally annotate all possible genome-wide 

sites for 78 binding proteins. We filtered to 62 binding proteins that showed cortical brain 

expression in BrainSpan (BrainSpan, 2013). Lastly, we obtained human RNA binding protein 

(RBP) binding site BED files from CLIPdb (Y. C. Yang et al., 2015) database of publicly 

available cross-linking immunoprecipitation (CLIP)-seq datasets from 51 RBPs. 

 

GREGOR evaluates the enrichment of QTL variants in these genomic annotations by estimating 

the significance of observed overlap of the eSNP or sSNP relative to the expected overlap using 

a set of matched control variants. GREGOR creates a list of possible causal SNPs by extending 

the list of eSNPs or sSNPs (index SNPs) to all SNPs in high linkage disequilibrium (r2>0.7). A 

set of matched control SNPs (SNPs are selected based on matching the index SNP for number 

of variants in LD, minor allele frequency, and distance to nearest gene/intron) is then created, 

and enrichments are calculated based on the observed and expected overlap within each 

annotation. 
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eQTL sQTL Overlap 

 

We used the Storey’s 𝜋1  statistic described in Nica et al (Nica et al., 2011), to assess the 

proportion of true associations among sQTLs that were also detected by the eQTL analysis and 

eQTLs that were also detected by the sQTL analysis. The overlap was assessed by taking all 

significant SNP-gene associations from the eQTLs and estimating the proportion of true 

associations (𝜋1) on the distribution of corresponding p-values of the overlapping SNP-gene 

pairs in the sQTL data set and vice versa. This is done by first estimating 𝜋0 , the proportion of 

true null associations based on their distribution. Then 𝜋1=1- 𝜋0  estimates the lower bound of 

true positive associations. 

 

Estimation of Variant Effect of eQTL and sQTL 

 

Ensembl’s Variant Effect Predictor (VEP) version 90 (McLaren et al., 2016) was used to 

annotate the effects of variants of significant QTLs on genes, transcripts, protein sequence, and 

regulatory regions. VEP annotations are based off of a wide range of reference data including 

Ensembl database verion 92, GRCH37.p13 genome assembly, Gencode 19 gene annotations, 

RefSeq 2015-01, PolyPhen 2.2.2, SOFT 5.2.2, dbSNP 150, COSMIC 81, ClinVar 2017-06, and 

gnomAD r2.0. 

 

Fetal Cell Type Markers 

 

Cell type enriched genes were obtained from (Polioudakis et al., 2018) single-cell RNA-seq 

dataset of GW17-18 human fetal cortex.  Briefly, Drop-seq was run on single cells isolated from 

human fetal neocortex according to the online Drop-seq protocol v.3.1 
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(http://mccarrolllab.com/download/905/) and the methods published in Macosko et al. (Macosko 

et al., 2015).  The raw Drop-seq data was processed using the Drop-seq tools v1.12 pipeline from 

the McCarroll Laboratory (http://mccarrolllab.com/wp-content/uploads/2016/03/Drop-

seqAlignmentCookbookv1.2Jan2016.pdf). Normalization was performed using Seurat v2.0.1 

(Butler, Hoffman, Smibert, Papalexi, & Satija, 2018). Raw counts were read depth normalized by 

dividing by the total number of UMIs per cell, then multiplying by 10,000, adding a value of 1, and 

log transforming (ln (transcripts-per-10,000 + 1)) using the Seurat function ‘CreateSeuratObject’.  

To identify cell type enriched genes, differential expression analysis was performed for each 

cluster individually versus all other cells in the dataset for genes detected in at least 10% of cells 

in the cluster.  Differential expression analysis was performed using a linear model implemented 

in R as follows: lm(expression ~ number_of_UMI + donor + lab_batch).  P-values were then 

Benjamini-Hochberg corrected (Benjamini & Hochberg, 1995). Genes were considered enriched 

if they were detected in at least 10% of cells in the cluster, >0.2 log2 fold enriched, and Benjamini-

Hochberg corrected p-value < 0.05. Cell type enriched genes were annotated based on the gene 

harboring an eQTL in either the fetal brain dataset or GTEx adult cortex dataset (Consortium et 

al., 2017). 

 

Cross age-tissue comparison 

 

We downloaded GTEx v7 eQTL summary statistics for all 48 tissue types (Consortium et al., 

2017). To compare effect sizes consistently between studies, we calculated effect size by 

running a linear model with scaled log tpm expression values for significant fetal eQTLs and 

calculated the same way for corresponding SNP-gene pairs in the GTEx data to obtain a beta 

value from non-standard normalized expression. Significant fetal eQTLs were identified as fetal 
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specific if the corresponding SNP-gene pair was not found in any GTEx tissue or as shared if it 

was found in at least one GTEx tissue.  

 

Effect size correlations between tissues were calculated by first obtaining all FDR<=0.05 (q-

value) nominal fetal eQTLs. Nominal eQTL analysis was run in FastQTL, using the same input 

for the permutation pass, to obtain all SNP-gene pairs tested. Spearman’s ρ correlations were 

calculated per tissue on the absolute value of the slope from FastQTL output of all FDR<=0.05 

fetal eQTLs and corresponding absolute value of slope from SNP-gene pairs in GTEx nominal 

associations. The absolute value of the slope was used for all correlations to control for strand-

flips. 

 

Additionally, we used Storey’s Qvalue software (Storey & Tibshirani, 2003) to assess overlap 

between fetal brain eQTLs and the eQTLs from the GTEx v7 tissues (Consortium et al., 2017). 

The proportion of true associations(𝜋1) was estimated by looking up significant fetal brain eQTLs 

in each of the GTEx tissues, creating a distribution of corresponding p-values of the overlapping 

SNP-gene pairs used to calculate 𝜋0, the proportion of true null associations based on their 

distribution. Then 𝜋1=1- 𝜋0 estimates the lower bound of true positive associations. We 

performed the reciprocal overlap by looking up GTEx significant eQTLs per tissue in the fetal 

brain dataset (Figure S6) 

 

 

Partitioned Heritability 

 

Partitioned heritability was measured using LD Score Regression v1.0.0  (Finucane et al., 2015)  

to identify enrichment of GWAS summary statistics among functional genomic annotations by 
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accounting for LD, specifically eQTL regulatory regions. The full baseline model of 53 functional 

categories was downloaded from Finucane et al. (https://github.com/bulik/ldsc/wiki/Partitioned-

Heritability). Fetal and Adult specific eQTL annotations were created by taking a 500bp window 

(+-250) around each eSNP and removing any 500bp window that overlapped, resulting in 6163 

fetal specific regions and 5690 adult specific regions. An annotation file was then created by 

marking all HapMap3 (International HapMap, 2003) SNPs that fell within the eQTL annotations. 

LD scores were calculated for the eQTL annotation SNPs using an LD window of 1cM using LD 

reference panel 1000 Genomes European Phase 3 (Genomes Project et al., 2015). This LD 

reference panel was chosen due to the PGC SCZ GWAS (Schizophrenia Working Group of the 

Psychiatric Genomics, 2014) being comprised of mainly European ancestry samples 

(Schizophrenia Working Group of the Psychiatric Genomics, 2014). Baseline LD-scores and 

eQTL LD-scores were simultaneously included in computation of partitioned heritability. 

Enrichment for each annotation was calculated by the proportion of heritability explained by 

each annotation divided by the proportion on SNPs in the genome falling in that annotation 

category. Enrichment p-values were then Bonferroni corrected. 

 

WGCNA 

 

After gene counts were put through quality control removing genes that were not expressed in 

80% of samples with 10 counts or more, expression was conditional quantile normalized, 

adjusting for gene length and GC content. Sample outliers were removed based on standardized 

sample network connectivity Z scores < 2.  ComBat batch correction was performed  (W. E. 

Johnson et al., 2007). Gestation week, RIN, and the top 4 Picard PCs were regressed from the 

expression dataset.  
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Network analysis was performed with robust consensus WGCNA (rWGCNA) (B. Zhang & 

Horvath, 2005) assigning genes to specific modules based on biweight midcorrelations among 

genes. Soft threshold power of 11 was chosen to achieve scale-free topology (r2>0.8) (Figure 

S8A-B). Then, 50 signed co-expression networks were generated on 50 independent bootstraps 

of the samples; each co-expression network uses the same estimated power parameter. The 50 

topological overlap matrices were combined edge-wise by taking the median of each edge across 

all bootstraps. The topological overlap matrices were clustered hierarchically using average 

linkage hierarchical clustering (using `1 – TOM` as a dis-similarity measure). The topological 

overlap dendrogram was used to define modules using minimum module size of 100, deep split 

of 4, merge threshold of 0.2, and negative pamStage. 

 

GO enrichment 

 

GO definitions were downloaded from Ensembl release 86. GO terms with a small (<35) or large 

(>100) number of genes were removed. Logistic regression was performed using the model: is.go 

~ is.module + gene covariates (GC content and gene length) for an indicator-based enrichment, 

and p-values were Bonferroni FDR corrected. The top two significant terms are reported. 

 

Cell Type enrichment 

 

Cell type markers from human and mouse brain were downloaded from (Hawrylycz et al., 2015; 

Lein et al., 2007; Mancarci et al., 2017; Miller et al., 2014; Tasic et al., 2016; Winden et al., 

2009; Y. Zhang et al., 2014; Y. Zhang et al., 2016) as well as the fetal types from (Polioudakis et 

al., 2018). Logistic regression was performed using the model: is.cell type ~ is.module + gene 

covariates (GC content and gene length) for an indicator-based enrichment, and p-values were 

Bonfefrroni FDR corrected. The top two significant cell types are reported. 
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Rare variant enrichment 

 

Genes containing disease associated de novo variants were downloaded from denovo-db for 

Autism Spectrum Disorder, Developmental Disorder, Intellectual Disability, and Schizophrnenia 

(http://denovo-db.gs.washington.edu;(T. N. Turner et al., 2017). Logistic regression was 

performed using the model: is.disease ~ is.module + gene covariates (GC content and gene 

length) for an indicator-based enrichment, and p-values were Bonferroni FDR corrected.  

 

GWAS Module Enrichment 

 

To assess module enrichment of GWAS by gene regulatory regions, we first created a map of 

gene specific regulatory regions. Every eGene was mapped to its eSNP (1st and 2nd if it had 

one) and extended to the LD block (r2 >0.8 PLINK) calculated in our sample. GWAS p-values for 

ASD (Grove et al., 2017) and SCZ (Schizophrenia Working Group of the Psychiatric Genomics, 

2014) were assigned to modules based on overlapping positions with eSNP LD block annotations. 

To assess significance, 1000 permutations were performed for each module, randomly selecting 

the number of annotations corresponding to the number of genes in each module from all eSNP 

LD block annotations (Figure S8E-G). Significance was calculated by the proportion of permuted 

observed p-values at the expected p-value of 0.001 that are larger than the actual module’s 

observed p-value at the expected p-value of 0.001. 

 

TWAS 
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We performed SCZ and intercranial volume TWASs using the FUSION package 

(http://gusevlab.org/projects/fusion/) with gene and splice expression measured in fetal brain 

tissue. To identify genes with evidence of genetic control, we used GCTA (J. Yang, Lee, 

Goddard, & Visscher, 2011)  software to estimate cis-SNP heritability h2
g (+-1MB window around 

gene TSS). We identified 3,784 genes and 5,738 splicing-events with significant cis- h2
g (nominal 

p-value <0.05), which were used to calculate the SNP-based predictive weights per gene/intron.  

 

Using the FUSION package, five-fold cross-validation of five models of expression prediction 

(best cis-eQTL, best linear unbiased predictor, Bayesian sparse linear mixed model (BSLMM) 

(X. Zhou, Carbonetto, & Stephens, 2013), Elastic-net regression, LASSO regression) were 

calculated and evaluated for accuracy. The model with largest cross-validation R2 was chosen 

for downstream association analyses.  

 

TWAS statistics were calculated using fetal weights, as well as published adult expression 

weights (Gusev et al., 2018)calculated from the CommonMind Consortium eQTL dataset 

(Fromer et al., 2016), LD SNP correlations from the 1000 Genomes European Phase 3 

reference panel (as the GWAS used are from European populations) (Genomes Project et al., 

2015), and GWAS summary statistics from PGC2 SCZ GWAS (79,845 individuals) 

(Schizophrenia Working Group of the Psychiatric Genomics, 2014) and CHARGE ENIGMA 

Meta-Analysis ICV GWAS (26,577 individuals) (Adams et al., 2016). TWAS association 

statistics were Bonferroni corrected per GWAS, gene and intron separately.  

 

Overlap of TWAS hits (+-500kb) with GWAS significant loci (LD block reported in paper) was 

assessed for both fetal TWAS hits and CommonMind Consortium adult brain TWAS hits.  Novel 
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regions were identified by genes and introns (+-500k) that did not overlap a GWAS significant 

loci, and then regions were merged if the gene/intron +-500kb overlapped. 

 

FOCUS fine mapping 

 

TWAS association statistics at genomic risk regions tend to be correlated as a function of 

linkage and eQTL overlap between predictive models (Mancuso et al., 2017; Wainberg et al., 

2017). To prioritize candidate susceptibility genes in our TWAS we performed statistical fine-

mapping using FOCUS (Mancuso et al., 2017). FOCUS models the correlation structure 

induced by LD and overlapping eQTL weights across predictive models and computes posterior 

probabilities for a gene/intron to explain all observed TWAS association signal at a region. We 

next computed 90% credible gene-sets by taking genes with largest posterior probability until 

90% density was explained. 

 

Supplemental Information 

 

Figure S1. Related to Figure 1 and Experimental Procedures:  Overview of methods and QC 

pipeline for processing RNA sequencing FASTQ files to gene and intron quantifications and 

genotype imputation, QC, and filtering. Output data from this pipeline was used as inputs for 

further eQTL and sQTL analysis. 

 

Figure S2. Related to Experimental Procedures: Sample demographics and dataset quality 

control. 

(A) Distribution of age (gestation week) of our samples, showing our samples span mid-

gestation. 
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(B) Distribution of RNA integrity number (RIN) among our samples.  

(C) Distribution of sex among our samples. 

(D) RNA sequencing metrics from Picard tools showing the majority of our reads are of high 

quality and correspond to mRNA. 

(E) Relative transcript coverage across the body of a gene, showing good coverage along the 

entire gene body, representative of using a ribo-zero library preparation. 

(F) Sample outlier detection determined from WGCNA’s network connectivity Z-score. Samples 

with a Z-score of greater than 2 or less than -2 are removed.  

(G) Correlation of the top 10 expression principle components (PCs) with gestation week, RIN, 

sex, Picard tool metrics: read depth, % chimeras, 5’ bias, 3’ bias, AT dropout, and technical 

measurements: purification method and purity assessments 260:230 and 260:280. Gestation 

Week and RIN show high correlations with the top 2 PCs.  

(H) MDS plot of genotypes from our fetal brain samples merged with the HapMap3 samples 

from 11 populations, shows the diversity across the fetal samples. 

 

 

Figure S3 Related to Experimental Procedures: Identification of optimal number of HCP 

selection and correlations of all covariates in final cis-eQTL analysis. 

(A) The number of hidden covariates (HCP) was chosen to maximize cis-eGene discovery. Cis-

eQTL analysis was performed correcting for gestation week, RIN, sex, the top 3 genotype PCs 

and then increments of 5 HCPs using FastQTLs permutation scheme. The number of HCPs 

included in the eQTL analysis is shown on the X axis with the number of significant eGenes is 

shown on the Y axis. The number of eGenes was determined by FDR q-value <=0.05. Based on 

these results, 20 HCPs were selected for the final eQTL analysis. 

(B) Pearson correlation (r) between all covariates used in the final eQTL analysis.  
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(C) The number of HCPs chosen to maximize sQTL discovery. sQTL analysis was performed 

correcting for gestation week, RIN, sex, the top 3 genotype PCs and then increments of 5 HCPs 

using FastQTLs permutation scheme. The number of HCPs included in the sQTL analysis is 

shown on the X axis with the number of significant sQTLs is shown on the Y axis. The number 

of sQTLs (top SNP per intron) was determined by FDR q-value <=0.05. Based on these results, 

5 HCPs were selected for the final sQTL analysis. 

(D) Pearson correlation (r) between all covariates used in the final sQTL analysis. 

 

Figure S4 Related to Experimental Procedures: FastQTL QC. 

(A) FastQTL implements a beta approximation for permutation p-values. Empirical p-values are 

on the X axis with beta approximated p-values are on the Y axis. This shows the beta 

approximated p-values are well calibrated given the empirical p-values. 

(B) QQ plot for trans-eQTL analysis that was run for 10 randomly chosen genes, expected p-

values on the X axis and observed p-values on the Y axis, indicating there is no systematic 

inflation. 

 

Figure S5 Related to Experimental Procedures: Ancestry correction. 

(A) MDS plot of genotypes from just fetal brain samples colored by group assignments from (B). 

(B) Sample clustering based on hierarchical clustering of the top 3 genotype PCs groups fetal 

brain samples into 6 subpopulation groups. 

(C) Meta-Analysis of eQTLs (top SNP per gene) performed across the 6 subpopulation groups 

finds 86% of eQTLs significant. 

(D) 94% of eGenes in FastQTLs nominal pass overlap significant eGenes from EMMAX. 

(E) 93% of significant (FDR <=0.05) SNP-gene pairs from the nominal FastQTL pass overlap 

with significant SNP-gene pairs from the EMMAX eQTL analysis. 
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Figure S6 Related to Figure 2F and Figure 3C: Full ChromHmm Model 

(A-B) Enrichments of eQTLs and sQTLs in the full ChromHmm model of 25 states. Fold 

enrichment of e/sSNPs by their distribution within specific fetal brain chromatin states, which are 

depicted on the Y axis (ChromHMM annotations; Methods) 

 

Figure S7 Related to Figure 4: P-Value based tissue overlap are a function of sample size. 

(A) Pi1 values (proportion of true positive p-values) for significant fetal brain eQTLs in GTEx 

tissues, colored by sample size (N) of GTEx tissue dataset. 

(B) Pi1 values (proportion of true positive p-values) for significant GTEx eQTLs per tissue in the 

fetal brain eQTLs, colored by sample size (N) of GTEx tissue dataset. 

 

Figure S8 Related to Figure 5: WGCNA 

(A-B) Soft threshold power of 11 was chosen based on scale free topology plateauing at a soft 

threshold power of 11, as well as mean connectivity.  

(C-D) Preservation median rand and Z summary of fetal brain modules in the (Parikshak et al., 

2013) network. 

(E-G) Per module QQ plot of GWAS SNP p-values (SCZ GWAS for blue and red module, ASD 

GWAS for yellow module) in regulatory regions defined by eQTLs, with 1000 permutations in 

grey. Expected p-values shown on the X axis and observed p-values shown on the Y axis. 
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Figure 2 
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Figure 3 
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Figure 4 
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Figure 5 
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Figure 6 
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Figure 7 
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Supplemental Figure 1 
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Supplemental Figure 2 
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Supplemental Figure 3 
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Supplemental Figure 4 
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Supplemental Figure 5 
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Supplemental Figure 6 
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Supplemental Figure 7 
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Supplemental Figure 8 
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