
Boucher et al.

RESEARCH

Prefix-Free Parsing for Building Big BWTs
Christina Boucher1*, Travis Gagie2,3, Alan Kuhnle1,4, Ben Langmead5, Giovanni Manzini6,7 and Taher

Mun5

*Correspondence:

christinadotboucher@gmail.com
1CISE, University of Florida,

Gainesville, FL USA

Full list of author information is

available at the end of the article

Abstract

High-throughput sequencing technologies have led to explosive growth of genomic
databases; one of which will soon reach hundreds of terabytes. For many
applications we want to build and store indexes of these databases but
constructing such indexes is a challenge. Fortunately, many of these genomic
databases are highly-repetitive—a characteristic that can be exploited to ease the
computation of the Burrows-Wheeler Transform (BWT), which underlies many
popular indexes. In this paper, we introduce a preprocessing algorithm, referred to
as prefix-free parsing, that takes a text T as input, and in one-pass generates a
dictionary D and a parse P of T with the property that the BWT of T can be
constructed from D and P using workspace proportional to their total size and
O(|T |)-time. Our experiments show that D and P are significantly smaller than T
in practice, and thus, can fit in a reasonable internal memory even when T is very
large. In particular, we show that with prefix-free parsing we can build an
131-megabyte run-length compressed FM-index (restricted to support only
counting and not locating) for 1000 copies of human chromosome 19 in 2 hours
using 21 gigabytes of memory, suggesting that we can build a 6.73 gigabyte index
for 1000 complete human-genome haplotypes in approximately 102 hours using
about 1 terabyte of memory.

Keywords: Burrows-Wheeler Transform; prefix-free parsing; compression-aware
algorithms; genomic databases

1 Introduction
The money and time needed to sequence a genome have shrunk shockingly quickly

and researchers’ ambitions have grown almost as quickly: the Human Genome

Project cost billions of dollars and took a decade but now we can sequence a genome

for about a thousand dollars in about a day. The 1000 Genomes Project [1] was

announced in 2008 and completed in 2015, and now the 100,000 Genomes Project is

well under way [2]. With no compression 100,000 human genomes occupy roughly 300

terabytes of space, and genomic databases will have grown even more by the time a

standard research machine has that much RAM. At the same time, other initiatives

have began to study how microbial species behave and thrive in environments. These

initiatives are generating public datasets, which are larger than the 100,000 Genomes

Project. For example, in recent years, there has been an initiative to move toward

using whole genome sequencing to accurately identify and track foodborne pathogens

(e.g. antibiotic-resistant bacteria) [3]. This led to the GenomeTrakr initiative, which

is a large public effort to use genome sequencing for surveillance and detection of

outbreaks of foodborne illnesses. Currently, GenomeTrakr includes over 100,000

samples, spanning several species available through this initiative—a number that

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted November 19, 2018. ; https://doi.org/10.1101/472399doi: bioRxiv preprint

mailto:christinadotboucher@gmail.com
https://doi.org/10.1101/472399
http://creativecommons.org/licenses/by-nc-nd/4.0/

Boucher et al. Page 2 of 21

continues to rise as datasets are continually added [4]. Unfortunately, analysis of

this data is limited due to their size, even though the similarity between genomes of

individuals of the same species means the data is highly compressible.

These public databases are used in various applications — e.g., to detect genetic

variation within individuals, determine evolutionary history within a population,

and assemble the genomes of novel (microbial) species or genes. Pattern matching

within these large databases is fundamental to all these applications, yet repeatedly

scanning these — even compressed — databases is infeasible. Thus, for these and

many other applications, we want to build and use indexes from the database. Since

these indexes should fit in RAM and cannot rely on word boundaries, there are

only a few candidates. Many of the popular indexes in bioinformatics are based

on the Burrows-Wheeler Transform (BWT) [5] and there have been a number of

papers about building BWTs for genomic databases, e.g., [6] and references therein.

However, it is difficult to process anything more than a few terabytes of raw data

per day with current techniques and technology because of the difficulty of working

in external memory.

Since genomic databases are often highly repetitive, we revisit the idea of applying

a simple compression scheme and then computing the BWT from the resulting

encoding in internal memory. This is far from being a novel idea — e.g., Ferragina,

Gagie and Manzini’s bwtdisk software [7] could already in 2010 take advantage

of its input being given compressed, and Policriti and Prezza [8] showed how to

compute the BWT from the LZ77 parse of the input using O(n(log r + log z))-time

and O(r+z)-space, where n is the length of the uncompressed input, r is the number

of runs in the BWT and z is the number of phrases in the LZ77 parse — but we

think the preprocessing step we describe here, prefix-free parsing, stands out because

of its simplicity and flexibility. Once we have the results of the parsing, which are a

dictionary and a parse, building the BWT out of them is more involved, yet when our

approach works well, the dictionary and the parse are together much smaller than

the initial dataset and that makes the BWT computation less resource-intensive.

Our Contributions. In this paper, we formally define and present prefix-free

parsing. The main idea of this method is to divide the input text into overlapping

variable-length phrases with delimiting prefixes and suffixes. To accomplish this

division, we slide a window of length w over the text and, whenever the Karp-Rabin

hash of the window is 0 modulo p, we terminate the current phrase at the end of

the window and start the next one at the beginning of the window. This concept is

partly inspired by rsync’s [9] use of a rolling hash for content-slicing. Here, w and

p are parameters that affect the size of the dictionary of distinct phrases and the

number of phrases in the parse. This takes linear-time and one pass over the text,

or it can be sped up by running several windows in different positions over the text

in parallel and then merging the results.

Just as rsync can usually recognize when most of a file remains the same, we

expect that for most genomic databases and good choices of w and p, the total

length of the phrases in the dictionary and the number of phrases in the parse will

be small in comparison to the uncompressed size of the database. We demonstrate

experimentally that with prefix-free parsing we can compute BWT using less memory

and equivalent time. In particular, using our method we reduce peak memory usage

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted November 19, 2018. ; https://doi.org/10.1101/472399doi: bioRxiv preprint

https://doi.org/10.1101/472399
http://creativecommons.org/licenses/by-nc-nd/4.0/

Boucher et al. Page 3 of 21

up to 10x over a standard baseline algorithm which computes the BWT by first

computing the suffix array using the algorithm SACA-K [10], while requiring roughly

the same time on large sets of salmonella genomes obtained from GenomeTrakr.

In Section 3, we show how we can compute the BWT of the text from the dictionary

and the parse alone using workspace proportional only to their total size, and time

linear in the uncompressed size of the text when we can work in internal memory. In

Section 4 we describe our implementation and report the results of our experiments

showing that in practice the dictionary and parse often are significantly smaller

than the text and so may fit in a reasonable internal memory even when the text

is very large, and that this often makes the overall BWT computation both faster

and smaller. In Section 5 we describe how we build run-length compressed FM-

indexes [11] (which only support counting and not locating) for datasets consisting

of 50, 100, 200 and 500 using prefix-free parsing. Our results suggest that we can

build a roughly 6.73-gigabyte index for 1000 complete human genomes in about 102

hours using about 1.1 terabytes of memory. Prefix-free parsing and all accompanied

documents are available at https://gitlab.com/manzai/Big-BWT.

2 Review of the Burrows-Wheeler Transform
As part of the Human Genome Project, researchers had to piece together a huge

number of relatively tiny, overlapping pieces of DNA, called reads, to assemble a

reference genome about which they had little prior knowledge. Once the Project

was completed, however, they could then use that reference genome as a guide to

assemble other human genomes much more easily. To do this, they indexed the

reference genome such that, after running a DNA sample from a new person through

a sequencing machine and obtaining another collection of reads, for each of those new

reads they could quickly determine which part of the reference genome it matched

most closely. Since any two humans are genetically very similar, aligning the new

reads against the reference genome gives a good idea of how they are really laid out

in the person’s genome.

In practice, the best solutions to this problem of indexed approximate matching

work by reducing it to a problem of indexed exact matching, which we can formalize

as follows: given a string T (which can be the concatenation of a collection of strings,

terminated by special symbols), pre-process it such that later, given a pattern P , we

can quickly list all the locations where P occurs in T . We now start with a simple

but impractical solution to the latter problem, and then refine it until we arrive at a

fair approximation of the basis of most modern assemblers, illustrating the workings

of the Burrows-Wheeler Transform (BWT) along the way.

Suppose we want to index the three strings GATTACAT, GATACAT and GATTA-

GATA, so T [0..n− 1] = GATTACAT$1GATACAT$2GATTAGATA$3, where $1, $2

and $3 are terminator symbols. Perhaps the simplest solution to the problem of

indexing T is to build a trie of the suffixes of the three strings in our collection (i.e.,

an edge-labelled tree whose root-to-leaf paths are the suffixes of those strings) with

each leaf storing the starting position of the suffix labelling the path to that leaf, as

shown in Figure 1.

Suppose every node stores pointers to its children and its leftmost and rightmost

leaf descendants, and every leaf stores a pointer to the next leaf to its right. Then

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted November 19, 2018. ; https://doi.org/10.1101/472399doi: bioRxiv preprint

https://gitlab.com/manzai/Big-BWT
https://doi.org/10.1101/472399
http://creativecommons.org/licenses/by-nc-nd/4.0/

Boucher et al. Page 4 of 21

19

279 17

$1

T

A

C

$1 $2 $3

26

2

3

4

5

16

15

14

$1

T

A

C

$1

T

A

C

$1

$1
6

$1
7

$1
8

$1

10

$2

T

A

C

1

$2

T

A

C

11

12

$2
13

$2

$2

$2

$2

T

A

G

18

$3

A

T

A

G

$3

A

20

T

A

G

$3

A

21

T

A

G

$3

A

22

T

A

G

$3

A
24

25

$3
23

$3

$3

$3

T

A

C

A

A

T

T

A

T

A

C

A

TA

T

A

G

A

T

A

C

T

T

A

G A T A C A T $2
10 11 12 13 14 15 16 17

G A T T A C A T $1
1 2 3 4 5 6 7 8 9

G A T T A G A T A $3
18 19 20 21 22 23 24 25 26 27

Figure 1: The suffix trie for our example with the three strings GATTACAT,

GATACAT and GATTAGATA. The input is shown at the bottom, in red because

we do not need to store it.

given P [0..m− 1], we can start at the root and descend along a path (if there is one)

such that the label on the edge leading to the node at depth i is P [i− 1], until we

reach a node v at depth m. We then traverse the leaves in v’s subtree, reporting the

the starting positions stored at them, by following the pointer from v to its leftmost

leaf descendant and then following the pointer from each leaf to the next leaf to its

right until we reach v’s rightmost leaf descendant.

The trie of the suffixes can have a quadratic number of nodes, so it is impractical

for large strings. If we remove nodes with exactly one child (concatenating the edge-

labels above and below them), however, then there are only linearly many nodes, and

each edge-label is a substring of the input and can be represented in constant space

if we have the input stored as well. The resulting structure is essentially a suffix tree

(although it lacks suffix and Weiner links), as shown in Figure 2. Notice that the

label of the path leading to a node v is the longest common prefix of the suffixes

starting at the positions stored at v’s leftmost and rightmost leaf descendants, so we

can navigate in the suffix tree, using only the pointers we already have and access

to the input.

Although linear, the suffix tree still takes up an impractical amount of space, using

several bytes for each character of the input. This is significantly reduced if we

discard the shape of the tree, keeping only the input and the starting positions in

an array, which is called the suffix array (SA). The SA for our example is shown

in Figure 3. Since the entries of the SA are the starting points of the suffixes in

lexicographic order, with access to T we can perform two binary searches to find the

endpoints of the interval of the suffix array containing the starting points of suffixes

starting with P : at each step, we consider an entry SA[i] and check if T [SA[i]]

lexicographically precedes P . This takes a total of O(m log n) time done näıvely,

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted November 19, 2018. ; https://doi.org/10.1101/472399doi: bioRxiv preprint

https://doi.org/10.1101/472399
http://creativecommons.org/licenses/by-nc-nd/4.0/

Boucher et al. Page 5 of 21

19

279 17

26

2

3

4

5

16

15

146

7

8

10

1

11

12

13

18

20

21

22

24

25

23

G A T A C A T $2
10 11 12 13 14 15 16 17

G A T T A C A T $1
1 2 3 4 5 6 7 8 9

G A T T A G A T A $3
18 19 20 21 22 23 24 25 26 27

Figure 2: The suffix tree for our example. We now also need to store the input.

and can be sped up with more sophisticated searching and relatively small auxiliary

data structures.

Even the SA takes linear space, however, which is significantly more than what

is needed to store the input when the alphabet is small (as it is in the case of

DNA). Let Ψ be the function that, given the position of a value i < n − 1 in the

SA, returns the position of i+ 1. Notice that, if we write down the first character

of each suffix in the order they appear in the SA, the result is a sorted list of the

characters in T , which can be stored using using O(log n) bits for each character in

the alphabet. Once we have this list stored, given a position i in SA, we can return

T [SA[i]] efficiently.

Given a position i in SA and a way to evaluate Ψ, we can extract T [SA[i]..n− 1]

by writing T [SA[i]], T [SA[Ψ(i)]], T [SA[Ψ2(i)]], Therefore, we can perform the

same kind of binary search we use when with access to a full suffix array. Notice

that if T [SA[i]] ≺ T [SA[i+ 1]] then Ψ(i) < Ψ(i+ 1), meaning that Ψ(1), . . . ,Ψ(n)

can be divided into σ increasing consecutive subsequences, where σ is the size of

the alphabet. Here, ≺ denotes lexicographic precedence. It follows that we can store

nH0(T) + o(n log σ) bits, where H0(T) is the 0th-order empirical entropy of T , such

that we can quickly evaluate Ψ. This bound can be improved with a more careful

analysis.

Now suppose that instead of a way to evaluate Ψ, we have a way to evaluate

quickly its inverse, which is called the last-to-first (LF) mapping. (This name was not

chosen because, if we start with the position of n in the suffix array and repeatedly

apply the LF mapping we enumerate the positions in the SA in decreasing order of

their contents, ending with 1; to some extent, the name is a lucky coincidence.) The

LF mapping for our example is also shown with arrows in Figure 3. Since it is the

inverse of Ψ, the sequence LF(1), . . . ,LF(n) can be partitioned into σ incrementing

subsequences: for each character c in the alphabet, if the starting positions of suffixes

preceded by copies of c are stored in SA[j1], . . . ,SA[jt] (appearing in that order in

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted November 19, 2018. ; https://doi.org/10.1101/472399doi: bioRxiv preprint

https://doi.org/10.1101/472399
http://creativecommons.org/licenses/by-nc-nd/4.0/

Boucher et al. Page 6 of 21

18279 17 26 5 13 22 157 24 11 2 19 146 23 10 1 168 25 4 12 321 20

18279 17 26 5 13 22 157 24 11 2 19 146 23 10 1 168 25 4 12 321 20

G A T A C A T $2
10 11 12 13 14 15 16 17

G A T T A C A T $1
1 2 3 4 5 6 7 8 9

G A T T A G A T A $3
18 19 20 21 22 23 24 25 26 27

Figure 3: The suffix array for our example is the sequence of values stored in the

leaves of the tree (which we need not store explicitly). The LF mapping is shown as

the arrows between two copies of the suffix array; the arrows to values i such that

T [SA[i]] = A are in red, to illustrate that they point to consecutive positions in the

suffix array and do not cross. Since Ψ is the inverse of the LF mapping, it can be

obtained by simply reversing the direction of the arrows.

the SA), then LF(j1) is 1 greater than the number of characters lexicographically less

than c in T and LF(j2), . . . ,LF(jt) are the next t− 1 numbers. Figure 3 illustrates

this, with heavier arrows to values i such that T [SA[i]] = A, to illustrate that they

point to consecutive positions in the suffix array and do not cross.

Consider the interval IP [i..m−1] of the SA containing the starting positions of

suffixes beginning with P [i..m− 1], and the interval IP [i−1] containing the starting

positions of suffixes beginning with P [i − 1]. If we apply the LF mapping to the

SA positions in IP [i..m−1]−1, the SA positions we obtain that lie in IP [i−1] for a

consecutive subinterval, containing the starting positions in T of suffixes beginning

with P [i− 1..m− 1]. Therefore, we can search also with the LF mapping.

If we write the character preceding each suffix of T (considering it to be cyclic) in

the lexicographic order of the suffixes, the result is the Burrows-Wheeler Transform

(BWT) of T . A rank data structure over the BWT (which, given a character and a

position, returns the number of occurrences of that character up to that position)

can be used to implement searching with the LF-mapping, together with an array

C indicating for each character in the alphabet how many characters in T are

lexicographically strictly smaller than it. Specifically,

LF(i) = BWT.rankBWTi + C[BWT[i]] .

If follows that, to compute IP [i−1..m−1] from IP [i..m−1], we perform a rank query

for P [i− 1] immediately before the beginning of IP [i..m−1] and add C[P [i+ 1]] + 1

to the result, to find the beginning of IP [i−1..m−1]; and we perform a rank query

for P [i − 1] at the end of IP [i..m−1] and add C[P [i + 1]] to the result, to find the

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted November 19, 2018. ; https://doi.org/10.1101/472399doi: bioRxiv preprint

https://doi.org/10.1101/472399
http://creativecommons.org/licenses/by-nc-nd/4.0/

Boucher et al. Page 7 of 21

18279 17 26 5 13 22 157 24 11 2 19 146 23 10 1 168 25 4 12 321 20

18279 17 26 5 13 22 157 24 11 2 19 146 23 10 1 168 25 4 12 321 20

$3$1 $2T CT G AT CT G AA AT GT G TA AA AA AT

$1 $2 $3 A A A A A A A A A A C C G G G G T T T T T T T T

G A T A C A T $2
10 11 12 13 14 15 16 17

G A T T A C A T $1
1 2 3 4 5 6 7 8 9

G A T T A G A T A $3
18 19 20 21 22 23 24 25 26 27

Figure 4: The BWT and the sorted list of characters for our example. Drawing

arrows between corresponding occurrences of characters in the two strings gives us

the diagram for the LF-mapping.

end of IP [i−1..m−1]. Figure 4 shows the BWT for our example, and the sorted list of

characters in T . Comparing it to Figure 3 makes the formula above clear: if BWT[i]

is the jth occurrence of that character in the BWT, then the arrow from LF(i)

leads from i to the position of the jth occurrence of that character in the sorted

list. This is the main idea behind FM-indexes [11], and the main motivation for

bioinformaticians to be interested in building BWTs.

3 Theory of Prefix Free Parsing

We let E ⊆ Σw be any set of strings each of length w ≥ 1 over the alphabet Σ and

let E′ = E ∪ {#, $w}, where # and $ are special symbols lexicographically less than

any in Σ. We consider a text T [0..n− 1] over Σ and let D be the maximum set such

that for d ∈ D the following conditions hold

• d is a substring of #T $w,

• exactly one proper prefix of d is in E′,

• exactly one proper suffix of d is in E′,

• no other substring of d is in E′.

Given T and a way to recognize strings in E, we can build D iteratively by scanning

#T $w to find occurrences of elements of E′, and adding to D each substring of

#T $w that starts at the beginning of one such occurrence and ends at the end of

the next one. While we are building D we also build a list P of the occurrences of

the elements of D in T , which we call the parse (although each consecutive pair

of elements overlap by w characters, so P is not a partition of the characters of

#T $w). In P we identify each element of D with its lexicographic rank.

For example, suppose we have Σ = {!, A, C, G, T}, w = 2, E = {AC, AG, T!} and

T = GATTACAT!GATACAT!GATTAGATA .

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted November 19, 2018. ; https://doi.org/10.1101/472399doi: bioRxiv preprint

https://doi.org/10.1101/472399
http://creativecommons.org/licenses/by-nc-nd/4.0/

Boucher et al. Page 8 of 21

Then, we get

D = {#GATTAC, ACAT!, AGATA$$, T!GATAC, T!GATTAG},

the parse of #T $w is

#GATTAC ACAT! T!GATAC ACAT! T!GATTAG AGATA$$

and, identifying elements of D by their lexicographic ranks, the resulting array P is

P = [0, 1, 3, 1, 4, 2].

Next, we define S as the set of suffixes of length greater than w of elements of D.

In our previous example we get

S = {#GATTAC, GATTAC, . . . , TAC,

ACAT!, CAT!, AT!,

AGATA$$, GATA$$, . . . , A$$,

T!GATAC, !GATAC, . . . , TAC,

T!GATTAG, !GATTAG, . . . , TAG}.

Lemma 1 S is a prefix-free set.

Proof If s ∈ S were a proper prefix of s′ ∈ S then, since |s| > w, the last w characters

of s — which are an element of E′ — would be a substring of s′ but neither a proper

prefix nor a proper suffix of s′. Therefore, any element of D with s′ as a suffix would

contain at least three substrings in E′, contrary to the definition of D.

Lemma 2 Suppose s, s′ ∈ S and s ≺ s′. Then sx ≺ s′x′ for any strings x, x′ ∈
(Σ ∪ {#, $})∗.

Proof By Lemma 1, s and s′ are not proper prefixes of each other. Since they are

not equal either (because s ≺ s′), it follows that sx and s′x′ differ on one of their

first min(|s|, |s′|) characters. Therefore, s ≺ s′ implies sx ≺ s′x′.

Lemma 3 For any suffix x of #T $w with |x| > w, exactly one prefix s of x is in

S.

Proof Consider the substring d stretching from the beginning of the last occurrence

of an element of E′ that starts before or at the starting position of x, to the end of

the first occurrence of an element of E′ that starts strictly after the starting position

of x. Regardless of whether d starts with # or another element of E′, it is prefixed

by exactly one element of E′; similarly, it is suffixed by exactly one element of E′.

It follows that d is an element of D. Let s be the prefix of x that ends at the end of

that occurrence of d in #T $w, so |s| > w and is a suffix of an element of D and

thus s ∈ S. By Lemma 1, no other prefix of x is in S.

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted November 19, 2018. ; https://doi.org/10.1101/472399doi: bioRxiv preprint

https://doi.org/10.1101/472399
http://creativecommons.org/licenses/by-nc-nd/4.0/

Boucher et al. Page 9 of 21

Because of Lemma 3, we can define a function f mapping each suffix x of #T $w

with |x| > w to the unique prefix s of x with s ∈ S.

Lemma 4 Let x and x′ be suffixes of #T $w with |x|, |x′| > w. Then f(x) ≺ f(x′)

implies x ≺ x′.

Proof By the definition of f , f(x) and f(x′) are prefixes of x and x′ with

|f(x)|, |f(x′)| > w. Therefore, f(x) ≺ f(x′) implies x ≺ x′ by Lemma 2.

Define T ′[0..n] = T $. Let g be the function that maps each suffix y of T ′ to the

unique suffix x of #T $w that starts with y, except that it maps T ′[n] = $ to #T $w.

Notice that g(y) always has length greater than w, so it can be given as an argument

to f .

Lemma 5 The permutation that lexicographically sorts T [0..n− 1] $w, . . . , T [n−
1] $w,#T $w also lexicographically sorts T ′[0..n], . . . , T ′[n− 1..n], T ′[n].

Proof Appending copies of $ to the suffixes of T ′ does not change their relative

order, and just as #T $w is the lexicographically smallest of T [0..n−1] $w, . . . , T [n−
1] $w,#T $w, so T ′[n] = $ is the lexicographically smallest of T ′[0..n], . . . , T ′[n −
1..n], T ′[n].

Let β be the function that, for i < n, maps T ′[i] to the lexicographic rank of

f(g(T ′[i+1..n])) in S, and maps T [n] to the lexicographic rank of f(g(T ′)) = f(T $w).

Lemma 6 Suppose β maps k copies of a to s ∈ S and maps no other characters

to s, and maps a total of t characters to elements of S lexicographically less than s.

Then the (t+ 1)st through (t+ k)th characters of the BWT of T ′ are copies of a.

Proof By Lemmas 4 and 5, if f(g(y)) ≺ f(g(y′)) then y ≺ y′. Therefore, β partially

sorts the characters in T ′ into their order in the BWT of T ′; equivalently, the

characters’ partial order according to β can be extended to their total order in the

BWT. Since every total extension of β puts those k copies of a in the (t + 1)st

through (t+ k)th positions, they appear there in the BWT.

From D and P , we can compute how often each element s ∈ S is preceded by each

distinct character a in #T $w or, equivalently, how many copies of a are mapped by

β to the lexicographic rank of s. If an element s ∈ S is a suffix of only one element

d ∈ D and a proper suffix of that — which we can determine first from D alone —

then β maps only copies of the the preceding character of d to the rank of s, and

we can compute their positions in the BWT of T ′. If s = d or a suffix of several

elements of D, however, then β can map several distinct characters to the rank of s.

To deal with these cases, we can also compute which elements of D contain which

characters mapped to the rank of s. We will explain in a moment how we use this

information.

For our example, T = GATTACAT!GATACAT!GATTAGATA, we compute the information

shown in Table 1. To ease the comparison to the standard computation of the BWT

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted November 19, 2018. ; https://doi.org/10.1101/472399doi: bioRxiv preprint

https://doi.org/10.1101/472399
http://creativecommons.org/licenses/by-nc-nd/4.0/

Boucher et al. Page 10 of 21

Table 1: The information we compute for our example, T =

GATTACAT!GATACAT!GATTAGATA. Each line shows the lexicographic rank r of

an element s ∈ S; the characters mapped to r by β; s itself; the elements of D from

which the mapped characters originate; the total frequency with which characters

are mapped to r; and the preceding partial sum of the frequencies.

mapped preceding
rank characters suffix sources frequency partial sum

0 A #GATTAC 1 1 0
1 T !GATAC 2 1 1
2 T !GATTAG 3 1 2
3 T A$$ 5 1 3
4 T ACAT! 4 2 4
5 T AGATA$$ 5 1 6
6 C AT! 4 2 7
7 G ATA$$ 5 1 9
8 G ATAC 2 1 10
9 G ATTAC 1 1 11
10 G ATTAG 3 1 12
11 A CAT# 4 2 13
12 A GATA$$ 5 1 15
13 ! GATAC 2 1 16
14 $ GATTAC 1 1 17
15 ! GATTAG 3 1 18
16 A T!GATAC 2 1 19
17 A T!GATTAG 3 1 20
18 A TA$$ 5 1 21
19 T, A TAC 1; 2 2 22
20 T TAG 3 1 24
21 A TTAC 1 1 25
22 A TTAG 3 1 26

of T ′ $, shown in Table 2, we write the characters mapped to each element s ∈ S
before s itself.

By Lemma 6, from the characters mapped to each rank by β and the partial

sums of frequencies with which β maps characters to the ranks, we can compute

the subsequence of the BWT of T ′ that contains all the characters β maps to

elements of S, which are not complete elements of D and to which only one distinct

character is mapped. We can also leave placeholders where appropriate for the

characters β maps to elements of S, which are complete elements of D or to which

more than one distinct character is mapped. For our example, this subsequence is

ATTTTTTCCGGGGAAA!$!AAA - - TAA. Notice we do not need all the information in P

to compute this subsequence, only D and the frequencies of its elements in P .

Suppose s ∈ S is an entire element of D or a suffix of several elements of D, and

occurrences of s are preceded by several distinct characters in #T $w, so β assigns

s’s lexicographic rank in S to several distinct characters. To deal with such cases,

we can sort the suffixes of the parse P and apply the following lemma.

Lemma 7 Consider two suffixes t and t′ of #T $w starting with occurrences of

s ∈ S, and let q and q′ be the suffixes of P encoding the last w characters of those

occurrences of s and the remainders of t and t′. If t ≺ t′ then q ≺ q′.

Proof Since s occurs at least twice in #T $w, it cannot end with $w and thus cannot

be a suffix of #T $w. Therefore, there is a first character on which t and t′ differ.

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted November 19, 2018. ; https://doi.org/10.1101/472399doi: bioRxiv preprint

https://doi.org/10.1101/472399
http://creativecommons.org/licenses/by-nc-nd/4.0/

Boucher et al. Page 11 of 21

Table 2: The BWT for T ′ = GATTACAT!GATACAT!GATTAGATA$. Each line shows a

position in the BWT; the character in that position; and the suffix immediately

following that character in T ′.

i BWT[i] suffix

0 A $
1 T !GATACAT!GATTAGATA$
2 T !GATTAGATA$
3 T A$
4 T ACAT!GATACAT!GATTAGATA$
5 T ACAT!GATTAGATA$
6 T AGATA$
7 C AT!GATACAT!GATTAGATA$
8 C AT!GATTAGATA$
9 G ATA$
10 G ATACAT!GATTAGATA$
11 G ATTACAT!GATACAT!GATTAGATA$
12 G ATTAGATA$
13 A CAT!GATACAT!GATTAGATA$
14 A CAT!GATTAGATA$
15 A GATA$
16 ! GATACAT!GATTAGATA$
17 $ GATTACAT!GATACAT!GATTAGATA$
18 ! GATTAGATA$
19 A T!GATACAT!GATTAGATA$
20 A T!GATTAGATA$
21 A TA$
22 T TACAT!GATACAT!GATTAGATA$
23 A TACAT!GATTAGATA$
24 T TAGATA$
25 A TTACAT!GATACAT!GATTAGATA$
26 A TTAGATA$

Since the elements of D are represented in the parse by their lexicographic ranks,

that character forces q ≺ q′.

We consider the occurrences in P of the elements of D suffixed by s, and sort

the characters preceding those occurrences of s into the lexicographic order of the

remaining suffixes of P which, by Lemma 7, is their order in the BWT of T ′. In

our example, TAC ∈ S is preceded in #T $$ by a T when it occurs as a suffix of

#GATTAC ∈ D, which has rank 0 in D, and by an A when it occurs as a suffix of

T!GATAC ∈ D, which has rank 3 in D. Since the suffix following 0 in P = 0, 1, 3, 1, 4, 2

is lexicographically smaller than the suffix following 3, that T precedes that A in the

BWT.

Since we need only D and the frequencies of its elements in P to apply Lemma 6

to build and store the subsequence of the BWT of T ′ that contains all the characters

β maps to elements of S, to which only one distinct character is mapped, this takes

space proportional to the total length of the elements of D. We can then apply

Lemma 7 to build the subsequence of missing characters in the order they appear in

the BWT. Although this subsequence of missing characters could take more space

than D and P combined, as we generate them we can interleave them with the first

subsequence and output them, thus still using workspace proportional to the total

length of P and the elements of D and only one pass over the space used to store

the BWT.

Notice, we can build the first subsequence from D and the frequencies of its

elements in P ; store it in external memory; and make a pass over it while we

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted November 19, 2018. ; https://doi.org/10.1101/472399doi: bioRxiv preprint

https://doi.org/10.1101/472399
http://creativecommons.org/licenses/by-nc-nd/4.0/

Boucher et al. Page 12 of 21

generate the second one from D and P , inserting the missing characters in the

appropriate places. This way we use two passes over the space used to store the

BWT, but we may use significantly less workspace.

Summarizing, assuming we can recognize the strings in E quickly, we can quickly

compute D and P with one scan over T . From D and P , with Lemmas 6 and 7, we

can compute the BWT of T ′ = T $ by sorting the suffixes of the elements of D and

the suffixes of P . Since there are linear-time and linear-space algorithms for sorting

suffixes when working in internal memory, this implies our main theoretical result:

Theorem 1 We can compute the BWT of T $ from D and P using workspace

proportional to sum of the total length of P and the elements of D, and O(n) time

when we can work in internal memory.

The significance of the above theorem is that if the text T contains many repetitions

the dictionary of distinct phrases D will be relatively small and, if the dictionary

words are sufficiently long, also the parse P will be much smaller than T . Thus, even

if T is very large, if D and P fit into internal memory then using Theorem 1 we

can efficiently build the BWT for T doing the critical computations in RAM after a

single sequential scanning of T during the parsing phase.

4 Prefix free parsing in practice
We have implemented our BWT construction based on prefix free parsing and

applied it to collections of repetitive documents and genomic databases. Our purpose

is to test our conjectures that 1) with a good choice of the parsing strategy the

total length of the phrases in the dictionary and the number of phrases in the parse

will both be small in comparison to the uncompressed size of the collection, and 2)

computing the BWT from the dictionary and the parse leads to an overall speed-up

and reduction in memory usage. In this section we describe our implementation and

then report our experimental results.

4.1 Implementation

Given a window size w, we select a prime p and we define the set E described in

Section 3, as the set of length-w strings such that their Karp-Rabin fingerprint

modulo p is zero. With this choice our parsing algorithm works as follows. We slide

a window of length w over the text, keeping track of the Karp-Rabin hash of the

window; we also keep track of the hash of the entire prefix of the current phrase

that we have processed so far. Whenever the hash of the window is 0 modulo p,

we terminate the current phrase at the end of the window and start the next one

at the beginning of the window. We prepend a NUL character to the first phrase

and append w copies of NUL to the last phrase. If the text ends with w characters

whose hash is 0 modulo p, then we take those w character to be the beginning of

the last phrase and append to them w copies of NUL. We note that we prepend

and append copies of the same NUL character; although using different characters

simplifies the proofs in Section 3, it is not essential in practice.

We keep track of the set of hashes of the distinct phrases in the dictionary so far,

as well as the phrases’ frequencies. Whenever we terminate a phrase, we check if

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted November 19, 2018. ; https://doi.org/10.1101/472399doi: bioRxiv preprint

https://doi.org/10.1101/472399
http://creativecommons.org/licenses/by-nc-nd/4.0/

Boucher et al. Page 13 of 21

its hash is in that set. If not, we add the phrase to the dictionary and its hash to

the set, and set its frequency to 1; if so, we compare the current phrase to the one

in the dictionary with the same hash to ensure they are equal, then increment its

frequency. (Using a 64-bit hash the probability of there being a collision is very low,

so we have not implemented a recovery mechanism if one occurs.) In both cases, we

write the hash to disk.

When the parsing is complete, we have generated the dictionary D and the parsing

P = p1, p2, . . . , pz, where each phrase pi is represented by its hash. Next, we sort the

dictionary and make a pass over P to substitute the phrases’ lexicographic ranks for

their hashes. This gives us the final parse, still on disk, with each entry stored as a

4-byte integer. We write the dictionary to disk phrase by phrase in lexicographic

order with a special end-of-phrase terminator at the end of each phrase. In a separate

file we store the frequency of each phrase in as a 4-byte integer. Using four bytes for

each integer does not give us the best compression possible, but it makes it easy to

process the frequency and parse files later. Finally, we write to a separate file the

array W of length |P | such that W [j] is the character of pj in position w + 1 from

the end (recall each phrase has length greater than w). These characters will be

used to handle the elements of S that are also elements of D.

Next, we compute the BWT of the parsing P , with each phrase represented by its

4-byte lexicographic rank in D. The computation is done using the SACA-K suffix

array construction algorithm [10] which, among the linear time algorithms, is the

one using the smallest workspace and is particularly suitable for input over large

alphabets. Instead of storing BWT (P) = b1, b2, . . . , bz, we save the same information

in a format more suitable for the next phase. We consider the dictionary phrases

in lexicographic order, and, for each phrase di, we write the list of BWT positions

where di appears. We call this the inverted list for phrase di. Since the size of the

inverted list of each phrase is equal to its frequency, which is available separately,

we write to file the plain concatenation of the inverted lists using again four bytes

per entry, for a total of 4|P | bytes. In this phase we also permute the elements of W

so that now W [j] is the character coming from the phrase that precedes bj in the

parsing, i.e. P [SA[j]− 2].

In the final phase of the algorithm we compute the BWT of the input T . We

deviate slightly from the description in Section 3 in that instead of lexicographically

sorting the suffixes in D larger than w we sort all of them and later ignore those

which are of length ≤ w. The sorting is done applying the gSACAK algorithm [12]

which computes the SA and LCP array for the set of dictionary phrases. We then

proceed as in Section 3. If during the scanning of the sorted set S we meet s which

is a proper suffix of several elements of D we use a heap to merge their respective

inverted lists writing a character to the final BWT file every time we pop a position

from the heap. If we meet s which coincides with a dictionary phrase d we write the

characters retrieved from W from the positions obtained from d’s inverted list.

It turns out that the the most expensive phases of the algorithm are the first,

where we compute the parsing of T , and the last, where we compute BWT (T)

from the SA of D and the inverted lists for D’s phrases. Fortunately, both phases

can be sped-up using multiple threads in parallel. To parallelize the first phase

we split the input into equal size chunks, and we assign each chunk to a different

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted November 19, 2018. ; https://doi.org/10.1101/472399doi: bioRxiv preprint

https://doi.org/10.1101/472399
http://creativecommons.org/licenses/by-nc-nd/4.0/

Boucher et al. Page 14 of 21

Table 3: The dictionary and parse sizes for several files from the Pizza & Chili

repetitive corpus, with three settings of the parameters w and p. All sizes are

reported in megabytes; percentages are the sums of the sizes of the dictionaries and

parses, divided by the sizes of the uncompressed files.
w = 6, p = 20 w = 8, p = 50 w = 10, p = 100

file size dict. parse % dict. parse % dict. parse %
cere 440 61 77 31 43 159 46 89 17 24

cere no Ns 409 33 77 27 43 33 18 60 17 19
dna.001.1 100 8 20 27 13 9 21 21 4 25

einstein.en.txt 446 2 87 20 3 39 9 4 17 5
influenza 148 16 28 30 32 12 29 49 6 37

kernel 247 14 52 26 14 20 13 15 10 10
world leaders 45 5 5 21 8 2 21 11 1 26

world leaders no dots 23 4 5 34 6 2 31 7 1 33

thread. Using this simple approach, we obtained a speed-up of a factor 2 using four

threads, but additional threads do not yield substantial improvements. There are

two likely reasons for that: 1) during the parsing all threads need to update the

same dictionary, and 2) each thread has to write to disk its portion of the parsing

and, unless the system has multiple disks, disk access becomes a bottleneck. To

parallelize the computation of the final BWT (T) we use a different approach. The

main thread scans the suffix array of the dictionary and as soon as it finds a range

of equal suffixes it passes such range to an helper thread that computes and writes

to disk the corresponding portion of BWT (T). Again, we were able to reduce the

running time of this phase by factor 2 using four threads. In the next section we only

report the running times for the single thread algorithm since we are still working

to improve our multi-thread version.

4.2 Experiments

In this section, the parsing and BWT computation are experimentally evaluated.

All experiments were run on a server with Intel(R) Xeon(R) CPU E5-2640 v4 @

2.40GHz and 756 gigabytes of RAM.

Table 3 shows the sizes of the dictionaries and parses for several files from the

Pizza & Chili repetitive corpus [13], with three settings of the parameters w and

p. We note that cere contains long runs of Ns and world leaders contains long

runs of periods, which can either cause many phrases, when the hash of w copies of

those characters is 0 modulo p, or a single long phrase otherwise; we also display the

sizes of the dictionaries and parses for those files with all Ns and periods removed.

The dictionaries and parses occupy between 5 and 31 percent of the space of the

uncompressed files.

Table 4 shows the sizes of the dictionaries and parses for prefixes of a database

of Salmonella genomes [14]. The dictionaries and parses occupy between 14 and 44

percent of the space of the uncompressed files, with the compression improving as

the number of genomes increases. In particular, the dataset of ten thousand genomes

takes nearly 50 GB uncompressed, but with w = 10 and p = 100 the dictionary

and parse take only about 7 GB together, so they would still fit in the RAM of a

commodity machine. This seems promising, and we hope the compression is even

better for larger genomic databases.

Table 5 shows the runtime and peak memory usage for computing the BWT from

the parsing for the database of Salmonella genomes. As a baseline for comparison,

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted November 19, 2018. ; https://doi.org/10.1101/472399doi: bioRxiv preprint

https://doi.org/10.1101/472399
http://creativecommons.org/licenses/by-nc-nd/4.0/

Boucher et al. Page 15 of 21

Wind
ow

6

8

10Modulus

50
100

200
400

800

Peak M
em

ory (M
B) 0

500
1000
1500
2000
2500
3000

(a) Peak memory (MB) vs. (w, p)

Window

6

8

10Modulus

50 100 200 400 800

Tim
e (seconds)

0
50

100
150
200
250
300
350
400

(b) Time (s) vs. (w, p)

Figure 5: Results versus various choices of parameters (w, p) on a collection of 1000

Salmonella genomes (2.7 GB).

simplebwt computes the BWT by first computing the Suffix Array using algorithm

SACA-K [10] which is the same tool used internally by our algorithm since it is

fast and uses O(1) workspace. As shown in Table 5, the peak memory usage of

simplebwt is reduced by a factor of 4 to 10 by computing the BWT from the parsing;

furthermore, the total runtime is competitive with simplebwt. In some instances,

for example the databases of 5000, 10, 000 genomes, computing the BWT from

the parsing achieved significant runtime reduction over simplebwt; with w = 10,

p = 100 on these instances the runtime reduction is more than factors of 2 and

4 respectively. For our BWT computations, the peak memory usage with w = 6,

p = 20 stays within a factor of roughly 2 of the original file size and is smaller than

the original file size on the larger databases of 1000 genomes.

Qualitatively similar results on files from the Pizza & Chili corpus are shown in

Table 6.

4.2.1 On the choice of the parameter w and p

Finally, Fig. 5 shows the peak memory usage and runtime for computing the BWT

on a collection of 1000 Salmonella genomes of size 2.7 gigabytes, for all pairs of

parameter choices (w, p), where w ∈ {6, 8, 10} and p ∈ {50, 100, 200, 400, 800}. As

shown in Fig. 5a, the choice (w, p) = (10, 50) results in the smallest peak memory

usage, while Fig. 5b shows that (w, p) = (10, 200) results in the fastest runtime.

In general, for either runtime or peak memory usage, the optimal choice of (w, p)

differs and depends on the input. However, notice that all pairs (w, p) tested here

required less than 1.1 times the input size of memory and the slowest runtime was

less than twice the fastest.

5 Indexing
The BWT is widely used as part of the FM index [11], which is the heart of popular

DNA sequencing read aligners such as Bowtie [15, 16], BWA [17] and SOAP 2 [18]. In

these tools, rank support is added to the BWT using sampled arrays of precalculated

ranks. Similarly, locate support is added using a sampled suffix array (SA). Until

recently, SA samples for massive, highly repetitive datasets were much larger than

the BWT, slow to calculate, or both. Gagie, Navarro, and Prezza [19] have shown

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted November 19, 2018. ; https://doi.org/10.1101/472399doi: bioRxiv preprint

https://doi.org/10.1101/472399
http://creativecommons.org/licenses/by-nc-nd/4.0/

Boucher et al. Page 16 of 21

Table 4: The dictionary and parse sizes for prefixes of a database of Salmonella

genomes, with three settings of the parameters w and p. Again, all sizes are reported

in megabytes; percentages are the sums of the sizes of the dictionaries and parses,

divided by the sizes of the uncompressed files.
number of w = 6, p = 20 w = 8, p = 50 w = 10, p = 100

genomes size dict. parse % dict. parse % dict. parse %
50 249 68 43 44 77 20 39 91 10 40

100 485 83 85 35 99 39 28 122 19 29
500 2436 273 424 29 314 194 21 377 96 19

1000 4861 475 847 27 541 388 19 643 192 17
5000 24936 2663 4334 28 2915 1987 20 3196 985 17

10000 49420 4190 8611 26 4652 3939 17 5176 1955 14

Table 5: Time (seconds) and peak memory consumption (megabytes) of BWT

calculations for prefixes of a database of Salmonella genomes, for three settings of

the parameters w and p and for the comparison method simplebwt.

number of w = 6, p = 20 w = 8, p = 50 w = 10, p = 100 simplebwt
genomes time peak time peak time peak time peak

50 71 545 63 642 65 782 53 2247
100 118 709 100 837 102 1059 103 4368
500 570 2519 443 2742 402 3304 565 21923

1000 1155 4517 876 4789 776 5659 1377 43751
5000 7412 42067 5436 46040 4808 51848 11600 224423

10000 19152 68434 12298 74500 10218 84467 43657 444780

Table 6: Time (seconds) and peak memory consumption (megabytes) of BWT

calculations on various files from the Pizza & Chili repetitive corpus, for three

settings of the parameters w and p and for the comparison method simplebwt.

w = 6, p = 20 w = 8, p = 50 w = 10, p = 100 simplebwt
file time peak time peak time peak time peak

cere 90 603 79 559 74 801 90 3962
einstein.en.txt 53 196 40 88 35 53 97 4016

influenza 27 166 27 284 33 435 30 1331
kernel 43 170 29 143 25 144 50 2216

world leaders 7 50 7 74 7 98 7 405

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted November 19, 2018. ; https://doi.org/10.1101/472399doi: bioRxiv preprint

https://doi.org/10.1101/472399
http://creativecommons.org/licenses/by-nc-nd/4.0/

Boucher et al. Page 17 of 21

that only the SA values at the ends of runs in the BWT need to be stored. We are

currently studying how to build this sample during the process of computing the

BWT from the dictionary and the parse. We show that prefix-free parsing can be

incorporated into the construction of a counting-only run-length FM index (RLFM)

and we measure the time and space efficiency of the RLFM construction and its

“count” query in a DNA sequencing context using data from the 1000 Genomes

Project. We compare the performance of the RLFM based methods to the popular

Bowtie [15] read aligner.

5.1 Implementation

Constructing the counting-only RLFM requires three steps: building the BWT

from the text, generating the F array, and run-length encoding the BWT. We use

prefix-free parsing to build the BWT. The F array is easily built in a single pass

over the text. Run-length encoding is performed using the implementation by Gagie,

et. al [19], which draws upon data structures implemented in the Succinct Data

Structure Library (SDSL) [20]; the concatenated run-heads of the BWT are stored

in a Huffman shaped wavelet tree, and auxiliary bit-vectors are used to refer to the

positions of the runs within the BWT. During index construction, all characters

that are not A, C, G, T, or N are ignored.

Typically, the BWT is built from a full SA, and thus a sample could be built by

simply retaining parts of the initial SA. However, prefix-free parsing takes a different

approach, so to build a SA sample the method would either need to be modified

directly or a SA sample would have to be generated post-hoc. In the latter case, we

can build a SA sample solely from the BWT by “back-stepping” through the BWT

with LF mappings, and storing samples only at run-starts and run-ends. The main

caveats to this method are that an LF mapping would have to be done for every

character in the text, and that the entire BWT would need to be in memory in

some form. These drawbacks would be especially noticeable for large collections. For

now, we focus only on counting support, and so SA samples are excluded from these

experiments except where otherwise noted.

5.2 Experiments

The indexes were built using data from the 1000 Genomes Project (1KG) [21].

Distinct versions of human chromosome 19 (“chr19”) were created by using the

bcftools consensus [22] tool to combine the chr19 sequence from the GRCh37

assembly with a single haplotype (maternal or paternal) from an individual in the

1KG project. Chr19 is 58 million DNA bases long and makes up 1.9% of the overall

human genome sequence. In all, we built 10 sets of chr19s, containing 1, 2, 10, 30,

50, 100, 250, 500, and 1000 distinct versions, respectively. This allows us to measure

running time, peak memory footprint and index size as a function of the collection

size. Index-building and counting experiments were run on a server with Intel(R)

Xeon(R) CPU E5-2650 v4 @ 2.20GHz and 512 gigabytes of RAM.

5.2.1 Index building

We compared our computational efficiency to that of Bowtie [15] v1.2.2, using the

bowtie-build command to build Bowtie indexes for each collection. We could not

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted November 19, 2018. ; https://doi.org/10.1101/472399doi: bioRxiv preprint

https://doi.org/10.1101/472399
http://creativecommons.org/licenses/by-nc-nd/4.0/

Boucher et al. Page 18 of 21

●
●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

1 2 10 30 50 10
0

25
0

50
0

75
0

10
001 2 10 30 50 10

0
25

0
50

0
75

0
10

001 2 10 30 50 10
0

25
0

50
0

75
0

10
00

−1

0

1

2

−1 0 1 2

No. Seqs in Collection

Log10 of Total Length of Collection (GB)

Lo
g 1

0
of

 M
ax

im
um

 M
em

or
y

U
sa

ge
 (

G
B

)
●

●

●

pfbwt
rlfm_total
bowtie

(a) Peak memory usage

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

1 2 10 30 50 10
0

25
0

50
0

75
0

10
001 2 10 30 50 10

0
25

0
50

0
75

0
10

001 2 10 30 50 10
0

25
0

50
0

75
0

10
00

0

1

2

3

4

5

6

−1 0 1 2

No. Seqs in Collection

Log10 of Total Length of Collection (GB)

Lo
g 1

0
of

 T
im

e
(s

)

●

●

●

pfbwt
rlfm_total
bowtie

(b) Running time

Figure 6: RLFM indexing efficiency for successively larger collections of genetically

distinct human chr19s. Results for the prefix-free parsing step (“pfbwt”) are shown

alongside the overall RLFM index-building (“rlfm total”) and Bowtie (“bowtie”)

results.

measure beyond the 250 distinct versions as Bowtie exceeded available memory.

Peak memory was measured using the Unix time -v command, taking the value

from its “Maximum resident set size (kbytes)” field. Timings were calculated and

output by the programs themselves. The peak memory footprint and running time

for RLFM index building for each collection are plotted in Figure 6.

Compared to Bowtie, the resources required for RLFM index-building grew much

more slowly. For example, the RLFM required about 20 GB to build an index for

1,000 chr19 sequences, whereas Bowtie required twice that amount to build an

index for just 250 sequences. For data points up to 50 sequences in Figure 6a, the

“pfbwt” and “rlfm total” points coincided, indicating that prefix-free parsing drove

peak memory footprint for the overall index-building process. After 50 sequences,

however, “pfbwt” fell below “rlfm total” and accounted for a diminishing fraction

of the footprint as the collection grew. Similarly, prefix-free parsing accounted

for a diminishing fraction of total index-building time as the sequence collection

grew (Figure 6b). These trends illustrate the advantage of prefix-free parsing when

collections are large and repetitive.

We can extrapolate the time and memory required to index many whole human

genomes. Considering chr19 accounts for 1.9% of the human genome sequence, and

assuming that indexing 1,000 whole human-genome haplotypes will therefore require

about 52.6 times the time and memory as indexing 1,000 chr19s, we extrapolate that

indexing 1,000 human haplotypes would incur a peak memory footprint of about

1.01 TB and require about 102 hours to complete. Of course, the latter figure can

be improved with parallelization.

We also measured that the index produced for the 1,000 chr19s took about 131MB

of disk space. Thus, we can extrapolate that the index for 1,000 human haplotypes

would take about 6.73 GB. While this figure makes us optimistic about future scaling,

it is not directly comparable to the size of a Bowtie genome index since it excludes

the SA samples needed for “locate” queries.

5.2.2 Count query time

We measured how the speed of the RLFM “count” operation scales with the size of

the sequence collection. Given a string pattern, “count” applies the LF mapping

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted November 19, 2018. ; https://doi.org/10.1101/472399doi: bioRxiv preprint

https://doi.org/10.1101/472399
http://creativecommons.org/licenses/by-nc-nd/4.0/

Boucher et al. Page 19 of 21

●

●

●

●
●

●

●

●
●

●

0

250

500

750

1000

0 250 500 750 1000

No. Seqs in Collection

C
ou

nt
 T

im
e

(µ
s)

Figure 7: RLFM average “count” query time for successively larger collections of

genetically distinct human chr19s.

repeatedly to obtain the range of SA positions matching the pattern. It returns the

size of this range.

We measured average “count” time by conducting a simple simulation of DNA-

sequencing-like data. First we took the first chr19 version and extracted and saved

100,000 random substrings of length 100. That chr19 was included in all the successive

collections, so these substrings are all guaranteed to occur at least once regardless

of which collection we are querying.

We then queried each of the collections with the 100,000 substrings and divided

the running time by 100,000 to obtain the average “count” query time. Query time

increases as the collection grows (Figure 7) but does so slowly, increasing from 750

microseconds for 1 sequence to 933 microseconds for 1,000 sequences.

5.2.3 Including the SA sample

Though no SA sample was built for the experiments described so far, such a sample

is needed for “locate” queries that return the text offset corresponding to a BWT

element. A SA sample can be obtained using the “back-stepping” method described

above. We implemented a preliminary version of this method to examine whether

prefix-free parsing is a bottleneck in that scenario. Here, index building consists

of three steps: (1) building the BWT using prefix-free parsing (“pfbwt”), (2) back-

stepping to create the SA sample and auxiliary structures (“bwtscan”), and (3)

run-length encoding the BWT (“rle”). We built RLFM indexes for the same chr19

collections as above, measuring running time and peak memory footprint for each of

the three index-building step independently (Figure 8).

The “bwtscan” step consistently drives peak memory footprint, since it stores the

entire BWT in memory as a Huffman shaped wavelet tree [20]. The “pfbwt” step

has a substantially smaller footprint and used the least memory of all the steps for

collections larger than 50 sequences. “pfbwt” is the slowest step for small collections,

but “bwtscan” becomes the slowest for 10 or more sequences. We conclude that

as the collection of sequences grows, the prefix-free parsing method contributes

proportionally less to peak memory footprint and running time, and presents no

bottlenecks for large collections.

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted November 19, 2018. ; https://doi.org/10.1101/472399doi: bioRxiv preprint

https://doi.org/10.1101/472399
http://creativecommons.org/licenses/by-nc-nd/4.0/

Boucher et al. Page 20 of 21

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

1 2 10 30 50 10
0

25
0

50
0

75
0

10
001 2 10 30 50 10

0
25

0
50

0
75

0
10

001 2 10 30 50 10
0

25
0

50
0

75
0

10
00

−1

0

1

2

−1 0 1 2

No. Seqs in Collection

Log10 of Total Length of Collection (KB)

Lo
g 1

0
of

 M
ax

im
um

 M
em

or
y

U
sa

ge
 (

G
B

)
●

●

●

pfbwt
rle
bwtscan

(a) Peak memory usage

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

1 2 10 30 50 10
0

25
0

50
0

75
0

10
001 2 10 30 50 10

0
25

0
50

0
75

0
10

001 2 10 30 50 10
0

25
0

50
0

75
0

10
001 2 10 30 50 10

0
25

0
50

0
75

0
10

00

0

1

2

3

4

5

6

−1 0 1 2

No. Seqs in Collection

Log10 of Total Length of Collection (GB)

Lo
g 1

0
of

 T
im

e
(s

)

●

●

●

●

pfbwt
rle
bwtscan
total

(b) Running time

Figure 8: Computational efficiency of the three stages of index building when SA

sampling is included. Results are shown for the prefix-free parsing (“pfbwt”), back-

stepping (“bwtscan”) and run-length encoding (“rle”) steps. “total” is the sum of

the three steps.

6 Conclusions
We have described how prefix-free parsing can be used as preprocessing step to

enable compression-aware computation of BWTs of large genomic databases. Our

results demonstrate that the dictionaries and parses are often significantly smaller

than the original input, and so may fit in a reasonable internal memory even when T

is very large. We show how the BWT can be constructed from a dictionary and parse

alone. Lastly, we give experiments demonstrating how the run length compressed

FM-index can be constructed from the parse and dictionary. The efficiency of this

construction shows that this method opens up the possibility to cosntructing the

BWT for datasets that are terabytes in size; such as GenomeTrakr [4] and MetaSub

[23].

Finally, we note that when downloading large datasets, prefix-free parsing can

avoid storing the whole uncompressed dataset in memory or on disk. Suppose we

run the parser on the dataset as it is downloaded, either as a stream or in chunks.

We have to keep the dictionary in memory for parsing but we can write the parse

to disk as we go, and in any case we can use less total space than the dataset

itself. Ideally, the parsing could even be done server-side to reduce transmission time

and/or bandwidth — which we leave for future implementation and experimentation.

Acknowledgements
The authors thank Risto Järvinen for the insight they gained from his project on rsync in the Data Compression

course at Aalto University.

Authors’ contributions
TG and GM conceptualized the idea and developed the algorithmic contributions of this work. AK and GM

implemented the construction of the prefix-free parsing and conducted all experiments. CB and TG assisted and

oversaw the experiments and implementation. TM and BL implemented and tested the construction of the

run-length compressed FM-index. All authors contributed to the writing of this manuscript.

Availability
Prefix-free parsing and all accompanied documents are available at https://gitlab.com/manzai/Big-BWT.

Competing interests
The authors declare that they have no competing interests.

Funding
CB and AK were supported by National Science Foundation (IIS 1618814). AK was also supported by a

post-doctoral fellowship from the University of Florida Informatics Institute. TG was partially supported by

FONDECYT (1171058). GM was partially supported by PRIN grant (201534HNXC).

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted November 19, 2018. ; https://doi.org/10.1101/472399doi: bioRxiv preprint

https://gitlab.com/manzai/Big-BWT
https://doi.org/10.1101/472399
http://creativecommons.org/licenses/by-nc-nd/4.0/

Boucher et al. Page 21 of 21

Author details
1CISE, University of Florida, Gainesville, FL USA. 2EIT, Diego Portales University, Santiago, Chile. 3CeBiB,

Santiago, Chile. 4Informatics Institute, Gainesville, FL USA. 5Johns Hopkins University, Baltimore, MD, USA.
6University of Eastern Piedmont, Alessandria, Italy. 7IIT, CNR, Pisa, Italy.

References
1. The 1000 Genomes Project Consortium: A global reference for human genetic variation. Nature 526, 68–74

(2015)

2. Turnbull, C., et al.: The 100,000 genomes project: bringing whole genome sequencing to the nhs. British

Medical Journal 361, 1687 (2018)

3. Carleton, H.A., Gerner-Smidt, P.: Whole-genome sequencing is taking over foodborne disease surveillance.

Microbe 11, 311–317 (2016)

4. Stevens, E.L., Timme, R., Brown, E.W., Allard, M.W., Strain, E., Bunning, K., Musser, S.: The public health

impact of a publically available, environmental database of microbial genomes. Frontiers in Microbiology 8, 808

(2017)

5. Burrows, M., Wheeler, D.J.: A block-sorting lossless compression algorithm. Technical report, Digital

Equipment Corporation (1994)

6. Sirén, J.: Burrows-Wheeler transform for terabases. In: Proccedings of the 2016 Data Compression Conference

(DCC), pp. 211–220 (2016)

7. Ferragina, P., Gagie, T., Manzini, G.: Lightweight data indexing and compression in external memory.

Algorithmica 63(3), 707–730 (2012)

8. Policriti, A., Prezza, N.: From LZ77 to the run-length encoded burrows-wheeler transform, and back. In:

Proceedings of the 28th Symposium on Combinatorial Pattern Matching (CPM), pp. 17–11710 (2017)

9. https://rsync.samba.org

10. Nong, G.: Practical linear-time O(1)-workspace suffix sorting for constant alphabets. ACM Trans. Inf. Syst.

31(3), 15 (2013)

11. Ferragina, P., Manzini, G.: Indexing compressed text. Journal of the ACM (JACM) 52(4), 552–581 (2005)

12. Louza, F.A., Gog, S., Telles, G.P.: Inducing enhanced suffix arrays for string collections. Theor. Comput. Sci.

678, 22–39 (2017)

13. http://pizzachili.dcc.uchile.cl/repcorpus.html

14. Stevens, E.L., Timme, R., Brown, E.W., Allard, M.W., Strain, E., Bunning, K., Musser, S.: The public health

impact of a publically available, environmental database of microbial genomes. Frontiers in Microbiology 8, 808

(2017)

15. Langmead, B., Trapnell, C., Pop, M., Salzberg, S.L.: Ultrafast and memory-efficient alignment of short DNA

sequences to the human genome. Genome biology 10(3), 25 (2009)

16. Langmead, B., Salzberg, S.L.: Fast gapped-read alignment with Bowtie 2. Nature Methods 9(4), 357–360

(2012). doi:10.1038/nmeth.1923

17. Li, H., Durbin, R.: Fast and accurate long-read alignment with burrows–wheeler transform. Bioinformatics

26(5), 589–595 (2010)

18. Li, R., Yu, C., Li, Y., Lam, T.-W., Yiu, S.-M., Kristiansen, K., Wang, J.: Soap2: an improved ultrafast tool for

short read alignment. Bioinformatics 25(15), 1966–1967 (2009)

19. Gagie, T., Navarro, G., Prezza, N.: Optimal-time text indexing in bwt-runs bounded space. In: Proceedings of

the 29th Symposium on Discrete Algorithms (SODA), pp. 1459–1477 (2018)

20. Gog, S., Beller, T., Moffat, A., Petri, M.: From theory to practice: Plug and play with succinct data structures.

In: 13th International Symposium on Experimental Algorithms, (SEA 2014), pp. 326–337 (2014)

21. Consortium, T..G.P.: A global reference for human genetic variation. Nature 526(7571), 68–74 (2015).

doi:10.1038/nature15393. Accessed 2018-09-28

22. Narasimhan, V., Danecek, P., Scally, A., Xue, Y., Tyler-Smith, C., Durbin, R.: BCFtools/RoH: a hidden Markov

model approach for detecting autozygosity from next-generation sequencing data. Bioinformatics 32(11),

1749–1751 (2016)

23. MetaSUB International Consortium: The Metagenomics and Metadesign of the Subways and Urban Biomes

(MetaSUB) International Consortium inaugural meeting report. Microbiome 4(1), 24 (2016)

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted November 19, 2018. ; https://doi.org/10.1101/472399doi: bioRxiv preprint

http://dx.doi.org/10.1038/nmeth.1923
http://dx.doi.org/10.1038/nature15393
https://doi.org/10.1101/472399
http://creativecommons.org/licenses/by-nc-nd/4.0/

	Abstract
	Introduction
	Review of the Burrows-Wheeler Transform
	Theory of Prefix Free Parsing
	Prefix free parsing in practice
	Implementation
	Experiments
	On the choice of the parameter w and p

	Indexing
	Implementation
	Experiments
	Index building
	Count query time
	Including the SA sample

	Conclusions

