New Results
Machine learning versus logistic regression methods for 2-year mortality prognostication in a small, heterogeneous glioma database
Sandip S Panesar, Rhett N D’Souza, Fang-Cheng Yeh, Juan C Fernandez-Miranda
doi: https://doi.org/10.1101/472555
Sandip S Panesar
aDepartment of Neurosurgery, Stanford University, Stanford, United States of America
MD MScRhett N D’Souza
bDepartment of Neurological Surgery, University of Pittsburgh, Pittsburgh, United States of America
BEFang-Cheng Yeh
bDepartment of Neurological Surgery, University of Pittsburgh, Pittsburgh, United States of America
cDepartment of Bioengineering, University of Pittsburgh, Pittsburgh, United States of America
MD PhDJuan C Fernandez-Miranda
aDepartment of Neurosurgery, Stanford University, Stanford, United States of America
MD
Posted November 17, 2018.
Machine learning versus logistic regression methods for 2-year mortality prognostication in a small, heterogeneous glioma database
Sandip S Panesar, Rhett N D’Souza, Fang-Cheng Yeh, Juan C Fernandez-Miranda
bioRxiv 472555; doi: https://doi.org/10.1101/472555
Subject Area
Subject Areas
- Biochemistry (12732)
- Bioengineering (9602)
- Bioinformatics (31112)
- Biophysics (16027)
- Cancer Biology (13099)
- Cell Biology (18731)
- Clinical Trials (138)
- Developmental Biology (10134)
- Ecology (15124)
- Epidemiology (2067)
- Evolutionary Biology (19327)
- Genetics (12834)
- Genomics (17701)
- Immunology (12837)
- Microbiology (30042)
- Molecular Biology (12528)
- Neuroscience (65446)
- Paleontology (484)
- Pathology (2027)
- Pharmacology and Toxicology (3497)
- Physiology (5422)
- Plant Biology (11226)
- Synthetic Biology (3101)
- Systems Biology (7740)
- Zoology (1746)