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Abstract 

Biological membranes act as barriers or reservoirs for many compounds within the human 
body. As such, they play an important role in pharmacokinetics and pharmacodynamics of 
drugs and other molecular species. Until now, most membrane/drug interactions have been 
inferred from simple partitioning between octanol and water phases. However, the observed 
variability among membrane composition and among compounds themselves stretches 
beyond such simplification as there are multiple drug-membrane interactions. Numerous 
experimental and theoretical approaches are used to determine the molecule-membrane 
interactions with variable accuracy, but there is no open resource for their critical 
comparison. For this reason, we have built Molecules on Membranes Database (MolMeDB), 
which gathers data about over 2000 compound-membrane interactions including partitioning, 
penetration, and positioning. The data have been collected from scientific articles published 
in peer-reviewed journals and complemented by inhouse calculations from high-throughput 
COSMOmic approach to set up a baseline for further comparison. The data in MolMeDB are 
fully searchable and browsable by means of name, SMILES, membrane, method, or dataset 
and we offer the collected data openly for further reuse. MolMeDB can be a powerful tool 
that could help researchers better understand the role of membranes and to compare 
individual approaches used for the study of molecule/membrane interactions.  
 
Database URL: http://molmedb.upol.cz.  

Introduction 

Biological membranes consist of complex lipid and protein mixtures that play a crucial role 
in molecular transport into/out of cells. Apart from passive or active permeation, molecules 
can also accumulate in the membranes at specific functional positions or they can disrupt the 
membrane altogether. All those molecule-membrane interactions are important for the actions 
of individual molecules in the organism and their pharmacokinetics. 
And yet, most chemical databases use octanol/water partition coefficient (logP) as the only 
measure of small molecule interactions with lipid membranes, but the membrane 
compositions of individual cells and organelles can widely vary as it is being currently 
unraveled by findings from lipidomics (1). The membrane protein structural databases 
provide additional information not only about the position and the topology of the membrane 
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proteins but also about the membrane  type localization (e.g., OPM (2), PDBTM (3), 
MemProtDB (4), TPML (5), or EncoMPASS (6)); however, the data about various 
molecule/membrane interactions are scattered among different sources. For example, 
DrugBank (7) covers logP and information about membrane transporters and carriers for 
many drug molecules, but it does not provide a measure for the assessment of penetration nor 
does it involve partitioning through individual membranes. Permeability of compounds 
through skin membranes is either present in EDETOX database (8) or scattered throughout 
literature, e.g., sources cited in supplemental information of ref. (9). Similarly, the recently 
established PerMM database (10) covers only cellular permeability together with 
permeability prediction using an implicit membrane model with rigid compounds. Finally, 
molecular dynamics simulations are often used for predictions of membrane partitioning (11) 
or permeability even on a large scale (12,13). However, current theoretical predictions of 
molecule/membrane interactions vary by method as well as in comparison with data from 
experiments, lacking community benchmark comparison between individual methods. 
 

To fill this gap, we have developed Molecules on Membranes Database (MolMeDB) as an 
open and up-to-date online manually curated depository of molecule/membrane interactions. 
MolMeDB contains over 2000 interactions described in the literature or obtained by our 
COSMOmic-based high-throughput calculations (14). In addition to listing the individual 
molecule/membrane interactions, we provide a simple tool for comparison of interactions 
between multiple methods and/or membranes. Using this information, it is possible to analyze 
the membrane behavior of the selected subsets of molecules. Examples of these analyses are 
provided as case studies to better illustrate efficient ways to extract useful knowledge from 
the MolMeDB database. 

Materials and Methods 

Data Collection 

To collect datasets of molecule-membrane interactions, a manual inspection of articles (15–
23) and already existing databases (e.g., PerMM database (10)) with the focus on expressions 
like ‘membrane partition coefficient’, ‘membrane permeability’ or ‘penetration coefficient’ 
was performed (Figure 1). Primarily, we focused on high-throughput experimental setups like 
Black Lipid Membrane (BLM) (24), Parallel Artificial Membrane Permeability Assay 
(PAMPA) (17,25), n-hexane passive dosing (26), and polydimethylsiloxane (PDMS) based 
permeabilities (19,27) that provide partition coefficients of compounds on a variety of  
natural and artificial membranes. Moreover, we have also collected resources from a broad 
variety of computational methods, e.g., molecular dynamics-based Umbrella Sampling (US) 
approach, COSMO-RS theory-based COSMOmic calculations, or implicit solvent-based 
PerMM model. Those methods also differ in the level of approximation or force fields used to 
predict the compounds properties. This diversity within individual methods provides 
additional verification, especially in comparison to experimental data. 
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Figure 1. Illustrative scheme of MolMeDB workflow. Input data collected from 
experimental/theoretic studies are curated and introduced into the MySQL database with a 
web interface in HTML5/CSS + PHP7. Data for individual molecule/membrane interactions 
are visualized either as data tables or in interactive JavaScript graphs, and they can be 
directly compared and downloaded.  
 

In-House COSMOmic Calculations  

Apart from the already published data, we have added our original dataset of XY compounds 
on various membranes mimicking either cell-like membranes (DMPC or DOPC bilayers) or 
skin-like membranes (ceramide NS or stratum corneum mixture bilayers consisting of an 
equimolar mixture of ceramide NS:cholesterol:lignoceric acid).  
Neutral conformers of compounds were generated from SMILES with the LigPrep and 
MacroModel modules (Small-Molecule Drug Discovery Suite 2015-4, Schrödinger, LLC, 
New York, NY, 2016, https://www.schrodinger.com). Individual conformers of each 
compound were generated using the OPLS_2005 force field (28) in vacuum. Mixed 
MCMM/LMC2 conformational searches were performed to enable low-mode conformation 
searching with Monte Carlo structure selection. Maximum ten conformers were selected for 
further analysis if they were within 5 kcal/mol of the lowest energy conformer and, to reduce 
the number of similar conformers, had an atom-positional RMSD of at least 2 Å relative to all 
other selected conformers. Each selected conformer was subjected to a series of DFT/B-P/cc-
TZVP vacuum and COSMO optimizations using Turbomole 6.3 (Turbomole V6.3 2011, 
http://www.turbomole.com) within the cuby4 framework (29). After each optimization step, 
single point energy calculations at the DFT/B-P/cc-TZVPD level with a fine grid (30) were 
performed to obtain COSMO files for each conformer. The structures of COSMO .mic files 
describing bilayers were then obtained from fitting COSMO files of individual lipids to the 
bilayer structures obtained from free 200 ns+ long molecular simulations from refs for 
DMPC (11), for DOPC and ceramide NS (31) and for stratum corneum mixture bilayers (32).  
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For each conformer/lipid sets we calculated free energy profiles using COSMOmic 15 (14) or 
COSMOmic/COSMOperm 18 to obtain averaged free energy profiles. From those, 
information about membrane partitioning, permeability and affinity, central energy barrier, 
and the position of drug at its energetical minima was extracted. 
 

Database Architecture 

MolMeDB webpage is built with the combination of HTML5/CSS and PHP7 layouts running 
on Apache server. The database runs on MySQL (Figure 2). The AJAX search engine allows 
search over names of compounds, datasets, or SMILES. 2D structures are generated from 
SMILES using CDK Depict (33). 3D structure visualization is provided by LiteMol (34) over 
MOL files generated via RDkit (RDKit: Cheminformatics and Machine Learning Software. 
2018, http://www.rdkit.org), or downloaded from PubChem (35), or DrugBank (7) databases, 
or uploaded by the user. DrugBank is used also for interconnection links to other databases. 
Free energy profiles of individual molecule/method/membrane sets, where available, are 
visualized using Chart.js JavaScript application (https://chartjs.org). PMF profiles data are 
stored as equidistant values spaced 1 Å for possible comparison between individual PMF 
profiles and they are interpolated from the uploaded data by Neville’s algorithm of iterated 
interpolation.  
 

 
Figure 2. Scheme of MolMeDB database.  
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Results and Discussion 

User Interface and Database Usage 

To provide a user-friendly interface for the molecule-membrane interaction data, we 
developed a web version of MolMeDB database, freely accessible at http://molmedb.upol.cz. 
Interaction data can be accessed via browse or search functions. ‘Browse’ section (Figure 3A) 
allows the user to scroll through the list of available compounds, membranes, and methods 
used to describe the molecule-membrane interactions. ‘Search’ section (Figure 3B) enables to 
search for a desired compound by its name or SMILES notation and to look up compounds 
measured/computed by individual methods and membranes. Dataset search allows the user to 
browse within a list of publications by title or authors’ names. All data can be added into the 
Comparator tool (described below). MolMeDB web also includes ‘Documentation’ section 
(Figure 3C) explaining the methodology, giving several examples and a tutorial for using the 
database. Finally, ‘Statistics’ section (Figure 3D) keeps track of the number of entries and of 
interactions in subsets of individual methods or membranes. 
 
The user can use the ‘Search’ section (Figure 3A) to list all compounds matching the entry 
name. As example of “xanthine” entry, 6 compounds were listed partially matching the given 
expression (Figure 3). Among the listed entries, the user gets a quick overview of the 
compounds properties, 2D structure, and links to other chemical databases containing 
information about the molecule (e.g., Protein Data Bank (36), PubChem (35), ChEBI (37), 
ChEMBL (38), DrugBank (7)). Desired molecules can be added into Comparator tool (see 
below). After selecting a compound, in our case “xanthine”, a purine-based molecule which 
serves as a parent compound for caffeine and its derivatives, the page is divided into three 
sections (Figure 4): 

1. General info (Figure 4A)—provides a description of compound properties like 
molecular weight along with links to other databases via the molecule’s identifiers. 
The first section also shows a 2D image generated from SMILES via CDK Depict and 
a 3D structure generated by RDKit or downloaded from PubChem or DrugBank 
databases visualized with LiteMol.  

2. Interactions table (Figure 4B)—displays an interactive table with molecule-membrane 
interactions such as membrane/water partitioning (logKm), permeability coefficient 
(logPerm), free energy barrier in the membrane center (ΔGpen), affinity towards the 
membrane measured by the energetical minimum (ΔGwat), or the position of the 
interaction minimum for the molecule on membrane (Zmin) available for a 
combination of membranes and methods. The user can then switch among individual 
methods to compare the measured/calculated properties. The desired data can be 
directly downloaded as a .csv table. 

3. Free energy profile graph (Figure 4C)—demonstrates the course of the free energy 
profile along the membrane normal with energetical barriers and minima between 
membrane center (0 nm) and water environment (3.5 nm). For an individual method, 
the user can switch among available membranes and directly visualize given 
energetical profiles. 
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Figure 3. Layout of a page showing the toolbar of Browse/Search (A, B) utility along with 
menu items for Statistics (C), Documentation (D) and Comparator tool (E). Example of 
search utility for “xanthine” molecule. Compounds with corresponding pattern of name are 
selected and displayed along with 2D structure (G). Target molecules can be directly added 
into molecule Comparator (F) by clicking on “+” sign. 
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Figure 4. Interface of selected “xanthine” molecule divided into separate panels for general 
information (A) about the molecule with its 2D and 3D structure and links to other 
databases; interactive table showing available data about molecule-membrane interactions 
(B) on position, partitioning, energy barrier, and permeability coefficient for a given pair of 
method and membrane; and interactive graph with available free energy profiles (C).  
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Use Cases - Comparator Tool 

Although interaction data for individual compounds are valuable as such, their comparison 
allows the use of the data for research within multiple scientific fields. For this purpose, we 
have embedded the Comparator tool which allows to gather molecule-membrane interaction 
data for multiple compounds from one or more methods and to compare them in order to 
visualize patterns within the data or to assess the validity of predictive methods. 

Caffeine and its Metabolites  

Caffeine is a purine-based molecule, which is metabolized in a set of multiple-step reactions 
into a series of chemically modified compounds. In the first step, caffeine is metabolized to 
the following metabolites: theobromine (by enzymes CYP1A2, CYP2E1), theophylline 
(CYP1A2, CYP2E1), 1,3,7-trimethyluric acid (XO), 6-amino-5(N-formylmethylamino)-1,3-
dimethyluracil (CYP1A2), and paraxanthine (CYP1A2) (Figure 5) (39).  
Free energy profiles on DOPC membrane for this set of caffeine derivatives were calculated 
using COSMOmic 18. The nature of the chemical modification of the parent molecule caused 
different interactions of the metabolites with the membrane. Caffeine derivatives are 
metabolized in three distinct types of reactions: demethylation (theobromine, theophylline, 
paraxanthine), oxidation (6-amino-5(N-formylmethylamino)-1,3-dimethyluracil, 1,3,7-
trimethyluric acid), and decyclization (6-amino-5(N-formylmethylamino)-1,3-
dimethyluracil). Here we show that individual types of caffeine metabolites exhibit 
distinguishable changes in free energy profiles (Figure 5). The lowest energetic barrier 
(ΔGpen) is shown for caffeine as the parent compound, followed by all demethylated 
metabolites with an identical increase of penetration barrier by approximately 3.4 kcal/mol. 
Oxidized and oxidized/decyclized products experienced an even greater increase of 
penetration barrier compared with the original caffeine molecule by 5.4 and 5.9 kcal/mol, 
respectively.  
Overall, all products of caffeine metabolism show a hindered passage through the membrane 
core as evidenced by the increase in the penetration barrier energy (ΔGpen). On the other 
hand, the affinity of all molecules towards the membrane (ΔGwat) remained almost the same, 
which is in concord with their very similar logP values. Finally, all metabolites shifted their 
energetic minima (Zmin) toward the membrane/water interface by 2 Å. 
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Figure 5. Comparison of free energy profiles of caffeine and its metabolites showing an 
increase of penetration barrier according to the type of metabolizing reaction and to the 
nature of chemical modification. 
 

Comparison of Methods  

The Comparator tool also allows a comparison of multiple methods/membranes with each 
other over selected compounds. Such type of comparison can be used to evaluate different 
theoretical approaches (e.g., PerMM) versus experimental data (e.g., BLM).  
 
In this example, we show a comparison of permeability coefficient datasets obtained from 
theoretical PerMM prediction and experimental BLM method for 126 compounds on DOPC 
membrane. The user can reach the whole dataset for an individual Method/Membrane via the 
Search tool and add it directly into the Comparator tool. Upon choosing the desired 
combination of multiple Method/Membrane options, the data can be plotted in an interactive 
window (Figure 6). The individual permeability coefficient for a particular compound can be 
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visualized by hovering the cursor over the given datapoint (here an example for 3,5-
dichlorobenzoic acid). Linear regression fit was used here to determine the level of 
correlation between the two methods, obtaining the coefficient of determination (R2) of 0.61. 
 

 
Figure 6. Comparison of permeability coefficients obtained from experimental BLM method 
and theoretical PerMM model. The figure was manipulated externally from downloaded data 
to add linear regression line shown in grey with confidence interval shown in red and 
prediction interval, in green. Confidence interval was set to 95%. 

Conclusion and Future Work 

MolMeDB is a unique, manually curated database on interactions of compounds with 
membranes. To date it contains more than 1000 compounds and 2000 molecule-membrane 
interactions obtained both theoretically and experimentally. MolMeDB stores multiple 
descriptors of molecule/membrane interactions and provides the tools for searching and 
browsing these data and their comparison. MolMeDB can prove to be a valuable resource for 
many research groups to benchmark the key data on molecule-membrane interactions, which 
are important in the fields of pharmacology, toxicology, and molecular simulations. In the 
future, we plan to add further datasets and implement also the involvement of transporters 
and carriers. More complex statistical analysis within the selected datasets and further 
FAIRification of the data is anticipated in following versions of MolMeDB. We believe that 
MolMeDB can be a useful starting point, which can facilitate future studies devoted to a 
deeper understanding of biological roles of molecules on membranes and that it will attract 
the biological membrane community to establish a common ground for sharing open data in 
this field. 
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Availability and requirements 

MolMeDB database is freely available at http://molmedb.upol.cz. The visualization of 3D 
structures with the LiteMol molecular viewer requires the browser to have WebGL enabled. 
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