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ABSTRACT 

One of the key challenges in cancer precision medicine is finding robust biomarkers of drug               

response. Patient-derived tumor xenografts (PDXs) have emerged as reliable preclinical models           

since they better recapitulate tumor response to chemo- and targeted therapies. However, the lack              

of standard tools poses a challenge in the analysis of PDXs with molecular and pharmacological               

profiles. Efficient storage, access and analysis is key to the realization of the full potential of PDX                 

pharmacogenomic data. We have developed Xeva (XEnograft Visualization & Analysis), an           

open-source software package for processing, visualization and integrative analysis of a           

compendium of in vivo pharmacogenomic datasets. The Xeva package follows the PDX minimum             

information (PDX-MI) standards and can handle both replicate-based and 1x1x1 experimental           

designs. We used Xeva to characterize the variability of gene expression and pathway activity              

across passages. We found that only a few genes and pathways have passage specific alterations               

(median intraclass correlation of 0.53 for genes and positive enrichment score for 92.5% pathways).              

For example, activity of the mRNA 3'-end processing and elongation arrest and recovery pathways              

were strongly affected by model passaging (gene set enrichment analysis false discovery rate [FDR]              

<5%). We then leveraged our platform to link the drug response and the pathways whose activity is                 

consistent across passages by mining the Novartis PDX Encyclopedia (PDXE) data containing 1,075             

PDXs spanning 5 tissue types and 62 anticancer drugs. We identified 87 pathways significantly              

associated with response to 51 drugs (FDR < 5%), including associations such as erlotinib response              

and signaling by EGFR in cancer pathways and MAP kinase activation in TLR cascade and               

binimetinib response. Among the significant pathway-drug associations, we found novel biomarkers           

based on gene expressions, Copy Number Aberrations (CNAs) and mutations predictive of drug             

response (concordance index > 0.60; FDR < 0.05). Xeva provides a flexible platform for integrative              

analysis of preclinical in vivo pharmacogenomics data to identify biomarkers predictive of drug             

response, a major step toward precision oncology. 
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INTRODUCTION 

Preclinical models are vital for investigating disease biology and therapeutics, constituting           

essential tools for translational research and drug development. In cancer research,           

immortalized cell lines are the most used preclinical models because of their low cost, flexibility               

and the existence of assays enabling genetic and chemical screen in a high-throughput manner.              

These in vitro pharmacogenomic studies led to the discovery of many clinically-approved            

biomarkers for anticancer therapies 1. Recent large-scale in vitro drug screening datasets 2–4,             

coupled with rigorous computational analysis pipelines 5–11 hold the promise to find new drug              

response biomarkers. However, the cell line models suffer from multiple limitations. Although            

they are derived from patient tumors, they have evolved to survive in artificial culture conditions               

resulting in major alterations at the genomic level 12–17. These in vitro models also lack the tumor                 

heterogeneity and three-dimensional structure of the origin patient tumor 15,18–20. 

To create cancer models that better recapitulate the tumor molecular features and drug             

response, the pharmaceutical industry and academia massively invested in the development of            

patient-derived xenografts (PDXs) 21, which enable engraftment of human tumors in animal            

models 22–28. PDXs are created by subcutaneous or orthotopic engraftment of the cancerous             

tissues or cells from patients’ tumors into immunodeficient mice. Once established, these            

tumors can be passed from mouse to mouse, leading to consecutive “passages” of the initial               

tumor cells.  

PDX models are being generated and distributed by several academic groups, research            

institutes and commercial organizations. This makes it challenging to find PDX models with             

specific characteristics such as a model with a specific mutation. Therefore, catalogues of PDX              

models (e.g. PDXFinder 29, EurOPDX 30 and PRoXe 31) are being developed which contain              

relevant information and provide links to model acquisition. Furthermore, as PDXs are becoming             
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the gold standard model for preclinical studies, better data standardization and analysis            

platforms are required to ensure consistency and reproducibility in PDX-based analysis.           

Recently, a robust standard called PDX models minimal information (PDX-MI) has been            

proposed 32 for reporting and quality assurance for PDX models. However, management,            

analysis and visualization of the PDX-based drug screening and genomic data still constitute             

major challenges.  

Here we present Xeva (Xenograft Visualization and Analysis), a computational package           

enabling storage, access and analysis of in vivo pharmacogenomics data. The Xeva toolbox             

facilitates biomarker discovery in PDX-based pharmacogenomic data. It implements class          

structure to manage and connect PDX-based drug screening data to the genomic features of              

the corresponding tumor. It provides functions for PDX data analysis, including multiple metrics             

to summarize drug response for tumor growth curves. Xeva provides functions to compute the              

association between genomic features and response to a drug in PDXs (gene-drug association).             

Different response metrics for the PDX growth curve can be used as outcome to identify novel                

gene-drug associations that can act as drug companion tests. Using the Xeva platform, we              

analyzed gene expression of PDXs across passages and demonstrated that activity patterns of             

the majority of the genes and pathways are stable across different PDX passages. Our analysis               

shows that PDXs maintain the vast majority of the pathway activity across passages. We              

identified multiple pathways significantly associated with anticancer drug response, including          

known and new biomarkers based on gene expression, copy number aberrations (CNAs) and             

mutations. Our results support the value of large-scale PDX-based drug screening for biomarker             

discovery using the integrative pharmacogenomic analysis pipelines implemented in the Xeva           

computational platform. 
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MATERIALS AND METHODS 

Processing of Pharmacogenomic Data 

Gene expression data, PDX passages and tissue information were obtained from the Gene             

Expression Omnibus series GSE78806. Gene expression profiles were normalized with the           

RMA algorithm in the Affy package (version 1.58.0) in Bioconductor 33. PDX passages and              

tissue information were curated manually. Molecular profiles including mutation, CNA, gene           

expression and pharmacological profiles were obtained from the publication Gao et al. 28. Data              

were processed using R statistical software (http://www.r-project.org/). The final dataset          

contains 3,470 unique PDX models tested across 57 treatments and derived from 191 patients              

spanning across 5 different cancer types.  

 

Implementation 

PDX pharmacogenomic experiments aim to investigate how tumor volume changes in in vivo             

models with respect to time, with and without drug treatment. The corresponding metadata,             

such as drug dose, number of days from tumor implantation to treatment start or reason for                

stopping the experiment (e.g. whether mice died because of complications or were sacrificed             

due to maximal allowed tumor volume reached), are crucial factors for downstream analysis. In              

the Xeva platform, we have developed the XevaSet class to effectively store pharmacological             

response (time vs. tumor volume) of PDXs along with metadata related to the experiments and               

molecular data. Furthermore, to store individual PDX (mouse) model data, we have            

implemented the pdxModel class, which provides slots for PDX-MI variables, along with time vs.              

tumor volume data. Detailed schematics of the XevaSet and pdxModel classes are shown in              

Supplementary Figure S2 and S3, respectively. XevaSet object can contain multimodal genomic            

data, which are linked to individual xenograft models and their pharmacological profiles. Data             
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can be subsetted by metadata and experimental factors, such as tumor types or drug names. 

 

PDX Experiment Design 

In vivo evaluation of drug sensitivity in cancer xenografts has traditionally used experimental             

approaches incorporating multiple animals (five to ten) replicates for each control and treatment             

arm. This experimental design allows the assessment of the variability in the PDX drug              

response across individual animals 34. However, scaling this strategy for high-throughput drug            

screening is costly and requires the use of a large number of experimental animals. To increase                

the number of compounds being tested, reduce cost and permit the use of fewer animals to                

provide essential data 35, a simpler “1x1x1” experimental design for PDX clinical trial (PCT) has               

been proposed 28,36. In this design, each compound is tested in only one PDX model from each                 

patient (Supplementary Figure S9). Though the 1x1x1 experiment design allows          

high-throughput screening at reduced cost, it is more prone to experimental errors due to lack of                

replications. Factors such as difference in the handling of mice or measurement errors in the               

tumor volume and biological variability in tumor growth rates between animals could significantly             

impact the results. We foresee that both experimental design strategies will co-exist, where the              

1x1x1 experiment design will be used for population-level and high-throughput screening, while            

the replicate-based experiment design will be used for more focused studies where            

discrimination of small differences in drug response is a desired outcome. We therefore             

implemented functions to accommodate both experimental designs for data visualization and           

statistical analyses. 

 

PDX Response Metrics  

Given the lack of consensus regarding the best summary metrics to estimate in vivo drug               
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response 28,37–40, we implemented the state-of-the-art response metrics used for PDX-based           

drug response experiments. These include the slope of curves, angle between the mean control              

and treatment curves, tumor growth inhibition (TGI), area between the curves, linear mixed             

model 39, best average response (BAR), best response (BR) and mRECIST 28. 

For each PDX model, least squares fits were obtained by regressing tumor volume at              

each time point as:  

V = α + βT 

where V denotes tumor volume, T denotes time. The intercept and slope are denoted by α and                 

β, respectively. Subsequently, the angle was computed using inverse tangent of regression line             

slope as: 

angle = tan -1(β) 

The tumor growth inhibition (TGI) is defined as: 

TGI = (VC - VT)/(VC0 - VT0) 

where VC and VT are the median of control and treated growth curve respectively at the end of                  

the study. VC0 and VT0 indicate the initial tumor volume for control and treated growth curve                

respectively. 

The best average response (BAR) metric for each PDX model is defined as follows: 

At each time point t, the normalized change in tumor volume is computed as 

V  Δ t =  V 0

(V − V )t 0  

Next, for each time t, the running average of from t=0 to t, was calculated. BAR is defined         VΔ t           

as the minimum of this running average (at ). The minimum value of (at        0 dayst ≥ 1      VΔ  

) defines as best response (BR). Using these, the mRESIST metric for PDX is0 dayst ≥ 1               

computed as: 

● complete response (CR) : BR < -95% and BAR < -40% 
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● partial response (PR) : BR < -50% and BAR < -20%  

● stable disease (SD) : BR < 35% and BAR < 30% 

● progressive disease (PD) : not otherwise categorized 

 

Visualization of In Vivo  drug Screening Data 

Several Xeva functions enable multi-faceted visualization and exploration of the PDX data. The             

plotPDX function displays tumor growth curves, plotting time versus tumor volume data for a              

patient-drug pair or matched control and treatment PDX models (called batch). The waterfall             

function visualizes population-level response for a given set of PDXs. Similarly, plotmRECIST            

displays mRECIST-based drug response as a heatmap, with drugs along heatmap rows and             

PDXs along columns. Heatmap cells are colored according to the mRECIST value for the              

corresponding PDX-drug pair. 

 

Gene Expression Consistency Analysis 

We calculated the Pearson correlation coefficient between pairs of samples belonging to the             

same lineage using the L1000 landmark gene set 41. For comparison, we also computed the               

Pearson correlation coefficient between all possible pairs of samples that do not belong to the               

same lineage. For genes, we computed the intra-class correlation coefficient (ICC) using the             

psych package (version 1.8.4). For a particular gene, in each sample we computed its rank by                

sorting the expression values. The rank of genes along with passage information is used for ICC                

calculation. ICC values of the genes were used to perform gene set enrichment analysis on the                

MSigDB hallmark gene sets 42 and Reactome pathway database 43, which contains gene sets              

associated with specific pathways.  
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Pathways and Gene-Drug Association Analysis 

We computed the association between a molecular feature and response to a drug             

across PDXs (commonly referred to as gene-drug association or drug response predicting            

biomarker). The gene-drug association was assessed separately for all three available           

molecular features, i.e. gene expression, CNA and gene mutation. The response of PDXs to a               

drug treatment is defined using best average response (BAR). 

The association between genomic feature and PDX response was computed using           

non-parametric measure of association, concordance index (CI) 44 and its equivalent Somers’            

Dxy rank correlation (DXY) 45. The CI represents the probability that two variables will rank a                

random pair of samples the same order. The DXY is equivalent to rescaling the CI values                

between -1 and 1 using (CI - 0.5) * 2 . 

For each drug, we compiled a list of potential biomarkers using OncoKB 46 and literature               

curation. We adjusted the p-value using FDR for drug combinations and drugs with multiple              

potential biomarkers. Univariate gene-drug associations were calculated for three different          

molecular profiling modalities that are gene expression, copy number variation and mutation.            

For drug-pathway association analysis, the Reactome pathway database 43 was used. We            

created a subset of the pathway database by selecting only the gene-sets containing at least               

one potential drug target and containing less than 300 genes. We also grouped the drugs in                

different classes according to their genomic target. In total we selected 94 pathways related to               

57 drugs and drugs were classified into 11 classes. Pathway analysis was performed using the               

R Piano package (version 1.20.1) 47. Circos plot was used to visualize the drug-pathway              

association 48. 
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Research Reproducibility 

The source code of the Xeva package is open source under licence GPLv3 and              

available from GitHub (https://github.com/bhklab/Xeva ). A complete software environment        

containing necessary data and code to reproduce the analysis and figures described in the              

manuscript is available at Code Ocean .  

 

RESULTS 

Xeva Follows PDX-MI Standards To Store Pharmacogenomic Data 

We designed XevaSet, a new object class enabling integration of molecular and            

pharmacological profiles of PDXs (Supplementary Figure S1 and S2) following the recent            

Minimal Information for Patient-Derived Tumor Xenograft Models (PDX-MI) standard for          

reporting on the generation, quality assurance, and use of PDX models 32. The PDX-MI              

standard ensures that all necessary clinical attributes of the tumor along with PDX-related             

essential experimental information, such as host mouse strain and passage information, is            

reported. Given that this information is crucial for downstream analysis and research            

reproducibility, we have implemented the pdxModel class (Supplementary Figure S2) which           

provides slots for PDX-MI variables. In this study, we curated the recent Novartis PDX              

Encyclopedia (PDXE) 28 and created the PDXE XevaSet object (Figure 1) to investigate the              

consistency of gene expression patterns across passages and mine the pharmacogenomic data            

for known and new biomarkers predictive of drug response in vivo.  

Xeva provides useful functions for analysis and visualization of PDX-based          

pharmacogenomic data. For every PDX model in the PDXE breast cancer dataset, mRECIST             

based response metrics was computed using the Xeva function response (Figure 1c).            

Heatmaps representing the mRECIST data cutaneous melanoma, colorectal cancer, gastric          
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cancer, non-small-cell lung carcinoma (NSCLC) and pancreatic ductal adenocarcinoma can be           

found in Supplementary Figures S4 to S8, respectively. Visualization of PDX growth curves is              

an essential part of data quality control and analysis. Tumor growth curves for individual PDX               

models and for matched control-treatment models can be plotted using the plotPDX function.             

Examples of PDX tumor growth curves in control (untreated) and treatment (paclitaxel)            

conditions are shown in Figure 1d-g. All 4,483 tumor growth curves with matched control can be                

found in Supplementary Data File 1. PDX-related genomic data and linked drug screening             

response data can be extracted using the function summarizeMolecularProfiles. Similarly, the           

drugSensitivitySig function allows users to quantify the strength of each gene-drug association            

using a regression model. 

 

Gene Expression is Consistent Across Passages 

PDX models are known to better represent the molecular characters of human tumor             

compared to simpler in vitro models 24,49–52. PDXs show high similarity to patient samples for               

mutation rate 28,53 and CNA 24 and methylation 54 patterns, histological and molecular subtypes              

24,50,55. Before conducting drug screening, PDXs are passaged multiple times with the            

assumption that genomic characteristics of PDXs are stable across passages. Several studies            

have shown that mutation and copy number patterns are largely stable across passages             

25,50,56–60. However, a meta-analysis using inferred copy number data asserted that the genomic             

landscape of PDXs changes rapidly during passaging 61. Given these contradictory results, it is              

vital to perform systematic analysis of non-inferred genomic data (i.e., gene expression profile)             

across passage 61. 

To address these concerns we sought to systematically analyze the changes in gene             

expression pattern across passages. We curated gene expression data for 661 PDX samples,             

11 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted November 16, 2018. ; https://doi.org/10.1101/471227doi: bioRxiv preprint 

https://paperpile.com/c/5SjRjb/GUJbl+H9p5S+cHnBm+701tQ+WtdWK
https://paperpile.com/c/5SjRjb/sKDbr+d3DbZ
https://paperpile.com/c/5SjRjb/H9p5S
https://paperpile.com/c/5SjRjb/qyQLK
https://paperpile.com/c/5SjRjb/H9p5S+cHnBm+6UjJ5
https://paperpile.com/c/5SjRjb/62Wx1+cHnBm+kUUJS+CENkj+HVAw8+AetmF+RBSE3
https://paperpile.com/c/5SjRjb/2JmRX
https://paperpile.com/c/5SjRjb/2JmRX
https://doi.org/10.1101/471227


derived from 371 patients and spanning from passage 0 (P0) to passage 5 (P5) (Figure 2a and                 

supplementary Table S1). To visualize the consistency of gene expression patterns across            

passages, we performed a t-distributed stochastic neighbor embedding (t-SNE) analysis and           

projected the high dimensional PDX gene expression data into a two dimensional plot (Figure              

2b). PDXs derived from a patient but belonging to different passages (defined as belonging to               

same lineage) were linked together in the t-SNE visualization. We observed that in the              

visualization PDXs from the same lineage are projected nearby even though coming from             

different passages. Next we computed the Pearson correlation coefficient for all pairs of PDX              

samples belonging to same lineage (Figure 2c). We found that the median Pearson correlation              

for related pairs is high (0.97) in comparison to non-related tissue specific PDX pairs (0.80) and                

the difference was statistically significant (p<0.0001). Collectively, these results strongly support           

that the gene expression profile of PDXs is consistent across different passages. For specific              

genes, however, the expression behaviour can vary across PDX passages, which may affect             

drug response depending on which passage is used for drug testing. We therefore assessed              

stability of each gene across passages by computing the intra-class correlation coefficient (ICC)             

for genes in samples from same PDX lineage for all tissue types and stratified by tissue type                 

(Fig. 3). We found that the ICC values of genes in pairs of related PDXs are higher when                  

compared to non-related pairs (Wilcoxon rank sum test p-value < 1E-15). Furthermore, the ICC              

values of genes are skewed towards high values indicating that the majority of genes have a                

stable expression pattern across PDX passages. Our results show that expression patterns of             

known biomarker genes such as EGFR , ERBB2 and MAP2K1 are stable across passage (Table              

1 and Supplementary Data File 2). Consistent with Rubio-Viqueira et al. 52 we found that               

expression of genes such as VEGFA, MDM2  and CDK4 is stable in pancreatic cancer PDXs. 

To identify pathways that are enriched with unstable genes, we performed a gene set              
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enrichment analysis with the genome-wide ranking of genes based on their stability across             

passages (ICC values; Figure 4 and Supplementary File 3). We found that post-transcriptional             

mRNA processing pathways such as mRNA 3′end processing and mRNA splicing are enriched             

with unstable genes. It is well established that during proliferation and differentiation, cells adjust              

the mRNA and protein level by controlling the post-transcriptional mRNA processing pathways            

62–64. Therefore the instability of these post-transcriptional mRNA processing pathways might be            

attributed to the tumor growth in the PDX. Targeting these pathways using a drug in PDXs might                 

result in inconsistent response at different passages.  

 

In Vivo  Biomarker Discovery 

One of the main goals of pharmacogenomic studies is to find genomic biomarkers for              

drug response prediction. We evaluated the association between a molecular feature and            

response to a given drug (gene-drug association) in PDXE 28 data. The PDXE data consists of a                 

1x1x1 experimental design where 60 compounds were tested across 277 PDXs. To model the              

tumor growth curve and to quantify the response of PDXs, we implemented several functions in               

Xeva. The Xeva function plotPDX provides an interface for the visualization of time versus              

tumor volume data of PDXs. Functions to compute drug response statistics include slope, area              

between curves, linear mixed effects model 39, best average response and mRECIST 28 . 

We employed Xeva to identify biomarkers for drug response prediction by computing            

gene-drug associations for drugs in the PDXE data and their corresponding known biomarker             

genes defined using OncoKB resource 46. For the analysis, a PDX’s response to a drug is                

defined using best average response (BAR) and association was computed using concordance            

index. Analysis was done for each tissue type with gene expression, CNA and mutation data. In                

vitro drug testing has shown that the drug encorafenib can produce synergistic effects with              
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binimetinib in cutaneous melanoma (CM) 28,65. This drug combination also shows synergistic            

effects in PDXs as 50% of tested PDXs show tumor shrinkage (Figure 5), while binimetinib and                

encorafenib monotherapy show tumor shrinkage in 40% and 25% of PDXs, respectively. For the              

drug combination of encorafenib and binimetinib, we found that NRAS mutation status is             

significantly associated with response (p-value=2.2E-05, Figure 5). Among PDXs with NRAS           

wild type status, 63.6% show a negative best average response to the binimetinib and              

encorafenib drug combination, while in the mutated category only 20% show a response. 

The drug trastuzumab (Herceptin) is a monoclonal antibody that targets the extracellular            

domain of the human epidermal growth factor receptor 2 protein (HER2) and inhibits the              

proliferation of tumour cells. In the breast cancer PDX data, we found that expression of the                

HER2 encoding gene (ERBB2) is significantly associated with trastuzumab response (CI=0.365;           

FDR=0.02, Figure 6). ERBB3, another member of the epidermal growth factor receptor            

(EGFR/ERBB) family, was also found to be associated with trastuzumab response (CI=0.36;            

FDR=0.026). ERBB3 is known to be implicated in growth, proliferation, metastasis and drug             

resistance in tumors through interacting with ERBB2 66,67.  

The drug binimetinib is a targeted and potent mitogen-activated protein kinase kinase            

(MAP2K or MEK) inhibitor 68. In breast cancer PDXs, expression of MAP2K2 (CI=0.35;             

FDR=0.02, Figure-6) was significantly associated with binimetinib response. This gene belongs           

to the MAP2K kinase family and produces a protein which activates the MAPK/ERK pathway.              

Associations between potential biomarkers and PDX drug response for all tissue types can be              

found in the Supplementary Data File 4. 

To gain understanding of the association between drug response and target pathway,            

we performed gene set enrichment analysis (Figure 7). Drugs were classified into 11 classes              

according to their known targets and the Reactome pathway database was used for gene set               
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enrichment analysis. We found that EGFR signaling in cancer pathway is significantly enriched             

(FDR<0.05) in the EGFR class of drugs. Similarly, for MAPK class drugs, relevant pathways              

such as MAPK activation in TLR (Toll-Like Receptor) cascade and NFκB and MAPK activation              

by TLR are significantly enriched (FDR<0.05). Associations between each drug and reactome            

pathways can be found in Supplementary Data File 5. 

 

DISCUSSION 

Patient-derived xenografts are valuable models for cancer modeling and         

pharmacogenomic analysis. However, the translational potential of PDX preclinical models is           

highly dependent on the tools and techniques to processing and analyzing the data.             

Computational tools that enable standardized processing are thus an integral part of this line of               

research, and harmonized approaches can provide the community with accessible means for            

the analysis. The Xeva platform allows researchers to visualize and analyze the complex             

pharmacogenomic data generated during in vivo drug screening studies. The key strengths of             

the Xeva platform is its ability to store all metadata from a PDX experiment, link genomic data to                  

corresponding PDX models and provide user friendly functions for analysis.  

In a recent study, Ben-David et. al. 61 analyzed changes in CNAs during PDX passaging               

using experimental and computational inferred copy number alterations (CNAs) from gene           

expression profiles. They concluded that the CNA landscape of PDXs changes rapidly with             

passage as within four passages 12.3% (median) of the genome was affected by             

model-acquired CNAs. While such an analysis is an important component of credentialing PDX             

as a pre-clinical platform, their analysis depended largely on inference rather than direct             

measurement of CNAs: for 84% (933 out of 1110) of PDX samples the copy number alterations                

were inferred from microarray-based gene expression data and lack matched normal tissue            
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samples. As the authors stated, virtual karyotyping does not fully recapitulate the CNA observed              

from SNP microarrays or whole-exome sequencing. For the samples where DNA-based CNA            

profiles are available, the authors have reported a concordance of 0.82 between experimental             

(DNA based) and expression-based inferred CNA profile. However, directly assessing the gene            

expression pattern can provide better insight about changes in genomic landscape of PDXs             

across passages than the CNA profile. In this study, using Xeva, we have assessed the gene                

expression landscape of PDXs. Our results indicate that the gene expression landscape of             

PDXs is similar across different passages as the correlation between the related PDXs is very               

high. At the level of individual genes, we observe high consistency in expression patterns for the                

majority of genes. However caution is required when analyzing genes with low stability in PDX               

models. Lack of stability in gene expression may lead to inconsistent results when targeting              

proteins or pathways related to genes with low expression stability. We have provided a list of                

genes and their stability score which will help researchers to assess the consistency in              

expression patterns of genes of interest and thereby deciding if PDXs are suitable models for               

their (targeted) drug of interest or to study behaviour of a particular gene. 

In our study, we found that the multiple known biomarkers predictive of drug response              

can be identified in the large Novartis PDXE dataset. Notably, the dataset used in this study has                 

the 1x1x1 PDX experiment design (Supplementary Figure S9). Thus our results demonstrate            

that the 1x1x1 PDX experiment design is an adequate way to discover drug response predicting               

biomarkers at the population level. While the 1x1x1 experiment design is a cost- and              

animal-resource efficient way to find biomarkers, using Xeva, we have found cases where             

control (untreated) mice show a partial response (PR) or tumor shrinkage. Possible causes of              

such early tumor shrinkage might include experimental error, handling glitches or genetic            

properties of the tumor. In a 1x1x1 experiment design, lack of replicates makes it impossible to                
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decipher the exact cause. Visualization and analysis of PDX response data using Xeva provides              

an efficient way to recognize such cases.  

For biomarker discovery analysis, treatment response in PDXs is defined by the best             

average response (BAR) 28. This metric of treatment response provides a continuous value,             

however it does not take into account the control arm of the PDX experiment. As PDX-based                

pharmacogenomics gains popularity, standardized metrics to define response are required,          

thereby taking into account the control arm of the PDX experiments. Such methods will also               

improve the biomarker discovery process. Xeva provides a standard tool for comparison of             

different PDX response metrics.  

The Xeva package enables easy and efficient analysis of the PDX-based           

pharmacogenomic data. Xeva includes functions to link molecular features to drug response,            

therefore providing a unified framework for analysis and development of biomarkers of drug             

response. 

 

CONCLUSION 

We developed the Xeva package to facilitate visualization, analysis and biomarker           

discovery in PDX pharmacogenomic data. We showed that PDX gene expression is consistent             

across passages. Our platform allowed us to confirm the existence of several drug response              

prediction biomarkers in a large PDX pharmacogenomic dataset. The reproducibility of known            

biomarkers and consistency in gene expression shows that PDX experiments are suitable for in              

vivo biomarker discovery or validation. Xeva is an open-source, flexible and timely tool in an era                

of increasing efforts to use PDXs as the main model system for cancer research. We envision                

Xeva will play a crucial role in PDX-based pharmacogenomic analysis, biomarker discovery and             

validation. 
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TABLES 

 
Table 1 : Consistency of expression pattern of biomarkers across PDX passages. ICC values              

for biomarkers of FDA-approved anticancer agents in a complete dataset (all tissue) and             

stratified by tissue type. A higher ICC value indicates that expression pattern for the gene is                

consistent across passages. Biomarkers with ICC > 0.5 are considered preserved across            

passages and are highlighted in blue, or red otherwise. 
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FIGURES 
 
Figure 1: Xeva facilitates analysis of the PDX-based pharmacogenomic data. (a) Number of             

unique patients in different PDX based pharmacogenomic data-sets. PDXE refers to Gao et. al.,              

2015 data and GSE identifiers are from NCBI Gene Expression Omnibus (GEO) database. (b)              

Distribution of genomic, drug screening, passage related data and cancer types in PDXE             

data-set. For 350 patients belonging to 6 different cancer types, availability of genomic data              

(CNA, mutation and RNAseq) is shown in inner tracks. Number of drugs also includes              

untreated/control PDXs. Availability of passage specific gene expression data is shown in outer             

track. (c ) Computation and visualization of response for PDX based drug screening in PDXE              

breast cancer data using Xeva mRECIST function. CR: complete response; PR: partial            

response; SD: stable disease; PD: progressive disease. Figure (d), (e ), (f ) and (g) shows control               

and treatment (paclitaxel) growth curve of PDXs for patient id X-2344, X-1004, X-3078 and              

X-5975, respectively. Visualization is done using plotPDX function in Xeva. 

 

Figure 2: Gene expression landscape of PDXs is consistent across passages. (a) Distribution of              

samples in different passages. (b) TSNE analysis of gene expression data from different             

passages of the PDXs. Samples belonging to same lineage but belonging to different passages              

are linked together by line. (c) Pearson correlation for related sample pairs (belonging to same               

lineage) and randomly selected samples pairs. The correlation coefficient of related pairs is             

significantly higher then randomly selected pairs (p<0.001). 

 

Figure 3: PDX maintains expression pattern of the genes across passages. Violin plot shows              

intraclass correlation (ICC) for genes across PDX passages for all samples and stratified by              

tissue type. Violin plot in black color represents ICC values for genes calculated using              

non-passage related (randomly selected) samples. 

 

Figure 4: Pathways are stable across passages in PDXs. Barplot show top ten pathways with               

negative enrichment score in gene set enrichment analysis. Only one pathway has a statistically              

significant (FDR<0.05) negative enrichment score across PDX passages. 

 

Figure 5: Xeva facilitates biomarker discovery and visualization. Waterfall plots show response            

of cutaneous melanoma PDXs for drug (a) Binimetinib (b) Encorafenib and (c)            
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Binimetinib+Encorafenib. Each bar represent one PDX derived from a patient and color            

represent NRAS mutation status (red mutated and blue wild type). Response of the PDX is               

defined as best average response. 

 

Figure 6: PDXs faithfully recapitulate known gene-drug associations. The left side of the figure              

shows mutation (top), CNA (middle) and expression (bottom) pattern of know biomarker genes.             

The right panel shows association (concordance index) between genomic features and           

response of the drug. For drugs the corresponding biomarker is highlighted using dark gray              

color if the association is statistically significant (FDR < 0.05). 

 

Figure 7: Pathways targeted by drugs are significantly enriched in PDXs. In the circos plot drug                

classes (left) and targeted pathways (right) are linked when the association is significant (gene              

set enrichment analysis FDR<0.05). Activity of EGFR class drugs have significant association            

with EGFR signaling pathway. Similarly MAPK class drugs show significant association with            

MAPK activation related pathways. 
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Biomarker  Drug(s) 
ICC 

All tissue Breast Lung Pancreas Skin Ovary 

EGFR tyrosine-kinase inhibitor 
(erlotinib, gefitinib, saracatinib) 0.74 0.64 0.70 0.50 0.42 0.78 

HGF c-Met/HGF inhibitors 
(crizotinib) 0.78 0.97 0.46 0.23 0.15 0.02 

MET c-Met inhibitors (crizotinib, 
cabozantinib) 0.72 0.51 0.63 0.41 0.79 0.84 

ERBB2 HER2 inhibitors (lapatinib, 
trastuzumab) 0.63 0.47 0.65 0.49 0.17 0.75 

ALK ALK inhibitor (TAE684, 
crizotinib, ceritinib) 0.61 0.42 0.74 0.07 0.25 0.76 

HGF c-Met/HGF inhibitors 
(crizotinib) 0.78 0.97 0.46 0.23 0.15 0.02 

MET c-Met inhibitors (crizotinib, 
cabozantinib) 0.72 0.51 0.63 0.41 0.79 0.84 

CDK4 CDK4/6 inhibitor (palbociclib, 
abemaciclib) 0.63 0.61 0.43 0.61 0.57 0.22 

CDK6 CDK4/6 inhibitor (palbociclib, 
abemaciclib) 0.67 0.75 0.64 0.57 0.63 0.73 

MAP2K1 MEK inhibitor (binimetinib, 
trametinib, selumetinib) 0.51 0.44 0.49 0.42 0.63 0.40 

MAP2K2 MEK inhibitor (binimetinib, 
trametinib, selumetinib) 0.42 0.38 0.35 0.42 0.59 0.50 

NQO1 tanespimycin 0.82 0.50 0.89 0.64 0.82 0.60 

MDM2 Nutlin-3 0.68 0.72 0.38 0.70 0.64 0.62 

SRC SRC inhibitors (saracatinib, 
dasatinib, bosutinib) 0.49 0.31 0.20 0.17 0.41 0.67 

VEGFA Bevacizumab 0.46 0.30 0.48 0.44 0.43 0.07 

BRAF Sorafenib 0.48 0.50 0.51 0.48 0.62 0.29 

RAF1 Sorafenib 0.53 0.39 0.42 0.49 0.71 0.63 

FLT3 Sorafenib 0.21 0.27 0.01 -0.01 -0.03 0.34 

ABCC5 5-FU 0.72 0.54 0.88 0.52 0.57 0.56 

DPYD 5-FU 0.60 0.58 0.63 0.68 0.48 0.54 

ERCC1 cisplatin-based chemotherapy 0.66 0.71 0.49 0.70 0.78 0.81 

 

Table 1
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Supplementary Figures and Table

RNA-seq microarray mutation CNV

Processed, QC, annotated and normalized molecular profile

Create ExpressionSet object

time vs. tumor 
volume

Standardise model ids and 
drug names

Create Xeva set

Xeva-set

Biomarker 
discovery

Plot 
functions

Response 
matrices

A
na

ly
si

s

XEVA IN A NUTSHELL 

Machine 
learning

Figure S1: Description of the Xeva platform for PDX pharmacogenomics data management and
analysis. Processed and curated genomic data (RNAseq, microarray, CNV and mutation) is for-
matted and stored along with drug response and experimental information in a unified manner.
The Xeva tool provides several functions to analyze, summarize and plot the PDX data.
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annotation ⟪ list ⟫

experiment ⟪ pdxModel class ⟫

model ⟪ data.frame ⟫
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molecularProfiles ⟪ ExpressionSet class ⟫

modToBiobaseMap ⟪ data.frame ⟫

drug ⟪ data.frame ⟫

sensitivity ⟪ data.frame ⟫

XevaSet

Figure S2: Schematic diagram of the XevaSet class. In Xeva package, XevaSet class combines different aspects of PDX based
pharmacogenomic data. As an S4 class it provides slots for storing experimental data and associated molecular profiles. For
each slot underlying class is represented in the bracket. For experiment slot, which holds time vs. tumor data of PDX, the detail
schematic of underlying class pdxModel is shown in figure S3
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.. .. .. .. .. .. ..

⟨ data.frame ⟩

Figure S3: Schematic diagram of the pdxModel class in Xeva package. The pdxModel class is implemented as an S4 class
which stores time vs. tumor volume data and associated meta data for an individual PDX model. It provides slots for different
PDX-MI (PDX minimal information) variables. The data slot stores time vs. tumor volume information along with dose, mouse
body weight and comments at individual time point.
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Figure S4: Computation and visualization of response for PDX based drug screening in PDXE cutaneous melanoma data using
Xeva mRECIST function. CR: complete response; PR: partial response; SD: stable disease; PD: progressive disease.

13

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted November 16, 2018. ; https://doi.org/10.1101/471227doi: bioRxiv preprint 

https://doi.org/10.1101/471227


Untreated

Abraxane

LJC049

WNT974

CLR457

BKM120

BYL719 + Binimetinib

BYL719 + LJM716

BYL719 + Cetuximab + Encorafenib

BYL719 + Cetuximab

BYL719 + Encorafenib

BYL719

BKM120 + LJC049

BKM120 + LDE225

BKM120 + Binimetinib

LKA136

HDM201

CGM097

Trametinib

CKX620

Binimetinib−3.5mpk

Binimetinib

INC424 + Binimetinib

INC424

Figitumumab + Binimetinib

LFW527 + Binimetinib

Figitumumab

Cetuximab + Encorafenib

Cetuximab

Gemcitabine−50mpk

5fu

LEE011

Encorafenib

X
−

41
45

X
−

15
00

X
−

28
46

X
−

21
45

X
−

12
70

X
−

32
24

X
−

25
73

X
−

26
59

X
−

11
19

X
−

25
38

X
−

13
29

X
−

55
78

X
−

24
03

X
−

23
74

X
−

54
46

X
−

11
67

X
−

30
93

X
−

28
61

X
−

12
90

X
−

10
27

X
−

21
82

X
−

32
05

X
−

52
54

X
−

13
03

X
−

09
33

X
−

28
22

X
−

54
05

X
−

37
92

X
−

54
38

X
−

18
55

X
−

54
95

X
−

24
84

X
−

24
83

X
−

40
87

X
−

54
94

X
−

10
55

X
−

14
43

X
−

11
73

X
−

14
41

X
−

15
36

X
−

14
79

X
−

32
67

X
−

22
39

X
−

15
38

X
−

36
71

X
−

55
36

X
−

27
61

X
−

09
88

X
−

09
92

X
−

54
21

X
−

52
38

X
−

36
84

X
−

25
14

X
−

14
02

X
−

13
33

X
−

13
10

X
−

12
56

X
−

12
10

X
−

12
34

0

5

10

15

20

0 10 20 30 40

CR

PR

SD

PD

Figure S5: Computation and visualization of response for PDX based drug screening in PDXE colorectal cancer data using Xeva
mRECIST function. CR: complete response; PR: partial response; SD: stable disease; PD: progressive disease.
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Figure S6: Computation and visualization of response for PDX based drug screening in PDXE gastric cancer data using Xeva
mRECIST function. CR: complete response; PR: partial response; SD: stable disease; PD: progressive disease.
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Figure S7: Computation and visualization of response for PDX based drug screening in PDXE non-small cell lung carcinoma
data using Xeva mRECIST function. CR: complete response; PR: partial response; SD: stable disease; PD: progressive disease.
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Figure S8: Computation and visualization of response for PDX based drug screening in PDXE pancreatic ductal adenocarcinoma
data using Xeva mRECIST function. CR: complete response; PR: partial response; SD: stable disease; PD: progressive disease.
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Figure S9: Different experimental design used in PDX based drug screening. In traditional design
setting (left), multiple mouse models are created (replicates) for both control and treatment. In
the 1x1x1 design only one control is generated for a patient and one for each treatment
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