






5	 rs4976602	 167,843,998	 A/G	 0.11	 0.96	(0.0069)	 2.7	×	10-8	
6	 rs1487441	 98,553,894	 A/G	 0.49	 1.031	(0.0047)	 9.5	×	10-12	
18	 rs1788784	 21,159,630	 G/A	 0.66	 1.031	(0.0042)	 1.3	×	10-10	

	

Figure	2.	Manhattan	plot	of	data	available	in	MHQ	follow-up	

	
	

	

Table	3.	Top	lead	SNPs	associated	with	MHQ	data	(A1=	effect	allele,	Freq.	=	frequency	

of	A1	allele.	

Chr	 SNP	 Location	(Bp)	 A1/A2	 Freq.	 OR	(S.E.)	 P-value	
1	 rs7542974	 72,544,704	 A/G	 0.25	 1.032	(0.0053)	 3.8	×	10-8	
1	 rs485929	 74,678,285	 G/A	 0.39	 1.028	(0.0048)	 3.7	×	10-8	
1	 rs532246	 84,411,238	 G/A	 0.74	 0.968	(0.0051)	 7.0	×	10-9	
1	 rs2789111	 243,346,404	 C/T	 0.38	 0.968	(0.0054)	 1.5	×	10-10	
2	 rs35028061	 49,479,987	 GT/G	 0.38	 1.029	(0.005)	 1.9	×	10-8	
3	 rs9917656	 48,581,513	 C/T	 0.30	 1.03	(0.0056)	 3.2	×	10-8	
3	 rs13082026	 52,962,681	 T/C	 0.44	 0.972	(0.005)	 2.4	×	10-8	
4	 rs57692580	 106,214,476	 A/T	 0.39	 0.973	(0.0046)	 2.8	×	10-8	
5	 rs34635	 60,513,501	 G/A	 0.42	 0.972	(0.0045)	 1.2	×	10-8	
5	 rs146681214	 133,867,867	 AC/A	 0.18	 1.039	(0.0065)	 3.6	×	10-9	
5	 rs2336897	 167,050,276	 T/C	 0.69	 1.031	(0.0061)	 5.2	×	10-9	
6	 rs3993747	 31,580,507	 G/A	 0.35	 0.969	(0.0044)	 9.5	×	10-10	
6	 rs59732267	 98,432,302	 CA/C	 0.52	 0.972	(0.0047)	 2.5	×	10-8	
8	 rs28716319	 83,269,854	 G/A	 0.28	 1.031	(0.0057)	 2.7	×	10-8	
8	 rs13262595	 143,316,970	 G/A	 0.56	 1.03	(0.005)	 1.0	×	10-9	
9	 rs6474966	 15,757,537	 A/G	 0.46	 1.028	(0.0049)	 2.8	×	10-8	
9	 rs11793831	 23,362,311	 T/G	 0.42	 1.027	(0.0053)	 4.3	×	10-8	
11	 rs1984389	 31,740,989	 C/A	 0.54	 0.973	(0.0046)	 2.4	×	10-8	
11	 rs10791143	 131,278,676	 G/A	 0.62	 1.034	(0.0046)	 1.5	×	10-11	
16	 rs4616299	 7,657,432	 G/A	 0.40	 0.972	(0.005)	 1.2	×	10-8	
17	 rs56058331	 56,427,128	 A/G	 0.42	 1.029	(0.0047)	 1.0	×	10-8	
18	 rs1261078	 52,866,791	 G/A	 0.05	 0.927	(0.0107)	 5.6	×	10-12	
19	 rs34232444	 4,965,404	 C/T	 0.35	 1.029	(0.0057)	 2.5	×	10-8	
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19	 rs3746187	 18,279,816	 G/A	 0.40	 0.968	(0.0049)	 9.8	×	10-11	
19	 rs429358	 45,411,941	 C/T	 0.15	 0.942	(0.0067)	 4.6	×	10-19	

	

	

Loci	discovery	and	annotation	of	the	Email	contact	and	MHQ	phenotypes	

The	nine	loci	associated	with	email	contact	were	found	to	contain	an	

overrepresentation	of	SNPs	found	in	ncRNA	intronic	regions	(57.5%),	as	well	as	SNPs	

found	in	intronic	regions	(28.4%)	(Figure	3	and	Supplementary	Table	S1).	Evidence	was	

also	found	that	these	loci	contained	regulatory	regions	of	the	genome,	indicated	by	

32.0%	of	the	SNPs	in	the	genomic	loci	having	RegulomeDB	(RDB)	less	than	2,	indicating	

that	genetic	variation	in	these	loci	is	likely	to	affect	gene	expression.	Finally,	77.6%	of	

the	SNPs	within	the	independent	genomic	loci	had	a	minimum	chromatin	state	of	<	8.	

This	is	further	evidence	that	these	loci	are	located	in	an	open	chromatin	state,	providing	

more	evidence	that	they	are	located	within	regulatory	regions.	Using	the	GWAS	

catalogue,	lead	and	tagging	SNPs	from	these	9	independent	genomic	loci	were	found	to	

overlap	with	loci	previously	associated	body	mass	index	and	obesity	(2	loci),	as	well	as	

with	educational	attainment	and	intelligence	(3	loci).	(Supplementary	Table	S2).	

	

Figure	3.	Functional	categories,	RDB	scores,	and	minimum	chromatin	states	for	

independent	risk	loci	associated	with	UKB	email	contact.	

	
	

The	25	loci	associated	with	the	MHQ	participation	phenotype	notably	included	

rs429358,	a	missense	mutation	in	APOE.	The	rs429358-C	allele	is	a	marker	for	APOE-	ε4	

genotype,	and	the	direction	of	the	effect	for	this	SNP	indicated	that	participants	with	

more	copies	of	APOE-ε4	were	less	likely	to	participate	in	the	MHQ	(OR	=	

1.029±0.0057SE	for	each	additional	ε4	copy).	Functional	annotation	of	the	SNPs	found	

within	these	regions	showed	that	these	SNPs	were	primarily	located	in	introns	(47.3%),	
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and	intergenic	regions	(17.7%)	and	2.9%	had	no	known	function	(Figure	4	and	

Supplementary	Table	S8).	Of	these	SNPs,	30.8%	had	an	RDB	score	of	less	than	2	and	

83.8%	had	a	minimum	chromatin	value	of	less	than	8	providing	further	evidence	that	

these	variants	are	located	in	regions	of	the	genome	that	are	linked	to	gene	regulation.	

These	25	loci	showed	overlap	with	the	loci	identified	in	previous	GWAS	examining	

cognitive	abilities	and	education	(6	loci),	Schizophrenia	(5	loci),	and	Alzheimer’s	

Disease	(1	locus)	(Supplementary	Table	S9).		

	

Figure	4.	Functional	categories,	RDB	scores,	and	minimum	chromatin	states	for	

independent	risk	loci	associated	with	UKB	MHQ	participation.	

	
	

Gene	mapping	of	the	Email	access	and	MHQ	phenotype	

We	used	three	strategies	for	mapping	the	SNPs	in	the	genome	wide	significant	

loci	to	genes.	First,	positional	mapping	aligned	the	SNPs	from	the	independent	genomic	

loci	associated	with	email	contact	to	20	genes	by	using	location,	whereas	eQTL	mapping	

matched	cis-eQTL	SNPs	to	40	genes	whose	level	of	expression	they	have	been	shown	to	

influence.	Finally,	chromatin	interaction	mapping	annotated	SNPs	to	a	total	of	41	genes,	

using	three-dimensional	DNA-DNA	interactions	between	the	SNPs’	genomic	regions,	

and	close	or	distant	genes	(Supplementary	Tables	S4	and	S5,	Supplementary	Figure	1a–

f).	Collectively	these	mapping	strategies	identified	70	unique	genes,	of	which	21	were	

implicated	by	two	mapping	strategies	and	10	being	implicated	by	all	three.	A	total	of	

five	genes,	TNNI3K,	LRRIQ3,	NEGR1,	FPGT,	and	FPGT-TNNI3K,	were	implicated	using	all	

three	methods	and	showed	evidence	of	a	chromatin	interaction	between	two	

independent	genomic	risk	loci	(Supplementary	Table	S4).	Gene-based	statistics	derived	

in	MAGMA	indicated	a	role	for	72	genes	(Supplementary	Table	S5),	4	of	which	

overlapped	with	genes	implicated	by	all	three	mapping	strategies	(Figure	5).	
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Figure	5.	Number	of	genes	implicated	by	different	mapping	strategies	for	UKB	

email	contact.	

	

For	the	MHQ	data	phenotype,	positional	mapping	implicated	42	genes,	with	

eQTL	mapping	indicating	a	role	for	86	genes.	Chromatin	interaction	mapping	annotated	

a	total	of	124	genes	(Supplementary	Tables	S14	and	S15,	Supplementary	Figure	2a-m).	

Across	these	three	mapping	strategies,	181	unique	genes	were	identified	with	46	of	

these	being	implicated	by	two	mapping	strategies	and	25	being	implicated	by	all	three.	

A	total	of	181	unique	genes	were	implicated	by	all	three	mapping	strategies.	MAGMA	

was	also	used	to	indicate	a	role	for	81	genes	(Figure	6	and	Supplementary	Table	S15).	

Fifteen	of	these	genes	overlapped	with	those	identified	using	the	three	mapping	

strategies.	

Figure	6.	Number	of	genes	implicated	by	different	mapping	strategies	for	UKB	

MHQ	data.	
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Gene-set	and	gene	property	analysis	

The	presynaptic	membrane	gene-set	was	significantly	enriched	for	the	Email	

contact	phenotype	(P	=	5.19×10−7)	(Supplementary	Table	S6).	Gene	property	analysis	

showed	a	relationship	between	expression	in	the	EBV-transformed	lymphocyte	cells	(P	

=	9.24×10−4)	and	for	gene	expression	in	the	early	mid-prenatal	time	of	life	(P	=	0.004)	

(Supplementary	Tables	S9	and	S10).	

	For	the	MHQ	data	phenotype	none	of	the	gene	sets	were	enriched	

(Supplementary	Table	S16).	However,	gene	property	analysis	indicated	a	relationship	

between	gene	expression	in	the	brain	and	the	MHQ	phenotype	(P	=	2.64×10−4)	

(Supplementary	Table	S17)	when	examining	the	specific	tissue	gene	groupings	this	

relationship	was	driven	by	expression	change	in	the	cerebellar	hemisphere	(P	=	

8.52×10−6)	and	the	Cerebellum	(P	=	1.27×10−5)	(Supplementary	Table	S18).	A	

relationship	between	gene	expression	in	the	early	prenatal	lifespan	range	(P	=	0.002)	

and	the	early	mid-prenatal	lifespan	was	also	found	(P	=	5.33×10−4)	(Supplementary	

Table	S19).	

	

LD	Score	regression	analysis	

We	used	LD	score	regression	(Bulik-Sullivan	et	al.,	2015)	to	estimate	SNP	heritability	

from	the	GWAS	results.	The	LD	score	intercept	for	email	contact	and	MHQ	data	in	UK	

Biobank	were	1.013	(SE	0.008)	and	1.020	(SE	0.008)	respectively,	while	the	inflation	

ratios	were	0.037	(SE	0.025)	and	0.043	(SE	0.020),	respectively.	Heritability	on	the	

liability	scale	for	email	contact	was	0.073	(0.004SE)	and	for	MHQ	data	was	0.099	

(0.004SE),.	The	genetic	correlation	between	email	contact	and	MHQ	data	was	0.822	

(0.020SE).		

	

We	used	LD	Hub	(Zheng	et	al.,	2017)	to	estimate	genetic	correlations	with	a	large	

number	of	other	traits.	Both	email	contact	and	having	MHQ	data	were	significantly	

genetically	correlated	with	a	broad	spectrum	of	traits.	Results	for	an	illustrative	set	of	

traits	is	plotted	in	Figure	7	and	the	results	for	all	traits	are	listed	in	Supplementary	

Table	S21.	For	most	anthropometric,	behavioral,	cognitive,	psychiatric,	health-related,	

and	life-history	traits	the	direction	of	the	genetic	correlations	with	email	contact	and	

MHQ	participation	was	the	same.	In	general,	genetic	factors	associated	with	providing	
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an	email	address	for	recontact	to	UK	Biobank	and	taking	part	in	the	MHQ	were	also	

associated	with	better	health,	higher	intelligence,	lower	burden	of	psychiatric	disorders,	

and	a	slower	life-history	(e.g.,	later	age	at	menarche,	age	at	first	birth,	and	menopause).	

Both	email	contact	and	MHQ	participation	were	not	significantly	genetically	correlated	

with	any	traits	categorized	as	bone,	kidney,	uric	acid,	and	metals	(transferrin/ferritin).	

Additionally,	email	contact	was	not	significantly	genetically	correlated	with	glycemic	

traits	while	MHQ	data	availability	was	not	genetically	correlated	with	hormone	or	

metabolite	phenotypes.		

	

Figure	 7.	 LD	 Score	 genetic	 correlations	 (rg)	 with	 email	 contact	 and	 MHQ	 data.	

Correlations	that	are	significant	at	FDR	are	marked	with	an	asterisk.		

	

	
	

Replication	in	Generation	Scotland	

	 We	examined	whether	any	of	the	associations	results	for	the	email	and	MHQ	data	

phenotypes	replicated	in	an	independent	sample,	using	whether	members	of	

Generation	Scotland	participated	in	the	STRADL	follow-up	of	mental	health.	None	of	the	

independent	SNPs	in	the	UKB	GWASs	were	significant	in	Generation	Scotland	after	

Bonferroni	correction	(35	tests)	(Supplementary	Tables	S22	and	S23).	However,	the	

STRADL	data	phenotype	was	genetically	correlated	with	both	UKB	email	contact	(rg	=	

0.618,	p	=	1.98	×	10-6)	and	UKB	MHQ	data	(rg	=	0.666,	p	=	6.12	×	10-6)	and	had	a	SNP	

heritability	on	the	liability	scale	of	0.112	(SE	0.0408).	
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Discussion	
Using	data	from	UK	Biobank,	we	found	that	individuals	who	provided	an	email	address	

for	recontact	and	who	participated	in	follow-up	surveys	of	mental	health	differed	from	

those	who	did	not	with	regards	to	demographic,	psychological,	health,	and	lifestyle,	and	

genetic	factors.	Most	of	the	phenotypic	and	genetic	associations	were	in	the	same	

direction.	These	results	were	not	the	result	of	population	stratification	as	only	4%	of	the	

inflation	in	GWAS	statistics	could	be	attributed	to	factors	other	than	polygenic	

heritability.	Having	greater	educational	attainment,	being	a	non-smoker	or	a	former	

smoker,	having	fewer	hospital	diagnoses	of	illness	or	injury,	and	having	a	family	history	

of	dementia	or	a	family	history	of	serious	depression	all	predicted	greater	likelihood	of	

providing	email	contact	information.	Furthermore,	in	those	with	that	information,	those	

variables	were	also	associated	with	providing	responses	to	the	online	Mental	Health	

Questionnaire	(MHQ).	A	few	effects	went	in	the	opposite	direction,	with	men	and	

younger	individuals	more	likely	to	provide	an	email	address	to	UK	Biobank,	whereas	

women	were	more	likely	to	provide	MHQ	data.	

	 Email	contact	and	MHQ	data	availability	had	SNP	heritabilities	of	7.3%	and	9.9%	

respectively.	We	identified	nine	independent	SNPs	associated	with	email	contact	and	25	

for	MHQ	data,	more	than	for	many	GWAS	studies	of	disease	traits	in	the	same	sample.	

Loci	for	both	phenotypes	were	mostly	located	within	regulatory	regions.	Of	particular	

interest	was	the	association	of	MHQ	data	availability	with	the	apolipoprotein	E	(APOE)	

ε4	genotype	that	is	a	major	risk	factor	for	Alzheimer's	disease.	(Coon	et	al.,	2007).		

While	none	of	these	variants	individually	replicated	in	an	independent	data	set	

(Generation	Scotland),	this	may	be	because	Generation	Scotland	includes	a	wider	age	

range	of	participants,	the	STRADL	follow-up	was	sent	by	post	rather	than	done	online,	

and	because	Generation	Scotland	may	be	underpowered	for	finding	these	effects.	

However,	the	strong	genetic	correlation	between	STRADL	participation	and	the	email	

contact	and	MHQ	data	phenotypes	suggests	that	similar	genetic	factors	are	driving	

participation	in	follow-up	studies.	

	 Email	contact	and	MHQ	data	shared	similar	genetic	correlations	with	other	traits.	

There	were	strong	genetic	correlations	between	email	contact	and	indicators	of	

cognitive	ability	(college	completion,	rg	=	0.76;	intelligence,	rg	=	0.73).	Contact	and	data	

availability	were	also	genetically	associated	with	a	lower	burden	of	genetic	risk	to	mental	

illness.	The	negative	genetic	correlation	with	schizophrenia	matches	results	from	

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 19, 2018. ; https://doi.org/10.1101/471433doi: bioRxiv preprint 

https://doi.org/10.1101/471433
http://creativecommons.org/licenses/by/4.0/


follow-up	participation	in	the	ALSPAC	cohort	using	polygenic	risk	scores	(Martin	et	al.,	

2016)	but	suggests	that	this	association	is	not	specific	to	schizophrenia.	

	 The	similarity	in	the	results	for	phenotypic	and	genetic	factors	associated	with	

email	contact	and	MHQ	data	show	that	the	availability	of	an	individual	to	be	contacted	

by	email	and	their	choice	to	participate	both	act	as	a	filter	for	selection	into	the	

subsample	of	UK	Biobank	with	Mental	Health	Questionnaire	data.	Notably,	self-reports	

of	a	family	history	of	dementia	and	a	family	history	of	severe	depression	were	more	

common	in	email	providers	and	MHQ	completers,	but	individual	genetic	associations	

with	both	these	disorders	showed	significant	negative	correlations.	Individuals	who	

reported	dementia	or	severe	depression	in	their	family	were	therefore	more	likely	to	be	

MHQ	participants,	even	though	having	a	personal	genetic	predisposition	to	these	

disorders	may	also	decrease	their	likelihood	of	participating.	Knowledge	of	family	

history	may	be	a	strong	motivational	factor	for	participating	in	follow-up	surveys	of	

mental	health.		

	 Our	sample	was	large	enough	that	we	were	able	to	identify	specific	genetic	loci	

that	were	related	to	participation	in	follow	up	studies	of	mental	health.	We	were	also	

able	to	analyse	the	genetics	of	one	particular	factor	(the	availability	of	email	contact	for	

receiving	invitations)	that	is	heavily	involved	in	the	specific	process	of	follow-up	

participation.	However,	a	limitation	of	our	analysis	is	that	information	on	email	contact	

was	available	for	participants	at	baseline	only	and	thus	did	not	distinguish	the	entire	

subset	of	participants	who	would	have	received	an	email	invitation.	Another	limitation	

is	that	information	from	electronic	health	records	only	covered	hospital	admissions	and	

thus	would	underestimate	associations	with	milder	health	conditions.	

	 Individuals	in	large	epidemiological	cohorts	who	participate	in	follow-up	surveys	

differ	in	their	patterns	of	phenotypic	and	genetic	association	with	traits	of	interest	from	

those	who	do	not.	Because	most	factors	had	a	consistent	relationship	with	the	two-step	

selection	process	(contactability	by	email	and	opting	to	participate	in	follow-up),	it	is	

likely	that	these	same	factors	may	also	differentiate	people	who	choose	to	become	part	

of	the	cohort	in	the	first	place	from	other	people	in	the	larger	population.	These	factors	

are	very	likely	to	bias	the	selection	of	individuals	selected	for	inclusion	in	population-

based	studies	towards	those	with	positive	family	histories	but	lower	personal	genetic	

risk	of	mental	health	conditions	such	as	depression	and	dementia.	Going	forward,	

studies	should	evaluate	(e.g.,	using	simulations	(Munafò	et	al.,	2018))	the	particular	
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effects	that	selection	and	attrition	might	have	on	effect	estimates	and,	where	available,	

check	results	from	follow-up	assessments	against	those	from	baseline	data,	even	in	the	

cases	where	the	follow-up	data	provides	better	or	more	comprehensive	measures	of	

phenotypes	of	interest.		Because	continued	participation	in	large	cohorts	studies	

recapitulates	the	“healthy	volunteer”	effect,	comparing	responders	and	non-responders	

in	follow-up	surveys	may	be	a	useful	way	of	selection	bias	may	influence	the	

generalizability	of	findings.		
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