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Summary 

 

The spindle assembly checkpoint (SAC) ensures proper chromosome segregation by 

monitoring kinetochore-microtubule interactions. SAC proteins are shed from kinetochores 

once stable attachments are achieved. Human kinetochores consist of hundreds of SAC protein 

recruitment modules and bind up to 20 microtubules, raising the question how the SAC 

responds to intermediate attachment states. We show that the ‘RZZS-MAD1/2’ module of the 

SAC is removed from kinetochores at low microtubule occupancy and remains absent at higher 

occupancies, while the ‘BUB1/R1’ module is retained at substantial levels irrespective of 

attachment states. Artificially tuning the affinity of kinetochores for microtubules further shows 

that ~50% occupancy is sufficient to shed MAD2 and silence the SAC. Kinetochores thus 

responds as a single unit to shut down SAC signaling at submaximal occupancy states, but 

retains one SAC module. This may ensure continued SAC silencing on kinetochores with 

fluctuating occupancy states while maintaining the ability for fast SAC re-activation. (150 

words) 
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Introduction 

Errors in chromosome segregation cause aneuploid karyotypes, which are devastating to 

embryonic development and are strongly associated with cancer (de Wolf and Kops, 2017; 

Duijf et al., 2013; Hanahan and Weinberg, 2011; Ricke and van Deursen, 2013). To ensure 

proper chromosome segregation, the spindle assembly checkpoint (SAC) prevents anaphase 

initiation until all chromosomes are stably attached to spindle microtubules. These attachments 

are powered by kinetochores, specialized structures assembled on centromeric chromatin 

(Musacchio and Desai, 2017). Microtubule binding by kinetochores is mediated predominantly 

by the NDC80 complex (Cheeseman et al., 2006; DeLuca et al., 2002; DeLuca and Musacchio, 

2012; Tooley and Stukenberg, 2011). When unbound by microtubules, however, this complex 

recruits the MPS1 kinase to kinetochores (Aravamudhan et al., 2015; Hiruma et al., 2015; Ji et 

al., 2015; Liu and Winey, 2012), where it initiates a cascade of events that culminates in 

production of the anaphase inhibitor. The cascade involves phosphorylation of the short linear 

MELT sequences in the kinetochore protein KNL1 to form the binding sites for the BUB3-

bound SAC proteins BUBR1 and BUB1 (Krenn et al., 2014; Overlack et al., 2015; Primorac et 

al., 2013; Vleugel et al., 2013; Zhang et al., 2014). MPS1 also ensures localization of the 

MAD1-MAD2 complex, at least in part by promoting BUB1-MAD1 interactions (Kim et al., 

2012; London and Biggins, 2014; Silió et al., 2015). MAD1-MAD2 recruitment additionally 

requires the RZZ (ROD-ZW10-Zwilch) kinetochore complex but the mechanism of this has 

not been elucidated (Caldas et al., 2015; Matson and Stukenberg, 2014; Silió et al., 2015). 

Although poorly understood at the molecular level, a subset of these SAC proteins then form a 

multiprotein assembly with potent anaphase inhibitory activity (Chao et al., 2012; Herzog et 

al., 2009; Kulukian et al., 2009; Sudakin et al., 2001). 

 

Whereas recruitment of SAC proteins to kinetochores is essential for proper SAC activation, 

their removal is crucial for efficient SAC silencing and timely anaphase onset (Ballister et al., 

2014; Ito et al., 2012; Jelluma et al., 2010; Kuijt et al., 2014; Maldonado and Kapoor, 2011). 

Microtubule attachments disrupt SAC signalling from kinetochores by mediating poleward 
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transport of SAC proteins by the dynein motor complex (a process referred to as ‘stripping’) 

(Howell et al., 2001), and by affecting the balance of SAC-regulating kinases and phosphatases 

(Etemad and Kops, 2016; Funabiki and Wynne, 2013; Saurin, 2018). For example, RZZ-MAD1 

is cargo of dynein via interactions with the kinetochore-specific dynactin adaptor Spindly 

(Barisic et al., 2010; Caldas et al., 2015; Chan et al., 2009; Gassmann et al., 2008; Kops et al., 

2005; Silió et al., 2015). By contrast, BUB protein removal is dependent on inhibition of local 

MPS1 activity and reversal of MELT phosphorylations by the PP1 phosphatase (Etemad and 

Kops, 2016; Hiruma et al., 2015; Ji et al., 2015; London et al., 2012; Meadows et al., 2011; 

Nijenhuis et al., 2014; Rosenberg et al., 2011; Zhang et al., 2014).  

 

The subcellular architecture of kinetochores is substantially more complex than illustrated 

above. A single human kinetochores contains ~240 NDC80 complexes likely configured in a 

lawn-like macro-structure (Suzuki et al., 2015; Zaytsev et al., 2014). This lawn can bind up to 

20 microtubules that together form a so-called kinetochore (k-)fiber (DeLuca et al., 2005; 

McEwen et al., 2001; Nixon et al., 2015; Wendell et al., 1993). Likewise, when unbound by 

microtubules, a single human kinetochore binds hundreds of SAC modules (Howell et al., 2004; 

Vleugel et al., 2015). This subcellular complexity of kinetochores raises numerous questions 

about the response dynamics of SAC modules to increasing amounts of bound microtubules. 

Recent evidence points towards a model in which the SAC signal from kinetochores as a 

function of microtubule binding is not binary, but can exist in intermediate states: The total 

amount of MAD2 on kinetochores in cells correlates with the average mitotic delay imposed 

by the SAC (Collin et al., 2013), MAD1 removal is initiated before a full occupancy state is 

reached (Kuhn and Dumont, 2017), and a novel microtubule poison that reduces microtubule 

occupancy at kinetochores did not prevent SAC silencing (Dudka et al., 2018). It remains 

unclear though if SAC signalling is fully shut down only when kinetochores have acquired 

close to maximal microtubule occupancy, and if not, what occupancy state is sufficient for 

allowing mitotic exit (Burke and Stukenberg, 2008; Stukenberg and Burke, 2015). Furthermore, 

do all SAC modules behave similarly, or are there functionally relevant differences in the way 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted November 16, 2018. ; https://doi.org/10.1101/472407doi: bioRxiv preprint 

https://doi.org/10.1101/472407


 5 

they respond to different amounts of bound microtubules? We here address these questions by 

quantitative correlation imaging of SAC protein levels and microtubule occupancy at single 

kinetochores, and by assessing SAC activity and SAC protein amounts on kinetochores with 

experimentally manipulated average occupancy states.  
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Results 

 

Simultaneous quantification of tubulin and kinetochore proteins on individual 

kinetochores.  

To examine the effect of intermediate states of kinetochore-microtubule attachment on SAC 

silencing, we wished to simultaneously quantify the relative amounts of SAC proteins and 

microtubules on individual kinetochores. To this end, cells were treated either with nocodazole 

to induce depolymerisation of microtubules, or with the proteasome inhibitor MG-132 to allow 

maturation of k-fibers without mitotic exit. Coldshock treatments were used to visualize k-

fibers and remove other microtubules from the mitotic spindle (DeLuca, 2010; Polak et al., 

2017). We stained cells for tubulin and CENP-C to mark kinetochores, and used line plot 

measurements on maximum or sum projection images to quantify their levels on individual 

kinetochores. Comparison of this method to other combinations of image processing and 

analysis showed similar results on the same images (Sup. Figure 1A, B). As expected, 

individual k-fibers in nocodazole-treated cells were absent, while those in MG-132-treated cells 

were of high intensity (Sup. Figure 1C). However, in agreement with previous reports (DeLuca 

et al., 2005; Maiato et al., 2006; Wendell et al., 1993), individual k-fibers in MG-132-treated 

metaphase cells displayed substantial intensity differences, indicative of non-uniform 

microtubule occupancies across metaphase kinetochores.  

 

Microtubule attachments evoke two types of responses on SAC proteins. 

To assess how the SAC modules responds to full occupancy on individual kinetochores, we 

next quantified levels of six SAC proteins and one SAC-regulating post-translation 

modification (KNL1-pT180, hereafter referred to as ‘pMELT’ (Vleugel et al., 2015)). As 

expected, SAC protein levels were high on kinetochores of nocodazole-treated cells that have 

no microtubule attachments (‘NULL’ condition), and were significantly reduced on those of 

cells treated with MG-132, which have acquired full microtubule occupancy (‘FULL’ 

condition) (Howell et al., 2004) (Figure 1A, B). We found substantial variance in the amount 
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of accumulated SAC proteins on unattached kinetochores (Figure 1B). The high variance was 

also observed within single cells and independent of variance of more stable kinetochore 

components such as CENP-C (Sup. Figure 2A, B) or HEC1 (Collin et al., 2013) . Of note, 

variability between kinetochores was independent on the method used for measuring local 

protein levels (Sup. Figure 1A-C), by differences between biological replicates (Sup Figure 

2C), by different antibody penetration proficiencies (Sup. Figure 2D, E), or by kinetochore 

size (Sup. Figure 2F).  

 Although all imaged SAC proteins were substantially delocalized from kinetochores of 

metaphase cells, they showed non-uniform behaviour. MAD2, MAD1, Spindly and ZW10 

levels decreased to below detection limit. In contrast, BUBR1, BUB1 and pMELT were 

maintained to detectable levels at fully attached kinetochores (29-53% of the median of the 

levels measured on unattached kinetochores), in agreement with previous observations 

(Ballister et al., 2014; Bomont et al., 2005; Howell et al., 2004; Martinez-Exposito et al., 1999; 

Skoufias et al., 2001) (Figure 1A, B). Moreover, considerable variation between kinetochores 

was observed for these proteins on fully attached kinetochores (Figure 1C, x-axis) and pairwise 

comparison of the variance of all SAC proteins resulted in clustering of high and low variance 

proteins into two distinct groups (Figure 1D). To ensure that the difference in measured 

variation was not technical, we calculated signal-to-noise ratios and found that they are similar 

for high- and low-variance proteins, supporting a biological origin of this pattern (Sup. Figure 

3). In addition, a fraction of attached kinetochores had accumulated as much BUBR1, BUB1 

and pMELT as some of their unattached counterparts (Auckland et al., 2017), which was never 

observed for MAD2, MAD1 and Spindly, and only to limited extent for ZW10 (Figure 1E). 

The results from quantitative immuno-imaging were verified using genome-edited cell lines 

that express N-terminal HA-mCherry-tagged versions of MAD2 or BUB1 from their 

endogenous locus, excluding differences between antibodies as a cause for differences between 

SAC protein behavior at kinetochores (Sup. Figure 4).   

 

SAC proteins respond to intermediate attachments states.  
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To examine how SAC signalling from kinetochores responds to intermediate kinetochore-

microtubule attachment states, we measured SAC protein and tubulin signal intensities on 

individual kinetochores with immature k-fibers. To this end, cells were fixed in prometaphase 

after release from a G2/M-boundary block (see M&M for details). The resulting population of 

kinetochores had a mixture of attachment states (Sup. Figure 5A, B), including unattached and 

fully attached, as evident from comparisons to simultaneous imaging of kinetochores from the 

‘NULL’ and ‘FULL’ conditions (Figure 2A-H). We found that all SAC proteins were 

substantially reduced on kinetochores with ~30% or more microtubule occupancy (relative to 

average tubulin intensity in the ‘FULL’ condition).  However, whereas most kinetochores had 

no or barely detectable MAD1, MAD2, ZW10 and Spindly (‘RZZS-MAD1/2’ group) at ~50% 

of average max occupancy, members of the ‘BUB1/R1’ group (KNL1-pT180, BUBR1, BUB1) 

remained clearly detectable and with substantial variability. Segmented linear regression and 

hierarchical clustering of various extracted features (Sup. Figure 5B, C) verified that 

occupancy response-curves separated into two clusters: one containing the profiles of MAD1, 

MAD2, Spindly and ZW10 and the other containing those of BUB1, BUBR1 and KNL1-pT180 

(Figure 2I). This was consistent with the behaviour of these proteins to full attachment (Figure 

1A, B) and suggests a mechanistic difference in their response to microtubule attachments. The 

clustering analysis predicted that members of the RZZS-MAD1/2 module should behave 

differently to identical occupancy than members of BUB1/R1 module when measured on the 

same kinetochore. Indeed, (partly) attached kinetochores with no detectable mCherry-MAD2 

had a variety of BUB1 levels, and BUB1 displayed greater variability than MAD2 (Figure 2J). 

In contrast, the signal intensities of BUB1 and BUBR1 on the same kinetochores of 

prometaphase cells were strongly correlated (Figure 2K).  

 

In summary, our results indicate that the behaviour of SAC proteins is not uniform on attached 

kinetochores: all SAC proteins respond to low occupancy states but some are insensitive to 

further increases in occupancy.  
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Immature k-fibers are sufficient to silence the SAC. 

Our results thus far suggest that at least a substantial part of the SAC machinery is removed 

from kinetochores well below full occupancy. However, since there is substantial variation in 

microtubule intensities of fully attached metaphase kinetochores, we next wished to 

experimentally tweak average maximal occupancy to verify these observations and examine if 

SAC protein removal at low occupancy is sufficient to silence the SAC. HEC1 is the major 

microtubule-binding protein on the kinetochore (DeLuca et al., 2004, 2002; Liu et al., 2006; 

McCleland et al., 2004, 2003; Wigge and Kilmartin, 2001) and its affinity for microtubules is 

controlled by phosphorylation of its N-terminal tail (Cheeseman et al., 2006; Wei et al., 2007). 

Designed combinations of phospho-site substitions to phosphomimetic or non-

phosphorylatable amino acids (Aspartic acid and Alanine, respectively) generates HEC1 

versions with a variety of microtubule-binding affinities, which in cells results in a controlled 

range of average k-fiber intensities (Zaytsev et al., 2014). We constructed cell lines expressing 

seven mutant versions of HEC1 to achieve a range of occupancy states (Sup. Figure 6A-E). 

Considering single microtubules can be bound by many HEC1 molecules, our approach enabled 

creation of uniform HEC1 lawns with specified microtubule-binding affinities, unlike for 

example diminishing the total amount of HEC1 on kinetochores or mixing high and low affinity 

HEC1 species. Moreover, the HEC1 mutants simulate the phosphorylation states of 

kinetochores during unperturbed mitosis (Zaytsev et al., 2014), providing insight into the SAC 

response during k-fiber maturation.  

Cells expressing the HEC1 variants were analyzed for ability to silencing the SAC by 

time lapse imaging: Occupancy states that cannot silence the SAC are predicted to delay mitosis 

indefinitely, while those that can, should allow progression. As shown in Figure 3A and B and 

reported before (Etemad et al., 2015; Guimaraes et al., 2008; Zaytsev et al., 2014), cells 

expressing wild-type HEC1 or HEC1-9A (high microtubule affinity) were able to silence the 

SAC, whereas those expressing HEC1-9D (low affinity for microtubules) were not. While 

HEC1-5D was likewise unable to silence the SAC, HEC1-4D (intermediate microtubule 

affinity) was proficient in SAC silencing, albeit relatively inefficiently (Figure 3A, B). 
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Quantitative immunofluorescence showed that HEC1-4D k-fibers were on average 45% of 

average maximal intensity of HEC1-WT cells, in line with a previous report (Zaytsev et al., 

2014), and those of HEC1-5D were ~20% (Figure 3C, D; Sup. Figure 6). Simultaneous live 

imaging of mCherry-MAD2 and eGFP-HEC1-4D showed that HEC1-4D kinetochores had 

shed most or all of the MAD2 by 30 minutes following mitotic entry (Figure 3E). Some 

kinetochores however had retained substantial MAD2 levels after 93 minutes, likely explaining 

why mitotic exit was relatively inefficient in these cells. Quantitative immuno-imaging of 

single attached kinetochores showed that 82% of HEC1-4D kinetochores had MAD2 levels that 

were as low as those of HEC1-WT kinetochores (Figure 3F, G). For comparison, this was true 

for 30% and 0% of HEC1-5D and HEC1-9D kinetochores, respectively. These data support the 

hypothesis that kinetochores can inactivate SAC signalling at intermediate (~50%) occupancy 

states and that SAC silencing becomes more efficient with increasing occupancy.  
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Discussion 

Each human kinetochore consists of hundreds of microtubule-binding complexes that each can 

recruit SAC proteins. In metaphase these kinetochores are bound by ~20 microtubules and have 

shut down SAC signaling (DeLuca et al., 2005; Guimaraes et al., 2008; McEwen et al., 2001; 

Wendell et al., 1993). Kinetochores are unlikely to transition from zero to a full complement of 

microtubules in a single step, yet there is little knowledge about SAC responses to intermediate 

microtubule occupancies. We show here that key SAC proteins are substantially depleted from 

kinetochores at ~30% occupancy and are nearly undetectable at ~50% occupancy or above. Our 

quantitative immuno-imaging of SAC protein levels in relation to microtubule intensities on 

single kinetochores distinguished two response types. Levels of ZW10, Spindly, MAD1 and 

MAD2 anti-correlated to microtubule intensities and became not or barely detectable at ~50% 

occupancy. BUBR1, BUB1 and KNL1-pT180, however, although also declining strongly at 

low occupancy, were not sensitive to further increases in occupancy and showed variable levels. 

The behaviors of the members of these two groups are consistent with their mutual physical 

interactions, and correlate with distinct delocalization mechanisms proposed for these groups. 

Removal of the BUB group (KNL1-pT180 and by extension BUB1, and BUBR1) requires 

dephosphorylation by PP1 and decreased localization and activity of MPS1 (Etemad and Kops, 

2016; Hiruma et al., 2015; Ji et al., 2015; Nijenhuis et al., 2014). Removal of the RZZ-MAD 

group occurs through dynein motor activity (Caldas et al., 2015; Kim et al., 2012; London and 

Biggins, 2014; Matson and Stukenberg, 2014; Silió et al., 2015). Interestingly, MAD1 also 

interacts with BUB1 in an MPS1-dependent manner (Caldas et al., 2015; Silió et al., 2015), 

which might explain why its response among all members of the RZZ-MAD group is most 

similar to that of members of the BUB group. Although MAD1 and MAD2 form a 

heterotetramer, their behavior in our analyses is not entirely overlapping. The molecualr basis 

for this is unknown, but MAD2-independent functions for MAD1 at kinetochores have been 

reported (Akera et al., 2015; Emre et al., 2011).  
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Cells in which kinetochores reach ~45% occupancy on average (HEC1-4D) can silence the 

SAC and exit mitosis, while those with ~20% (HEC1-5D) cannot. These data show that a full 

complement of microtubules such as seen on metaphase kinetochores is not required for SAC 

silencing. The kinetochore, therefore, acts as a single unit with respect to SAC signaling: when 

a treshold of bound microtubules is reached, the entire unit switches off its signaling output. 

This has important implications for our understanding of the SAC as it suggests that the signal 

from those hundreds of microtubule-binding complexes is quenched by only a few (~7-10) 

microtubules. We envision several ways in which this can be achieved. First, a few 

microtubules may be sufficient to pull a stiff kinetochore away from a SAC activating signal 

(e.g. Aurora B) from inner centromere/kinetochore (Burke and Stukenberg, 2008; Santaguida 

and Musacchio, 2009; Saurin et al., 2011; Stukenberg and Burke, 2015). We do not favor this 

hypothesis, as we and others recently showed that distance between sister kinetochores or 

between inner- and outer kinetochore is not required for SAC silencing (Etemad et al., 2015; 

Magidson et al., 2016; O’Connell et al., 2008; Tauchman et al., 2015). Second, a low number 

of microtubules may suffice to elicit a signal that sweeps the kinetochore. For example, 

phosphatases such as PP1 could be ‘unleashed’ from a site of recruitment/activation upon a 

threshold of microtubule binding. Concurrent with sufficient MPS1 displacement, this could 

switch the SAC signal to an OFF state. It is unclear, however, how dynein-mediated removal 

of RZZS-MAD proteins would occur in such a scenario. Third, the kinetochore may be flexible, 

allowing only a few microtubules to engage the majority of microtubule-binding complexes 

and thus displace sufficient MPS1 molecules and recruit sufficient PP1 and dynein molecules 

to achieve substantial SAC protein delocalization. Transition to full occupancy may then be 

facilitated by kinetochore flexibility and many low affinity microtubule interactions (Etemad 

and Kops, 2016). Fourth, attachments may be highly dynamic, engaging and disengaging 

kinetochores frequently. This may allow most of the microtubule-binding complexes to briefly 

bind microtubules and shed SAC proteins. A sufficiently high frequency of these labile 

interactions could conceivably render the kinetochore in a SAC silenced state.  
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Materials and Methods 

 

Cell Culture and transfection. HeLa and HeLa FlpIn cells were grown in DMEM (Sigma; 4,5 

g glucose/L) supplemented with 8% tetracycline-free FBS (Bodingo), penicillin/streptomycin 

(Sigma; 50 µg/ml), GlutaMAX (Gibco; 5 mL), and hygromycin (200 µg/ml) or puromycin (1.6 

µg/ml). Plasmids were transfected using Fugene HD (Roche) according to the manufacturer’s 

instructions. To generate stably integrated constructs, HeLa FlpIn cell lines were transfected 

with pCDNA5-constructs and pOG44 recombinase simultaneously in a 1:9 ratio(Klebig et al., 

2009). Constructs were expressed by addition of 1 µg/ml doxycycline for 24h. siHEC1 (custom; 

Thermo Fisher Scientific; 5’-CCCUGGGUCGUGUCAGGAA-3’) and siGAPDH (Thermo 

Fisher Scientific; D-001830-01-50) was transfected using HiPerfect (Qiagen) according to 

manufacturer’s instructions.  

 

Plasmids. pCDNA5-pEGFP-HEC1 constructs and cloning strategies are described in 

(Nijenhuis et al., 2013). Other constructs were made using site-directed mutagenesis by PCR.  

 

CRISPR/Cas9 genome editing of MAD2 and BUB1 loci. Inserting the gene for mCherry into 

the endogenous loci of MAD2 and BUB1 was performed using self cloning CRISPr strategy 

(Arbab et al., 2015). In brief: 3xFLAG-spCas9 was subcloned from spCas9-BLAST to 

pcDNA3-MCS-IRES-PURO using NdeI/EcoRI restriction digestion to allow selection for 

spCas9 expression in HeLa FLPin cells. To generate HA-mCherry, pcDNA3Zeo-CyclinB-

mCherry (Kuijt et al., 2014) was used as template and amplified by PCR using forward 

(AAGCTTTACCCGTACGACGTGCCAGATTACGCTGTGAGCAAGGGCGAGGAGG) 

and reverse (gcgccgTCTAGATCCGCAGCCACCGCCAGATCCGCCCTTGTACAGCTC 

GTCCATGC) primers. The PCR fragment was digested with HinDIII/XbaI and ligated into 

pcDNA3.0 via HinDIII/XbaI.  

To create the homology arms, three consecutive PCR-amplifications were done on HA-

mCherry template to create MAD2 (120bp 5’ of ATG and 120bp 3’) or BUB1 (119bp 5’ of 
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ATG and 124bp 3’). spCas9 was directed to MAD2 using sgRNA: G-

AGCTGCAGCGCCATGGCC, or BUB1 using G-TCCTCTGGCCATGGACACCC. Both 

homology arms and sgRNA template were subcloned into pJet1.2 (ThermoFischer) and 

sequence verified before PCR fragments were generated for transfection. 

To generate HeLa FlpIn cells with endogenous tagged MAD2 or BUB1 cells were 

transfected with 1.5µg spCas9-IRES-PURO, 1.5µg sgPAL7-Hygro, 3µg homology PCR 

template and 3µg sgRNA PCR template at a ratio 1:3 DNA:Lipofectamine LTX 

(ThermoFischer). 24 hours after transfection, 1 µg/ml puromycin and 200 µg/ml Hygromycin 

B were used for 48 hours after which cells were grown till confluency in a 10 cm petri dish. 

HeLa FlpIn cells subsequently FACS-sorted as single cells on using BD FACSAria FUSION 

(640nm excitation laser, autofluorescence 670nm/30 vs 651nm excitation laser, 610nm/20 

mCherry channels, 100µm nozzle, 2.0 flowrate). Clones were verified to have correct labelling 

of MAD2 or BUB1 by PCR on genomic DNA, western blotting and live cell 

immunofluorescence microscopy. 

 

Knockdown and reconstitution experiments. To knockdown and reconstitute HEC1 in HeLa 

FLpIn cell lines, cells were transfected with 40 nM HEC1 or mock siRNA and arrested in early 

S phase for 24 h by addition of thymidine (2 mM). Cells were then allowed cell cycle re-entry 

by washing the cells once with appropriate media. 8 h after thymidine release, cells were treated 

with doxycycline (1 µg/ml), arrested again using thymidine and incubated with both reagents 

for 16 h after which they were released from thymidine and further processed. Cells processed 

for immunofluorescence imaging of SAC proteins and k-fibers were released from thymidine 

in RO (5 µM) and incubated for 8 h or more. Subsequently, cells were washed three times with 

warm media, incubated between each wash for 5 minutes at 37 ° C, and incubated for 120 

minutes with nocodazole (3,3 µM, ‘NULL’ condition), or MG-132 (5 µM, ‘FULL’ condition). 

Then, cells were fixed and processed appropriately. To fix cells before all kinetochores had 

reached full occupancy (the ‘VAR’ condition), cells were fixed and processed 25 min after 
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release from RO. For immunofluorescence imaging of cells expressing HEC1 variants, cells 

were treated with MG-132 (5 µM) for 120 minutes prior to fixation.  

 

Live cell imaging. For live cell imaging experiments, cells were plated in 24-well plates 

(Greiner bio-one), and subjected to DIC microscopy on a Nikon Ti-E motorized microscope 

equipped with a Zyla 4.2Mpx sCMOS camera (Andor). A 20x 0.45 NA objective lens (Nikon) 

was used. Cells were kept at 37°C and 5% CO2 using a cage incubator and Boldline 

temperature/CO2 controller (OKO-Lab). Images were acquired every 4 minutes at 2×2 binning 

and processed by Nikon Imaging Software (NIS). Analysis of live cell imaging experiments 

was carried out with ImageJ software and time in mitosis was defined as the time between 

nuclear envelope breakdown and anaphase-onset or cell flattening.  

Live cell imaging of mCherry-tagged MAD2 and BUB1 in single cells was performed 

on a Nikon Time-Lapse system (Applied Precision/GE Healthcare) equipped with a Coolsnap 

HQ2 CCD camera (Photometrics) and Insight solid-state illumination (Applied Precision/GE 

Healthcare). Cells were plated in 8-well plates (µ-Slide 8 well, Ibidi) and imaged in a heated 

chamber (37°C and 5% CO2) using a 60×/1.42 NA or 100×/1.4 NA UPlanSApo objective 

(Olympus) at 2×2 binning. Images were acquired every 15 seconds (for the mCherry-MAD2 

cells), or 1 min (for the mCherry-BUB1 cells), and deconvolved using standard settings in 

SoftWorx (Applied Precision/GE Healthcare) software. Multiple z layers were acquired and 

projected to a single layer by maximum intensity projection. For simultaneous imaging of 

GFP(-HEC1) and mCherry-MAD2, the same system was used. Cells were plated in 8-well 

plates (µ-Slide 8 well, Ibidi), treated with siRNA, thymidine and RO as described above. 

Images were acquired 30 and 60 minutes after mitotic entry, and then every three minutes. 

 

Immunofluorescence and image quantification. For fixed cell immunofluorescence 

microscopy, cells plated on round 12-mm coverslips (No. 1.5) were pre-extracted with 37°C 

0.1% Triton X-100 in PEM (100 mM Pipes (pH 6.8), 1 mM MgCl2, and 5 mM EGTA) for ±45 

s before fixation (with 4% paraformaldehyde) for 10 min. Coverslips were washed twice with 
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cold PBS and blocked with 3% BSA in PBS for 16 h at 4°C, incubated with primary antibodies 

for 16 h at 4°C, washed 4 times with PBS containing 0.1% Triton X-100, and incubated with 

secondary antibodies for an additional hour at room temperature. Coverslips were then washed 

twice with PBS/0.1% Triton X-100, incubated with DAPI for 2 min, washed again twice with 

PBS and mounted using Prolong Gold antifade (Invitrogen). For cold-shock experiments, cells 

were placed on ice water in 500 µL media for 8 minutes prior to pre-extraction and fixation 

with the appropriate buffers.  

All images were acquired on a deconvolution system (DeltaVision Elite; Applied 

Precision/GE Healthcare) with a 100×/1.40 NA UPlanSApo objective (Olympus) using 

SoftWorx 6.0 software (Applied Precision/GE Healthcare). Deconvolution is applied to all 

images and maximum projection is shown in figures, except for panel (A) in Figure 2, which 

is a sum projection image, and panel 3C in which single planes are shown. For quantification 

of immunostainings, all images of simultaneously stained experiments were acquired with 

identical illumination settings. For analysis of the HEC1 mutant expressing cell lines, cells 

expressing comparable levels of exogenous protein were selected for analysis and analyzed 

using ImageJ. For measurement of protein levels and k-fiber intensities on single kinetochores, 

kinetochores were selected in max projection images. The 7-8 slices that contained a single 

kinetochore and corresponding k-fiber were selected and sum projection images were used for 

quantification. Line plots were used to determine the highest intensity at kinetochores/k-fibers 

and local background was subtracted from these values (Sup. Figure 1). The same method was 

applied to determine protein levels, k-fiber intensity and CENP-C levels. k-fiber and protein 

measurements were normalized to CENP-C to correct for biological and technical variation 

between kinetochores. Further normalization steps include normalization of k-fiber levels to 

the median of k-fiber levels measured in FULL conditions, and normalization of protein levels 

to the levels measured for the median of the same protein in the NULL conditions. 

 

Data analysis. Data analysis was performed in R (3.3.2) using the pheatmap (1.0.8, CRAN), 

MarkdownReports (2.5, DOI: 10.5281/zenodo.594683) packages. Raw measurement per 
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kinetochore were normalized as described in ‘Immunofluorescence and image quantification’.   

To quantify features of individual occupancy response-curves in transient (left) and 

steady (right) phase separately, piecewise linear regression was applied, where a breakpoint 

separates the two phases. Each feature is extracted from either the FULL, NULL or the VAR 

datasets as denoted. These features are: VarianceInPhase2 (variance in protein concentration in 

the steady phase, right of the split point,), MedianPhase2 (median protein concentration in the 

steady phase), Null2Full decrease (relative protein decrease between the two conditions defined 

as the ratio of median protein levels NULL over FULL attachment, corresponds to % values in 

Figure 1B), MedianFull (median protein levels in the full condition), BreakPoints (X or 

Tubulin-coordinate of the split point in the piece-wise linear regression), and Slope (slope of 

the fitted line in the transient phase, left of the split point). 

 To investigate variance across proteins at full attachment, measured values were tested 

for normality (Sup. Figure 7). Based on these results, Levene’s test was used to compare 

variances. Code availability: Upon acceptance of the manuscript, the source code for the 

analysis, raw quantification data will be available "as-is" under GNU GPLv3 at 

https://github.com/vertesy/Kinetochore. 

 

Immunoblotting. Cells were treated as described above and entered mitosis in the presence of 

Nocodazole. Cells were collected and lysed in Laemmli lysis buffer (4% SDS, 120 mM Tris 

(pH 6.8), 20% glycerol). Lysates were processed for SDS-PAGE and transferred to 

nitrocellulose membranes for immunoblotting. Immunoblotting was performed using standard 

protocols. Visualization of signals was performed on a scanner (Amersham Imager 600) using 

enhanced chemiluminescense.  

 

Antibodies. The following primary antibodies were used for immunofluorescence imaging: 

CENP-C (guinea pig polyclonal, 1:2,000; Sigma-Aldrich), α-tubulin (mouse monoclonal, 

1:10,000; Sigma-Aldrich), HEC1 (mouse monoclonal 9G3, 1:2,000; Abcam), GFP (custom 

rabbit polyclonal raised against full-length GFP as antigen, 1:10,000 (Jelluma et al., 2008)), 
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GFP (mouse monoclonal, 1:1,000; Roche), MAD2 (custom rabbit polyclonal raised against 

full-length 6×His-tagged MAD2 as antigen, 1:2,000 (Sliedrecht et al., 2010)), BubR1 (rabbit 

polyclonal, 1:1,000; Bethyl), BUB1 (rabbit polyclonal, 1:1000, Bethyl), Spindly (rabbit 

polyclonal, 1:1000, Bethyl), ZW10 (rabbit polyclonal, 1:1000, Abcam), MAD1 (rabbit 

polyclonal, 1:1000, Santa Cruz), RFP (rat monoclonal, 1:1000, Chromotek) GFP-Booster (Atto 

488, 1:500, Chromotek). Secondary antibodies were highly crossed absorbed goat anti-guinea 

pig Alexa Fluor 647, anti-rat Alexa Fluor 568, and goat anti–rabbit and –mouse Alexa Fluor 

488 and 568 (Molecular Probes).  
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Figure 1. Microtubule attachments evoke two distinct SAC protein responses. A-B) Immunofluorescence images (A) and 
quantification of protein levels (B) on attached versus unattached kinetochores. Cells were synchronized and released in nocodazole 
(NULL) or treated with MG-132 (FULL) for two hours after mitotic entry. Each data point represents protein levels on a single kineto-
chore. Data from three independent experiments, represented by different shade of grey, are shown. Data is normalized to the 
median of the nocodazole levels measured in the same experiment to exclude batch effects. Error bars depict average of three 
experiments and SEM. At least 15 kinetochores in five cells or more were measured for each condition in every experiment. Channel 
colors of merged images match those of the labels. Scale bar, 5 µm. Scale bar zoom-ins, 1 µm. C) Plot depicting correlation between 
the relative protein decrease from NULL to FULL conditions and the standard deviation measured at FULL attachment (shown in B). 
D) Clustering heat map of P-values from pairwise Levene’s tests on the levels of proteins measured in the FULL condition. 
–log10(p-values) are displayed. Significant differences are in bold. Top bars represent variance (red) and average levels (orange) of 
each protein. E) Bar graph showing the fraction of FULL kinetochores that have similar levels of SAC protein as their NULL counter-
parts. MAD2, MAD1, and Spindly have no overlap. 
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Figure 2. Etemad et al. 

Figure 2. SAC proteins respond to intermediate attachments states. A-H) Representative images (A) and quantifications of 
levels of SAC proteins on kinetochores with different levels of intermediate attachments. Graphs (B-H) show data of three biological 
replicates. SAC protein levels of each experiment are normalized to the median levels measured in their respective NULL conditions, 
and tubulin levels are normalized to the median levels measured in the FULL condition. For each protein, at least 15 kinetochores in 
>5 cells are measured per experiments in the FULL and NULL conditions. For the VAR condition, 42 kinetochores in >25 cells were 
measured per experiment. Scale bar, 5 µm. Scale bar zoom-ins, 1 µm. I) Hierarchical cluster analysis of Z-score normalized features 
extracted from data in (B-H) as depicted in Sup. Figure 5C. J, K) Plots showing the relation between two SAC proteins on kineto-
chores with different microtubule-occupancy states. Cells were treated to acquire a mixture of microtubule-occupancy states includ-
ing the FULL and NULL conditions. Shown here are background (BG)-corrected levels of SAC proteins, plotted against correspond-
ing BG-corrected mCherry levels. At least 72 kinetochores in >30 cells were measured. n = 2, representative experiments are shown 
here.
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Figure 3. Immature k-fibers are sufficient to silence the SAC. A, B) Quantification (A) and representative stills (B) of unper-
turbed mitotic duration in cells expressing variants of HEC1. At least 50 cells were scored per condition in three independent 
experiments. Shown here are the average of three experiments (continuous line) and SEM (dotted area). C, D) Quantification (C) 
and representative images (D) of the intensity of k-fibers in cells expressing indicated HEC1 variants. Cells were arrested in 
metaphase for two hours prior to fixation to allow maximum microtubule occupancy. Each datapoint represents one kinetochore or 
k-fiber. >118 kinetochores of  >5 cells were scored per cell line and different shades of the same color indicate different cells. 
Channel colors of merged images match those of the labels. n = 2, representative experiment is shown here. For statistical 
analysis, a one-way Anova test was performed. Scale bar, 5 µm. ****P < 0.0001. E) Representative stills of cell in mitotis simulta-
neously expressing mCherry-MAD2 from its endogenous locus and eGFP-HEC1-4D. Cells were released from a G2/M-block to 
track mitotic entry and followed ~100 min. Shown here are selected planes (3/16) at two time points. Arrowheads indicate two 
MAD2-positive kinetochores at t=93’, MAD2 was undetecable on other kinetochores. F, G) Quantification (F) and representative 
images (G) of the intensity of kinetochore(KT)-MAD2 in cells expressing indicated HEC1 variants. Cells were arrested in meta-
phase for two hours prior to fixation to allow maximum microtubule occupancy. Each datapoint represents one kinetochore or 
k-fiber. >118 kinetochores of  >5 cells were scored per cell line and different shades of the same color indicate different cells. 
Channel colors of merged images match those of the labels. n = 2, representative experiment is shown here. For statistical 
analysis, a one-way Anova test was performed. Scale bar, 5 µm. ****P < 0.0001.  
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Supplementary figure 1. Etemad et al. 

Supplemental Figure 1. Summary and validation of methods used to measure k-fiber intensity. A) Several image-process-
ing (sum or maximum intensity projections), selection and measuring methods (line plots or thresholding and corresponding 
measurements) were combined into three pipelines and applied to the same images. B) Bar graph showing intensity of individual 
k-fibers normalized to CENP-C levels. Each k-fiber is measured multiple times using the methods depicted in (A). Data is normal-
ized to the values measured for k-fiber 1 and is compiled from 10 cells. C) k-fiber intensity over CENP-C is plotted for cells treated 
with nocodazole or MG-132 after entry into mitosis for a duration of 1,5 hours. Each data point represents one k-fiber. All data 
points are normalized to the average K-fiber intensity measured in MG-132- treated cells. 
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Supplementary figure 2. Etemad et al. 

Supplemental Figure 2. High variability of protein levels on unattached kinetochores is independent of CENP-C levels, 
the kinetochore size, antibody penetration or differences between replicates. A, B) Kinetochore levels of SAC proteins is 
highly variable within the same cell contrary to the levels of CENP-C measured on the same kinetochores. Figures show immuno-
fluorescence images and quantification of protein levels at kinetochores of a nocodazole-treated cell. Each data point represents 
one kinetochore. Levels of each protein are normalized to the lowest value in the data set to allow comparison of variance 
between proteins. Scale bar, 5 µm. C) Staining efficiency is similar in the biological replicates of experiments shown in Figure 1. 
Graphs show background (BG)-corrected levels of SAC proteins at unattached kinetochores, plotted against corresponding 
BG-corrected CENP-C levels. Different colors depict individual experiments. D, E) Cell-to-cell variability due to antibody pene-
trance is corrected through normalization against CENP-C in all experiments. To exclude variance in the data caused by differenc-
es in antibody penetration proficiency, background (BG)-corrected levels of SAC proteins at unattached kinetochores of single 
cells are plotted against corresponding BG-corrected CENP-C levels. For each SAC protein, the kinetochore levels of two simulta-
neously handled cells are shown. F) Surface area of CENP-C in two independent experiments. Kinetochores of 5 cells are used 
per experiment and each data point represents one kinetochore. For statistical analysis, an unpaired Student’s t-test was 
performed. 
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Supplementary figure 3. Etemad et al. 

Supplemental Figure 3. Variability of protein occupancy in FULL condition is not due to signal to noise ratio. A, B) 
Signal-to-noise ratios of SAC proteins measured on kinetochores of unattached (A) and fully microtubule-occupied kinetochores 
(B). Each biological replicate is plotted separately and represented by ‘e1’, ‘e2’, and ‘e3’. All proteins and experiments in NULL 
condition show similar signal-to-noise ratios, suggesting that variance is equally affected by noise across all experiments. In FULL 
condition signal-to-noise ratio is much better in proteins with high variation (BUB1, BUBR1, and pMELT), strongly supporting that 
the observed behavior in Figure 1A-D is not due to skewed signal intensities. 
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Supplementary figure 4. Etemad et al. 

Supplemental Figure 4. Visualization of SAC proteins using antibodies is similar to protein visualization using a fused 
fluorescent tag expressed from the endogenous locus of the same protein. A) Western blot of lysates of unsynchronized 
control versus mCherry-BUB1 expressing cells. B) Stills of representative movie of a cell expressing mCherry-BUB1 and mTur-
q2-SPC24 simultaneously. mTurq2-SPC24 is shown as a reference. Stills are maximum projection images. Scale bar, 10 µm. C) 
Scatter plot showing background (BG)-corrected levels of BUB1 visualized by a polyclonal antibody, plotted against correspond-
ing BG-corrected levels of mCherry. Cells were fixed in prometaphase to create a range of attachments. 55 kinetochores of >10 
cells were measured for this experiment. D) Western blot of lysates of unsynchronized control versus mCherry-MAD2 expressing 
cells. E) Stills of movie following a mCherry-MAD2 expressing line through mitosis. Stills are maximum projection and bleach-cor-
rected images. Scale bar, 10 µm. F) Scatter plot showing background (BG)-corrected levels of MAD2 visualized by a polyclonal 
antibody, plotted against corresponding BG-corrected levels of mCherry. Cells were fixed in prometaphase to create a range of 
attachments. 72 kinetochores of >20 cells were measured for this experiment. 
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Supplementary figure 5. Etemad et al. 

Supplemental Figure 5. Creating and measuring a mixture of kinetochore-microtubule attachment states and their 
corresponding SAC protein levels. A, B) Graphic depicting the conditions used to create a mixture of attachment states (A), 
and representative immunofluorescent images (B) to illustrate visualization of k-fibers and SAC proteins when NULL, VAR and 
FULL conditions are applied. Scale bars, 5 µm. C) Graphs depicting curve fits performed on the data shown in Figure 2 B-H. After 
piecewise linear regression, a variety of features as depicted in (D) was extracted from the fit and the data to describe the relation 
of tubulin to protein of interest. D) Illustration depicting the features of SAC protein localization in relation to microtubule occupan-
cy. Features are: variance of data along the Y-axis at the stationary stage (after breakpoint, VariancePhase2), rate of decrease in 
protein levels to minimum levels (before breakpoint, Slopes), tubulin level at which proteins reach their minimum levels (Break-
points), median of protein level at stationary stage (MedianPhase2), median protein level in the FULL condition (MedianFull), and 
the decrease of FULL data set in relation to the NULL data (Null2Full). 
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Supplemental Figure 6. Characterization of cells expressing variants of HEC1. A) Overview of the mutants used in this 
paper. The HEC1 variants have phosphomimetic or phosphodead aminoacid subtitutions in all nine known phosphorylation sites 
in the N-terminal tail of HEC1. B, C) Representative immunoblots showing HEC1 knock down and doxycycline-induced expres-
sion of siRNA-resistant eGFP-tagged versions of HEC1 in a mitotic population. As both HEC1-1D versions behave similarly 
(Etemad et al., 2015; Zaytsev et al., 2015, 2014), further experiments were performed using HEC1-1D(S55D). D, E) Representa-
tive immunofluorescent images of indicated proteins in nocodazole- (D) or metaphase- (E) arrested cells. Channel colors of 
merged images match those of the labels. Scale bars, 5µm. 
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Supplementary figure 7. Etemad et al. 

Supplemental Figure 7. Measured intensities are not normally distributed. A, B) QQ plots displaying quantiles of datasets as 
a function of the quantiles of a normal distribution for the FULL (A) and NULL (B) data sets. 
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