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Estimating recent effective population size is of great importance in characterising and predicting the

evolution of natural populations. Methods based on nucleotide diversity may underestimate current

day effective population sizes due to historical bottlenecks, whilst methods that reconstruct demographic

history typically only detect long-term variations. However, soft selective sweeps, which leave a fingerprint

of mutational history by recurrent mutations on independent haplotype backgrounds, holds promise of an

estimate more representative of recent population history. Here we present a simple and robust method

of estimation based only on knowledge of the number of independent recurrent origins and the current

frequency of the beneficial allele in a population sample, independent of the strength of selection and

age of the mutation. Using a forward time theoretical framework, we show the mean number of origins

is a function of θ = 2Nµ and current allele frequency, through a simple equation, and the distribution

is approximately Poisson. This estimate is robust to whether mutants pre-existed before selection arose,

and is equally accurate for diploid populations with incomplete dominance. For fast (e.g., seasonal)

demographic changes compared to time scale for fixation of the mutant allele, and for moderate peak-

to-trough ratios, we show our constant population size estimate can be used to bound the maximum

and minimum population size. Applied to the Vgsc gene of Anopheles gambiae, we estimate an effective

population size of roughly 6× 107, and including seasonal demographic oscillations, a minimum effective

population size greater than 6× 106 and a maximum less than 3× 109.

INTRODUCTION

Studying the differences in sequences between individu-

als in a population has the potential to give new insight

into evolutionary processes: the evolutionary forces of se-

lection, mutation, migration and drift can leave a signature

in the pattern and frequency of polymorphisms in time and

space, which population genetic theory can be used to in-

fer [2, 8, 10, 11, 15, 22, 30]. A key parameter to estimate

for any evolving population is the effective population size

[9, 29], as it determines the underlying nature of the evo-

lutionary dynamics and the relative importance of genetic
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drift versus selection for evolving traits. In particular, hav-

ing an accurate estimate of recent effective population size

has impact on our ability to predict the outcomes of evolu-

tion, as the current population size controls the mutational

input through the parameter θ = 2Nµ and the fate of rare

variants in a population via the population scaled strength

of selection 2Ns [16]. However, there is not a single well-

defined measure of effective population size and different

estimates will depend on the particular evolutionary pres-

sures on the trait or genomic region under consideration,

as well as on previous population histories [5]. A com-

mon method to estimate effective population size is from

the nucleotide diversity π of neutral regions of a genome,

where for 2Nµ � 1, we expect π < 2Nµ [5]. This re-
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lation represents a balance between mutations introducing

variation at rate µ and drift removing variation at rate 1
2N .

However, nucleotide diversity will tend to be dominated by

population bottlenecks, and so be insensitive to recent pop-

ulation expansions [13], and there is a need for methods

to estimate effective population sizes which are more rep-

resentative of current day census size. Methods based on

linkage disequilibrium tend to be limited to small population

sizes [26]. On the other hand, although there are a number

of methods that attempt to directly infer demographic his-

tory [4, 10, 11, 23], these methods are either complex and

computationally intensive, or only able to detect long-term

changes in population size. There are currently no meth-

ods that simply and robustly allow estimation of very recent

effective population sizes.

A recent popular paradigm to study variation in popula-

tions are “soft sweeps”, where for sufficiently large popula-

tion sizes (Nµ & 1) multiple copies of the same mutation,

distinguished by their haploytpe background, co-exist in the

population. This provides a direct genetic fingerprint on the

rate at which mutations enter a population θ, which without

their distinguishing haplotype backgrounds would be hidden.

Precise information about θ is effectively hidden when mu-

tations arise infrequently per generation (Nµ � 1), since

in this weak successive mutations regime, a single dominant

haplotype fixes in a population before other haplotypes have

a chance to establish; these are termed “hard sweeps”, as

each subsequent sweep erases any previous information, giv-

ing a weak bound that θ � 1. In a series of seminal papers

by Pennings and Hermisson [12, 20, 21], much of the basic

theory of soft sweeps was developed within a coalescence

framework. In particular, the mean number and the distri-

bution of independent origins in a neutral population sam-

ple were found to be given by Ewens’ sampling framework

[7]. Estimating N from soft sweeps should be representa-

tive of the effective size over the time period of the sweep

[13]. However, estimating the maximum likelihood effective

population size requires using Ewens’ formula [7] for the

probability of observing a certain number of distinct alleles

in a sample of only neutral alleles, which although exact is

not very practical for large sample sizes, as it requires eval-

uating the Stirling number of the first kind, a combinatorial

factor that has not been implemented in most program-

ming languages. In addition, when the mutant allele has

not yet gone to fixation, we need to account for the fact

that samples will contain both wild type and mutant alleles;

this requires the extra complication of having to convolve

Ewens’ formula with a binomial distribution for the proba-

bility of observing a given number of mutants in a sample

given the frequency of the mutant.

In this paper, we present a simple semi-deterministic for-

ward time approach, based on a non-homogeneous Poisson

establishment rate of independent mutants, which there-

after grow deterministically [18]. We show that this gives

very accurate estimates of the number of independent ori-

gins as a function of the time since selection sets in. In

the haploid case we show explicitly the likelihood function

is independent of the selection coefficient and only depen-

dent on the frequency of the mutant allele, and so does

not require estimation of the selection coefficient or the age

of the allele. This approach has the advantage of being

simple to implement, as the likelihood function is a non-

homogeneous Poisson process, and is particularly appealing

as the results can be understood in intuitive terms in a

forward-time framework. Further, we show the method is

robust to whether or not the mutation was pre-existing in

the population, and is equally accurate for diploid popula-

tions with incomplete dominance (0 < h < 1). Finally, we

apply our method to recent data from the Vgsc locus from

the Anopheles gambiae 1000 genomes (1000Ag) project [1]

to find an estimate of effective population size almost 2 or-

ders of magnitude greater than is estimated by analysing

nucleotide diversity. Moreover, to account for the marked

seasonal population dynamics of this species, we show that

it is possible to calculate a bound for the maximum and

minimum effective population sizes, based on an estimate

of effective population size using the constant population

size method.
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THEORY

We calculate the likelihood of the number of origins with

two assumptions: 1) we assume a non-homogeneous (time-

dependent) Poisson process such that mutant alleles estab-

lish with rate α(t) = 2Nµs(1 − x(t)), where x(t) is the

frequency of all mutant alleles in the population; 2) after

establishment of the kth mutant allele, its frequency xk(t)

increases deterministically. The mean number of origins at

time T is then determined by calculating the average num-

ber of establishment events in a time window 0 to tK , where

tK is the latest possible time of establishment, such that it

can grow deterministically to a critical frequency to be sam-

pled from the population at some time T .

Deterministic growth

We assume that the overall mutant population grows ac-

cording to the following differential equation:

dx

dt
= sx(1− x) + µ(1− x), (1)

where the first term is the change in frequency due to fre-

quency independent selection (assuming s� 1) and second

is the change in frequency due to mutations arising from the

wild type population at mutation rate µ. This has the fol-

lowing closed form solution

x(t) =
(sx0 + µ)e(s+µ)t − µ(1− x0)

(sx0 + µ)e(s+µ)t + s(1− x0)
(2)

which in its tanh form is:

x(t) =
s− µ

2s
+
γ

s
tanh γ (t− t∗) . (3)

where

t∗ =
1

γ
tanh−1

(
s− µ− 2sx0

s+ µ

)
, (4)

where γ = (s + µ)/2 and x0 is the initial frequency of the

total mutant population. As in this deterministic framework

the mutant allele only asymptotically reaches fixation as

t → ∞, we identify t∗ as the characteristic or typical time

to fixation, which is the inflexion point of the tanh function

and roughly the point at which the mutant has reached a

frequency of (s − µ)/2s ≈ 1/2 for s � µ; the actual time

to fixation with discrete populations and drift will always be

of the same order of magnitude as t∗. Here we assume that

the initial frequency of the mutant is zero and so using the

identity tanh−1(z) = 1
2 ln

(
1+z
1−z

)
(|z| < 1),

t∗ =
1

s+ µ
ln

(
s

µ

)
(5)

We see that the typical time to fixation t∗ has a logarithmic

dependence on the mutation rate, and can increase with-

out bound for small mutation rates since we must wait for

mutations to arise before selection can act to increase its

frequency. Note that our approach here is in contrast to

[13, 18, 27] who typically assume an expression for the mu-

tant frequency which ignores initial conditions and de novo

mutation, which as we see can cause a large effect on the

time to fixation; in our case this is important as we require

the mutant to have zero initial frequency, when the selection

pressure arises.

Stochastic establishment and likelihood of number of

origins

We assume mutant alleles arise by de novo mutation at

a time-varying (non-homogeneous) rate proportional to the

number of wild type individuals Nµ(1−x(t)). De novo mu-

tants must reach a critical frequency xest ∼ 1
2Ns at which

point more mutant individuals are added by selection com-

pared to the change in number due to drift [6]. The prob-

ability that a de novo mutant, starting at frequency 1/N ,

grows by drift to size Nxest = 1
2s , is just the inverse of the

size of this neutral sub-population, pest ≈ 2s. The rate of

establishment of mutants is then

α(t) = 2Nµs(1− x(t)). (6)
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We make the assumption that establishments occur ran-

domly and independently and so the underlying probability

distribution for the number of establishments up to time

tK(T ), the time of establishment of last mutant to pos-

sibly be sampled at a latter time T , is given by a non-

homogeneous Poisson process:

p(η(T )|N, s, µ) = L(N, s, µ|η(T )) =
η̄(T )η

η!
e−η̄(T ), (7)

where η(T ) is the number of independent origins at time T ,

and where the mean is given by the integral of the rate α

up to time tK(T ):

η̄(T ) =

∫ tK(T )

0

α(t)dt

= 2Nµ

(
γtK − ln

(
cosh γ(tK − t∗)

cosh γt∗

))
.

(8)

The time of the last establishment tK(T ) is straightforward

to calculate as shown next.

Calculating tK

The time for the last possible establishment, tK of the

Kth mutant, in order to be sampled with high probability

at time T , is calculated by using a deterministic approxi-

mation for the change in frequency of the Kth mutant. In

an experiment, and in simulation, individuals of a popula-

tion are sampled with a sample size ns; in simulation this is

done using multinomial sampling with the allele frequencies

determined from simulation. Here for simplicity we assume

that when a mutant allele frequency is above xs = 1/ns

then the mutant will be found in a sample of size ns. With

a deterministic time-course of the Kth mutant, there is a

one-to-one correspondence between its frequency at time

T , xK(T ) and the time of establishment tK , given that its

frequency must be xK(tK) = 1/2Ns.

To calculate xK(t), we use the fact that in the determin-

istic limit the ratio of the frequency of any mutant allele

is fixed with respect to the overall mutant population, i.e.

xK(t)/x(t) = const; this is true whenever the growth func-

tion of each mutant is of the same form dxi

dt = f(x)xi,

which can be proved by showing
d(xi/xj)

dt = 0. In this case,

once a mutant arises in the population, we assume no more

mutations can create the mutant from wild type and that

there are no back mutations, so the growth of each mutant

follows:

dxi
dt

= s(1−
∑
j=1

xj)xi, (9)

whilst the growth of the total number of mutants is given

by Eqn.1; however, once the overall mutant population has

established the effect of mutations will be weak compared to

selection, as long as s� µ, and so to a good approximation,

the total mutant population also follows the same form as

Eqn.9.

It is then simple to show that the frequency of the Kth

mutant is just a scaling of the frequency of the total mutant

population x(t):

xK(t) =
x(t)

2Nsx(tK)
(10)

where we have used the fact that at the establishment time

tK we know that the frequency of the mutant must be

xK(tK) = 1/2Ns, and that xK(t)/x(t) = xK(tK)/x(tK).

We then solve xK(T ) = xs, for tK to give

tK(T ) = t∗ +
1

γ
ln

(
2Nµ+ x(T )/xs
2Ns− x(T )/xs

)
. (11)

where we have again used the identity tanh−1(z) =

1
2 ln

(
1+z
1−z

)
(|z| < 1) to arrive at this expression.

Simple expression for mean number of origins

The mean number of origins is calculated by inserting

Eqn.11 into Eqn.8 and then after some algebra we find:

η̄(T ) = 2Nµ ln

(
1 +

x(T )ns
2Nµ

)
, (12)
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which we see only has dependence on the selection coeffi-

cient s through the frequency of the total mutant population

x(T ) at time T . This is consistent with the results in [20],

where in the coalescence framework they find the probability

of a soft-sweep in a sample size of 2, at fixation, is inde-

pendent of the frequency sample path of the mutant allele

and weakly bounded by selection through the fixation time.

This result suggests that larger sample sizes ns increase the

number of independent origins we should expect to observe.

As shown in the Supplementary Information, the theory

can be extended to the diploid case, where we find an ex-

pression for the mean number of origins as a function of the

dominance coefficient h (assuming incomplete dominance

0 < h < 1) and the selection coefficient s, as well as N

and µ. In this case it is not clear whether the mean number

of origins, and hence the Poisson distribution, is indepen-

dent of the selection parameters s and h, as the resulting

expression is complex. However, as we will see, the haploid

expression is as accurate in the estimation of the effective

population size as using the diploid expression, which sug-

gests the dependence on s and h are weak. In addition, as

shown by Pennings and Hermisson [20], the probability of

a soft sweep has a weak ∼ s2 dependence in diploid popu-

lations, which would also suggest a weak dependence on s

for the number of origins.

SIMULATIONS

Methods

We simulate the population genetics of multiple recur-

rent mutations at a single locus using an infinite alleles

Wright-Fisher process. Simulations start assuming a fixed

wild type, so that the mutant frequency x(t = 0) = 0;

each subsequent mutation that arises is given its own “al-

lelic” identity to represent it arising on a different haplotype

background, and once it enters the population the same al-

lele cannot be produced by mutation from the wild type or

any other allele. As is commonly assumed for an infinite-

alleles process, we assume in addition there are no back

mutations to the wild type. Each mutant allele has the

same selective advantage s relative to the wild type. For

population sizes up to N = 106, we use multinomial sam-

pling of alleles with fixed population size N to calculate

the stochastic change in frequency between generations due

to selection and drift. This is replaced by the equivalent

multivariate Gaussian distribution with covariance matrix

〈∆xi∆xj〉−〈∆xi〉〈∆xj〉 = xi(δij−xj) for population sizes

larger than 106. Correspondence between the two methods

was checked for simulations at smaller population sizes (not

shown). In both cases mutations are treated separately and

introduced with a non-homogeneous Poisson process, where

the mean number of new mutant alleles in generation t+ 1

is given by Nµ(1− x(t)), where x(t) is the frequency of all

mutants in generation t; each of these new mutant alleles

arise in the population with frequency 1/N (or 1/2N in the

diploid case).

At various time points T we sample the vector

of frequencies of all independent mutants x(T ) =

[x1(T ), x2(T ), x3(T ), ..., xK(T )], using multinomial sam-

pling with K + 1 categories (including the wild type, which

has frequency 1−
∑K
k=1 xk), and sample size ns. This pro-

duces a sample vector n(T ), where nk(T ) is the number

of the kth mutant sampled. The number of origins η(T ) is

then the number of different mutants that are non-zero in

the sample.

Results

In Fig.1 is plotted the time series of the frequency of each

recurrent mutation from the Wright-Fisher simulations for

N = 106 and s = 0.05 and two different mutation rates,

corresponding to 2Nµ = 1 (A) and 2Nµ = 10 (B). We see

that at the larger mutation rate there are correspondingly

many more mutants in the population, and that the rate

of production of mutants is proportional to the frequency

of the wild type, signified by the lack of new mutants once

the total mutant population has fixed. The red curve is a
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plot of Eqn.3, the deterministic solution for the total mu-

tant population over time, and we see that it matches well

the time-course found in the simulations, particularly for

2Nµ = 10, where stochastic effects of the de novo genera-

tion of mutants becomes negligible. The frequency of each

of the recurrent mutants follows the same scaling as the

total frequency of all mutants, as assumed in the Theory

section, and once the mutant population fixes, each of the

recurrent mutants plateaus and stops changing in frequency

(up to small relative fluctuations), which is as predicted by

Eqn.9. In other words, in the deterministic limit there is

a “crowding-out” effect, characteristic of logistic growth,

where the growth of a mutant is limited by all other mu-

tants in the population.

In each plot the highlighted mutant in the thick magenta

solid line shows an example of a mutant establishing at the

frequency xest = 1
2Ns , at time tK , and then reaching the

critical sampling frequency at a time T . If T is the time

of sampling, then this would be the last possible mutant

that could contribute to a sample, and the time between

0 and tK would be the window over which mutants can

be generated that could contribute to a sample at time

T . The distribution of the number of origins at time T

is just the distribution of the number of establishments in

this time window; this is the basis of the semi-deterministic

theoretical calculation of the number of origins described

above.

Fig.2 shows the results for the mean number of ori-

gins η̄(t) calculated from simulation (squares), compared

the semi-deterministic theory presented in this paper (thick

lines) and Pennings and Hermisson’s calculation [20] based

on Ewens’ sampling theory [7]. We see in general that

the time-course of η̄(t) reflects the time-course of the fre-

quency of the total mutant population, with a sigmoidal

variation, where for the largest selection coefficients we see

a plateau reached in less than 500 generations. Both the

semi-deterministic theory and Ewens’ theory predict that the

plateau of η̄(t) is independent of the selection coefficient,

since η̄(∞) is roughly given by time window over which mu-

tants can be generated, which approximately scales as 1
s ,

multiplied by the rate of establishment of mutants, which

scales like ∼ s, cancelling the s dependence. We see that

the simulations agree with this prediction for the larger pop-

ulation sizes, but for N = 106, the number of origins de-

creases for long times; this is due to drift removing very

low frequency variants at the smaller population size, whilst

at the larger population sizes drift acts more slowly, such

that the change is insignificant on the timescale of the sim-

ulation. Finally, we see that the time-course of the mean

number of origins before the plateau is different for each

population size, where for the smaller selection coefficients

the mean number of origins arise more slowly for larger pop-

ulation sizes. This is related to the deterministic time-course

of the mutant frequency which, given the initial condition

that the mutant frequency is zero, has a strong dependence

on the mutation rate as shown by Eqn.5. The simulations

are performed for fixed 2Nµ, and so a larger population size

means a smaller mutation rate and so η̄(t) increases more

slowly; however, at long times the plateau number of origins

agree for all population sizes (not shown), as predicted by

Eqn.12.

We also examine the distribution of the number of origins

in Fig.3 from Wright-Fisher simulations (1000 replicates)

at a population size N = 108, selection coefficient s =

0.05, and mutation rates 2Nµ = {0.1, 1, 10}. The theory

presented in this paper describes the distribution very well

for all times up to and including fixation. On the other

hand Ewens’ sampling framework predicts in a sample of ns

neutral alleles that the distribution of the number of distinct

mutant alleles η is

p(η|N,µ, ns) =
θη [ ns

η ]

θ(ns)
(13)

where [ nk ] is the unsigned Stirling number of the first kind,

which is a combinatorial factor which arises in the expansion

of the rising factorial θ(n) =
∑n
k=0 [ nk ] θk = θ(θ + 1)(θ +

2)...(θ + n − 1). However, if the mutant allele has not

fixed then the probability distribution of η mutants alleles is
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FIG. 1. Time series of the frequency of each independent origin of the same recurrent mutant (range of different colours). A)

N = 106, 2Nµ = 1, & s = 0.05, B) same as A, but with 2Nµ = 10. Solid black line is the sum of all mutant frequencies

(x(t)
∑

k xk(t)), dashed black line the frequency of the wild type (1 − x(t)), and the solid red line is the deterministic time

course given by Eqn.3.

the convolution of Eqn13 with a binomial distribution that

in a sample of size ns we see nx mutant alleles given a

frequency x(t) of the mutant population. This convolution

has no known closed-form solution and for large sample sizes

is computationally intensive. In Fig.3 the dotted lines are a

plot of Ewens’ theory Eqn.13 without this convolution and

ns replaced in Eqn.13 by nsx(t) (calculated in Mathematica

[28]) and as expected it does poorly when the mutant hasn’t

yet fixed, and is quite accurate at later times when the

mutant is near or at fixation. When the mutant allele is at

fixation, the semi-deterministic likelihood of this paper and

that from Ewens’ formula are closely matched (Fig.6).

PARAMETER ESTIMATION

Haploid

As described above, the semi-deterministic theory cal-

culates the likelihood function for the number of observed

independent origins, and we find it is only a function of

2Nµ, the frequency of the mutant population at the time

of sampling x(T ) and the sample size ns = 1/xs. Typically,

the mutation rate will have been independently determined,

and so we can determine a maximum likelihood estimate

of N given knowledge of the ns and x(T ), which can be

estimated from the sample. In Fig.4A is the log10-error

of this estimation process using 100 replicate Wright-Fisher

simulations, with sample size ns = 1000, where the true

N is known. We see that for mutant frequencies x > 0.1,

the error of our estimate N∗ is always less than a factor of

100.2 ≈ 1.6, which means the effective population size is

accurately determined to much less than an order of magni-

tude. Moreover, the accuracy increases for increasing 2Nµ,

where it is less than 100.1 ≈ 1.3 for 2Nµ ≥ 10.

Diploid

We can also accurately estimate the effective population

size from diploid simulations. As described in the Supple-

mentary Information, we extend the semi-deterministic the-

ory to the diploid case with incomplete dominance (0 <
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FIG. 2. Average number of origins for population sizes of N = 106, N = 107, and N = 108. The squares show the simulation

results and standard error bars for the parameter combinations shown in the legend; for N = 106 and N = 107 the simulations

used multinomial sampling of the Wright-Fisher drift process with 50 and 10 replicates, respectively, for each parameter

combination, while for N = 108 the multinomial sampling is replaced by the multivariate Gaussian distribution approximation

of the drift process (see subsection Methods above), where 100 replicates are used in this plot. The solid thick lines are the

predictions for the same parameter combination of the semi-deterministic theory described in this paper (Methods), while the

thin lines represent the prediction of Pennings and Hermisson [20], based on Ewens’ sampling theory [7].

FIG. 3. Distribution of the number of origins for simulations with various mutation rates for N = 108 and s = 0.05 (open

circles) compared to theory in the this paper Eqns.12 & S15 (solid lines) and Ewens’ sampling formula (dotted lines). For the

mutation rates 2Nµ = {0.1, 1, 10} the corresponding typical fixation time (Eqn.5) is t∗ ≈ {370, 320, 280} generations.

h < 1) by using the exact implicit solution t(x) for how the frequency x of the mutant allele changes over time to
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FIG. 4. log10-error in estimating the true effective population size, for A) Haploid populations with N = 108, B) Diploid

populations with N = 5 × 107, for various selection coefficients, mutation rates, and dominance coefficients (diploid only)

from Wright-Fisher simulations (100 replicates for each parameter combination). A) We use Eqns.12 & S15 to determine the

maximum likelihood estimate. B) For the diploid population we use the same Poisson likelihood function, but with mean given

by Eqn.13&14 in the Supplementary Information, where we assume perfect knowledge of T (squares) and also compare to the

case where we have a systematic error in our knowledge of T , where the true time is T/2 instead T (circles), and we see the

estimates are unchanged. In addition, for the diploid population we use the haploid likelihood function (Eqns.12 & S15) to

estimate 2N (plus signs) and find again excellent agreement.

calculate time of establishment of the last mutant to be

sampled at some later time T . This is then used to cal-

culate the likelihood function p(η|N, s, h, µ), where we as-

sume a known mutation rate. We are still left with having

to jointly estimate N , s and h in the diploid case. How-

ever, we expect that the dependence on h and s will be

weak ([20]), although it is not straightforward to show this

explicitly, as in the haploid case, where there is no depen-

dence on s, even before fixation. To show this we use

the implicit relation (Eqn. 2 Supplementary Information)

to numerically estimate s∗ that gives t(x) = T , where we

assume perfect knowledge of the dominance coefficient h.

We see in Fig.4B that the estimate of the effective popu-

lation size from diploid simulations has a similar accuracy

as the haploid simulations, and is robust to knowledge of

the exact time selection sets in T ; the error is taken up in

the estimate of s (not shown). We also use the haploid

semi-deterministic theory to estimate the effective popu-

lation size, accounting for double the number of chromo-

somes, shown by plus signs in Fig.4B; again we see that the

estimate of N is identical using the haploid method for a

given set of parameters, s, h and µ. Both the robustness of

estimates to the exact knowledge of T and that the haploid

gives identical estimates indicates that the direct depen-

dence on s and h is very weak or non-existent, at least for

weak absolute selection [20].

Haploid with pre-existing mutations

Finally, we examine the effect that pre-existing mutations

have on our estimate of the effective population size. We

run simulations such that for times Td < t < 0 the mutant

allele has a negative selection coefficient s = −sd, where

2Nsd = {0, 103, 104, 105, 106}, Td = −1000 generations

and N = 108, s = 0.05 and 2Nµ = 1. The mean number

of origins η̄ is plotted in Fig.5A, for the various values of sd
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as well as for the case of no pre-existing mutations (black

hexagram symbols); we see that as the mutant allele be-

comes increasingly neutral before positive selection sets in,

the number of origins is larger, except for long times where

the plateau of η̄ is approximately independent of sd. This

suggests the overall effect of pre-existing mutations is to

cause a time advance on the number of origins. This again

would suggest that the estimate of effective population size

should be robust to pre-existing mutations, which we see to

be the case in Fig.5B, where the error in estimating N us-

ing Eqn.12 for the mean of the Poisson likelihood function

is roughly independent of sd and very similar to assuming

no pre-existing mutations (black hexagrams).

APPLICATION TO DATA FROM AG1000 PROJECT

Recently published data from the Anopheles gambiae

1000 genomes project (Ag1000) has extensive population

level sampling of the genomes of mosquitoes across sub-

Saharan Africa [1]. The gene for the voltage-gated sodium

channel (Vgsc) is known to have at least two single nu-

cleotide mutations in the same codon that confer resis-

tance to insecticides, L995S (2984T > C) and L995F

(2985A > T ), and phylogenetic analysis of this gene re-

veal 10 haplotype clusters (Fig.4 in ref[1]) with a current

mutant frequency of x ≈ 0.78 determined directly from the

data. If we assume either mutation is required for resis-

tance, this gives a mutation rate of µ ≈ 6 × 10−9, assum-

ing a base-pair mutation rate of 3 × 10−9, which is based

on a recent accurate estimate from Drosophila [14], as the

mutation rate has not been directly measure for Anophe-

les gambiae. Applying the haploid algorithm to this data,

accounting for the factor of 2 between chromosomes and

individuals, and using a sample size of ns = 1530 chromo-

somes from 765 mosquitoes, gives an effective population

size N = 6.2× 107 (2.7× 107, 1.2× 108), where the values

in brackets are the 95% confidence intervals (2 ln units from

max likelihood), as shown in the plot of the likelihood func-

tion in Fig.6. This estimate is almost 2 orders of magnitude

greater than that of N ≈ 106 from a nucleotide diversity

π ∼ 0.01. In the same paper, the authors use the more

sophisticated “stairway” plot [10] and ∂a∂i [11] method to

estimate population history, and find most recent effective

population sizes of order N ≈ 107, which is roughly 6 times

less than our estimate.

Note that we can also apply the method to each resis-

tance mutant separately L995S and L995F , which have

frequencies of ≈ 0.28 and ≈ 0.5, and 5 independent origins

each, which assuming a single base-pair mutation rate of

≈ 3×10−9 for each of these, gives the following estimates of

effective population size N = 6.6×107 (1.9×107, 1.7×108),

and N = 6.0×107 (1.8×107, 1.5×108), respectively, where

the values in brackets, are again the 95% confidence inter-

vals. We see the estimate based on each SNP are consistent

with the estimate above based on both SNPs, but, as ex-

pected, with larger confidence intervals.

However, it is known that in many sub-Saharan regions

mosquitoes undergo seasonal demographic changes, where

the population size changes between wet and dry seasons by

up to a factor of 100 [3, 17, 19, 25]. To check the impact of

demographic changes on our population size estimates, we

ran simulations for a mutant with s = 0.05, with an oscillat-

ing population size N(t) = 1
2 (Nmax +Nmin) + 1

2 (Nmax −

Nmin) sin(2πt/∆T ), with a period of ∆T = 10 genera-

tions, which is approximately 1 year and much shorter than

the expected time to fixation of the mutant of approximately

300 generations (Eqn.5). The simulations were performed

with various peak-to-trough ratios φ = Nmax/Nmin =

{10, 100, 1000} and with two constraints: 1) that the ge-

ometric mean
√
NmaxNmin = N = 108 and 2) that the

harmonic mean 2(N−1
max +N−1

min) = N = 108. Simulations

with constrained arithmetic mean were also performed but

are not shown. We see in Fig.7, that for φ ≤ 1000, simu-

lations that constrain the geometric mean gives fewer inde-

pendent origins than with constant populations, and simu-

lations that constrain the harmonic mean give more inde-

pendent origins. This conversely means that for oscillating

demographic changes the estimate N∗ of the effective pop-
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FIG. 5. Mean number of origins for haploid simulations with pre-existing mutations (A), where the black hexagram symbols

represent simulations without pre-existing simulations, and (B) log10-error in maximum likelihood estimate of the true effective

population size N = 108 from Wright-Fisher simulations with various values of the deleterious selection coefficient sd (100

replicates for each parameter combination).

ulation size, using the constant population size theory of this

paper, will be an underestimate of the geometric mean of

the population and an overestimate of the harmonic mean.

This allows us to derive simple expressions for bounds on the

maximum and minimum effective population sizes given our

estimate N∗ and φ:

N∗

2
(1 + φ) < Nmax <

N∗
√
φ

N∗

2
(1 + 1/φ) < Nmin < N∗

√
φ

(14)

Using the estimate above N∗ = 6.2× 107, we arrive at the

following bounds for the maximum and minimum population

sizes, assuming φ = 100: 6.2 × 108 < Nmax < 3.1 × 109

and 6.2×106 < Nmin < 3.1×107. So we see that our anal-

ysis estimates that the peak population size can’t be greater

than 3.1 × 109 and the minimum population can’t be less

than 6.2 × 106. Note that in Fig.7 the number of origins

with constrained geometric mean varies non-monotonically

as φ increases, so for very large φ we find the number of

origins exceeds the constant population size scenario (not

shown), and so this bound will not work. Simulations that

constrain the arithmetic mean of the maximum and min-

imum population sizes show that the number of origins

monotonically decreases with increasing φ, but are signif-

icantly less than even the constrained geometric mean case

(not shown). This means our estimate N∗ will be less than

the arithmetic mean for all φ, but the equivalent to Eqn.14

provides a much weaker lower bound on Nmax and Nmin.

DISCUSSION

Estimating the recent effective population size is of

paramount importance to understanding and predicting the

evolutionary dynamics of natural populations. As has been

previously suggested [13], methods that estimate effective

population size based on nucleotide diversity are likely to

give estimates which are much smaller than the current day

census size, as such metrics are dominated by historical pop-

ulation bottlenecks. Although methods based on linkage

disequilibrium can detect recent effective population sizes,

they tend to be limited to small populations [26]. In ad-

dition, methods that estimate demographic histories tend

to be computationally complicated and with limited range

of applicability, such as only detecting long-term variations
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FIG. 6. Likelihood (normalised) of the number of origins as

function of effective population size given an observed number

η = 10 and samples size ns = 1530 chromosomes, correspond-

ing to that found for the Ag1000 project [1] for the Vgsc resis-

tance locus. As shown in the legend, the semi-deterministic

theory in this paper, assuming a current day frequency of

x = 0.78 (as observed) is compared to assuming x = 1 and

the Ewens’ sampling theory Eqn.13, which only has applica-

bility for x = 1. The 95% confidence intervals (grey dotted

lines) and maximum likelihood effective population size (red

dotted line), are shown for the semi-deterministic likelihood

function with x = 0.78.

[10, 11, 23] or limited to small population sizes [4]. How-

ever, a genomic region undergoing current selection should

leave a signature which represents an effective population

size more representative of the census size during the sweep

[13]. When the mutational input into a population is large

2Nµ > 1, we expect a signature of a selective sweep will

be a large diversity of haplotype backgrounds, due to mul-

tiple and recurrent independent instances of the same mu-

tation that is under positive selection; such a sweep has

been termed a soft-sweep as multiple rather than a single

haplotype dominate the sweep [12]. Although Pennings &

Hermisson seminal work [20, 21] laid out much of our un-

derstanding of soft-sweeps within a coalescence framework,

many quantities like the likelihood of the number of origins,

FIG. 7. The mean number of origins from Wright-Fisher

simulations (1000 replicates) for oscillating population size

with period ∆T = 10 generations, selection coefficient s =

0.05, 2Nµ = 1 and with the geometric mean (green) and

harmonic mean (purple) of Nmax and Nmin constrained to
√
NmaxNmin = 2(1/Nmax + 1/Nmin)−1 = N = 108, for dif-

ferent peak-to-trough ratios. Black squares represent con-

stant population size simulations. We see that the constant

population size simulations are bounded from above by sim-

ulations constrained to have the same harmonic mean, and

bounded from below by the simulations with constrained ge-

ometric mean.

particularly when the mutant population has not yet fixed,

are not straightforward to calculate numerically.

In this paper we have presented a simple semi-

deterministic haploid forward-time theory of the number of

independent origins of a recurrent mutation. We show that

the distribution of the number of origins is very closely ap-

proximated by a Poisson distribution with a mean number

of origins that has an exact and simple closed-form solu-

tion for the haploid case, which is independent of the selec-

tion coefficient and the age of the allele, and only depends

on 2Nµ, the sample size and the current day mutant fre-

quency. We show it works robustly for diploid populations

with incomplete dominance, and whether or not mutations

are preexisting in the population before the selection pres-

sure arose.
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Our forward-time semi-deterministic theory also provides

an intuitive insight into the dynamics of soft sweeps, where

it is clear there is a demarcation between the stochastic

and deterministic stages for each haplotype contributing

to a soft sweep. New origins are generated by recurrent

mutation, and these must establish by growing to a fre-

quency where deterministic selection outweighs drift; there-

after growth is approximately deterministic of each inde-

pendent mutant. The deterministic part of the theory shows

that at sufficiently large population sizes the growth of each

recurrent mutant is just a scaling of the overall mutant pop-

ulation and grows logistically, where other mutants “crowd-

out” the growth of a particular mutant; once the wild type is

extinct new mutants cannot arise, and growth of each recur-

rent mutant is zero, so this structure is effectively frozen,

which is confirmed by simulation up to small fluctuations

due to drift. Including drift in this picture means that this

frozen structure is only temporary as drift will take of or-

der N generations to act. This is seen in the simulations

at even a moderate population size of N = 106, where

drift can act on the small frequency variants causing a de-

crease in independent origins for long times; however, for

very large populations N � 107 there is a stable plateau as

predicted by the theory. This suggests that Ewens’ sampling

theory and the calculation in this paper will not be valid

for small populations after fixation of the mutant, since the

supply of mutants has been switched off; therefore the semi-

deterministic approach in this paper will be limited to times

at or before fixation for small population sizes.

The framework of this semi-deterministic theory also

makes clear why selection should have little effect on the

plateau number of origins, as the rate of establishment is

proportional to the s, whilst the time window over which

new origins can be generated is proportional to the lifetime

of the wild type, which scales as 1/s, giving a number of

origins that is independent of s. In addition, our result for

the mean number of origins shows further that it is only de-

pendent on the selection coefficient through the frequency

of the mutant population, and in particular on the ratio of

the number of mutants in the sample to the number of new

mutants that enter every generation (2Nµ). Surprisingly, as

found by Pennings & Hermisson [20] the number of origins

does not depend on the exact sample path (history of the

population frequency) of the mutant; here we see further

that the number of origins only depends on the frequency

of the mutant at a given time.

Finally, we estimated the effective population size of

Anopheles gambiae and Anopheles coluzzii to be approx-

imately N ≈ 6.2× 107 using data from the 1000Ag project

[1], which is roughly 2 orders of magnitude larger than es-

timated using the same underlying data from nucleotide di-

versity and much closer to what is likely to be the census

population size in recent history. This supports simple cal-

culations of Karasov et al. [13], which suggested values of

effective population size derived from nucleotide diversity

are too small to explain adaptation of resistance alleles or

the occurrence of multiple resistance haplotypes for the Ace

gene in Drosophila melanogaster. Here, we have provided a

very simple and robust method to quantify this effect. The

demographic history of Anopheles has also been estimated

from the 1000Ag project data [1] using the “stairway” plot

[10] and ∂a∂i [11] methods, giving a recent population size

of roughly N ≈ 107, greater than the nucleotide diversity

estimate, but smaller than our estimate. A possible rea-

son for this discrepancy is that these methods tend to de-

tect long-term demographic changes, so that the difference

could represent recent population growth in the past 100

years. However, the estimates in [1] are based on apply-

ing each of these methods to data from each geographic

region, whereas the estimate here is based on data from all

geographic regions in the Ag1000 data. In the completely

panmictic case, the estimate in each region should agree

with the estimate based on pooling the data, but as dis-

cussed below if there is spatial structure then the relation

between the two estimates would not be straightforward.

It is also known that the Anopheles populations un-

dergo seasonal demographic fluctuations with peak-to-

trough population sizes of order 10 − 100 [3, 17, 19, 25].
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To investigate the effect of such fluctuations on our popu-

lation size estimates we performed simulations of oscillating

population sizes over time for peak-to-trough factors less

than 1000. These results showed that a constant popula-

tion size estimate will tend to underestimate the geomet-

ric mean of the maximum and minimum of the population

size, whilst overestimating the harmonic mean, allowing a

quantification of bounds on the maximum and minimum

population size of 6.2 × 108 < Nmax < 3.1 × 109 and

6.2× 106 < Nmin < 3.1× 107, assuming a peak-to-trough

ratio of 100.

The results of these oscillating demographic simulations

are in contrast to those of Wilson et. al. [27], which showed

that the probability of a soft sweep in a sample size of 2 only

depends on the cycle-averaged harmonic mean, when demo-

graphic oscillations are fast. It is simple to show that the

cycle-averaged harmonic mean is just the geometric mean of

the maximum and minimum population sizes; however, our

results show different peak-to-trough ratios give significantly

different numbers of independent origins for the same geo-

metric mean. This suggests the probability of a soft-sweep

in a sample size of 2 is a weak measure of the diversity of

haplotypes compared to the number of independent origins.

Our estimation also makes the assumption that the popu-

lations are well-mixed or panmictic and constant over time,

which clearly requires testing regarding the Ag1000 data,

which consists of the sequences of individuals collected over

the wide spatial region of sub-Saharan Africa. As discussed

by Ralph & Coop [24], we would expect our results to be

accurate in the limit of strong long-range or non-local dis-

persal, which mimics the panmictic approximation; on the

other hand if local migration is strong, spatial structure of

the populations would tend to give a larger number of ori-

gins compared to the panmictic case, which would suggest

our method would overestimate the effective population size

needed to explain an observed number of origins. In other

words, it is possible that spatial structure could account par-

tially or wholly for the large number of origins observed in

natural populations of Anopheles gambiae and Anopheles

coluzzii. Further theory and simulations will be needed to

test this hypothesis.
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Supplementary Information

MEAN NUMBER OF ORIGINS FOR DIPLOID

POPULATION

In the diploid case an exact analytical form for the to-

tal mutant frequency x(t) does not exist, however, we can

make progress by using the implicit solution t(x), which

does have an exact analytical form. The differential equa-

tion determining the change in frequency of the mutant

population, including diploidy is:

dx

dt
= s(h+ (1− 2h)x)x(1− x) + µ(1− x). (S1)

Using partial fractions the implicit solution is:

t(x) =
1

sh(1 + α+ β)

(
1 + 2α√
4αβ − 1

tan−1

(
1 + 2αx√
4αβ − 1

)

− ln (x− 1) +
1

2
ln (αx2 + x+ β)

)
,

(S2)

where α = 1−2h
h and β = µ

sh . Using a similar argument as

the haploid case, we can find the frequency of the last or

Kth mutant (equivalent of Eqn.10 in main text):

xK(T ) =
x(T )

4Nhsx(tK)
, (S3)

where here we have used the approximation that the estab-

lishment frequency will be dominated by heterozygotes, and

be xest ≈ 1
4Nhs . Eqn.S2 is then used to solve for tK , using

as before xK(T ) = xs:

tK = t(x(tK)) = t

(
x(T )/xs

4Nhs

)
, (S4)

where t(x) is the implicit function given in Eqn.S2. Sim-

ilarly, we approximate the probability of establishment as

that of the heterozygote, so pest ≈ 2hs; this gives the in-

homogeneous Poisson rate as

α(t) ≈ 4Nµhs(1− x(t)), (S5)

and so the mean number of origins will be

η̄(T ) =

∫ tK(T )

0

α(t)dt

= 4Nµhs

(
tK(T )−

∫ tK(T )

0

x(t)dt

)
.

(S6)

However, we do not have an explicit form for x(t). Given the

implicit form (Eqn.S2) this can be numerically integrated,

however, we instead develop an approximation for x(t). This

involves approximating the RHS of Eqn.S2, F (x) by a piece-

wise quadratic, up to a frequency x∗, which is the frequency

at which dF
dx = 0; for 0 ≤ h ≤ 1 this is a reasonable

approximation. As this approximate F (x) is quadratic, an

exact solution can be found for each region, 0 ≤ x ≤ x∗

and x∗ < x ≤ 1, and is of the form given for the haploid

case in Eqn.3 in the main text. These solutions are then

matched at the common point of inflexion which occurs at

(t∗, x∗). This gives the following solution:

x(t) = 1−κ+κ
(
x∗(1+tanh γ1(t−t∗))

)
for t < t∗ (S7)

and

x(t) = 1−κ+κ
(
x∗ +(1−x∗) tanh γ2(t− t∗)

)
for t ≥ t∗

(S8)

where

x∗ =
(1− 3h) +

√
3h2 + 3h(2µ/s− 1) + 1− 3µ/s

3(1− 2h)
,

(S9)

γ1 =
sF (x∗)

x∗
(S10)

γ2 =
sF (x∗)

1− x∗
, (S11)

and κ relates to a correction so the solution matches the

initial condition x(0) = x0:
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2

κ =
1− x0

1− x∗ + x∗ tanh(γ1t∗)
. (S12)

These can now be inserted into Eqn.S6 and integrated up

to tK(T ), to find the mean number of origins:

η̄(T ) = 4Nµhsκ

(
tK(1− x∗)

− x∗

γ1
ln

(
cosh γ1(tK − t∗)

cosh γ1t∗

))
for tK < t∗

(S13)

η̄(T ) = 4Nµhsκ

(
tK(1− x∗) +

x∗

γ1
ln(cosh γ1t

∗)

− 1− x∗

γ2
ln(cosh γ2(tK − t∗))

)
for tK ≥ t∗.

(S14)

The likelihood in the diploid case is then given by the Pois-

son distribution:

p(η(T )|N, s, h, µ) =
η̄(T )η

η!
e−η̄(T ), (S15)
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