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Abstract	
People	who	opt	to	participate	in	scientific	studies	tend	to	be	healthier,	wealthier,	and	

more	educated	than	the	broader	population.	While	selection	bias	does	not	always	pose	a	

problem	for	analysing	the	relationships	between	exposures	and	diseases	or	other	

outcomes,	it	can	lead	to	biased	effect	size	estimates.	Biased	estimates	may	weaken	the	

utility	of	genetic	findings	because	the	goal	is	often	to	make	inferences	in	a	new	sample	

(such	as	in	polygenic	risk	score	analysis).	We	used	data	from	UK	Biobank	and	

Generation	Scotland	and	conducted	phenotypic	and	genome-wide	association	analyses	

on	two	phenotypes	that	reflected	mental	health	data	availability:	(1)	whether	

participants	were	contactable	by	email	for	follow-up)	and	(2)	whether	participants	

responded	to	a	follow-up	surveys	of	mental	health.	We	identified	nine	genetic	loci	

associated	with	email	contact	and	25	loci	associated	with	mental	health	survey	

completion.	Both	phenotypes	were	positively	genetically	correlated	with	higher	

educational	attainment	and	better	health	and	negatively	genetically	correlated	with	

psychological	distress	and	schizophrenia.	Recontact	availability	and	follow-up	

participation	can	act	as	further	genetic	filters	for	data	on	mental	health	phenotypes.		
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Introduction	
Selection	bias	in	epidemiological	and	cohort	studies	occurs	when	characteristics	of	

individuals	that	influence	their	likelihood	of	becoming	or	remaining	as	study	

participants	are	also	related	to	exposure	to	risk	factors	or	to	outcomes	of	interest	

(Hernán,	Hernández-Díaz,	&	Robins,	2004).	Selection	bias	can	be	introduced	at	many	

stages	of	a	study,	including	at	recruitment,	at	follow	up,	during	record	linkage,	or	in	

non-response	to	questionnaires	or	tasks	and	has	the	potential	to	lead	to	misestimates	of	

phenotypic	and	genetic	associations	(Munafò,	Tilling,	Taylor,	Evans,	&	Davey	Smith,	

2018).	For	example,	a	longitudinal	study	of	psychiatric	traits	identified	several	

characteristics	related	to	loss-to-follow-up	including	age;	education;	ancestry;	

geographic	location;	and	the	presence,	severity,	and	comorbidity	of	anxiety	and	

depression	(Lamers	et	al.,	2012).	There	are	several	methods	for	handling	selection	bias	

if	and	when	it	needs	to	be	taken	into	consideration.	When	all	variables	that	influence	

selection	and	attrition	are	known,	then	bias	can	potentially	be	reduced	or	eliminated	by	

conditioning	on	known	variables	or	including	them	as	predictors	(Gelman	&	Hill,	2007).	

In	longitudinal	studies,	techniques	such	as	inverse	probability	weighting,	where	

observations	that	are	similar	to	those	that	were	lost	to	follow-up	contribute	

proportionally	more	to	the	analysis,	can	be	used	to	correct	for	selection	bias	(Robins,	

Hernán,	&	Brumback,	2000).	In	study	designs	where	the	goal	is	to	establish	an	

association	between	an	exposure	and	a	disease	outcome,	selection	bias	is	not	an	issue	as	

long	as	there	is	sufficient	variation	in	exposure	(Fry	et	al.,	2017).	

	 Initial	ascertainment	and	recontact	have	been	demonstrated	to	have	a	genetic	

basis.	For	example,	individuals	who	had	a	high	genetic	risk	of	schizophrenia	(calculated	

from	polygenic	risk	scores)	were	less	likely	to	complete	follow-up	questionnaires	or	

attend	additional	data	collection	sessions	(Martin	et	al.,	2016).	Participation	in	large	

cohort	studies	is	already	known	to	have	a	“healthy	volunteer”	effect	(Fry	et	al.,	2017)	so	

we	sought	to	characterise	the	phenotypic	and	genetic	correlates	of	participation	in	

follow-up	studies	that	are	focused	on	assessing	mental	health	traits.	To	this	end,	we	

analysed	recontact	and	participation	in	two	studies:	the	Mental	Health	Questionnaire		

(MHQ)	online	follow-up	in	UK	Biobank	(Davis	et	al.,	2018)	and	the	Stratifying	Resilience	

and	Depression	Longitudinally	(STRADL)	study	in	Generation	Scotland	(Navrady	et	al.,	

2018).	We	conducted	phenotypic	and	genome-wide	association	analyses	in	UK	Biobank	

to	determine	how	participants	who	completed	the	MHQ	differed	from	the	rest	of	the	
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sample.	We	also	analysed	factors	related	to	whether	UK	Biobank	participants	were	

contactable	by	email,	as	email	invitations	were	the	primary	method	of	recruitment	into	

the	MHQ	follow-up.	We	used	participation	in	the	STRADL	questionnaire	follow-up	in	

Generation	Scotland	as	a	replication	data	set	for	genetic	findings.	

	

	

	

Methods	
Samples	

UK	Biobank	(UKB)	(Sudlow	et	al.,	2015)	is	a	population-based	study	of	health	in	middle-

aged	and	older	individuals	(N	=	502,616).	Eligible	participants	were	aged	40	to	69	and	

recruited	from	22	assessment	centres	in	the	United	Kingdom.	UK	Biobank	received	

ethical	approval	from	the	Research	Ethics	Committee	(reference	11/NW/0382).	The	

present	study	was	conducted	under	UK	Biobank	application	4844.	

Generation	Scotland:	Scottish	Family	Health	Study	(GS:SFHS)	is	a	family-based	

cohort	(N	=	24,091)	recruited	through	general	practitioners	in	Scotland	(Smith	et	al.,	

2012;	Smith	et	al.,	2006).	Eligible	participants	were	individuals	aged	18	years	or	older	

who	were	able	to	recruit	one	or	more	family	members	into	the	study.	GS:SFHS	received	

ethical	approval	from	the	Tayside	Research	Ethics	Committee	(reference	

05/S1401/89).	

	

Recontact	and	participation	measures	

During	recruitment	and	baseline	assessment	(2006-2010),	UKB	participants	were	given	

the	option	of	supplying	an	email	address	for	receiving	newsletters	and	invitations	for	

online	follow-up	assessments.	Of	the	317,785	participants	who	supplied	an	email	

address,	294,738	provided	a	usable	one	while	the	remaining	23,047	either	provided	a	

syntactically	incorrect	or	non-existent	email	address	or	asked	that	their	email	address	

be	withdrawn.	An	email	address	was	not	provided	by	184,831	UKB	participants	during	

baseline	assessment.	While	this	variable	is	called	“email	access”	in	the	UK	Biobank	

documentation	(field	20005),	we	refer	to	this	phenotype	as	“email	contact”.	Although	

additional	UK	Biobank	participants	have	subsequently	provided	an	email	address	for	

recontact	(Davis	et	al.,	2018),	here	we	analyse	the	baseline	availability	of	email	contact	
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so	that	it	can	be	related	to	other	baseline	factors	that	were	captured	

contemporaneously.	

	 Starting	in	2016,	UKB	participants	who	had	provided	email	contact	were	sent	an	

invitation	to	an	online	Mental	Health	Questionnaire	(MHQ)	entitled	"thoughts	and	

feelings"	(Davis	et	al.,	2018).	Participants	who	had	not	started	the	questionnaire	or	had	

only	partially	completed	it	were	sent	reminder	emails	after	two	weeks	and	again	after	

four	months.	Participants	also	received	information	about	the	MHQ	in	a	postal	

newsletter	with	instructions	on	how	to	participate.	From	data	supplied	by	UK	Biobank	

on	12	June	2018,	157,396	participants	had	completed	the	MHQ.	Responses	to	the	MHQ	

were	submitted	between	July	2016	and	July	2017.	Mean	time	between	baseline	

assessment	and	MHQ	follow-up	was	7.5	years	(range	5.9–11.2	years).	We	refer	to	this	

phenotype	as	“MHQ	data”.		

	 In	2015,	GS:SFHS	participants	were	sent	a	questionnaire	package	by	post	as	part	

of	the	Stratifying	Resilience	and	Depression	Longitudinally	(STRADL)	project	with	the	

aim	of	studying	psychological	resilience	(Navrady	et	al.,	2018).	Participants	were	

eligible	for	follow	up	if	they	had	consented	to	recontact	and	if	they	had	a	Community	

Health	Index	(CHI)	number.	Of	the	21,525	eligible	participants,	9,618	responded	to	the	

questionnaire,	from	which	we	coded	a	“STRADL	data”	phenotype.		

	

Phenotype	analysis	

Demographic	and	health	differences	between	responders	and	non-responders	to	the	

STRADL	survey	have	been	analysed	previously	(Navrady	et	al.,	2018)	and	found	that,	

among	other	differences,	participants	who	were	women,	non-smokers,	or	who	had	low	

levels	of	psychological	distress	were	more	likely	to	respond.	We	thus	first	conducted	a	

similar	analysis	in	UK	Biobank.	We	ran	logistic	regressions	for	email	contact	and	MHQ	

data	using	R	3.5.0	(R	Development	Core	Team,	2018).	We	examined	associations	with	

age	at	initial	assessment,	sex,	geographic	region,	educational	qualification,	smoking,	

alcohol	consumption,	number	of	diagnoses	in	linked	electronic	health	records,	and	

family	history	of	dementia	and	depression.		

	 We	determined	geographic	region	by	grouping	the	assessment	centres	together	

into	regions	of	England	(South	East,	South	West,	East	Midlands,	West	Midlands,	North	

West,	North	East,	and	Yorkshire),	Greater	London,	Scotland,	and	Wales.	Education,	

smoking,	drinking,	and	family	history	were	assessed	by	means	of	a	touchscreen	
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interview	during	the	initial	assessment.	We	categorized	educational	qualifications	as	

None,	Professional,	Higher	(college	or	university),	Secondary	(A	levels,	O	levels,	GCSEs,	

CSEs),	and	Vocational	(NVQ,	HND,	HNC).	Smoking	history	had	the	responses	'Prefer	not	

to	answer',	'Never',	'Previous',	and	'Current'.	For	alcohol	drinking,	participants	reported	

their	average	weekly	and	monthly	consumption	for	different	drink	types	from	which	we	

derived	a	measure	of	average	alcohol	consumption	in	units	per	week	(Clarke	et	al.,	

2017)	and	standardized	this	variable	for	input	into	the	model.	For	linked	hospital	

records,	we	first	removed	diagnoses	related	to	pregnancy	(ICD-10	chapter	O),	

congenital	conditions	(chapter	Q),	and	health	care	provision	(chapters	U	and	Z).	For	the	

remaining	diagnoses,	we	categorized	them	into	mental	health	conditions	and	addictions	

(chapter	F),	injuries	(chapter	S,	T,	V,	and	Y),	and	all	other	diseases.	We	then	counted	the	

number	of	unique	diagnostic	codes	each	participant	had	for	the	three	categories.	

Participants	with	linked	hospital	records	who	did	not	have	any	incidences	of	a	

diagnostic	category	were	assigned	a	count	of	0	while	participants	without	linked	

records	were	set	to	missing.	

	

Genome-wide	association,	LD	Score	analysis,	and	replication	analysis	

UK	Biobank	contains	genotype	data	imputed	to	~92	million	variants	(Bycroft	et	al.,	

2017).	We	performed	QC	procedures	on	SNPs	with	filters	for	MAF	>	0.001	and	INFO	>	

0.1.	We	removed	participants	who	had	failed	genotype	platform	QC,	who	did	not	cluster	

genetically	as	White	British,	or	who	overlapped	with	Psychiatric	Genomics	Consortium	

MDD	and	Generation	Scotland	participants;	and	we	conducted	additional	filtering	on	

related	individuals	(Howard	et	al.,	2018).	This	resulted	in	16,367,095	variants	for	

371,437	individuals	for	genetic	analysis.	We	conducted	genome-wide	association	

analyses	using	BGENIE	v1.3	(Bycroft	et	al.,	2018)	that	coded	the	outcome	variables	as	

0/1	in	a	linear	regression.	We	covaried	for	age,	sex,	assessment	centre,	genotyping	

platform,	and	20	UKB-provided	principal	components.	We	approximated	odds	ratios	for	

the	SNP	effects	using	the	transformation	to	the	log-odds	scale,	log(OR) =

𝛽	 (𝑘	(1	 − 	𝑘))⁄ ,	where	k	is	the	fraction	of	participants	who	were	coded	as	1	in	the	

outcomes	variable	(email	contact	k	=	0.6,	MHQ	data	k	=		0.33).	We	calculated	SNP	

heritabilities	on	the	liability	scale	using	LD	score	regression	(Bulik-Sullivan	et	al.,	2015)	

and	genetic	correlations	with	235	traits	using	LD	Hub	(Zheng	et	al.,	2017).	We	used	
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False	Discovery	Rate	to	correct	for	multiple	testing	when	assessing	the	significance	of	

the	genetic	correlations.	

	 For	Generation	Scotland,	8,642,105	imputed	variants	were	available	for	19,994	

participants	(Hall	et	al.,	2018).	Variants	with	MAF	<	0.005	and	INFO	<	0.8	were	

excluded.	We	performed	association	tests	on	the	STRADL	data	phenotype	using	the	

mixed	linear	model	with	candidate	marker	excluded	(MLMe)	approach	in	GCTA	v1.91.1	

(Yang,	Zaitlen,	Goddard,	Visscher,	&	Price,	2014).	We	constructed	two	GRMs	using	a	

leave-one-chromosome-out	(LOCO)	approach:	one	GRM	that	included	all	relationship	

coefficients	and	a	second	GRM	that	set	relatedness	to	0	when	the	relationship	

coefficients	<	0.025	(Zaitlen	et	al.,	2013).	We	fitted	age	and	sex	as	covariates.	To	see	if	

the	results	from	the	UKB	phenotypes	replicated,	we	looked	up	each	independent	

significant	SNP	(or	an	LD	proxy)	in	the	GWAS	of	the	STRADL	data	phenotype	and	

assessed	whether	they	were	significant	after	Bonferroni	correction.	We	also	calculated	

the	LD	score	genetic	correlation	of	the	STRADL	data	phenotype	with	the	UKB	email	and	

MHQ	data	phenotypes.		

	

Loci	discovery	and	functional	annotation	

Genomic	risk	loci	were	derived	using	clumping,	carried	out	in	FUnctional	

Mapping	and	Annotation	of	genetic	associations	(FUMA)	(Watanabe,	Taskesen,	van	

Bochoven,	&	Posthuma,	2017).	First,	FUMA	was	used	to	identify	independent	significant	

SNPs	using	the	SNP2GENE	function.	SNPs	with	a	P-value	of	≤	5	×10−8	and	independent	of	

other	genome	wide	significant	SNPs	at	r2	<	0.6	were	identified	from	the	summary	GWAS	

statistics	of	the	UKB	email	contact	and	MHQ	data	phenotypes.	Second,	using	these	

independent	significant	SNPs,	candidate	SNPs	were	identified	as	all	SNPs	that	had	a	

MAF	>	0.001	and	were	in	LD	of	≥	r2	0.6	with	at	least	one	of	the	independent	significant	

SNPs.	These	candidate	SNPs	included	those	from	the	UK10K/1000G	and	the	haplotype	

reference	consortia	panel	(UK	Biobank	release	1)	and	may	not	have	been	included	in	

the	UKB	GWASs.	Third,	lead	SNPs	were	identified	using	the	independent	significant	

SNPs.	Lead	SNPs	were	defined	as	SNPs	that	were	independent	from	each	other	at	r2	0.1.	

Finally,	genomic	risk	loci	that	were	250kb	or	closer	were	merged	to	form	a	single	locus.		

The	lead	SNPs	identified	above,	and	those	in	LD	with	the	lead	SNPs,	were	then	

mapped	to	genes	using	ANNOVAR	and	the	Ensemble	genes	build	85.	Intergenic	SNPs	

were	mapped	to	the	two	closest	up	and	down	stream	genes	which	can	result	in	them	
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being	assigned	to	multiple	genes.		eQTL	mapping	was	performed	using	each	

independent	significant	SNP	and	those	in	LD	with	it.	Those	SNP-gene	pairs	that	were	not	

significant	(FDR	≤	0.05)	were	omitted	from	the	analysis.	

	

Gene-mapping	

Genetic	variation	in	each	of	the	independent	genomic	loci	was	mapped	to	genes	

using	three	complementary	strategies.	First,	positional	mapping	was	used	to	map	SNPs	

to	genes	based	on	physical	distance.	SNPs	within	a	10kb	window	from	the	known	

protein	genes	found	in	the	human	reference	assembly	(hg19).	Second,	expression	

quantitative	trait	loci	(eQTL)	mapping	was	carried	out	by	mapping	SNPs	to	genes	if	

allelic	variation	at	the	SNP	was	associated	with	expression	levels	of	the	gene.	For	eQTL	

mapping	information	on	45	tissue	types	from	three	data	bases	(GTEx,	Blood	eQTL	

browser,	BIOS	QTL	browser)	based	on	cis-QTLs	where	a	SNPs	are	mapped	to	genes	up	

to	1Mb	away.	A	false	discovery	rate	(FDR)	of	0.05	was	used	as	a	cut	off	to	define	

significant	eQTL	associations.	

Finally,	chromatin	interaction	mapping	was	carried	out	to	map	SNPs	to	genes	

when	there	is	a	three-dimensional	DNA-DNA	interaction	between	the	independent	

genomic	risk	loci	with	a	gene	region.	Chromatin	interactions	can	involve	long-range	

interactions	between	SNPs	with	genes	as	such	no	genomic	distance	boundary	is	applied.	

Hi-C	data	of	14	tissue	types	was	used	for	chromatin	interaction	mapping.	Chromatin	

interactions	can	also	span	multiple	genes,	and	SNPs	can	be	located	in	a	region	that	

interacts	with	other	regions	also	containing	multiple	genes.	In	order	to	both	reduce	the	

number	of	genes	mapped,	and	to	increase	the	probability	that	those	genes	mapped	are	

biologically	linked	to	genetic	variation	at	the	independent	genomic	loci,	only	genes	

where	one	region	involved	with	the	interaction	overlapped	with	a	predicted	enhancer	

region	in	any	of	the	111	tissue/cell	types	found	in	the	Roadmap	Epigenomics	Project	

(Bernstein	et	al.,	2010),	and	the	other	region	was	located	in	a	gene	promoter	region	

(250bp	upstream	and	500bp	downstream	of	the	transcription	start	site	and	also	

predicted	to	be	a	promoter	region	by	the	Roadmap	Epigenomics	Project)	were	included	

here.	An	FDR	of	1×10−5	was	used	to	define	a	significant	interaction.	
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Gene-based	GWAS	

Gene-based	analyses	have	been	shown	to	increase	the	power	to	detect	

association	due	to	the	multiple	testing	burden	being	reduced,	in	addition	to	the	effect	of	

multiple	SNPs	being	combined.	Gene-based	GWAS	was	conducted	using	MAGMA	(de	

Leeuw,	Mooij,	Heskes,	&	Posthuma,	2015),	also	implemented	in	FUMA.	Regardless	of	P-

value,	all	SNPs	located	within	protein	coding	genes	were	used	to	derive	a	P-value	

describing	the	association	between	genetic	variation	across	the	gene	with	either	Email	

or	questionnaire.	The	NCBI	build	37	was	used	to	determine	the	location	and	boundaries	

of	18,877	autosomal	genes	and	linkage	disequilibrium	within	and	between	genes	was	

gauged	using	the	UK	Biobank	1	reference	panel.	A	Bonferroni	correction	was	applied	to	

control	for	the	number	of	genes	tested.			

	

Gene-set	analysis	

A	competitive	gene-set	analysis	was	conducted	in	MAGMA	to	identify	the	

biological	systems	vulnerable	to	perturbation	by	common	genetic	variation.	

Competitive	testing	examines	if	genes	within	the	gene	set	are	more	strongly	associated	

with	the	trait	of	interest	than	genes	from	outside	the	gene	set,	and	differs	from	self-

contained	testing	by	controlling	for	type	1	error	rate	as	well	as	being	able	examine	the	

biological	relevance	of	the	gene-set	under	investigation.	

A	total	of	10,894	gene-sets	(sourced	from	Gene	Ontology,	Reactome,	and,	

MSigDB)	were	examined	for	enrichment.	To	control	for	the	10,894	gene	sets	examined,	

a	Bonferroni	correction	was	applied.	

	

Results	
Phenotypic	associations	of	email	contact	and	mental	health	follow-up	(MHQ)	data	

in	UK	Biobank	

We	conducted	logistic	regressions	on	email	contact	(valid	Email	address	provided	vs	no	

valid	Email	address	provided)	and	MHQ	participation	(those	that	had	completed	the	

MHQ	vs	those	that	had	not	completed	the	MHQ)	in	UK	Biobank,	examining	the	effects	of	

age,	sex,	geographic	region,	educational	attainment,	drinking	and	smoking,	and	personal	

and	family	history	of	disease.		We	retained	participants	with	complete	data	for	analysis,	

which	resulted	in	N	=	294,381	for	email	contact	(176,321	have	email	contact,	118,060	

do	not)	and	N	=	294,381	for	MHQ	data	(93,703	provided	MHQ	data,	200,678	did	not).	
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Odds	ratios	from	the	logistic	regressions	are	listed	in	Table	1.	Women	in	UK	Biobank	

were	less	likely	to	have	provided	an	email	address	for	recontact	but	were	more	likely	to	

be	included	in	the	MHQ.	There	was	regional	variation	in	email	contact	and	MHQ	data.	

Individuals	who	attended	assessment	centres	in	Greater	London	and	the	South	West	of	

England	were	the	most	likely	to	have	provided	an	email	address	while	individuals	from	

assessment	centres	in	the	North	East	of	England	and	Scotland	were	the	least	likely.	

Individuals	with	greater	educational	attainment,	those	who	were	not	current	smokers,	

those	with	a	fewer	number	of	hospital	diagnoses,	and	those	with	a	family	history	of	

dementia	or	severe	depression	were	more	likely	to	have	email	contact	and	to	have	MHQ	

data.	

	

Table	1.	Logistic	regression	on	email	contact	(N	=	294,381)	and	MHQ	data	(N	=	

294,381).	
	 	 Email	contact	 MHQ	data	

	
Variable	 OR	(SE)	 P	 OR	(SE)	 P	

	
Age	 0.98	(0.001)	 3.91	×	10-281	 1.00	(0.001)	 0.231	

Sex	 Female	 1	 —	 1	 —	

	
Male	 1.12	(0.010)	 4.89	×	10-37	 0.90	(0.009)	 1.10	×	10-32	

Region	 East	Midlands	 1	 —	 1	 —	

	
Greater	London	 1.79	(0.042)	 7.59	×	10-188	 1.14	(0.020)	 3.78	×	10-11	

	
North	East	 0.49	(0.010)	 1.47	×	10-258	 0.88	(0.018)	 2.00	×	10-9	

	
North	West	 0.81	(0.014)	 8.28	×	10-29	 0.84	(0.015)	 4.05	×	10-19	

	
Scotland	 0.43	(0.010)	 <	2.23	×	10-308	 0.85	(0.017)	 6.61	×	10-14	

	
South	East	 0.86	(0.018)	 9.78	×	10-14	 1.15	(0.025)	 3.02	×	10-11	

	
South	West	 1.13	(0.026)	 3.36	×	10-9	 1.08	(0.023)	 3.39	×	10-4	

	
Wales	 0.59	(0.016)	 1.52	×	10-106	 0.84	(0.019)	 1.40	×	10-12	

	
West	Midlands	 0.63	(0.013)	 4.66	×	10-119	 0.83	(0.017)	 2.69	×	10-19	

	
Yorkshire	 1.00	(0.021)	 0.86		 0.94	(0.018)	 1.85	×	10-4	

Qualifications	 None	 1	 —	 1	 —	

	
Prefer	not	to	answer	 1.01	(0.047)	 0.870	 0.76	(0.050)	 1.78	×	10-5	

	
Higher	 4.28	(0.056)	 <	2.23	×	10-308	 4.42	(0.071)	 <	2.23	×	10-308	

	
Secondary	 2.66	(0.029)	 <	2.23	×	10-308	 2.61	(0.043)	 <	2.23	×	10-308	

	
Vocational	 2.06	(0.038)	 <	2.23	×	10-308	 2.07	(0.047)	 5.13	×	10-241	

	
Professional	 2.52	(0.045)	 <	2.23	×	10-308	 2.70	(0.063)	 <	2.23	×	10-308	

Smoking	 Prefer	not	to	answer	 1	 —	 1	 —	

	
Never	 1.44	(0.107)	 2.32	×	10-6	 1.56	(0.144)	 1.18	×	10-6	

	
Previous	 1.63	(0.121)	 1.28	×	10-10	 1.64	(0.151)	 6.62	×	10-8	

	
Current	 0.98	(0.074)	 0.639	 1.07	(0.101)	 0.444	

Alcohol	 Units/week	(SD)	 1.04	(0.005)	 4.99	×	10-18	 1.02	(0.004)	 4.27	×	10-6	
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Diagnoses	Yes	vs	No	 	 	 	 	 	

	
Mental	disorder	 0.71	(0.020)	 3.58	×	10-39	 0.66	(0.022)	 1.13	×	10-32	

	
Injury	 0.92	(0.009)	 2.21	×	10-23	 0.91	(0.009)	 2.37	×	10-24	

	
Other	disease	 0.97	(0.002)	 7.63	×	10-99	 0.93	(0.002)	 2.90	×	10-286	

Family	history	Yes	

vs	No	 	 	 	 	 	

	
Alzheimer's/dementia	 1.17	(0.013)	 3.68	×	10-41	 1.21	(0.016)	 5.81	×	10-60	

	
Severe	depression	 1.05	(0.012)	 2.61	×	10-5	 1.12	(0.013)	 8.32	×	10-23	

	

	

Genome-wide	association	analysis	of	email	contact	and	MHQ	data	in	UK	Biobank	

After	filtering	UK	Biobank	individuals	to	a	White	British,	unrelated	sample,	the	sample	

size	was	N	=	371,417	for	the	GWAS	of	email	contact	and	N	=	371,428	for	the	GWAS	of	

MHQ	data.	After	clumping,	there	were	nine	loci	(P	≤	5	×10−8	)	for	email	contact	(Figure	1,	

Table	2,	and	Supplementary	Table	S1)	and	25	for	MHQ	participation	(Figure	2,	Table	3,	

and	Supplementary	Table	S11).	The	lGC	was	1.29	for	email	contact	and	1.37	for	MHQ	

data.	

	

Figure	1.	Manhattan	plot	of	email	contact	in	UK	Biobank.		

	
Table	2.	Top	lead	SNPs	associated	with	email	contact	in	UK	Biobank	(A1=	effect	allele,	

Freq.	=	frequency	of	A1	allele).	

Chr	 SNP	 Location	(Bp)	 A1/A2	 Freq.	 OR	(S.E.)	 P-value	
1	 rs632180	 234,758,181	 T/C	 0.70	 0.973	(0.005)	 2.0	×	10-8	
2	 rs7597665	 34,420,702	 C/T	 0.29	 1.031	(0.005)	 1.1	×	10-9	
2	 rs1455343	 199,519,691	 T/G	 0.38	 0.974	(0.005)	 2.2	×	10-8	
3	 rs73078357	 48,695,834	 C/T	 0.12	 1.038	(0.0066)	 4.5	×	10-8	
3	 rs111488606	 49,864,924	 CA/C	 0.44	 0.973	(0.005)	 2.3	×	10-8	
5	 rs6452788	 87,712,913	 A/G	 0.24	 1.032	(0.0054)	 2.9	×	10-9	
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5	 rs4976602	 167,843,998	 A/G	 0.11	 0.96	(0.0069)	 2.7	×	10-8	
6	 rs1487441	 98,553,894	 A/G	 0.49	 1.031	(0.0047)	 9.5	×	10-12	
18	 rs1788784	 21,159,630	 G/A	 0.66	 1.031	(0.0042)	 1.3	×	10-10	

	

Figure	2.	Manhattan	plot	of	data	available	in	MHQ	follow-up	

	
	

	

Table	3.	Top	lead	SNPs	associated	with	MHQ	data	(A1=	effect	allele,	Freq.	=	frequency	

of	A1	allele.	

Chr	 SNP	 Location	(Bp)	 A1/A2	 Freq.	 OR	(S.E.)	 P-value	
1	 rs7542974	 72,544,704	 A/G	 0.25	 1.032	(0.0053)	 3.8	×	10-8	
1	 rs485929	 74,678,285	 G/A	 0.39	 1.028	(0.0048)	 3.7	×	10-8	
1	 rs532246	 84,411,238	 G/A	 0.74	 0.968	(0.0051)	 7.0	×	10-9	
1	 rs2789111	 243,346,404	 C/T	 0.38	 0.968	(0.0054)	 1.5	×	10-10	
2	 rs35028061	 49,479,987	 GT/G	 0.38	 1.029	(0.005)	 1.9	×	10-8	
3	 rs9917656	 48,581,513	 C/T	 0.30	 1.03	(0.0056)	 3.2	×	10-8	
3	 rs13082026	 52,962,681	 T/C	 0.44	 0.972	(0.005)	 2.4	×	10-8	
4	 rs57692580	 106,214,476	 A/T	 0.39	 0.973	(0.0046)	 2.8	×	10-8	
5	 rs34635	 60,513,501	 G/A	 0.42	 0.972	(0.0045)	 1.2	×	10-8	
5	 rs146681214	 133,867,867	 AC/A	 0.18	 1.039	(0.0065)	 3.6	×	10-9	
5	 rs2336897	 167,050,276	 T/C	 0.69	 1.031	(0.0061)	 5.2	×	10-9	
6	 rs3993747	 31,580,507	 G/A	 0.35	 0.969	(0.0044)	 9.5	×	10-10	
6	 rs59732267	 98,432,302	 CA/C	 0.52	 0.972	(0.0047)	 2.5	×	10-8	
8	 rs28716319	 83,269,854	 G/A	 0.28	 1.031	(0.0057)	 2.7	×	10-8	
8	 rs13262595	 143,316,970	 G/A	 0.56	 1.03	(0.005)	 1.0	×	10-9	
9	 rs6474966	 15,757,537	 A/G	 0.46	 1.028	(0.0049)	 2.8	×	10-8	
9	 rs11793831	 23,362,311	 T/G	 0.42	 1.027	(0.0053)	 4.3	×	10-8	
11	 rs1984389	 31,740,989	 C/A	 0.54	 0.973	(0.0046)	 2.4	×	10-8	
11	 rs10791143	 131,278,676	 G/A	 0.62	 1.034	(0.0046)	 1.5	×	10-11	
16	 rs4616299	 7,657,432	 G/A	 0.40	 0.972	(0.005)	 1.2	×	10-8	
17	 rs56058331	 56,427,128	 A/G	 0.42	 1.029	(0.0047)	 1.0	×	10-8	
18	 rs1261078	 52,866,791	 G/A	 0.05	 0.927	(0.0107)	 5.6	×	10-12	
19	 rs34232444	 4,965,404	 C/T	 0.35	 1.029	(0.0057)	 2.5	×	10-8	
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19	 rs3746187	 18,279,816	 G/A	 0.40	 0.968	(0.0049)	 9.8	×	10-11	
19	 rs429358	 45,411,941	 C/T	 0.15	 0.942	(0.0067)	 4.6	×	10-19	

	

	

Loci	discovery	and	annotation	of	the	Email	contact	and	MHQ	phenotypes	

The	nine	loci	associated	with	email	contact	were	found	to	contain	an	

overrepresentation	of	SNPs	found	in	ncRNA	intronic	regions	(57.5%),	as	well	as	SNPs	

found	in	intronic	regions	(28.4%)	(Figure	3	and	Supplementary	Table	S1).	Evidence	was	

also	found	that	these	loci	contained	regulatory	regions	of	the	genome,	indicated	by	

32.0%	of	the	SNPs	in	the	genomic	loci	having	RegulomeDB	(RDB)	less	than	2,	indicating	

that	genetic	variation	in	these	loci	is	likely	to	affect	gene	expression.	Finally,	77.6%	of	

the	SNPs	within	the	independent	genomic	loci	had	a	minimum	chromatin	state	of	<	8.	

This	is	further	evidence	that	these	loci	are	located	in	an	open	chromatin	state,	providing	

more	evidence	that	they	are	located	within	regulatory	regions.	Using	the	GWAS	

catalogue,	lead	and	tagging	SNPs	from	these	9	independent	genomic	loci	were	found	to	

overlap	with	loci	previously	associated	body	mass	index	and	obesity	(2	loci),	as	well	as	

with	educational	attainment	and	intelligence	(3	loci).	(Supplementary	Table	S2).	

	

Figure	3.	Functional	categories,	RDB	scores,	and	minimum	chromatin	states	for	

independent	risk	loci	associated	with	UKB	email	contact.	

	
	

The	25	loci	associated	with	the	MHQ	participation	phenotype	notably	included	

rs429358,	a	missense	mutation	in	APOE.	The	rs429358-C	allele	is	a	marker	for	APOE-	ε4	

genotype,	and	the	direction	of	the	effect	for	this	SNP	indicated	that	participants	with	

more	copies	of	APOE-ε4	were	less	likely	to	participate	in	the	MHQ	(OR	=	

1.029±0.0057SE	for	each	additional	ε4	copy).	Functional	annotation	of	the	SNPs	found	

within	these	regions	showed	that	these	SNPs	were	primarily	located	in	introns	(47.3%),	
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and	intergenic	regions	(17.7%)	and	2.9%	had	no	known	function	(Figure	4	and	

Supplementary	Table	S8).	Of	these	SNPs,	30.8%	had	an	RDB	score	of	less	than	2	and	

83.8%	had	a	minimum	chromatin	value	of	less	than	8	providing	further	evidence	that	

these	variants	are	located	in	regions	of	the	genome	that	are	linked	to	gene	regulation.	

These	25	loci	showed	overlap	with	the	loci	identified	in	previous	GWAS	examining	

cognitive	abilities	and	education	(6	loci),	Schizophrenia	(5	loci),	and	Alzheimer’s	

Disease	(1	locus)	(Supplementary	Table	S9).		

	

Figure	4.	Functional	categories,	RDB	scores,	and	minimum	chromatin	states	for	

independent	risk	loci	associated	with	UKB	MHQ	participation.	

	
	

Gene	mapping	of	the	Email	access	and	MHQ	phenotype	

We	used	three	strategies	for	mapping	the	SNPs	in	the	genome	wide	significant	

loci	to	genes.	First,	positional	mapping	aligned	the	SNPs	from	the	independent	genomic	

loci	associated	with	email	contact	to	20	genes	by	using	location,	whereas	eQTL	mapping	

matched	cis-eQTL	SNPs	to	40	genes	whose	level	of	expression	they	have	been	shown	to	

influence.	Finally,	chromatin	interaction	mapping	annotated	SNPs	to	a	total	of	41	genes,	

using	three-dimensional	DNA-DNA	interactions	between	the	SNPs’	genomic	regions,	

and	close	or	distant	genes	(Supplementary	Tables	S4	and	S5,	Supplementary	Figure	1a–

f).	Collectively	these	mapping	strategies	identified	70	unique	genes,	of	which	21	were	

implicated	by	two	mapping	strategies	and	10	being	implicated	by	all	three.	A	total	of	

five	genes,	TNNI3K,	LRRIQ3,	NEGR1,	FPGT,	and	FPGT-TNNI3K,	were	implicated	using	all	

three	methods	and	showed	evidence	of	a	chromatin	interaction	between	two	

independent	genomic	risk	loci	(Supplementary	Table	S4).	Gene-based	statistics	derived	

in	MAGMA	indicated	a	role	for	72	genes	(Supplementary	Table	S5),	4	of	which	

overlapped	with	genes	implicated	by	all	three	mapping	strategies	(Figure	5).	
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Figure	5.	Number	of	genes	implicated	by	different	mapping	strategies	for	UKB	

email	contact.	

	

For	the	MHQ	data	phenotype,	positional	mapping	implicated	42	genes,	with	

eQTL	mapping	indicating	a	role	for	86	genes.	Chromatin	interaction	mapping	annotated	

a	total	of	124	genes	(Supplementary	Tables	S14	and	S15,	Supplementary	Figure	2a-m).	

Across	these	three	mapping	strategies,	181	unique	genes	were	identified	with	46	of	

these	being	implicated	by	two	mapping	strategies	and	25	being	implicated	by	all	three.	

A	total	of	181	unique	genes	were	implicated	by	all	three	mapping	strategies.	MAGMA	

was	also	used	to	indicate	a	role	for	81	genes	(Figure	6	and	Supplementary	Table	S15).	

Fifteen	of	these	genes	overlapped	with	those	identified	using	the	three	mapping	

strategies.	

Figure	6.	Number	of	genes	implicated	by	different	mapping	strategies	for	UKB	

MHQ	data.	
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Gene-set	and	gene	property	analysis	

The	presynaptic	membrane	gene-set	was	significantly	enriched	for	the	Email	

contact	phenotype	(P	=	5.19×10−7)	(Supplementary	Table	S6).	Gene	property	analysis	

showed	a	relationship	between	expression	in	the	EBV-transformed	lymphocyte	cells	(P	

=	9.24×10−4)	and	for	gene	expression	in	the	early	mid-prenatal	time	of	life	(P	=	0.004)	

(Supplementary	Tables	S9	and	S10).	

	For	the	MHQ	data	phenotype	none	of	the	gene	sets	were	enriched	

(Supplementary	Table	S16).	However,	gene	property	analysis	indicated	a	relationship	

between	gene	expression	in	the	brain	and	the	MHQ	phenotype	(P	=	2.64×10−4)	

(Supplementary	Table	S17)	when	examining	the	specific	tissue	gene	groupings	this	

relationship	was	driven	by	expression	change	in	the	cerebellar	hemisphere	(P	=	

8.52×10−6)	and	the	Cerebellum	(P	=	1.27×10−5)	(Supplementary	Table	S18).	A	

relationship	between	gene	expression	in	the	early	prenatal	lifespan	range	(P	=	0.002)	

and	the	early	mid-prenatal	lifespan	was	also	found	(P	=	5.33×10−4)	(Supplementary	

Table	S19).	

	

LD	Score	regression	analysis	

We	used	LD	score	regression	(Bulik-Sullivan	et	al.,	2015)	to	estimate	SNP	heritability	

from	the	GWAS	results.	The	LD	score	intercept	for	email	contact	and	MHQ	data	in	UK	

Biobank	were	1.013	(SE	0.008)	and	1.020	(SE	0.008)	respectively,	while	the	inflation	

ratios	were	0.037	(SE	0.025)	and	0.043	(SE	0.020),	respectively.	Heritability	on	the	

liability	scale	for	email	contact	was	0.073	(0.004SE)	and	for	MHQ	data	was	0.099	

(0.004SE),.	The	genetic	correlation	between	email	contact	and	MHQ	data	was	0.822	

(0.020SE).		

	

We	used	LD	Hub	(Zheng	et	al.,	2017)	to	estimate	genetic	correlations	with	a	large	

number	of	other	traits.	Both	email	contact	and	having	MHQ	data	were	significantly	

genetically	correlated	with	a	broad	spectrum	of	traits.	Results	for	an	illustrative	set	of	

traits	is	plotted	in	Figure	7	and	the	results	for	all	traits	are	listed	in	Supplementary	

Table	S21.	For	most	anthropometric,	behavioral,	cognitive,	psychiatric,	health-related,	

and	life-history	traits	the	direction	of	the	genetic	correlations	with	email	contact	and	

MHQ	participation	was	the	same.	In	general,	genetic	factors	associated	with	providing	
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an	email	address	for	recontact	to	UK	Biobank	and	taking	part	in	the	MHQ	were	also	

associated	with	better	health,	higher	intelligence,	lower	burden	of	psychiatric	disorders,	

and	a	slower	life-history	(e.g.,	later	age	at	menarche,	age	at	first	birth,	and	menopause).	

Both	email	contact	and	MHQ	participation	were	not	significantly	genetically	correlated	

with	any	traits	categorized	as	bone,	kidney,	uric	acid,	and	metals	(transferrin/ferritin).	

Additionally,	email	contact	was	not	significantly	genetically	correlated	with	glycemic	

traits	while	MHQ	data	availability	was	not	genetically	correlated	with	hormone	or	

metabolite	phenotypes.		

	

Figure	 7.	 LD	 Score	 genetic	 correlations	 (rg)	 with	 email	 contact	 and	 MHQ	 data.	

Correlations	that	are	significant	at	FDR	are	marked	with	an	asterisk.		

	

	
	

Replication	in	Generation	Scotland	

	 We	examined	whether	any	of	the	associations	results	for	the	email	and	MHQ	data	

phenotypes	replicated	in	an	independent	sample,	using	whether	members	of	

Generation	Scotland	participated	in	the	STRADL	follow-up	of	mental	health.	None	of	the	

independent	SNPs	in	the	UKB	GWASs	were	significant	in	Generation	Scotland	after	

Bonferroni	correction	(35	tests)	(Supplementary	Tables	S22	and	S23).	However,	the	

STRADL	data	phenotype	was	genetically	correlated	with	both	UKB	email	contact	(rg	=	

0.618,	p	=	1.98	×	10-6)	and	UKB	MHQ	data	(rg	=	0.666,	p	=	6.12	×	10-6)	and	had	a	SNP	

heritability	on	the	liability	scale	of	0.112	(SE	0.0408).	
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Discussion	
Using	data	from	UK	Biobank,	we	found	that	individuals	who	provided	an	email	address	

for	recontact	and	who	participated	in	follow-up	surveys	of	mental	health	differed	from	

those	who	did	not	with	regards	to	demographic,	psychological,	health,	and	lifestyle,	and	

genetic	factors.	Most	of	the	phenotypic	and	genetic	associations	were	in	the	same	

direction.	These	results	were	not	the	result	of	population	stratification	as	only	4%	of	the	

inflation	in	GWAS	statistics	could	be	attributed	to	factors	other	than	polygenic	

heritability.	Having	greater	educational	attainment,	being	a	non-smoker	or	a	former	

smoker,	having	fewer	hospital	diagnoses	of	illness	or	injury,	and	having	a	family	history	

of	dementia	or	a	family	history	of	serious	depression	all	predicted	greater	likelihood	of	

providing	email	contact	information.	Furthermore,	in	those	with	that	information,	those	

variables	were	also	associated	with	providing	responses	to	the	online	Mental	Health	

Questionnaire	(MHQ).	A	few	effects	went	in	the	opposite	direction,	with	men	and	

younger	individuals	more	likely	to	provide	an	email	address	to	UK	Biobank,	whereas	

women	were	more	likely	to	provide	MHQ	data.	

	 Email	contact	and	MHQ	data	availability	had	SNP	heritabilities	of	7.3%	and	9.9%	

respectively.	We	identified	nine	independent	SNPs	associated	with	email	contact	and	25	

for	MHQ	data,	more	than	for	many	GWAS	studies	of	disease	traits	in	the	same	sample.	

Loci	for	both	phenotypes	were	mostly	located	within	regulatory	regions.	Of	particular	

interest	was	the	association	of	MHQ	data	availability	with	the	apolipoprotein	E	(APOE)	

ε4	genotype	that	is	a	major	risk	factor	for	Alzheimer's	disease.	(Coon	et	al.,	2007).		

While	none	of	these	variants	individually	replicated	in	an	independent	data	set	

(Generation	Scotland),	this	may	be	because	Generation	Scotland	includes	a	wider	age	

range	of	participants,	the	STRADL	follow-up	was	sent	by	post	rather	than	done	online,	

and	because	Generation	Scotland	may	be	underpowered	for	finding	these	effects.	

However,	the	strong	genetic	correlation	between	STRADL	participation	and	the	email	

contact	and	MHQ	data	phenotypes	suggests	that	similar	genetic	factors	are	driving	

participation	in	follow-up	studies.	

	 Email	contact	and	MHQ	data	shared	similar	genetic	correlations	with	other	traits.	

There	were	strong	genetic	correlations	between	email	contact	and	indicators	of	

cognitive	ability	(college	completion,	rg	=	0.76;	intelligence,	rg	=	0.73).	Contact	and	data	

availability	were	also	genetically	associated	with	a	lower	burden	of	genetic	risk	to	mental	

illness.	The	negative	genetic	correlation	with	schizophrenia	matches	results	from	
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follow-up	participation	in	the	ALSPAC	cohort	using	polygenic	risk	scores	(Martin	et	al.,	

2016)	but	suggests	that	this	association	is	not	specific	to	schizophrenia.	

	 The	similarity	in	the	results	for	phenotypic	and	genetic	factors	associated	with	

email	contact	and	MHQ	data	show	that	the	availability	of	an	individual	to	be	contacted	

by	email	and	their	choice	to	participate	both	act	as	a	filter	for	selection	into	the	

subsample	of	UK	Biobank	with	Mental	Health	Questionnaire	data.	Notably,	self-reports	

of	a	family	history	of	dementia	and	a	family	history	of	severe	depression	were	more	

common	in	email	providers	and	MHQ	completers,	but	individual	genetic	associations	

with	both	these	disorders	showed	significant	negative	correlations.	Individuals	who	

reported	dementia	or	severe	depression	in	their	family	were	therefore	more	likely	to	be	

MHQ	participants,	even	though	having	a	personal	genetic	predisposition	to	these	

disorders	may	also	decrease	their	likelihood	of	participating.	Knowledge	of	family	

history	may	be	a	strong	motivational	factor	for	participating	in	follow-up	surveys	of	

mental	health.		

	 Our	sample	was	large	enough	that	we	were	able	to	identify	specific	genetic	loci	

that	were	related	to	participation	in	follow	up	studies	of	mental	health.	We	were	also	

able	to	analyse	the	genetics	of	one	particular	factor	(the	availability	of	email	contact	for	

receiving	invitations)	that	is	heavily	involved	in	the	specific	process	of	follow-up	

participation.	However,	a	limitation	of	our	analysis	is	that	information	on	email	contact	

was	available	for	participants	at	baseline	only	and	thus	did	not	distinguish	the	entire	

subset	of	participants	who	would	have	received	an	email	invitation.	Another	limitation	

is	that	information	from	electronic	health	records	only	covered	hospital	admissions	and	

thus	would	underestimate	associations	with	milder	health	conditions.	

	 Individuals	in	large	epidemiological	cohorts	who	participate	in	follow-up	surveys	

differ	in	their	patterns	of	phenotypic	and	genetic	association	with	traits	of	interest	from	

those	who	do	not.	Because	most	factors	had	a	consistent	relationship	with	the	two-step	

selection	process	(contactability	by	email	and	opting	to	participate	in	follow-up),	it	is	

likely	that	these	same	factors	may	also	differentiate	people	who	choose	to	become	part	

of	the	cohort	in	the	first	place	from	other	people	in	the	larger	population.	These	factors	

are	very	likely	to	bias	the	selection	of	individuals	selected	for	inclusion	in	population-

based	studies	towards	those	with	positive	family	histories	but	lower	personal	genetic	

risk	of	mental	health	conditions	such	as	depression	and	dementia.	Going	forward,	

studies	should	evaluate	(e.g.,	using	simulations	(Munafò	et	al.,	2018))	the	particular	
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effects	that	selection	and	attrition	might	have	on	effect	estimates	and,	where	available,	

check	results	from	follow-up	assessments	against	those	from	baseline	data,	even	in	the	

cases	where	the	follow-up	data	provides	better	or	more	comprehensive	measures	of	

phenotypes	of	interest.		Because	continued	participation	in	large	cohorts	studies	

recapitulates	the	“healthy	volunteer”	effect,	comparing	responders	and	non-responders	

in	follow-up	surveys	may	be	a	useful	way	of	selection	bias	may	influence	the	

generalizability	of	findings.		
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