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Abstract

Constraint-based modeling helps researchers to understand metabolic networks. Minimal
Cut Sets (MCSs) are minimal knock-out sets that block a target reaction in metabolic net-
works. Most approaches for finding the MCSs for a target reaction in constrained-based models
require the computation of the set of elementary flux modes (EFMs) either as an intermediate
step or as a byproduct of the calculation. Recently, Ballerstein et al. [BvKKH11] proposed a
method of computing the MCSs directly. We propose an alternate method to compute the MCSs
directly, based on linear programming duality. We prove the correctness of our new approach,
extending the last author’s doctoral work [Chi10]. The key idea is to find the EFMs of a fully
reversible network with stoichiometric matrix equal to the transposed nullspace matrix of the
original network’s stoichiometric matrix. We implement our method and show that it succeeds
in calculating the set of MCSs in many models where other approaches are not able to finish
within a reasonable amount of time. Thus, in addition to its theoretical novelty, our approach
provides a practical advantage over existing methods.

1 Introduction

Constraint-based modeling of metabolic networks has been a major subfield of systems biology
thanks to its ability to identify key qualitative characteristics of networks for analyzing and ex-
tracting useful information [PRP04] A metabolic network is a collection of chemical reactions
which comprise the metabolic activities (i.e. the biochemical transformation of molecules into
other molecules for the purpose of maintenance and growth) of a specific organism. One impor-
tant application of metabolic network analysis is to find interventions that can block a reaction of
interest, typically referred to as the target reaction, with applications in drug target identification
[HFR+14] and metabolic engineering [MvKK15]. When this is achieved by disabling one or more
other reactions, the disabled reactions are called a cut set. A cut set is called “minimal” if no
proper subset of it can disable the target reaction. The concept of minimal cut sets (MCS) was
introduced by Klamt and Gilles [KG04] and its applications are examined in detail in [Kla06].

At the moment, the main approach used for enumerating the MCSs for a target reaction is to
compute the elementary flux modes containing the target and then use a dualization procedure
to produce the MCSs [GDVL17]. Here, flux modes are possible distributions of fluxes through
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the reactions, and those can be modelled as hyperedges on the vertex set of possible reactions.
Elementary flux modes (EFMs) are flux modes which are support-minimal, and it is known that
any flux mode can be written as a non-negative linear combination of EFMs. Given the full
set of elementary flux modes, minimal cut sets can be obtained through the dualization of the
hypergraph they define [KG04, HKS08]. Two approaches to do this are Berge’s algorithm [Ber84]
and Fredman and Khachiyan’s dualization procedure [FK96]. However, both suffer from poor worst-
case complexity and produce mixed results in practice. A comparatively new approach [BvKKH11]
produces MCSs without EFMs. It works by generating a dual network and computing the EFMs of
that network that contain the target reaction. We call this the dual network method. In this paper,
we develop a new method which finds the minimal cut sets from the row space of the stoichiometric
matrix, based on a generalization of some theoretical results by the last author [Chi10].

We implement the method, and find it to be effective on most instances. We compare it to
three alternate methods for enumerating all the MCSs for a target set. The first two methods are
to compute the EFMs, and then dualize with Berge’s algorithm, or an optimized implementation of
Fredman-Khachiyan dualization, respectively. For Berge’s algorithm, we used the implementation
in CellNetAnalayzer [KSRG07], containing the enhancements described in [HKS08, EMG08]. For
Fredman-Khachiyan dualization, we used the recent implementation of [SSC18].

The dual network method [BvKKH11] first creates a dual network based on the given stoichio-
metric matrix and given target reactions. Then it proceeds to compute the EFMs of that dual
network, mimicking the calculations that produce the EFMs in the original network. Following
some post-processing, these EFMs are reduced to give the required MCSs; because the MCSs cor-
respond to only part of the vectors produced, this postprocessing includes purging the result of
supersets. Like our method, the dual network method reports all the MCSs without first producing
the EFMs or requiring them as an input. The authors of [BvKKH11] did not implement their
method, so we did so ourselves, including all the enhancements mentioned in their supplementary
material. Most of these enhancements have improved the performance, for instance by reducing
the size of intermediate results.

However, for the majority of the models we investigate, we find that our approach is more
efficient in terms of both running time and memory use. On the negative side, we show that our
approach does not allow the enumeration of all MCSs through a given target reaction in incremental
polynomial time, something that therefore remains a major open problem in the field. We conclude
that the row space-based approach is a promising approach for the computation of structural
elements of metabolic networks such as MCSs, and expect it to be a beneficial addition to the
analysis tools available for metabolic network models.

1.1 Formal definitions

Definition 1 (Stoichiometric matrix). The stoichiometric matrix S of a metabolic network is
the m×n stoichiometric matrix encoding in its columns the coefficients of consumed and produced
metabolites in each chemical reaction. Here m is the number of metabolites and n is the number
of reactions. As a result, each row represents a metabolite, showing how much is being consumed
or produced by each reaction.

Definition 2 (Steady state). The assumption of steady state means that internal quantities of
metabolites in the network stay the same over time. It follows that if v is the vector of fluxes
through each of the reactions in the network, Sv = 0.
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Definition 3 (Reaction reversibility). Thermodynamics forces some reactions to have fluxes
in one direction while others have the possibility of both converting their reactants to products and
vice versa. We call these irreversible and reversible reactions respectively, and denote the set of all
irreversible reactions with I.

Definition 4 (Stoichiometric matrix reconfiguration). Let S be a stoichiometric matrix with
irreversible reactions I. We can reconfigure the stoichiometric matrix to [S′ = S|−S.IC ] add oppo-
site directions of reversible reactions to give an equivalent system where all reactions are irreversible.
We denote by IC the set of indices of reversible reactions.

Definition 5 (Nullspace matrix). Let S be a matrix over Q (where Q is the set of rational
numbers). A nullspace matrix of S is a matrix whose rows form a basis of the nullspace of S over
Q.

Definition 6 (Nullspace network). The nullspace network of stoichiometric matrix S is a fully
reversible metabolic network whose stoichiometric matrix is nullspace of S.

Definition 7 (Positive and negative support). Let v be a vector. The positive support of v is
the set of positions i where flux vi is positive: R+(v) := {i|vi > 0}. The negative support of v is
the set of positions i where flux vi is negative: R−(v) := {i|vi > 0}. Their union is the support of
v: R(v) := R+(v) ∪R−(v).

Definition 8 (Coordinated support). Let v be a vector and let A be a set of positions. The
A-coordinated support of v is the union of the negative support on positions A and the support
everywhere else: RA(v) := (R−(v) ∩A) ∪ (R(v) ∩AC).

Definition 9 (Elementary flux mode (EFM)). Let M be a metabolic network with stoichio-
metric matrix S and set of irreversible reactions I. A vector v is a flux mode if Sv = 0 and vI ≥ 0.
It is an elementary flux mode if its support is minimal among all flux modes: Sw = 0, wI ≥
0,R(w) ( R(v) =⇒ w = 0 [SFD00, GK04].

Definition 10 (Minimal cut set (MCS)). Let M be a metabolic network with stoichiometric
matrix S and set of irreversible reactions I. Let t be a reaction. A set C is a cut set for t
if Sv = 0, vI ≥ 0, vC = 0 =⇒ vt = 0. It is a minimal cut set if it is inclusion-minimal:
D ( C =⇒ ∃ v s.t. Sv = 0, vI ≥ 0, vD = 0, vt 6= 0[KG04].

Definition 11 (Canonical form of a network). Let M be a metabolic network with stoichio-
metric matrix S and set of irreversible reactions I. We say that S is in canonical form if it satisfies:

1. No blocked reactions: for every reaction i, there exists a flux vector v with vi = 1;

2. Proper directedness: for every reaction i ∈ IC , there exists a flux vector w with wi = −1;

3. No enzyme subsets: no reaction pair i 6= j satisfies vi = κvj with κ ∈ R for all flux vectors v;

4. No redundant constraints: S has full row rank.

A metabolic network can be reduced to an equivalent one in canonical form (a.k.a. compressed
form) in polynomial time [Chi10].
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Figure 1: Example of a metabolic network and an associated row-space network.

2 Row-space method

Let Si be a row of the stoichiometric matrix S. Then Sir represents the amount of metabolite i
consumed or produced by reaction r (in these cases, Sir < 0 and Sir > 0, respectively). Assume
that reaction r produces metabolite i if it has a positive flux. Then, in a steady state where no
reaction consuming metabolite i is active, reaction r must be inactive in the forward direction.
If reaction r happens to be reversible, it must be consuming metabolite i, and its flux must be
negative. This shows that reaction r is blocked in the forward direction if we disable every reaction
that can consume metabolite i, i.e. every irreversible reaction with a negative value in row i and
every reversible reaction with a non-zero value in row i. The set of such reactions is then is a cut
set for the forward direction of reaction r. Every row gives us some, not necessarily minimal, cut
set in this manner.

In fact, we can apply the same reasoning to linear combinations of the metabolites. Consider a
new virtual metabolite x, which represents a linear combination of rows Si and Sj corresponding
to metabolites i and j respectively, say for example vx = 2Si − Sj . Since virtual metabolite x has
the balance properties, it should not be produced or consumed in any steady state; in other words,
since the fluxes of each metabolite are balanced, so are the fluxes of their linear combinations. If we
pick a reaction with positive value in vx, it produces a virtual metabolite x when it has a positive
flux. Similarly, it will be blocked if we cut irreversible reactions with negative values in vx and
reversible reactions with non-zero values in vx. Thus, we can obtain cut sets from the vector vx,
which is a member of rowspace of S, as we did with i and j.

A proposal for finding cut sets via the row space of the stoichiometric matrix was introduced
in the Ph.D. thesis of Chindelevitch [Chi10]. The described intuition shows why a vector in the
row space can generate cut sets. However, the lemma presented in [Chi10] only works for the
fully irreversible or fully reversible networks. We generalize here to networks with both irreversible
reactions and reversible reactions.

In our row space method, we build a new network based on the transposed null space matrix
of the original matrix with full reversibility. EFMs in this new matrix represent cut sets in the
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]

(a) This (m + n) × 2n matrix
is the nullspace of reconfigured
nullspace of stoichiometry matrix
S. The double description method
will start its process on this space
and it will find extreme rays with
length 2n. However, what we need
are the extreme rays of this space
while ignoring non-related dimen-
sions. The dimensions that are not
counted in coordinated support.

d1

d2

d3

Imaged cone

Cone The intersection with plane d1 = 1

The desired results

The outdated results

(b) All extreme rays of the projected cone are an image of an extreme
ray in original cone, while some extreme rays of the original cone
do not project to extreme rays. It’s also possible that two or more
extreme rays project into one. Our desired results lay on the plane
where the value in target position is one.

Figure 2: Minimal supports correspond to extreme rays of the cone while minimal coordinated
supports are extreme rays of the projected cone in a lower dimension space. Our desired results
are the intersection of plane t = 1 with the projected cone’s extreme rays, where t is the position
of our target reaction in the nullspace matrix of the reconfigured nullspace matrix (Figure 2a).

original network. The new network has the same number of reactions as the original one, but in
most cases, it has a lot fewer metabolites.

Lemma 1 (MCSs for an irreversible reaction). Let M be a metabolic network with stoichio-
metric matrix S and irreversible reactions I and reversible reactions Rev. Let t ∈ I be an irre-
versible target reaction. Then C is a cut set for t if and only if there exists a vector u ∈ Row(S)
such that ut = 1 and RI(u) ⊆ C.

Proof. This lemma is an extension of Lemma 3 of [Chi10]. We observe that C being a cut set for
irreversible reaction t is equivalent to:

S−Cv = 0 and vi ≥ 0 ∀ i ∈ I − C =⇒ vt = 0 (1)

Based on Farkas’ Lemma, we only need to find a constraint that implies vt ≤ 0. Thus, there exists
a y such that:

yTS−C = et +
∑

αiei ∀ i ∈ I − {C ∪ t} (2)

Here αi are non-negative and ei is a vector with 1 in ith value and zero everywhere else. Thus we
have:

yTS = u (3)

Which u has a non-negative value ui ∀i ∈ I − {C ∪ i} and zero value uj ∀j ∈ Rev −C and ut = 1,
i.e. R−(u) ∩ I ⊆ C ∩ I and R(u) ∩Rev ⊆ C ∩Rev. For the other direction of proof, check if u in
equality (3) has value 1 in ut. Then pick indices i in I which ui < 0 and indices i in Rev which
ui 6= 0 to get a cut set. Equality (2) holds and so does (1).
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Lemma 2 (MCSs for one direction of a reversible reaction). LetM be a metabolic network
with stoichiometric matrix S and irreversible reactions I. Let t be a reversible target reaction. Then
C is a cut set for forward direction of t if and only if there exists a vector u ∈ Row(S) such that
ut = 1 and RI(u) ⊆ C. Furthermore, C is a cut set for backward direction of t if and only if there
exists a vector u ∈ Row(S) such that ut = −1 and RI(u) ⊆ C.

Proof. If we assume t is irreversible for a moment, the first part is already proved in the previous
lemma. For the second part, replace t with −t in S and create S′. Reaction t in S′ is blocked in
forward direction if and only if t in S is blocked in backward direction. And every vector in Row(S)
has a corresponding vector in Row(S′) with negated value in index t.

With these lemmas, Algorithm 1 below can be used to find the minimal cut sets for a set of
target reactions T = {t1, t2, ..., tk} in an arbitrary metabolic networkM with stoichiometric matrix
S and set of irreversible reactions I, where T has separate elements for the opposite directions of
a reversible reaction.

Algorithm 1 MCS enumeration via rowspace method

Input: Stoichiometric matrix S, set of Irreversible reaction I, and Target set T = {t1, t2, . . . , tk}
Output: Minimal cut sets of target reactions T .

1: function MCS Enumeration(S, I, T )

2: Reduce S to its canonical form.
3: Compute the nullspace matrix N of S.
4: Compute all elementary flux modes F of N .
5: for all 1 ≤ i ≤ k do Compute Fi, the set of all elements of F involving target ti.

6: for all 1 ≤ i ≤ k do Let Ci be the set of minimal I-coordinated supports of the elements
of Fi.

7: Let C = {x = x1 ∪ x2 ∪ ... ∪ xk|xi ∈ Ci ∀ i}.
8: Let C′ be the result of pruning C to remove any supersets.
9: Return C′.

Flux modes finders such as FluxModeCalculator reconfigure the network to apply the double
description method. That is, they work with N ′ = [N | −N ] where N is the nullspace network of
S. Figure 2a shows the nullspace matrix of N ′, which is the starting point of double description
method. At the very beginning of applying the double description method, the matrix is converted
by elementary row operations into the suggested shape described in [Wag04] which contains an
identity matrix of size m+ n. At the end of the double description method, we will have extreme
rays describing a cone in 2n-dimensional space [TS08]. The extreme rays are non-zero members of
our cone with minimal support. On the other hand, coordinated support does not count non-zero
values in some dimensions, namely, those that correspond to positive value of irreversible reactions.
If we ignore these dimensions, we project the cone into a lower-dimensional subspace. While the
image of a pointed cone remains a pointed cone, extreme rays of the new cone are the one in our
feasible space with minimal support in the remaining dimensions. Figure 2b shows why all minimal
coordinated supports are among the minimal supports, while there may be some redundant or
unwanted results among them as well.
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Theorem 1 (Correctness of the method). Algorithm 1 returns precisely the set of minimal
cut sets of the network M for reaction t.

Proof. We prove the inclusion in both directions. First, let C ∈ C′ be one of the sets returned
by the method above. Then C is a cut set for t in the reconfigured network, by lemma 1 and by
construction. Indeed, F contains flux modes of N involving t, which are precisely the vectors in the
row space of S involving t, and C (and a fortiori its subset C′) contains the I-coordinated supports
of these vectors.

Now, let C be a minimal cut set for t inM. We will show that C ∈ C′. By lemma 1, there exists
a vector u ∈ Row(S) such that ut = 1 and C = RI(u). Since u ∈ Row(S) ⇐⇒ u ∈ Null(N), u
is a conical combination of the elementary flux modes of N . Note that the results of Müller and
Regensburger [MR16] imply that since the space to which u belongs is linear (i.e. it does not need
to satisfy any non-negativity constraints), this conical combination can be chosen to be conformal,
meaning that there are no cancellations involved in any component. Let such a conformal conical
combination be given by

u = α1f1 + · · ·+ αkfk, αi > 0 ∀ 1 ≤ i ≤ k. (4)

Since all the coefficients are strictly positive in (4), we deduce that

RI(u) = RI(f1) ∪ · · · ∪ RI(fk).

Indeed, each j ∈ RI(u) ∩ I must have a negative component in at least one of the fi, as otherwise
the j-th component of the right-hand side of (4) will be non-negative, which gives the ⊆ direction,
and the fact that the combination is conformal gives the ⊇ direction, as otherwise there would be
a cancellation.

In particular, we deduce that RI(fi) ⊆ RI(u) for each 1 ≤ i ≤ k. In this case, the minimality
of C implies that either RI(fi) = RI(u) or fi has a 0 in position t, for each 1 ≤ i ≤ k. But since u
has a 1 in position t, there must be at least one fi in the first category, so that RI(fi) = RI(u) = C
and therefore, C ∈ C. Once again, by the minimality of C we conclude that C ∈ C′ since it cannot
be a superset of the I-coordinated support of another vector in C. This concludes the proof.

2.1 Limitations

Our method is limited to blocking one direction of a given reaction. However, in practice, blocking
one direction of a given reaction is the typical objective [LB07]. To block multiple reactions it is
possible to compute the MCSs of every target reaction, take unions of all possible combinations of
them, and then remove the supersets. However, this is not efficient.

A more critical issue is the possibility of generating a large number of non-minimal cut sets
before the post-processing. The following Lemma, proved in Appendix A, shows this type of blow-
up can occur:

Lemma 3 (Large number of supersets in the final step). For every integer k ≥ 2 there ex-
ists a network containing k + 2 metabolites, 3k + 3 reactions and 2k−1 + 1 elementary vectors for
the target reaction t = 1 that map to the exact same minimal cut set. This network is in canonical
form in the sense of [Chi10] and elementally balanced in the sense of [ZSBC18].
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2.2 Advantages

An advantage of the new approach is that we find the MCSs directly. We do not need to find the
EFMs before or during the calculation. Also, we do not need to reconfigure or alter the stochiometric
matrix: every step is applied directly to the given stoichiometric matrix. Compression or reduction
may be done in preprocessing before going through the main procedure, but these are only for
reducing running time and space and can be skipped.

The preprocessing step in which we compute the EFMs of the transposed nullspace is indepen-
dent of the target reaction. This means that we can calculate these EFMs once and use them for
any given target reaction to block.

The most important advantage of the row space method is that the null space where we work
will be small if the stoichiometric matrix is nearly full-rank. In that situation, which is easy to
identify, our method usually performs well enough to beat other methods.

3 Implementation details

Except where noted, the implementations we discuss are in MATLAB. Each method that we con-
sider requires an extreme ray computation, with the underlying cone varying. We used FluxMode-
Calculator’s EFM generator [vKWvD15] for this purpose. Note that the optimized Berge algorithm
implemented by CellNetAnalyzer [KSRG07] uses the older EFM finder of CellNetAnalyzer by de-
fault. However, we observed that it is a slower implementation of an identical calculation, so we
rewrote this part to use FluxModeCalculator to make a fair comparison. The row space method
and the dual method both need to removing redundant (super)sets from the obtained extreme
rays. We use an implementation in Java whose time complexity is O(N2) for a collection of N sets.
The stoichiometric matrices are compressed by the MongooseGUI3 [CTRB14] beforehand, which
converts them to a canonical form.

Since the nullspace is needed for the row space method, we calculate the nullspace basis matrix
using MongooseGUI3. Since finding the MCSs in every method takes several seconds to several
minutes and the computation time of the nullspace basis matrix was less than a second in every
case, we ignored its computation time. The reduced matrix given by Mongoose, the dual matrix,
and the nullspace basis matrix get further compressed by FluxModeCalculator before processing.
For the Berge algorithm we used CellNetAnalyzer. We also used an existing implementation of
the improved modified Fredman-Khachiyan (MFK) algorithm [SSC18]. However, we implemented
the dual method from scratch using MATLAB and the source code of FluxModeCalculator. All
the enhancements mentioned in the supplementary material of the dual paper [BvKKH11] were
implemented as well.

Our implementation is freely available at https://github.com/RezaMash/MCS under the GNU
3.0 license.

4 Results
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Table 1: Result of running the methods on the glucose network with 106 reactions and 89 metabo-
lites (the first reaction is the target)

Optimized Improved Dual with Row-Space
Berge MFK Enhancements

extreme ray computation 69.9 69.9 >18000 410.2
secondary process time 1.9 1544.7 - 519.9

total time 71.8 1614.6 >18000 930.1
All times are in seconds.

Table 2: Result of running the methods on the hepatic polyamine and sulfur aminoacid network
[RPMSJM12] with 73 reactions and 53 metabolites (the first reaction is the target)

Optimized Improved Dual with Row-Space
Berge MFK Enhancements

extreme ray computation 270.2 270.2 1191.9 79.8
secondary process time >18000 >18000 591.3 157.4

total time >18000 >18000 1783.2 237.2
All times are in seconds.

We ran the methods on some models from BioModels database [LDR+10]. There were a few
models on which our method either wasn’t able to finish in the given time (5 hours) or took much
longer to report the MCSs, while the optimized Berge was able to finish in time and beat our method
(See table 4 for an example). This is due to the large set of supersets generated in that example
by our method. However, the row-space method always performs better than the dual approach,
even with its enhancements included. In addition, as can be seen for the hepatic polyamine and
sulfur aminoacid combined model [RPMSJM12], the Berge and MFK methods could not finish in
five hours, but the rowspace method generated results in four minutes, and the dual method in
half an hour. The first task of every method is an extreme ray computation, which for Berge and
MFK is the well-known EFM computation. Berge and MFK then proceed to generate the MCSs
through dualization, while the secondary process of the dual approach and our row-space approach
is removing the redundant cut sets. In the first two provided examples, the target is the forward
direction of the first reaction. Table 3 shows the computation task for calculating the MCSs for all
possible target reactions. In the kinetic model of yeast metabolic network, described in [SLS+13],
our method’s advantage is clear - it was able to finish computing the MCSs for all reactions in only
13.6 seconds. Note that the dimensions stated in the tables are the ones before any compression is
applied.

5 Conclusion and future works

One limitation to our method is that can not find the MCSs of set of a reactions directly unless we
find MCSs for each direction individually and prune supersets from the union of these MCSs.

An alternate strategy for computing EFMs is via mixed integer linear programming (MILP)
particularly when only a few good vectors are required, rather than a full enumeration [DFPR+09,
RPdF+13, RPT+14]. We describe some preliminary progress in this direction in Appendix B.
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Table 3: Result of running the methods on the kinetic model of yeast network [SLS+13] with 285
reactions and 295 metabolites (all reactions used as targets)

Optimized Improved Dual with Row-Space
berge MFK Enhancements

extreme ray computation 86.0 86.0 >18000 53.0
secondary process time >18000* >18000 - 13.6

total time >18000* >18000 >18000 66.6
All times are in seconds.

*: Berge wasn’t able to finish calculating MCSs for all the reactions but it computed MCSs for first five reactions
before running out of time. The FK and Dual methods weren’t able to finish the computation of MCSs for reaction

1.

Table 4: Result of running the methods on Fernandez2006 ModelB [FSGLN06] with 152 reactions
and 75 metabolites (the first reaction is the target)

Optimized Improved Dual with Row-Space
berge MFK Enhancements

extreme ray computation 99.5 99.5 >18000 >18000
secondary process time 2.1 1445.1 - -

total time 101.6 1544.6 >18000 >18000
All times are in seconds.

This is an example where our method and the Dual method weren’t able to finish in time while the Berge and MFK
methods report all 194689 MCSs of the compressed network’s first reaction fairly fast.

Another idea is to alter the double description method to find rays with minimal coordinated
support instead of minimal support, e.g. by ignoring some of dimensions of the reconfigured network.
Here it is important to be careful about zero-cycle flux modes which are flux modes that can have
fluxes in both direction of split reversible reaction. These are not valid flux modes, but they appear
in the output of Double Description method and they can cause omission of some rays which contain
them in their support.

As we mentioned, there are models for which our method surpass other methods while there
are other models where the best performance is by the Berge algorithm. The challenge is to find
out what traits of these models are different and how we can decide to chose what method to run
on the model.

In general, our method is new and still in need of refinement. Possible additional sources
of improvement include identifying and removing unwanted super-sets in the middle of double
description method and applying optimization on removing super sets.
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A Proof of Lemma 3

Proof. We construct the network as follows. There are two special metabolites, denoted MI

(initial) and MF (final), and k intermediate metabolites, denoted Mi for 1 ≤ i ≤ k. For each
metabolite, we have an export reaction and an import reaction, with the export reactions for each
intermediate metabolite coupled with an import of the final metabolite. Lastly, each intermediate
metabolite except the first one can be transformed into the first one, M1, which itself can also be
transformed into the initial metabolite MI . All reactions in the network are irreversible and all the
stoichiometric coefficients are ±1.

We order these reactions as follows (for simplicity of argument):

R1 : ∅ →MI

R2 : MI → ∅
R3 : M1 →MI

R3+i : Mi+1 →M1 1 ≤ i ≤ k − 1

Rk+2+i : ∅ →Mi 1 ≤ i ≤ k
R2k+2+i : Mi →MF 1 ≤ i ≤ k
R3k+3 : MF → ∅.
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The stoichiometric matrix then looks as follows (shown here for k = 2):

S =


+ − +

− + + −
− + −

+ + −


Here, a + represents a 1 and a − represents a −1. We now proceed to show each part of the

desired statement:

• The network is elementally balanced because every reaction that is not pure import or pure
export is an exchange of one metabolite for another in a 1-1 ratio, so we can consider each
metabolite as containing exactly 1 atom.

• The network is in canonical form because every reaction can be active and no pair of reactions
is constrained to have proportional fluxes; this is evidenced by the following flux modes:

R1 +R2

R2 +R3 +Rk+3

R1 + 2R2 +R3 +Rk+3

R2 +R3 +R3+i +Rk+3+i 1 ≤ i ≤ k − 1

Rk+2+i +R2k+2+i +R3k+3 1 ≤ i ≤ k

This set of fluxes includes every reaction at least twice, and in at least two of these the sets
of other active reactions are disjoint. The only exceptions are R1 and R3, which need R2 to
be active in order to occur, but the first and third flux modes (respectively second and third
flux modes) show that their fluxes are not proportional to that of R2 or to each other; and
and the reactions R3+i and R2k+2+i for 1 ≤ i ≤ k−1, both of which need Rk+3+i to be active
in order to occur, but not in a fixed ratio, as evidenced by taking linear combinations of the
last two sets of flux vectors.

• Furthermore, the stoichiometric matrix has full row rank, i.e. no metabolite generates a
redundant constraint, because every metabolite except MF has a pure import reaction, while
MF has a pure export reaction.

• There is a unique MCS for target reaction R1, namely, R2. This is because R2 is the only
reaction consuming MI (recall that all reactions are irreversible). The first row of S, u :=
e1 − e2 + e3 produces this MCS via its negative support.

• Lastly, there are 2k−1 additional vectors in the rowspace of S that produce supersets of this
MCS via their negative support. The first one is obtained from u by adding the second row
of S, to replace it with:

v∅ := e1 − e2 + e4 + e5 + · · ·+ ek+2 + ek+3 − e2k+3,

and then picking any subset P of the set of k− 1 entries E := {4, 5, . . . , k+ 2} to form a new
vector vP , as follows.
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Let 3 + j ∈ P be an element of the chosen subset, where 1 ≤ j ≤ k − 1. We will replace
e3+j with ek+3+j − e2k+3+j via the addition of the (j + 2)-nd row of S (corresponding to
the intermediate metabolite Mj+1) to the starting vector. Indeed, this row contains three
non-zero entries: a −1 from reaction R3+j (which cancels out the 1 in position e3+j), as well
as another 1 from reaction Rk+3+j and another −1 from reaction R2k+3+j .

We do this addition independently for each element of P to get vP (if P = ∅ we get v∅). It is
easy to check that all the vP are elementary and that vP has support:

{1, 2, 2k + 3} ∪ {3 + j|3 + j /∈ P} ∪ {3 + k + j|3 + j ∈ P} ∪ {3 + 2k + j|3 + j ∈ P},

and no proper subset of this support can produce a non-trivial vector in the rowspace of S, as
otherwise it would be possible to add a linear combination (possibly with negative coefficients)
of the rows of S to vP without adding any new elements to its support, which is impossible
by construction. Furthermore, the negative support of vP is:

{2, 2k + 3} ∪ {3 + 2k + j|3 + j ∈ P},

which is a strict superset of the negative support {2} of u. This completes the proof.

B Mixed Integer Linear Programming

An alternate strategy for computing EFMs is via mixed integer linear programming (MILP), par-
ticularly when only a few good vectors are required, rather than a full enumeration [DFPR+09,
RPdF+13, RPT+14]. Recall that EFMs are minimum support vectors in the nullspace. Our method
for finding MCSs similarly looks for vectors with minimal coordinated support in the rowspace, so
a similar approach may be effective.

Lemma 4 (MCSs of a target set of reactions in a fully irreversible metabolic network).
Let S be a stoichiometric matrix of a fully irreversible metabolic network M. Let T be a set of
target reactions which may contain more than one reaction. C is a cut set for all reactions in T if
and only if there exist a vector u ∈ Row(S) such that T ⊆ R+(u) and R−(u) = C.

Proof. We need to show that every cut set for the set of target reactions appears as a vector in the
row space with the described constraints, and every vector in the row space with those constraints
represents a cut set.
Let C be a cut set for all reactions in T . Therefore, C is a cut set for each reaction in T =
{t1, t2, ..., tk} individually. Based on Lemma 1, there exist vectors u1, u2, ..., uk ∈ Row(S) such that
ti ∈ R+(ui) and R−(ui) = C for 1 ≤ i ≤ k. In other words, for all vectors ui (1 ≤ i ≤ k) the only
negative elements are the ones with indices belonging to C, and all other elements are non-negative,
with a strictly positive value in the one with index ti in the vector ui, for 1 ≤ i ≤ k. If we define
the vector u := u1 + u2 + ...+ uk, then R−(u) = C and T ⊆ R+(u), and u is clearly in Row(S).
Now, let u be a vector in Row(S) such that T ⊆ R+(u) and R−(u) = C. Then ti ∈ R+(u) for all
1 ≤ i ≤ k. Based on Lemma 1, C = R−(u) is a cut set for the reaction ti, for each 1 ≤ i ≤ k.
Therefore, C is a cut set for all the reactions in T , completing the proof.
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Based on this Lemma we are able to find minimal cut sets for every set of target reactions
without the restriction of only blocking one direction of a reaction. Since reversible reactions split
into two reactions after reconfiguration, we can block a reversible reaction in one direction or in
both directions.

Let S′ be the m × n′ reconfigured matrix of m × n stoichiometric matrix S with irreversible
reactions I. Since all the values in the stoichiometric matrix are proportions of consumed and
produced metabolites, we can scale each row of S to have only integer entries without changing its
structural properties.

We now describe how to encode the problem of finding the smallest MCS for a target set T
as a mixed-integer linear program (MILP). Let v ∈ Zn′ be a vector in the row space of matrix S
corresponding to the smallest MCS for target reaction set T = {t1, t2, ..., tk}. Then there exists a
vector y ∈ Zm s.t yTS = v. If we define r+, r− ∈ {0, 1}n as the positive and negative supports of
v, respectively, we force to vi to be negative if r−i is one, and force it to be positive if r+i is one;
similarly, we force vi to be non-negative when r−i is zero and force it to be non-positive when r+i is
zero, by adding the following constraints:

vi +Wr−i ≤W − 1 −vi +Wr+i ≤W − 1 ∀1 ≤ i ≤ n′; (5)

vi ≤Wr+i −vi ≤Wr−i ∀1 ≤ i ≤ n′, (6)

where W is a large constant number. There must also be positive values in the target positions:

r+i = 1 ∀i ∈ T (7)

This constraint also implies r−i for any target position i is zero. Indeed, both r+i and r−i can not
be one at the same time, as otherwise, vi would be a negative integer and a positive integer at the
same time. These constraints also ensure that v = 0 is not in our feasible space.

To find the smallest minimal cut set, the objective function is as follows:

minimize
n′∑
i=1

r−i , (8)

since the cut set is the negative support of v, i.e r−.
Suppose that we have found the smallest MCS C ( {1, 2, ..., n′}. To find the next smallest

MCS we need to remove C and all its super-sets from our feasible space. The following constraint
excludes C and all its super-sets: ∑

i∈C
r−i ≤ |C| − 1 (9)

We can keep excluding newly found MCSs and thus enumerate them by size. As we stated
above, in most scenarios we only wish to block an irreversible reaction or one direction of a reversible
reaction. In those cases, we can avoid re-configuring the network to have a smaller stoichiometric
matrix. Let t be the only target reaction. Instead of the constraints (7), we only need one constraint
r+t = 1 if we want to block it in forward direction, and we need the constraint r−t = 1 if we need to
block it in the backward direction. The objective function (8) and constraints (9) can be updated
as follows to reflect the coordinated support instead of the negative support:

minimize
( n∑

i=1
i6=t

r−i +
∑
i∈I
i6=t

r+i

) ∑
i∈C

r−i +
∑

i∈C∩I
r+i ≤ |C| − 1
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Figure 3: Result of computing the smallest MCSs for reaction 10 (the first reaction which has at
least 100 MCSs) of the Li2012 Calcium-mediated synaptic plasticity model [LSLN12]

B.1 Implementation

We used CPLEX [IBM] to solve the MILPs. The implementation was done in Java and has been
implemented for both single target reactions without re-configuration, and for multiple target re-
actions with network reconfiguration. Since the stoichiometric matrices needed to contain only
integers, we used the integralize function of MONGOOSE [CTRB14] to multiply each row by
the smallest possible integer that makes all the values integer (which is, of course, the least common
multiple of the denominators of the entries). We also tested the results of our MILP in small net-
works against other implementations to make sure the results are consistent. The implementation
of all the methods and the MILP version of our method are publicly available. In some cases they
require the use of non-public modules, such as CellNetAnalyzer [KSRG07] and CPLEX, which are
available for academic use.

B.2 Results

We ran the MILP version on larger networks. With this implementation we were now able to find
partial MCSs for any target reaction. However, these partial MCSs are adjustable to our needs, and
we always find the smallest MCSs in order. We were able to compute 100 MCSs of reaction 10 (the
first reaction with at least 100 MCSs) in the Li2012 Model [LSLN12], which has 578 reactions after
compression. The results are shown in Figure 3. The smallest MCS has eight reactions, and this
goes up to 16 for the 100-th smallest MCS. Integer linear programming has been used for finding a
subset of MCSs [SGMR17]. There have also been approaches using Boolean duality to find a subset
of the MCSs [vKK14, VMRR16, HKS08]. As these approaches state, not all the EFMs in the dual
space result in valid MCSs, but by adding the proper constraints one can remove the redundant
results from the ILP’s feasible space. To get a sense of how our approach perform compared to these
earlier ones, we also ran our method on E.coli iAF1260 to compare with [HKS08], which showed a
superior performance relative to other implementations that enumerate a subset of the MCSs with
MILP. We were not able to find the MCSs for 13 of the reactions in the reduced network, which
maps to 30 reactions in the original, uncompressed network. Compared to [HKS08], where they
missed 209 reactions, this is a notable improvement. The results are shown in Figure 4.
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Computation time Number of reactions

1 second 435
1 to 5 seconds 241
5 to 10 seconds 140
10 to 20 seconds 102
20 to 30 seconds 23
30 to 40 seconds 11

40 seconds to 1 minute 9
1 to 1.5 minutes 2

1.5 minutes to 5 minutes 5
not reported 13

Figure 4: Result of running our MILP on E coli iAF1260 with 2382 reactions (981 reactions after
reduction)
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