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Abstract Many of the recent advances of neural networks in sequential tasks such as natural13

language processing applications hinge on the use of representations obtained by predictive14

models. This success is usually ascribed to the emergence of neural representations that capture15

the low-dimensional latent structure implicit in the task. Motivated by the recent theoretical16

proposal that the hippocampus performs its role in sequential planning by organizing semantically17

related episodes in a relational network, we investigate the hypothesis that this organization results18

from learning a predictive representation of the world. Using an artificial recurrent neural network19

model trained with predictive learning on a simulated spatial navigation task, we show that20

network dynamics exhibit low dimensional but non-linearly transformed representations of21

sensory input statistics. These neural activations that are strongly reminiscent of the place-related22

neural activity that is experimentally observed in the hippocampus and in the entorhinal cortex. We23

quantify these results using measures of intrinsic dimensionality, which indeed confirm that the24

neural representations obtained with predictive learning reflect the low-dimensional latent25

structure of the spatial environment underlying the sensory input presented to the network.26

Moreover, the dimensionality gain of the neural representations, a measure of the discrepancy27

between linear and intrinsic dimensionality, allows us to follow how this process evolves as learning28

unfolds. Finally, we provide theoretical arguments as to how predictive learning can extract the29

latent manifold underlying sequential signals, and discuss how our results and methods can aid the30

analysis of experimental data.31

32

Introduction33

The scientific understanding of the role of the hippocampus is traditionally dominated by two34

distinct theories: the declarative memory view, which equates hippocampal function with our35

ability to recall facts and experiences (Cohen and Squire, 1980), and the spatial navigation view,36

which ascribes to the hippocampus a central role in navigation, that of planning routes through37

physical space (O’Keefe and Dostrovsky, 1971). Recently, considerable effort has been devoted to38

trying to reconcile these apparently contrasting views (Buzsáki and Moser, 2013; Milivojevic and39

Doeller, 2013; Eichenbaum and Cohen, 2014; Schiller et al., 2015). In particular, Eichenbaum and40

1 of 20

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 17, 2018. ; https://doi.org/10.1101/471987doi: bioRxiv preprint 

stefanor@uw.edu
https://doi.org/10.1101/471987
http://creativecommons.org/licenses/by-nc-nd/4.0/


Manuscript submitted to eLife

Cohen (2014) proposed that the hippocampus supports a semantic relational network that organizes41

semantically related episodes to subserve sequential planning.42

But how does such an organization of semantic information emerge? Two related bodies of43

work have shown that this can occur thanks to the process of prediction. First, neural networks44

have been successfully used to extract semantic characteristics from linguistic corpora simply by45

training them to predict the context (i.e., the adjacent words) in which a given word appears (Bengio46

et al., 2003; Turian et al., 2010; Collobert et al., 2011; Mikolov et al., 2013a). The resulting neural47

representations of words (known as word embeddings) have intriguing geometric properties that48

reflect the semantic meaning of the words they represent, and made them an invaluable component49

in many applications in machine learning and computational linguistics. Of relevance for our work,50

this has been explained by postulating that linguistic corpora are being generated by a dynamical51

process over a latent low-dimensional “discourse space” that predictive learning is able to uncover52

(Arora et al., 2015). Second, following up on classic work by Dayan (1993), several recent papers53

have demonstrated that neural models trained to predict future sensory information can give rise54

to internal representations that encode spatial maps useful for goal-directed behavior (Stachenfeld55

et al., 2014; Russek et al., 2017;Wayne et al., 2018).56

Taking inspiration from these lines of work, we set out to investigate whether predictive learn-57

ing could serve as a computational mechanism for the synthesis of semantic information that58

Eichenbaum and Cohen (2014) attributed to the hippocampus.59

Our goal here is to build theoretical and data-analytic tools that explain why a prediction learning60

process in neural networks leads to low-dimensional maps of the latent structure of the underlying61

tasks – and what the general signatures of such maps in neural recordings might be.62

The present work starts from a generative model perspective, whereby observations in a task63

environment are being generated from latent variables embedded in a low-dimensional manifold. In64

the case of spatial navigation the latent variables are for instance the position and orientation of65

the subject in the spatial environment, which can only be indirectly observed via the observations66

that they generate, i.e. the first-person sensory inputs (visual, etc.) corresponding to that location67

and orientation in space. We then set out to verify our hypothesis that a predictive learning process68

over the sequence of high-dimensional sensory inputs extracts representations that meaningfully69

represent the underlying low-dimensional latent variables. We do this in the context of an RNN70

trained to predict future observations in the environment it is navigating.71

In order to be able to verify our main hypothesis, we first have to develop the right analytical72

tools to correctly measure the intrinsic dimensionality of the vector representations created by73

predictive learning and expose their low-dimensional structure. Crucial to this development is the74

distinction between linear (Rigotti et al., 2013; Mazzucato et al., 2016; Litwin-Kumar et al., 2017;75

Gao et al., 2017) and nonlinear dimensionality (Camastra and Staiano, 2016; Campadelli et al.,76

2015), which allows us to uncover a phenomenon that we call latent space signal transfer, wherein77

information about latent variables moves into the top principal components of the activity as78

learning progresses. This signature is tightly linked with a clear trend in the linear and nonlinear79

dimensionality of the formed manifold, and with the formation of localized neural fields on the80

manifold itself. We refer to neuron with such localized activations asmanifold cells (Low et al., 2018).81

Importantly, all of these signatures can be applied to data from biological or machine learning82

experiments.83

The structure of our paper is the following. We start by analyzing the consequences of our84

hypothesis that predictive learning extracts the low-dimensional latent structure underlying some85

high-dimensional sensory signals. This is done in Sec. 1 where we study artificially constructed86

neural representations encoding a low-dimensional set of latent variables. In particular, we examine87

a population of neurons each tuned to a particular location in space. Importantly, we show that the88

use of nonlinear dimensionality reduction techniques is crucial to reveal the low-dimensional latent89

structure in these neural representations, while standard linear measures of dimensionality would90

actually give the illusory impression of high dimensionality. In particular, it motivates a quantity91
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measuring the discrepancy between intrinsic and linear dimensionality that we call dimensionality92

gain.93

In Sec. 2, we then show how low-dimensional latent coding can arise through learning. In94

particular, we show that this can emerge in an RNN trained with predictive learning to anticipate95

future observations in a simulated navigation task of a simple 2-D environment. Interestingly, this96

is not the case for similar networks that are trained to auto-encode (i.e. compress) their inputs, but97

do not predict them over time (Sec. 5). In Sec. 3 we dive into the analysis of the learned neural98

representations, and in Sec. 4 we provide general theoretical arguments linking predictive learning99

with the extraction of the low-dimensional latent space in a task.100

1. Latent and neural representation spaces101

In this section we build a model displaying a basic phenomenon that we refer to as low-D coding:102

that there is a small set of environmental or latent variables to which a large number of neurons are103

strongly and consistently tuned. A well-known example of this is given by place and grid cells in the104

context of hippocampal navigation (O’Keefe and Dostrovsky, 1971; Solstad et al., 2008; Stensola105

et al., 2012;Wills et al., 2010). This indeed will be our case study in the following, but it is important106

to stress that our considerations are valid more in general and an analogous analysis can be carried107

out for other cases such as orientation selective visual neurons or hippocampal time cells.108

We consider an ensemble of N place cells with Gaussian tuning curves that are uniformly109

distributed over the locations of a given environment, such that every location in the environment110

uniquely corresponds to an evoked neural population response pattern. In other words, we can111

thing of the Cartesian coordinates of a position in the environment (x and y) as latent variables that112

fully describe an agent’s state in the environment, and give rise to the neural response patterns that113

are being observed. Accordingly, a navigation path through the environment describes a trajectory114

as shown in Fig. 1a, where each location of the environment is colored in a unique way for the sake115

of presentation. Note that, under our assumptions, the place cells give the agent perfect knowledge116

of its location and do not depend on past experience.117

An example of a Gaussian tuned neural field is shown in Fig. 1b. If the agent is located in118

position x0 = (x0, y0) then the activity ri of neuron i with preferred location (xi, yi) will be given by119

�(x0 − xi, y0 − yi) =
1
2��

exp
(

− (x0−xi)2+(y0−yi)2

2�2

)

. We refer to the vector of activities r0 of all neurons at120

that specific point in space as the neural representation at location x0.121

As the agent navigates the environment, describing a trajectory xt in the 2d latent space, the122

representation rt traces out a trajectory in neural space; that is, the N-dimensional space spanned123

by the activity of all neurons in the population. A common way of visualizing this is by projecting124

the trajectory into a lower-dimensional space spanned by the first three Principal Components125

(PCs). We show this projection in Fig. 1c, together with the representation manifold, the full set of126

neural representations over the entire environment. We color every point on the representation127

manifold according to its corresponding location in the environment (or latent space variable128

 ,). The two dimensions of this latent space completely parameterize the manifold, meaning129

that it is a two-dimensional curved surface. The fact that the representation manifold has two130

dimensions is revealed by a measure that is usually referred to as Intrinsic Dimensionality (ID),131

whose formal definition relies on concepts in Riemannian Geometry for smooth manifolds or132

statistics for statistical manifolds (Camastra and Staiano, 2016). In Fig. 1d we show the tuning curve133

of a single neuron on the manifold. In Sec. 3 we will analyze in more depth the meaning of such134

tuning of individual neurons with respect to manifold parameters. In our analysis we limit ourselves135

to analyzing neural tuning to manifold variables in the form of localized activations, like in Fig. 1d.136

While the ID of the representation manifold is two, due to its curvature many more linear137

components are necessary to fully describe it in the N-dimensional neural ambient space. This138

discrepancy between linear dimensionality, vs. nonlinear dimensionality as measured by ID, is139

an important phenomenon. In general, a curved d-dimensional manifold requires more than d140
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dimensions to be embedded into a Euclidean space. More than d principal components are needed141

to capture the variance of such a manifold. Nonlinear dimensionality reduction techniques attempt142

to account for curvature in attaining a more accurate estimate of d. While many such techniques143

exist (cfr. Van Der Maaten et al. 2009), we use isomap as an example, which is capable of displaying144

samples from a manifold in lower dimensions while preserving, as much as possible, the geodesic145

distance between these samples as computed along the manifold in the original space, i.e. the146

N-dimensional space of the neural representation (Tenenbaum et al., 2000). The representation147

manifold following this reduction is shown in Figs. 1e and 1f where we see that, by extracting the148

manifold from the neural representation, the original space has been almost perfectly recovered.149

Figure 1. Manifold analysis example. a) Example of a two dimensional environment in which the agent moves.
We assign a unique color to each location of the environment. A segment of the agent’s trajectory is represented

in gray scale, with shade standing for time. b) Example tuning of a neuron with gaussian receptive field centered

on (x0, y0). c) Neural representation manifold projected onto PCs 1 to 3, under the assumptions that neurons
have gaussian receptive fields which uniformly cover the environment and that the agent uniformly explores

the environment. The agent’s trajectory is represented on the manifold; the inset shows the top view (first two

PCs). d) Example of a neural response field on the manifold. The same neuron shown in b) is now shown, with

its receptive field with respect to manifold coordinates. e) Example of the manifold recovered from the neural

representation by means of the Isomap technique. The manifold embedding dimension is two and the agent’s

trajectory is shown once again. f) Manifold receptive field: same as panel e but for the neuron receptive field.

Now we focus on characterizing the properties of neural representations when analyzed by150

means of linear versus nonlinear techniques. The number of PCs needed to capture a given151

percentage of the variance of a manifold is a measure of the linear dimensionality of the manifold.152

A closely related measure uses the Participation Ratio (PR) of the eigenvalues �1..N of the covariance153

matrix C to measure dimensionality:154

PR =
(T rC)2

T r(C2)
=
(
∑N

i=1 �i)
2

∑N
i=1 �

2
i

= 1
∑N

i=1 �̃
2
i

(1)

where �̃i = �i∕
∑N

j=1 �j , see Fig. 2a (Gao et al., 2017). If all the principal components of neural155

representations are independent and have equal variance, all the eigenvalues of the covariance156

matrix have the same value and PR(C) = N . Alternatively, if the components are correlated so157

that the variance is evenly spread across M dimensions, then �1 = �2 = �3 = ...�M with �M > 0 and158

�m = 0 for m > M so that the data points are arranged in an M-dimensional subspace of the full159

N-dimensional space. In this case only M eigenvalues would be nonzero and PR(C) =M (Fig. 2a).160

For other PCA eigenspectra, this measure interpolates between these two regimes. As a rule of161

thumb, the PR dimensionality can be thought as the number of dimensions required to explain162

about 80% of the total population variance in many applications (Gao et al., 2017). PR (Participation163

Ratio) as a linear measure of dimensionality, in contrast with nonlinear ID (Intrinsic Dimensionality).164
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The PR dimensionality for the representation manifold induced by place cells (Fig. 1) is shown in165

Fig. 2. The covariance matrix induced by Gaussian receptive fields with standard deviation � = 2.5 is166

shown in the inset of Fig. 2d. This matrix has a diagonal band structure and within this structure167

each element is a matrix with a diagonal band. It is a matrix of matrices which reflects the 2d168

structure of the latent space  , .169

The PR as a function of the number of neurons or number of points sampled from the manifold170

is shown in Fig. 2b. This demonstrates the effect of having, as under empirical sampling, fewer171

neurons or samples (trials). This shows that for the case at hand, a few hundred neurons is sufficient172

to estimate PR at a value close to its converged limit.173

In the Methods we compute the PR as a function of the tuning curve width �, showing that the174

PR is inversely proportional to �. Smaller widths correspond to higher curvature of the response175

manifold, and hence to higher PR values. This gives a clear illustration of how the linear linear notion176

of dimensionality via PR depends heavily on the coding properties of single neurons. Later on we will177

apply methods that estimate the intrinsic dimensionality ID of the manifold from data (Camastra178

and Staiano, 2016; Campadelli et al., 2015); these return values closer to the true dimensionality179

of the manifold, in terms of the number of its parameters. Thus, while ID is an estimation of the180

number of variables needed to chart the neural representation manifold, PR appears as a measure181

of how many coordinates the neural representation is exploiting to represent it.182

We suggest the following metric to measure the extent to which a given representation linearly183

expands the “true” dimensionality of the manifold, which we call Dimensionality Gain (DG):184

DG =
linear dimensionality measure

non-linear dimensionality measure
= PR
ID

. (2)

In Fig. 2c we show the Dimensionality Gain (DG) as a function of the width � for the example of185

Fig. 1. The graph shows how the DG decreases as the width of the fields increases (red line). This is186

trend is in agreement with the theoretical analysis (blue line). In the following we illustrate how DG187

be used to assess properties of more complex, learned neural representations.188

2. Predictive Learning189

In the previous section we illustrated the relationship between latent variable space and neural190

representation space when neurons function as place cells, so that neurons directly encode the191

latent space. This led to interesting and readily measurable phenomena: the representation192

manifold is low-dimensional while appearing higher-dimensional according to linear measures: that193

is, the representation has a high dimensionality gain (DG). This begs a key question: which kind of194

learning processes can generate representations with such properties – and does this occur when195

processing naturalistic sensory inputs? In what follows we provide both simulation evidence and196

theoretical arguments for predictive learning in recurrent networks (RNNs) being a basic framework197

that forms neural representations with the properties at hand. In predictive learning the network is198

trained to minimize the prediction errors between its output and future sensory observations.199

We turn our attention to the representations that are formed by a recurrent neural network200

(RNN) learning to represent its environment by predicting sensory-like observations. In this case,201

the RNN agent does not have direct access to its location, but instead has access to “sensory”202

observations (Fig. 3b) of its environment. The agent performs a random walk in its environment by203

updating, at each step, its direction � by an angle d�. This change in direction d� is i.i.d. sampled204

from a wrapped Gaussian distribution with variance �2tℎeta, cfr. Fig. 3b inset and Methods for details.205

The environment is tiled with 64x64 = 4096 locations, and at every step the agent moves forward to206

the tile best aligned with the updated direction � unless its step collides with a border, in which207

case no movement occurs. An example trajectory is shown in Fig. 3a, where each position in the208

environment is again identified by a specific color.209

The agent is equipped with sensors oriented in the direction � (see Fig. 3b). The task of the RNN210

is to predict the sensory observation of the agent on the next time step, given the current sensory211
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Figure 2. Linear dimensionality analysis. a) Illustration of nthe Participation Ratio (PR) dimensionality measure.
The mathematical expression in terms of the eigenvalues of the covariance is given and illustrated for a few

distributions in PC space. The left part shows an example of point cloud distribution and the leading

eigenvalues �1,2,3. The right part shows a symmetric spherical distribution with PR=3 and an elongated one with
PR=1.1. The eigenvalues of the covariance matrix are shown next to each example. b) PR estimation from a

finite number of neurons or trials for the manifold example of Fig. 1 with � = 2.5. c) PR dependence on the size
of the gaussian field � for the example of Fig. 1. The red line represents the DG as computed for 4096 neurons
tiling the latent space shown in Fig. 1. The blue dotted line represents the theoretical analysis (cfr. Methods). d)

Example of the covariance matrix for � = 2.5.

observation (see Fig. 3c).212

As the agent traverses the environment, it traces out a trajectory in three spaces: the latent213

variable space (x, y, �), the observation space, and the neural representation space. As the RNN214

learns to predict the next observation, the neural representation will change to better perform the215

task. This representation is influenced both by the observation space (since the task is defined purely216

in terms of observations) and by the latent space (since the latent variables are a low-dimensional217

generative model for the observations); a priori, it is not obvious which space’s influence will be218

stronger.219

The neural representation at the end of learning (see Fig. 3d) represents latent information. This220

is shown in Fig. 3e, which illustrates that the latent variables are strongly represented in the neural221

representation space after learning. Further, single neurons’ receptive fields function as place and222

border cells encoding the latent variables x, y, and as head direction cells encoding � (Fig. 3f). This223

shows that the internal representation of the network has naturally extracted information about224

the latent space from the observations, without being explicitly prompted to do so. As we will show225

below this phenomenon relies on the underlying task being predictive. We first highlight important226

properties of the learned representation manifold.227
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Figure 3. Predictive network solving a navigation task. a) Logic diagram of task and information: an agent
explores a latent space through actions and receives partial observations regarding it. The network’s task is to

predict the next sensory observation. By learning to do so it recovers information regarding the underlying

hidden latent space. b) Illustration of the agent with sensors in square maze where the walls have been colored

(cfr. Methods). The 5 sensors span a 90o degree angle and perceive the color and distance of the wall along their
respective directions. The inset illustrates the agent navigation driven by �. � is updated continuously and
updates are drawn from a gaussian distribution (random walk on a circle). c) Diagram of the predictive

recurrent neural network: the network receives actions and observations as inputs and is trained to output the

next sensory observation. d) Cost during training for the network (cfr. Sec. 4 and Methods). The inset shows the

L2 norm of the activations computed during training on the representation (although this is not used as a
regularizer). e) Place cell activities: average activity of 100 neurons (one per small quadrant) against the  ,
coordinates of the latent space. f) Head direction activities: average activity of 100 neurons (one per small

quadrant) on the latent space against the agent’s direction �.

3. The learned neural representation manifold and its signatures228

As the network learns to predict future observations it may be expected that most of the network229

activity is dedicated to encoding features of the observation space. The natural consequence is that230

the leading PC components of the RNN representation carry information about observation space231

variables. On the other hand, the network develops place cells (Fig. 3e) which suggests that the232
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latent spaces is also strongly encoded. As we will see next, it is indeed the latent space variables233

that are most strongly encoded in the first PCs of RNN activity. The latent space for the navigation234

task is parametrized by x, y, �. In Fig. 4a we show the RNN representation projected into the space235

of the first three PC components of the RNN neural activity, colored according to each of these236

three latent variables. That is, each point in these plots corresponds to the RNN representation at a237

specific moment in time, and the color of the point is determined by the position (or orientation)238

of the agent in the latent environment at that moment. This visualization clearly shows that the239

agent’s location x, y is systematically encoded in the first three PCs, while PCs four and five encode240

the agent’s orientation �.241

As the agent’s input are the observations rather than the latent variables, it is natural to ask242

whether the observation variables are similarly encoded in the RNN representation. Fig. 4c shows243

that this is not the case. The first three PCs don’t appear to be encoding for the average, across244

sensors, of color sensory information for the three color channels RGB. They do encode for the245

distance (as they also encode for the position) but not for color. Later, in Fig. 5d, we will further246

justify and quantify this observation. We will also show that average color sensory information247

is encoded in the first PCs in the beginning of learning while it is not clearly encoded in the final248

learned representation as shown in Fig. 4c.249

Figs. 4a and 4b, taken together, suggest that the RNN allocates most of its internal variability250

to the encoding of latent variables. In this specific example the first five PC components explain251

respectively 13.7%, 11.4%, 10.2%, 5.5%, 5.4% of the total variance in the activity of the RNN population.252

We next explore the relationship between the responses of single cells and the population activity253

along the manifold. In the simplest case of Fig. 1, in which the latent space directly parameterized254

the responses of individual cells, we showed that the receptive fields of single cells tiled the repre-255

sentation manifold in the same way that they tiled the latent space. Does the same phenomenon256

occur for learned representations in the RNN? Fig. 4d demonstrates that this is indeed the case,257

by showing the activity of the same 100 neurons shown in Fig. 3e averaged over “locations" in the258

space spanned by the first two PCs.259

This reveals that single neurons have activities that resemble receptive fields on the neural260

representation manifold. We name these units neural manifold-cells. If the neural manifold clearly261

represents the latent space (Fig. 4a) and neural receptive fields tile the latent space (Fig. 3e), then262

neural activities are also localized on themanifold. We observe that the reverse is also true: localized263

activities in the latent space (e.g. place cells, cfr.Fig. 3e) can be interpreted as a result of single264

neural receptive fields tiling the manifold. In our analysis single neurons appear to have localized265

activations and do not develop other patterns of activity such as grid-like activations. The extention266

of our analysis to grid-like representations is beyond the scope of our present contribution although267

the tools here introduced would directly applied.268

The preceding analysis suggests that neural representation manifold and single neuron coding269

are tied to one another, as they are both linked to the latent space. We proceed to study how the270

manifold and its connection to the latent space emerge over the course of predictive learning.271

In Fig. 3 we highlighted two different ways to access the dimensionality of the representation:272

a linear measure (Participation Ratio, PR) and a nonlinear one (Intrinsic Dimensionality, ID). The273

PR of the representation is shown in Fig. 5a. This measure is sensitive to the neural activation on274

the manifold as described in Sec. 1. The PR increases as the receptive fields become more local.275

The PR, computed at every training epoch for 5 ⋅ 105 navigation steps, keeps increasing epoch after276

epoch, and the slow increase corresponds to the formation of place cells with respect to the latent277

space (Fig. 3e) and manifold cells with respect to the representation manifold (Fig. 4d). While the278

PR increases across epochs, all estimators of the manifold’s ID decrease until they reach a value279

of approximately 5 (Fig. 5b; see also Methods). Recall from our analysis in Sec. 1 that the value of280

ID is independent of single neuron fields. Although we cannot explain this number precisely, we281

note that if the latent variables are encoded then it cannot be less than 3, the number of latent282

components (x, y, �). Moreover, ID is considerably smaller than PR, pointing to a dimensionality283
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Figure 4. Signatures of the learned predictive representation. a) 100000 points of the neural network
representation, corresponding to an equal number of steps for the agent’s exploration, are shown projected

into the space spanned by by PCs 1 to 3 of the learned representation, and colored respectively with respect to

 , latent variables (cfr. Fig. 1a for colorcode) and �. b) Same as panel b but for PCs 4 and 5. c) Same as panel
a but colored with respect to the mean distance or color activations of the agent’s sensors. d) Manifold cell

activations: average activity of 100 neurons on the manifold (here displayed for the first PCs 1 and 2.). The

activity of each neuron (one per quadrant) is averaged as the population activity is in a specific “location” on the

neural manifold.

gain DG of roughly DG = PR
ID
≈ 3 toward the end of learning. This is consistent with our analysis of284

Sec. 1 where we showed that local manifold fields tend to increase the DG.285

In Figs. 4a and 4b we showed that the first five PCs of the learned representation are highly286

correlated with latent space variables. This is another signature of predictive learning that we can287

exploit and track through training. Specifically, we compute the average of the canonical correlation288

(CC) coefficients between the representation projected into its PCs, and latent space variables x, y, �.289

The blue line in Fig. 5c shows the average CC between the representation in PCs 1 to 3 and the290

position x, y of the agent in latent space. When the average CCA is 1, this means that all the signal291

regarding x, y has been transferred onto PCs 1 to 3. Similar interpretations hold for the other curves292

we show, which track the transfer of signal relative to the latent space  , , �. Fig. 5c shows that,293

between epoch 50 and 150, most of the information regarding the latent space moves onto the294

first few PC modes of the neural activities. The very same analysis can be carried out with respect295

to observation space variables. This is shown in Fig. 5d. The observation space signal flows out296

of the first few PC components as learning progresses. Together Figs. 5c and 5d show that the297

total variability of the representation, as interpreted through PC components, encodes more latent298

space information vs. observation space information as learning progresses (blue and red lines).299

Altogether Fig. 5 suggests that predictive learning, throughout training, forms a low-dimensional300

representation (Fig. 5a), with properties (the high linear dimensionality) that facilitate its linear301

readout (Fig. 5b).302
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Figure 5. Learning the predictive representation. a) Participation Ratio of the representation during learning. b)
Intrinsic Dimensionality (ID) of the representation during learning. Five different intrinsic dimensionality

estimators are used (cfr. Methods). c) Signal transfer analysis: Canonical Covariance Analysis between PCs of

the neural representation and the latent space. d) Same as panel c) but for the observation space.

4. A neural network mechanism for learning low-D latent manifolds303

Why does predictive learning lead to the discovery, and representation, of the latent space? In this304

section we provide some theoretical arguments suggesting why the predictive step in particular can305

be such an important ingredient in extracting latent manifolds.306

For simplicity, let us suppose that the movement of our agent in the latent space  is governed307

by a deterministic, discrete-time dynamical system308

xt+1 = xt + F (xt) (3)

where x = (x, y, �) and F (x) is a vector field on  . We note that F may depend on a learned policy309

but, without loss of generality, we omit this detail. The agent’s observation at time t is then defined310

as a differentiable function of the latent variable: ot = '(xt). Such a mapping induces a nonlinear311

dynamical system in the space of the observations o which can be written in terms of the dynamics312

of xt: ot+1 = '(xt + F (xt)). We choose a point x∗ ∈  around which to expand ' to get:313

ot+1 = '(x∗) +D'(x∗)(xt + F (xt) − x∗) + (2)

= '(x∗) +D'(x∗)(xt − x∗) +D'(x∗)F (xt) + (2)

≃ ot +D'(x∗)F (xt)

(4)

whereD'(x∗) is the Jacobian matrix of ' evaluated at x∗. In the above, we assume that the trajectory314

xt stays close to x∗ so that the linear regime dominates and higher order terms can be neglected.315

This may only hold momentarily so that this linearization remains a local approximation (more on316

this below).317

We now turn to the update rules of the artificial recurrent network, also defined as a discrete-318

time dynamical system:319

rt = g
(

W rt−1 +W inot
)

yt = g
(

W outrt
)

(5)

where g is a nonlinear function and W ,W in,W out are respectively recurrent, input and output320

weights (the agent’s actions are not considered here, cfr. Methods for further details). The local321
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dynamics in latent space induces a dynamics in representation space that is sketched in Fig. 6a.322

We compare the effect of two cost functions on learning in the network, given an agent’s323

trajectory {xt|0 ≤ t ≤ T } in latent space: one predictive and another non-predictive, respectively324

represented by325

pred =
1
T

T−1
∑

t=0
||ot+1 − yt||2,

non−pred =
1
T

T−1
∑

t=0
||ot − yt||2.

(6)

For the predictive coding objective pred , we use (4) and (5) to obtain326

||ot+1 − yt+1||2 = ||ot +D'(xt)F (xt) − g
(

W outg
(

W rt−1 +W inot
))

||

2. (7)

Assuming that the activity of the network remains in a regime where g is approximately linear (for327

convenience, with slope 1), we can further simplify (7) into328

||ot+1 − yt+1||2 = ||ot +D'(x∗)F (xt) −W outW rt−1 −W outW inot||2

≤ ||ot −W outW inot||2 + ||D'(x∗)F (xt) −W outW rt−1||2.
(8)

The two terms in this inequality suggest a possible solution to minimizing pred : to “auto-encode" the329

observation at the current time ot while learning a linear representation of the observed dynamics.330

The latter necessarily implies a low dimensional representation, the same as latent space. To see331

this, consider a sample trajectory of length T in a neighborhood of x∗: {xt|1 < t < T } and the332

corresponding network activations {rt|1 < t < T }. Let X and R be the following 3 × T and N × T333

matrices, respectively:334

X =

⎛

⎜

⎜

⎜

⎝

| |

x1 … xT
| |

⎞

⎟

⎟

⎟

⎠

, R =

⎛

⎜

⎜

⎜

⎝

| |

r1 … rT
| |

⎞

⎟

⎟

⎟

⎠

It follows that minimizing the contribution of each term in (8) to minimize pred is equivalent to335

solving the ordinary least squares problem:336

'(X) ≃ W outW in'(X)

D'(x∗)F (X) ≃ W outW R
(9)

where ' and F are applied column-wise to X. This suggests thatW outW in ≈  while the activation337

vector rmainly encodes a representation of the latent variable’s dynamic update rule F (x) (akin338

to the dynamics’ derivative). Furthermore, it is easy to see that X is rank 3 and, assuming W out339

andW are of higher rank, a natural way to satisfy this is by R also being rank 3. This is consistent340

with low-dimensional network dynamics. The latent space dynamics induces a dynamics on the341

representation space which is locally in direct342

Although these relations do not hold in the general nonlinear case it is reasonable to think343

that they may hold in an approximate way. For instance, by allowing x∗ to change in time so that344

the linear approximation holds for trajectories on a longer scale, the network would then learn345

a collection of local linear dynamics. We observe clues in our numerical experiments that these346

approximate relationships are indeed respected. Indeed, Fig. 6b shows that the matrixW outW in has347

a clear diagonal structure. This suggests that the input observations are fed forward to the outputs.348

The role of recurrent dynamics is then to approximate the local map D'(x∗)F (x). In this sense the349

representation r doesn’t directly encode for x but rather represents a collection of local linear maps350

indexed by the position of the agent in the latent space, and coding for its dynamics in this space.351

By contrast, for the non-predictive objective non−pred the terms352
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||ot+1 − yt+1||2 = ||ot − W outW rt−1 − W outW inot||2 are missing the dynamic update and cannot be353

decomposed as in (7). The absence of the low-dimensional latent space dynamics in this non-354

predictive settings suggests that the representation shouldn’t "discover" the latent manifold through355

learning. We demonstrate this explicitly in the next section.356

The series of arguments presented above is meant to provide intuition about how predictive357

learning may extract a representation of the latent space. We stress that this is not a formal358

derivation and its limitations should be kept in mind. The extracted manifold can be pictured, cfr.359

Fig. 6b, as a low dimensional curved manifold in the high dimensional neural space.360

Figure 6. Theoretical arguments. a Neighborhood projection of the local dynamical system between latent and
neural representation space. b Feedforward connections that pass input observations to outputs: matrix of

weightsWoutWint from predictive learning. c) Representation manifold in neural space: example where the low
dimensional manifold spans many neural directions despite being low dimensional.

5. Non-predictive learning fails to extract low-D latent manifold361

A central idea in this article is the importance of the learning being predictive, so that the underlying362

RNN is learning to anticipate the observation on the next timestep into the future. is the predictive363

aspect itself necessary to produce the phenomena studied above? Here we address this question364

by directly contrasting predictive learning with the non-predictive case.365

We train each of 100 RNNs, which differ only in the initialization of their weights and the366

agent’s trajectory, in two different scenarios: predictive learning and recurrent auto-encoding; that367

is, predicting the next step observation ot+1 as described earlier and auto-encoding the current368

observation ot (Hinton and Salakhutdinov, 2006; Vincent et al., 2008). We find that all networks369

trained through predictive learning show the same characteristics as outlined above, while the same370

networks trained with the auto-encoding loss develop different representations. Most importantly,371

with the auto-encoding loss the learned representations do not reflect the latent state variables372

and statistics in the same way as for the predictive coding loss.373

374

In Figs. 7a and 7b we show that the Canonical Correlation Analysis (CCA) between the first three375

PCs of the representation and the latent space or the observations have completely different trends376

in the predictive vs non-predictive case. In Fig. 7a the CCA coefficients between the representation377

and the latent space grows throughout learning (each line corresponds to a different network and378

the dashed line to the mean) while the coefficients corresponding to observations decrease (cfr.379

Figs. 5c and 5d). In contrast, by this metric the networks trained to auto-encode the observations380

did not develop representations that encode the latent space, but rather only the observations.381

Specifically, throughout training there is little information regarding the latent space encoded382

in the first PCs of the representation, even though they account for most of the variability of383

sensory observations. Meanwhile, Fig. 7b also shows that the average CCA coefficients between384

the representation and the observations are high throughout learning. Consequently, as shown in385

Fig. 7c the non-predictive representation fails to develop place fields; in particular, the activities of386

neurons are not localized in the latent space. This is in striking contrast with the same plots for the387

predictive case.388
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The dimensionality of the learned representations also differs strongly between the predictive389

and non-predictive settings. We show this by displaying the PR and ID for networks trained through390

predictive learning in Fig. 7d, and on the auto-encoding task in Fig. 7e. In the first scenario PR391

grows and ID decreases throughout training. In the second PR grows but ID does not decrease,392

as the representation doesn’t “extract" the latent manifold. We can summarize these properties393

by analyzing the Dimensionality Gain (DG) as above; recall that this is the ratio between the PR394

and the ID (see Methods). Fig. 7f shows that the DG in the predictive case (blue line) progressively395

increases through learning, while this does not occur for the non-predictive case. Thus, a key396

signature of encoding of a low-D (latent) space appears for predictive, but not for non-predictive,397

learing. As shown in Figs. 1 and 3, having a low-dimensional nonlinear structure with a linear398

high-dimensional representation facilitates both generalization, by means of the representation399

manifold being low-dimensional, and the reading out (by means of a linear decoder) of the encoded400

information: this is what the DG expresses, cfr. Sec. 1.401
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Figure 7. Comparing signatures of learned representations in the predictive vs non-predictive framework. a)
Signal transfer analysis: Canonical Correlation Analysis (CCA) between PCs 1 to 3 of the neural representation

and the latent or observation spaces during learning. This is displayed for an ensemble of 100 networks (only

first 100 epochs shown, cfr Methods). Same as panel b but for the non-predictive case. c) Place cell activations:

average activations for 100 cells in the non-predictive case. This is the same plot as for Fig. 4d but in the

non-predictive case; note that the neurons do not display localized activations. d) Linear and nonlinear

dimensionality for networks trained on predictive learning . e) Linear and nonlinear dimensionality for the

non-predictive networks. f) Dimensionality gain for predictive and non-predictive networks throughout learning.

Conclusion and discussion402

How the brain extracts information about the external world given only indirect sensory observa-403

tions is been a long-standing question in neuroscience. Here we propose predictive learning over404

observations as a computational mechanism to construct neural representations that encode the405

latent variables underlying the observations and their semantic relation.406

We validate our proposal by examining predictive learning in a simulated egocentric spatial407

navigation task, a situation that is naturally described by latent variables corresponding to the408

spatial coordinates in the task. Indeed, we verify that the resulting neural representations reflect409
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the low-dimensional structure of the task and contain responses that are tantalizingly reminiscent410

of the types of place-related activity famously observed in the hippocampus and entorhinal cortex.411

Crucially, in order to reveal this low-dimensional structure, we have to rely on nonlinear tech-412

niques that can expose the intrinsic dimensionality of the neural representation manifold, as more413

common linear measures would give the illusory impression of high-dimensional representations.414

In summary, our work gives concrete algorithmic grounding to the recent proposal by Eichen-415

baum and Cohen (2014) that the hippocampus builds a semantic relational network of related416

episodes at the service of sequential planning. In particular, we argue that relevant semantic417

relations are encoded by neural representation of low intrinsic dimensionality, and in turn these418

are being constructed by predictive learning to reflect the relevant latent variables in a task.419

Signatures of predictive learning in neural data420

What features would one expect to find in biological data from a neural network that is performing421

predictive learning? As long as the signals that the network is trained to predict arise from an422

environment with an underlying low-dimensional latent structure, we suggest looking for several423

distinct signatures. The first signature is the dimensionality of the set of neural responses collected424

simultaneously across multiple cells, and over multiple task conditions. This dimensionality will likely425

appear high when assessed with standard linear measures, such as the participation ratio. However,426

a signature of predictive learning is that it is accompanied by low-dimensional representations, with427

a dimensionality equaling the number of independent latent encoding variables, when assessed428

through nonlinear metrics sensitive to the dimensionality of curvedmanifolds. These two signatures429

taken together imply a high dimensionality gain (DG), or ratio of linear to nonlinear dimension.430

The presence of such a low-dimensional neural representation manifold opens the door to another431

signature of predictive learning. Individual cells produce responses which appear strongly tuned432

when plotted against the (curved) variables lying on the neural representation manifold; we refer433

to this as the appearance of neural manifold cells (cfr. Fig. 4d). While locality in latent space is an434

established aspect of neural hippocampal representation in the navigation problem, locality in the435

manifold is an allied hypothesis that will be exciting to check in experimental data. This builds436

on recent work on understanding neuronal representations through the lens of representation437

dimensionality (Rigotti et al., 2013;Mazzucato et al., 2016; Litwin-Kumar et al., 2017; Cayco-Gajic438

et al., 2017). Importantly, manifold-localized activations have also been shown to be optimal for439

similarity-preserving networks (Sengupta et al., 2018; Pehlevan et al., 2018). This points to such440

signature in the activations as a critical feature of the representation and to similarity-preserving441

as a possible condition for its emergence. We look forward to further examining how predictive442

learning could implement this condition.443

Discovering latent structure in data and sensory observations444

Our results demonstrate that predictive learning can lead to responses lying on a low-dimensional445

neural representationmanifold, with the same dimension as that of the latent space that parametrize446

the underlying signals that the network has learned to predict. This requires no advance knowledge447

of what the latent variables are, or even how many of them there are. The consequence is that448

both the number and identity of latent variables can be discovered by analysis of a learned neural449

responsemanifold, as studied in other settings byMikolov et al. (2013b); Hinton and Salakhutdinov450

(2006);Hastie et al. (2009);Weinberger and Saul (2006). Here, we show that what we call latent signal451

transfer is one way to uncover the relevant variables fig. 4d: as the response manifold is learned, the452

position of population responses along the manifold can be increasingly well predicted by the true453

low-dimensional latent variables, but increasingly poorly predicted by irrelevant variables. Thus, the454

problem of discovering the low-dimensional, latent structure in complex, high-dimensional dynamic455

signals becomes that of discovering the variables that parameterize a low-dimensional neural456

response manifold. Overall, we suggest that such parametrization of learning via dimensionality457

and latent signal transfer may contribute to the understanding of how both biological brains and458
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neural network algorithms solve difficult tasks such as navigating an environment.459

Open questions460

From an algorithmic and computational perspective, our proposal is motivated by the recent success461

of predictive models in machine learning tasks that require vector representations reflecting the462

semantic relationships between the data samples in the tasks. On one hand, information retrieval463

and computational linguistics have enormously benefited from the geometric properties of word464

embeddings learned by predictive models (Bengio et al., 2003; Turian et al., 2010; Collobert et al.,465

2011;Mikolov et al., 2013a). On the other hand, prediction over observations has been used as an466

auxiliary task in reinforcement learning to acquire representations favoring goal-directed learning467

(Dayan, 1993; Stachenfeld et al., 2014; Russek et al., 2017;Wayne et al., 2018).468

Distinctive to our work, is the use of nonlinear dimensionality analysis of the learned repre-469

sentations to characterize the relationship between the neural representation manifold and the470

latent space, and the use of the measure of dimensionality gain to follow the evolution of this471

relationship as learning progresses. Nevertheless, more work is needed to theoretically formalize472

the phenomena that we have demonstrated in simulation.473

Perhaps foremost, the way the properties of the representations that are extracted by predictive474

learning depend on the neural architecture and the implementation of the training algorithm needs475

to be systematically studied. Moreover, predictive learning is a general framework that goes beyond476

the example of navigation analyzed here and can be expanded to many different scenarios and477

behavioral tasks.478

Finally, it will be crucial to adapt and test these ideas for the analysis of large-scale population479

recordings of in-vivo neural data, ideally longitudinally over long timescales such that the evolution480

of the neural representation induced by learning can be followed over time with metrics such as481

the dimensionality gain, and latent signal transfer. A very exciting possibility is that this exercise482

might uncover the presence of relevant latent variables in a task that were previously unsuspected.483
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Methods604

Linear Dimensionality: Participation Ratio605

Participation Ratio is a measure of dimensionality that is based on the distributions of eigenvalues606

(�1, �2...) of the covariance matrix C :607

PR =
(TrC)2

Tr(C2)
=
(
∑N

i=1 �i)
2

∑N
i=1 �

2
i

= 1
∑N

i=1 �̃
2
i

(10)

where �̃i = �i∕
∑N

j=1 �j . In the case of the example of Fig. 1, if we assume that all the locations of the608

latent space  , are visited with the same probability, then we can compute the covariance matrix609

of the representation C . The entry of the covariance matrix that corresponds to two neurons, i610

and j, with neural fields centered respectively in position xi ≡ (xi, yi) and xj ≡ (xj , yj) = xj + Δx =611

(xi + Δx, yi + Δy) and with isotropic variance � ≡ (�x, �y) = (�, �) is given by:612

C ij =
1
T ∫

T

0
dt (�(xi − xt) −

1
T ∫

T

0
�(xi − xs)ds)(�(xj − xt) −

1
T ∫

T

0
�(xj − xs)ds) =

= 1
T ∫

T

0
dt(�(xi − xt) − 1)(�(xj − xt) − 1) =

1
T ∫

T

0
dt �(xi − xt)�(xj − xt) − 1 =

= 1
√

2��

1
T
e−

Δ2

2�2
∫

T

0
dt �∕√2((xi + xj)∕2 − xt) − 1 =

= 1
√

2��
e−

Δ2

2�2 − 1 .

(11)

where � is a Gaussian with variance � normalized to 1 as described in the main text. Eq. 11 shows613

that Cij has a band structure; in particular it is in Toeplitz form, with entries that decay with the614

distance between neurons in latent space (Gao et al., 2017). We can now compute the terms in615

Eq. 10 that determine the PR. Specifically we obtain:616

(C2)ij =
N
∑

k=1
CikCjk ≈ ∫

∞

−∞
�(i − k)�(k − j)dk =

= 1
√

2��
e−

(i−j)2

2�2 .
(12)

Thus the PR in the limit of large N is:617

PR =
(T rC)2

T r(C2)
= 1

√

2��
. (13)

This shows that the PR dimensionality grows with the inverse of the width of the Gaussian kernel.618

619

Nonlinear dimensionality: Intrinsic Dimensionality620

While research on estimating intrinsic dimensionality ID is advancing, there is still no single algorithm621

to do so; rather, we adopt the recommended practice of computing and reporting several (here, five)622

different estimates of ID based on distinct ideas (Camastra and Staiano, 2016; Campadelli et al.,623

2015). The set of techniques we use includes: MiNDML (Lombardi et al., 2011), MLE (Levina and624

Bickel, 2005), DancoFit (Ceruti et al., 2012), CorrDim (Grassberger and Procaccia, 1983) and GMST625

(Tenenbaum et al., 2000; Costa and Hero, 2003). These techniques follow the selection criteria626

illustrated in Camastra and Staiano (2016), emphasizing ability to handle high-dimensional data (in627

our case hundreds of dimensions) and being robust, efficient and reliable; we refer the reader to628

Van Der Maaten et al. (2009) as a useful comparison. We implement these techniques using the629

code from the the authors available online Levina and Bickel (2005); Ceruti et al. (2012); Camastra630

and Staiano (2016), "out of the box" without modifying hyperparameters.631
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Neural network model632

We study a Recurrent Neural Network (RNN) that generates predictive neural representations of633

hidden states during the exploration of partially observable environments. RNNs are suited to634

processing sequence-to-sequence tasks (Sutskever et al., 2014), i.e. to generating sequences of635

outputs (here, the sequence of future observations) upon receiving sequences of inputs (here, the636

sequences of observations and actions). This is achieved by exploiting internal recurrent units in637

the network whose activity is updated as a function of their state at the previous time step, together638

with the current input. The state of a recurrent network is thus a function of the history of previous639

observations, and can be exploited by the readout to learn contextually appropriate responses to a640

new given input (Rigotti et al., 2010b,a; Lipton, 2015).641

Figure 3c illustrates our RNN model. In more detail: At a given time t the RNN receives as input642

an observation vector o⃗ and a vector representation of the action a⃗. The internal state r⃗t of the643

network is updated and used to generate the network’s output through Eq. 5. The RNN is trained to644

predict the observation at the next time step by minimizing the first cost function in Eq. 6.645

Description of the environment646

We consider a navigation task in two dimensions. We simulate the navigation of the agent in a647

square maze tessellated by a grid of evenly spaced cells (64x64=4096 tiles). At every time t the648

agent is in a given location in the maze and heads in a direction ' ∈ [0, 2�). The agent executes a649

random walk in the maze which is simulated as follows. At every step in the simulation an action is650

selected by updating the direction variable � stochastically, Fig.3b inset. The agent then attempts a651

move to the cell, among the 8 adjacent ones, that is best aligned to �. The move occurs unless the652

target cell is occupied by a wall, in which case the agent remains in the current position.653

The chosen action is encoded in a one-hot vector that indexes the movement. As the agent654

explores the environment it collects, through a set of 5 sensors, the distance and color of the655

walls along 5 different directions equally spaced in a 90 degree visual cone centered at '. Thus656

it records, for each sensor, four variables at every time step: the distance from the wall and the657

RGB components of the color of the wall. This information is represented by a vector ot of size658

5x4=20 as shown in Fig.3D. Such a vector, together with the action encoded through a 1 − 8 one-hot659

representation, is fed as input into the network and used for the training procedure. The walls are660

initially colored so that each tile corresponding to a wall carries a random color (i.e. three uniformly661

randomly generated numbers in the interval [0,1]). A Gaussian filter of variance 2 (number of tiles662

in the environment) is then used, for each color channel, to make the color representations smooth.663

Fig. 3b shows an example of such an environment.664

665

Description of the network training666

We train the connections in our RNN by minimizing the cost function in Eq. 6 via backpropagation667

through time (Werbos, 1990). While RNNs are known to be difficult to train in many cases (Pascanu668

et al., 2012), a simple vanilla RNN model with hyperbolic tangent activation function is able to learn669

our benchmark task.670

The connectivity matrix of the recurrent network is initialized to the identity (LeCun et al., 2015;671

Collins et al., 2016), while input and output connectivity matrices are initialized to be normally672

distributed random matrices. The network has 500 recurrent units (with the exception noted673

below), while the input and output size depend on the task as described in the description of the674

environment.675

We train the network through the optimizer RMSprop (though we checked that this specific676

choice does not influence our main results). Learning proceeds through successive epochs until677

the cost function fails to diminish in value for 25 consecutive epochs. For the simulations of678

Fig. 7 we trained 100 networks of 100 neurons: 50 networks in the predictive case (cost function679

 = 1
T

∑T−1
t=0 ||o⃗t+1 − y⃗t||2, cfr. Eq. 6) and 50 networks in the non-predictive case ( = 1

T

∑T−1
t=0 ||o⃗t − y⃗t||2).680
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The specific parameters adopted for the training of the recurrent network are: input weights681

∼  (0, 0.02), output weights ∼  (0, 0.02), RMSprop learning constant 0.0001, RMSprop � = 0.95,682

RMSprop � regularizer 1 ⋅ 10−7.683
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