New Results
Machine learning versus logistic regression methods for 2-year mortality prognostication in a small, heterogeneous glioma database
Sandip S Panesar, Rhett N D’Souza, Fang-Cheng Yeh, Juan C Fernandez-Miranda
doi: https://doi.org/10.1101/472555
Sandip S Panesar
aDepartment of Neurosurgery, Stanford University, Stanford, United States of America
MD MScRhett N D’Souza
bDepartment of Neurological Surgery, University of Pittsburgh, Pittsburgh, United States of America
BEFang-Cheng Yeh
bDepartment of Neurological Surgery, University of Pittsburgh, Pittsburgh, United States of America
cDepartment of Bioengineering, University of Pittsburgh, Pittsburgh, United States of America
MD PhDJuan C Fernandez-Miranda
aDepartment of Neurosurgery, Stanford University, Stanford, United States of America
MDArticle usage
Posted November 17, 2018.
Machine learning versus logistic regression methods for 2-year mortality prognostication in a small, heterogeneous glioma database
Sandip S Panesar, Rhett N D’Souza, Fang-Cheng Yeh, Juan C Fernandez-Miranda
bioRxiv 472555; doi: https://doi.org/10.1101/472555
Subject Area
Subject Areas
- Biochemistry (12747)
- Bioengineering (9629)
- Bioinformatics (31147)
- Biophysics (16051)
- Cancer Biology (13127)
- Cell Biology (18765)
- Clinical Trials (138)
- Developmental Biology (10148)
- Ecology (15141)
- Epidemiology (2067)
- Evolutionary Biology (19349)
- Genetics (12841)
- Genomics (17724)
- Immunology (12852)
- Microbiology (30081)
- Molecular Biology (12547)
- Neuroscience (65558)
- Paleontology (485)
- Pathology (2031)
- Pharmacology and Toxicology (3503)
- Physiology (5427)
- Plant Biology (11243)
- Synthetic Biology (3105)
- Systems Biology (7748)
- Zoology (1751)