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ABSTRACT 9 

The Pesticide in Water Calculator (PWC) is a fate and transport model used by the 10 

Environmental Protection Agency and Health Canada to estimate pesticide exposures in lentic 11 

freshwater ecosystems and make pesticide registration decisions. We leverage over 600,000 field 12 

measurements of 31 common insecticides and herbicides to test whether incorporating 13 

environmental sampling effort (number of times a pesticide is sampled) and landscape-level 14 

contaminant use (national application amount) can improve PWC validation and prediction, 15 

respectively. We found that maximum measured concentrations of 38% of herbicides and 42% of16 

insecticides exceeded maximum estimated environmental concentrations (EECs) generated by 17 

the PWC, suggesting that EECs often do not represent worst-case exposure. For lentic systems, 18 

variance in pesticide field measurements explained by EECs increased by 50% when sampling 19 

effort was included. For lotic systems, variance explained increased by only 4%, most likely 20 

because lotic systems are sampled over 4.9 times as much as lentic systems. Including landscape-21 

level use more than doubled the ability of the PWC to predict maximum pesticides 22 

concentrations in lentic systems. Exposure characterization in risk assessment can be improved 23 

by including sampling effort in model validation and landscape-level use in predictions, thus 24 

providing more defensible environmental standards and regulations. 25 
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INTRODUCTION 30 

Chemical pollution represents one of the most widespread and destructive forms of 31 

human disturbance on earth1–3, threatening the health and wellbeing of humans4–6 and the 32 

environment7–9. For instance, more than 500 million pounds of active ingredients of pesticides 33 

are applied annually in the US10, leading to well-documented, widespread contamination of 34 

freshwater systems11–13 that provide habitat for about 10% of all described taxa on earth14. 35 

Therefore, the ability to predict levels of contamination in the field is critical to accurately 36 

assessing human and wildlife exposures and designing effective management strategies to 37 

minimize risks in sensitive systems. 38 

Fate and transport models are important tools for predicting contaminant exposures. For 39 

instance, the United States (US) Environmental Protection Agency (EPA) and Health Canada use 40 

the Pesticide in Water Calculator (PWC) model to generate a peak estimated environmental 41 

concentration (EEC)15 of a focal pesticide in a standardized lentic waterbody that is a set distance 42 

from a site of application16. The model calculates an EEC based on inputs of pesticide traits (e.g. 43 

half-life and Koc), application amount and frequency (based on crop of interest), and soil and 44 

climatic characteristics (based on a region of interest)16. EECs of a variety of chemicals, 45 

including those that are not pesticides, are used in human health and ecological risk assessments. 46 

Generally, the EPA uses the PWC to predict pesticide EECs in ponds and reservoirs, which are 47 

used in ecological risk assessments and drinking water assessments, respectively17. Historically, 48 

the maximum EEC for pesticides has been regarded as a “worst-case” chemical exposure 49 

scenario in freshwater systems by the EPA15. In risk assessment, EECs are compared against 50 

toxicity values (e.g. LC50) to characterize the likelihood of toxicity at a given level of 51 

exposure15,18. Evaluation of EECs in this way informs the development of environmental 52 
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standards, policies, guidelines, and regulations, as well as the registration of chemicals for legal 53 

use18.  54 

While the PWC might be the best tool available currently for decision makers to estimate 55 

the potential for pesticide contamination in freshwater ecosystems, the increased availability of 56 

large-scale data on pesticide use and detection provides an opportunity for the accuracy of these 57 

exposure estimates to be evaluated and improved. The true or actual peak environmental 58 

concentration of any given pesticide is an extremely rare event in time and space, and thus 59 

validating model predictions of peak environmental concentrations necessitates copious field 60 

measurements, many more than are required to reliably predict mean environmental 61 

concentrations19. Fortunately, over the last three decades, federal agencies including the EPA and 62 

US Geological Survey (USGS) have compiled hundreds of thousands of field measurements of 63 

pesticides from lotic (streams and rivers) and lentic (ponds and reservoirs) freshwater ecosystems 64 

across the US. These publicly available data allow us to evaluate if EECs are indeed indicative of 65 

worst-case exposure scenarios and to determine the congruence between predicted EECs from 66 

the PWC and measured maximum concentrations of pesticides in the field.  67 

The development of fate and transport models often progresses by repeating the 68 

following two steps: (1) a validation step, where predicted maximum EECs are correlated with 69 

measured or observed maximum environmental concentrations to determine their accuracy20,21, 70 

and (2) a prediction improvement step, where the model is modified to improve its fit to 71 

measured field concentrations (Fig. 1A). We use the term validation to mean the process of 72 

comparing model output to measurements22. These two steps are the foci of the current study.  73 

An important consideration for model validation of contaminant fate and transport 74 

models might be environmental sampling effort, defined as the total number of times a pesticide 75 
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is surveyed across locations and time. If we are to determine how well maximum EECs predict 76 

maximum field concentrations of contaminants, we must account for the variance in maximum 77 

field concentrations that is a function of sampling effort. For instance, we propose that sampling 78 

effort should be related asymptotically to the maximum environmental concentration of a 79 

contaminant, such that increases in sampling effort increase the likelihood of detecting the true 80 

peak environmental concentration at low (gray section in Fig. 1B) but not high sampling efforts 81 

(white section in Fig. 1B). Given this proposed relationship, we hypothesize that incorporating 82 

information on environmental sampling effort will improve the ability of the PWC to predict 83 

maximum environmental concentrations, but only for systems that are not well sampled and thus 84 

fall on the section of the sampling effort-maximum field concentration curve that is increasing 85 

rather than near the asymptote.  86 

PWC predictions might be improved by accounting for multiple sources of contaminant 87 

use or release. Most fate and transport models, including the PWC, assume a single point source 88 

of contamination, but measured concentrations in freshwater ecosystems are often the result of 89 

runoff and aerial deposition from multiple sources of contamination across the landscape. The 90 

inaccurate assumption of a single point source could misrepresent the true or actual peak 91 

concentration in the environment that the PWC seeks to model. Thus, we hypothesize that 92 

incorporating information on landscape-level use or releases of chemicals might improve the 93 

ability of fate and transport models to predict maximum field concentrations because landscape-94 

level use is a proxy for multiple sources of contamination. The USGS recently provided pesticide 95 

use estimates for each county in the US, allowing us to evaluate how the inclusion of landscape-96 

level pesticide applications affects the ability of the PWC to predict maximum measured 97 

concentrations in the environment. 98 
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To test the hypotheses that the validation and predictions of fate and transport models can 99 

be improved by accounting for environmental sampling effort and landscape-level contaminant 100 

release information, respectively, we selected 31 of the most commonly used pesticides and 101 

compiled data describing their use, application rate, environmental mobility, EECs from the 102 

PWC, and maximum measured environmental concentrations in lentic and lotic systems. We 103 

predicted that EECs would not represent worst-case scenarios of exposure because EECs fail to 104 

incorporate landscape-level pesticide use and instead model a commonly unrealistic single point-105 

source. Given the postulated importance of sampling effort, we predicted that the PWC would 106 

more accurately predict maximum concentrations in lotic than lentic systems because lotic 107 

systems are sampled for pesticides nearly 4.9 times as much as lentic systems (mean number ± 108 

standard deviation of lotic versus lentic samples per pesticide from federal databases: 16,111± 109 

10,301 vs. 3,304 ± 3,005). Finally, we predicted that the PWC’s predictions of maximum EECs 110 

could be improved by incorporating landscape-level use or release information to account for 111 

likely multiple sources of pesticides to freshwater ecosystems.  112 

 113 

METHODS 114 

Pesticide Selection 115 

Our analyses focus on the 31 most commonly used herbicides and insecticides applied on 116 

corn in the US (Table 1). To select this group of pesticides, we first ranked insecticides and 117 

herbicides based on their estimated use in the US by summing 2006 county-level pesticide use 118 

estimates from the Estimated Annual Agricultural Pesticide Use dataset provided by Pesticide 119 

National Synthesis Project of the National Water Quality Assessment (NAWQA) Program (US 120 

Geological Survey [USGS]) (https://water.usgs.gov/nawqa/pnsp/usage/maps/county-level/). We 121 
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classified each pesticide as an herbicide or insecticide using the primary use type classifications 122 

indicated by the Pesticide Action Network (PAN) Pesticide Database 123 

(http://www.pesticideinfo.org/). We excluded mineral or biologic (e.g. bacteria) pesticides, 124 

because we were interested in examining the transport and fate of synthetic compounds. From 125 

these most commonly used synthetic herbicides and insecticides, we selected compounds that 126 

were detected in streams from 1992 to 2012 by the USGS NAWQA program 127 

(www.waterqualitydata.us/portal, obtained on 30 March 2017). Finally, we examined 128 

commercial product use labels and only included compounds that were used on corn because 129 

standard EPA scenarios used in the calculation of EECs (see below) are more frequently 130 

available across geographic regions in the US for corn than other crops. This selection process 131 

resulted in 16 herbicides and 15 insecticides (Table 1). 132 

Building a Dataset Characterizing Herbicides and Insecticides 133 

 We built a dataset describing each selected pesticides’ use, application rate, 134 

environmental mobility and persistence, and maximum measured environmental concentration 135 

(Tables S1 and S2). For each compound, we determined an estimate of national use by summing 136 

all county-level pesticide estimates from the Estimated Annual Agricultural Pesticide Use dataset 137 

from 1992 to 2012. Maximum concentrations of pesticides in lotic systems were taken from 138 

stream survey data from 1992 to 2012 from the USGS NAWQA program (from 139 

https://www.waterqualitydata.us/, obtained on 30 March 2017, filtered by NAWQA program and 140 

stream site type). The total number of stream surveys from which maximum concentrations were 141 

taken totaled 499,435. Maximum concentrations of pesticides in lentic systems were taken from 142 

surveys of lakes, reservoirs, impoundments, and wetlands from 1992 to 2012 available from 143 

National Water Quality Monitoring Council (https://www.waterqualitydata.us/, obtained on 9 144 
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November 2017, filtered by site type to include lakes, reservoirs, impoundments, and wetlands). 145 

The total number of surveys from these lentic systems from which maximum concentrations 146 

were taken totaled 129,471. Although a valuable consideration might be to examine a 147 

distribution of estimated environmental or field concentrations and focus on the top 95% or 99% 148 

percentile, risk assessments are generally concerned with a single maximum estimated 149 

environmental or field concentration, so our focus was on gathering a single maximum 150 

concentration for each pesticide. For each pesticide, a single maximum concentration was taken 151 

from across lentic and lotic survey locations and times. To help limit the influence of timing of 152 

sampling on detection of maximum concentrations, we excluded samples that were triggered by 153 

a hydrologic event (i.e., event-based sampling), such as a flood or a storm. Instead, we focused 154 

on field samples that were gathered as part of routine-based sampling efforts. Since we wanted to 155 

record maximum observed pesticide concentrations; both filtered and whole water sample were 156 

considered. We also recorded sampling effort for each pesticide in lentic and lotic systems, 157 

which was the number of times a pesticide was surveyed for across locations and time. More 158 

information concerning how each maximum pesticide concentration was determined is provided 159 

in Tables S3 and S4. In addition, we gathered maximum field concentrations from lakes, ponds, 160 

agricultural ditches, and tailwaters by reviewing the published scientific literature to evaluate 161 

whether maximum EECs are indeed worst-case scenarios of exposure using the most information 162 

possible on maximum lentic concentrations. We conducted a literature search using Web of 163 

Science and Google Scholar using combinations of the following terms: “concentration”, 164 

“tailwater”, “pond”, “ditch”, “runoff”, “field concentration”, and the name of the focal pesticide 165 

(e.g. atrazine). In the final dataset, we include only values from the literature that exceeded 166 

pesticide field database values in lentic systems. Individual maximum concentrations of 167 
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pesticides gathered from databases or the literature represent observed maximum measured 168 

concentrations and not the true or actual peak concentrations, which can only be greater than or 169 

equal to the maximum measured concentration19. 170 

Generating Estimated Environmental Concentrations 171 

 Data describing the environmental mobility and persistence of herbicides used in the 172 

calculation of EECs, including Koc, water column metabolism half-life, benthic metabolism 173 

half-life, foliar half-life, aqueous photolysis half-life, molecular weight, vapor pressure, and 174 

solubility, were taken primarily from the Pesticide Properties DataBase from the University of 175 

Herfordshire (PPDB, https://sitem.herts.ac.uk/aeru/ppdb/en/). Values for hydrolysis half-life and 176 

aerobic soil half-life were taken from PAN Pesticide Database. When values were not available 177 

for certain pesticides from PAN or PPDB, we used data from the Toxicology Data Network 178 

(TOXNET) from the National Institutes of Health 179 

(https://toxnet.nlm.nih.gov/newtoxnet/hsdb.htm) as indicated in Tables S1 and S2. 180 

Additional pesticides traits included Henry’s constant, heat of Henry, air diffusion 181 

coefficient, and application information (Tables S1 and S2). Henry’s constant and the heat of 182 

Henry were taken from the EPA’s Estimation Program Interface (EPI) Suite, specifically 183 

HENRYWIN. Henry’s constant was calculated using the bond contribution method. We 184 

calculated the air diffusion coefficient using the EPA’s On-line Tools for Site Assessment 185 

Calculation (https://www3.epa.gov/ceampubl/learn2model/part-two/onsite/estdiffusion-186 

ext.html). Data concerning number of applications per year, timing of applications, and 187 

maximum recommended application rate and method were taken from US commercial pesticide 188 

product labels. For herbicides, product instructions for pre-emergent applications for corn were 189 

followed when available. We assumed that the last application of pre-emergent herbicides would 190 
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occur just after planting, 12 days prior to corn emergence. For herbicides that are exclusively 191 

applied post-emergence, we assumed applications would occur 10 days after corn emergence. 192 

We assumed all herbicides would be applied by direct ground spray, unless product labels 193 

indicated the need for soil incorporation. In those cases, applications were set to occur at the 194 

suggested depth of soil incorporation based on the product label. For insecticides, product 195 

application instructions for post-emergent applications for corn were used when available. We 196 

assumed that the first applications would occur 30 days after emergence by spray above the 197 

plant. For insecticides that are applied pre-emergence, we assumed applications would occur 12 198 

days before emergence by ground spray at the depth of soil incorporation according to the 199 

product labels. 200 

Using the EPA’s Pesticide in Water Calculator v. 1.52 (PWC, 201 

https://www.epa.gov/pesticide-science-and-assessing-pesticide-risks/models-pesticide-risk-202 

assessment#PWC), we generated EECs of the selected pesticides. Model inputs consisted of 203 

mobility, persistence, and application data for individual pesticide compounds (Tables S1 and 204 

S2). For all pesticide compounds, water, benthic, and soil reference temperatures were assumed 205 

to be 23 degrees C, and photolysis reference latitude was 40 degrees. When foliar half-life was 206 

not available for a given pesticide, foliar half-life was assumed not to be a large contributor to 207 

breakdown in the environment in the PWC model and was set to zero. Under the 208 

recommendation of the PWC user manual, efficiency was set to 0.99 and drift was set to 0.01 for 209 

all pesticide compounds. Applications were assumed to occur every year. For each pesticide 210 

compound, EECs were generated for both ponds and reservoirs in each of five different states 211 

(Illinois, Mississippi, North Carolina, Ohio, and Pennsylvania), which varied in their 212 

meteorological and geological model inputs provided by the PWC software. This resulted in 10 213 
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EECs values for each pesticide. We used the maximum EEC of these 10 estimates for each 214 

pesticide in all statistical analyses. 215 

Statistical Analyses 216 

To determine how often maximum EECs represent worst-case scenarios of pesticides in 217 

lentic systems, we calculated the proportion of pesticides for which the maximum environmental 218 

concentrations in lentic systems exceeded maximum EECs from PWC models. In this evaluation, 219 

the point of comparison for the EEC was the highest concentration of pesticide found in the 220 

National Water Quality Monitoring Council database or in the literature. We incorporated 221 

literature and database field measurements because we wanted to use all possible available data 222 

to describe maximum lentic field values. In all other analyses, we use maximum lentic field 223 

values from the National Water Quality Monitoring Council exclusively to ensure that the 224 

methods of estimating maximum lentic and lotic field concentrations were similar, which is an 225 

important consideration for the quantitative assessment for model validation and improvement of 226 

model predictions. The literature concentrations had to be removed from these analyses because 227 

they did not use consistent sampling methodology across studies. 228 

To evaluate the effects of sampling effort on detection of maximum field concentrations 229 

in lentic and lotic systems, we built two separate linear models (lm function, stats package23) in 230 

which the response was either maximum lentic or lotic concentration and the predictor was 231 

sampling effort, defined as the total number of times a pesticide was surveyed for between 1992 232 

and 2012 respective to each system, including surveys which resulted in no detection of the 233 

pesticide. To evaluate if inclusion of sampling effort improved model validation of maximum 234 

EECs with maximum field concentrations, first we examined the effect of sampling effort on the 235 

relationship between maximum field concentration and maximum EEC. We extracted the 236 
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residuals from a mixed model (lmer function, lme4 package24) with maximum field 237 

concentration as the response and maximum EEC as the predictor with pesticide compound as 238 

the random effect. These residuals became the response in a subsequent mixed model, where the 239 

predictor was sampling effort, and the random effect was pesticide compound. Next, we 240 

compared models predicting maximum field concentrations from maximum EECs with and 241 

without observations weighted by sampling effort. We constructed linear models (lm function, 242 

stats package23) in which the response was either maximum field concentration detected in lentic 243 

(from NAQWA) or lotic systems (from National Water Quality Monitoring Council) and the 244 

predictors were maximum EEC, pesticide type (insecticide or herbicide), and the interaction 245 

between these two predictors. We ran each model with and without weighting observations by 246 

sampling effort. In the evaluation of the effect of maximum field concentration on maximum 247 

EEC in this set of analyses, we used a one-tailed hypothesis test because of the prediction that 248 

maximum field concentration would be positively associated with maximum EEC. To compare 249 

the amount of variance explained by each model, we calculated adjusted-R2 values. 250 

Lastly, we sought to evaluate if the ability of EECs to predict field concentrations in 251 

lentic systems could be improved by including landscape-level pesticide use and release as a 252 

predictor. We focus on improving EECs in reference to lentic field concentrations because the 253 

EPA uses the PWC to predict pesticide EECs in ponds and reservoirs for ecological and drinking 254 

water risk assessments, respectively17.We used multimodel inference (MuMIn package25, which 255 

fits models using combinations of all predictors given in a global model and ranks candidate 256 

models by second-order Akaike Information Criteria corrected for small sample sizes (AICc) 257 

(dredge function). In our global model, the response was maximum lentic concentration (from 258 

the National Water Quality Monitoring Council) and the predictors included: maximum EEC, 259 
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pesticide type, pesticide use, all two-way and three-way interactions between these factors. Since 260 

our purpose was to improve the ability of EECs to predict field concentrations, we only 261 

considered candidate models that included maximum EEC as a predictor. To compare the 262 

influence of model factors across all candidate models, Akaike weights for each factor were 263 

summed across models to determine relative importance scores26. To evaluate the amount of 264 

variance explained by the top model, we calculated adjusted-R2 values.  265 

In all statistical models in the present analyses, all continuous variables were log10-266 

transformed to meet assumptions of the analyses. The data analyzed contained the 27 pesticides 267 

found in lentic systems when analyses pertained exclusively to lentic data or when lentic and 268 

lotic data were combined. Analyses of all 31 pesticides occurred when lotic data were examined 269 

exclusively (e.g. for evaluation of inclusion of sampling weights for model validation of EECs 270 

with lentic field concentrations). For all models to determine if the predictors significantly 271 

influenced the responses, we used the Anova function in the car package27 (α=0.05). Figures 272 

were generated using visreg28 and ggplot229 packages. R 3.2.1 statistical software23 was used for 273 

all analyses. 274 

  275 

RESULTS 276 

Do EECs represent worst-case scenarios of pesticides in lentic systems? 277 

 Historically, EECs have been described as worst-case environmental concentrations15. 278 

However, maximum concentrations in lentic systems exceeded EECs for 37.5% of herbicides (6 279 

of 16) and 41.7% of insecticides (5 of 12), suggesting that for many pesticides, EECs did not 280 

represent worst-case scenarios of exposure in lentic systems. 281 

What is the effect of sampling effort on detection of maximum field concentrations? 282 
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 We hypothesized that maximum field concentration would increase asymptotically with 283 

sampling effort (Fig. 1B). As sampling effort increases, detected maximum field concentration 284 

should increase up to a point (gray section of Fig. 1B), after which increased sampling effort 285 

should have little to no association with maximum field concentration (white section of Fig. 1B). 286 

We observed this dichotomy in sampling effort according to environmental systems. Sampling 287 

effort was positively associated with maximum field concentration in lentic but not lotic systems 288 

(Fig. 1C, Table 2), most likely because sampling effort for pesticides in lentic systems represents 289 

a lower range of values compared to sampling effort in lotic systems. Lotic systems were 290 

sampled 4.9 times as much as lentic systems (mean number ± standard deviation of lotic versus 291 

lentic samples per pesticide: 16,111± 10,301 vs. 3,304 ± 3,005). Thus, observations from lentic 292 

systems seem to fall on the section of the hypothesized curve with a positive slope where 293 

increased sampling is associated with higher detected maximum field concentrations (i.e. gray 294 

section of Fig. 1B). In contrast, observations from lotic systems seem to fall on the section of the 295 

curve closer to the asymptote, so increases in sampling effort only have marginal effects on the 296 

maximum field concentration (i.e. white section of Fig. 1B). Following this pattern, we predicted 297 

that including sampling effort would improve model validation for maximum EECs in lentic but 298 

not lotic systems. 299 

Can inclusion of sampling effort improve model validation of maximum EECs with maximum 300 

field concentrations? 301 

 These differences in the association between sampling effort and maximum field 302 

concentration lead us to test if inclusion of sampling effort could improve model validation of 303 

maximum EECs with maximum field concentrations. In other words, we wanted to evaluate if 304 

incorporating sampling effort into models increases the variance in maximum field 305 
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concentrations that can be explained by maximum EECs. First, we examined the influence of 306 

sampling effort on the relationship between maximum field concentration and EECs. We 307 

observed a positive effect of sampling effort on the residuals of a model predicting maximum 308 

field concentrations from maximum EECs (Fig. 1D, Table 2). At low to medium relative levels 309 

of sampling effort (log10 (sampling effort) = 2.24 to 3.78), maximum EECs tend to overestimate 310 

observed maximum field concentrations, which is represented by negative residuals, and at 311 

medium to high relative levels of sampling effort (log10 (sampling effort) = 3.78 to 4.57), 312 

maximum EECs more often underestimate maximum field concentrations, which is represented 313 

by positive residuals (Fig. 1D).  314 

 Next, we sought to evaluate if the inclusion of sampling effort could increase the amount 315 

of variance explained in maximum field concentrations from lentic and lotic systems by 316 

maximum EECs, an important consideration in validation of EECs. As hypothesized, sampling 317 

effort improved the fit of maximum EECs to maximum field concentrations for lentic systems 318 

more so than for lotic systems (Fig. 2, Table 2). The maximum EECs from the PWC, which are 319 

purported to represent maximum concentrations of pesticides in ponds and reservoirs, were not a 320 

significant predictor of maximum measured pesticide concentrations in lentic systems without 321 

weights but became nearly significant when weighting by sampling effort (Table 2). In fact, 322 

weighting observations by lentic sampling effort increased the relative amount of variance 323 

explained by 50% (Fig. 2A [Adjusted R2 = 0.27], Fig. 2B [Adjusted R2 = 0.18]). For lentic 324 

models with and without sampling effort weighted, while there was a positive trend between 325 

herbicide EECs and measured concentrations of herbicides in lentic systems, there was no 326 

discernible relationship between insecticide EECs and lentic insecticide concentrations (Fig. 2A, 327 

B). In other words, maximum EECs were a poor predictor of field concentrations for insecticides 328 
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in lentic systems. For lotic systems, weighting observations by sampling effort increased the 329 

relative amount of variance explained by only 4% (Fig. 2C [Adjusted R2 = 0.54], Fig. 2D 330 

[Adjusted R2 = 0.52]). Maximum EECs were a significant positive predictor of maximum 331 

measured concentration of herbicides and insecticides in lotic systems regardless of whether we 332 

weighted by sampling effort or not (Table 2, Fig. 2C,D). 333 

Can EEC predictions be improved by including landscape-level pesticide use and release? 334 

 To test the hypothesis that inclusion of landscape-level contaminant use and release could 335 

improve the ability of maximum EECs to predict maximum field concentrations, we used model 336 

comparison techniques. Based on model comparison, the best-fitting model of maximum 337 

measured concentrations of pesticides in lentic systems included maximum EEC and estimated 338 

national use (model weight = 0.42). In this best-fitting model, estimated national pesticide use 339 

but not maximum EEC significantly predicted maximum measured concentrations of pesticides 340 

in lentic systems (Table 2). In addition, maximum EEC and estimated national pesticide use had 341 

the greatest relative importance scores (Fig. 3A). This best-fitting model more than doubled the 342 

ability of the PWC to predict maximum concentrations of pesticides in lentic systems (Adjusted 343 

R2 = 0.64 vs. Adjusted R2 = 0.27). Estimated national pesticide use was positively associated with 344 

maximum lentic concentration suggesting that pesticide use improves EEC predictions of 345 

herbicides and insecticides (Fig. 3B).  346 

DISCUSSION 347 

 From an ecological risk assessment perspective, the ability to accurately predict 348 

concentrations of chemical contaminants is essential for the creation of defensible environmental 349 

standards, policies, guidelines, and regulations18. By leveraging over 600,000 field 350 

measurements of the most commonly used insecticides and herbicides, we use the PWC model 351 
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as a case study to evaluate how to improve contaminant fate and transport models more 352 

generally. Consistent with our hypotheses, we demonstrate that incorporating environmental 353 

sampling effort and landscape-level contaminant use or release improves model validation and 354 

prediction, respectively, an approach that can be applied to other fate and transport models. 355 

Inclusion of sampling effort in model validation greatly improves the ability of EECs to predict 356 

the variance of field concentrations in poorly sampled lentic systems but only marginally 357 

improves prediction in well-sampled lotic systems. In addition, inclusion of landscape-level 358 

pesticide use as a measurement of multiple contaminant point-sources more than doubles the 359 

ability of the PWC model to predict maximum concentrations of pesticides in lentic systems. 360 

Model Validation: The Importance of Sampling Effort on the Ability of PWC Models to Predict 361 

Field Concentrations 362 

When compared against maximum lentic field measurements, maximum pesticide EECs 363 

produced by PWC models for ponds and reservoirs perform poorly. For instance, historically, 364 

maximum EECs have been considered worst-case scenarios of exposure15, but our results show 365 

that this is a mischaracterization. If a maximum EEC is truly a worst-case scenario of exposure, 366 

we would expect that field concentrations of pesticides would never fall above an EEC, but for 367 

about ~40% of the most commonly used pesticides measured, field values exceed EECs. This 368 

finding is important because if risk assessors and policy makers consider maximum EECs as 369 

worst-case concentrations to gauge the greatest potential for toxicity, they would be 370 

underestimating levels of field exposures in many cases. This difference between maximum 371 

EECs and maximum field measurements indicates the need for improved model validation and 372 

prediction. 373 
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Testing the ability of EECs to predict field concentrations is an important step of model 374 

validation and model development20,21. Patterns of the observed relationship between sampling 375 

effort and maximum detected field concentrations lead us to the hypothesis that the importance 376 

of sampling effort on the ability of EECs to predict field concentration likely varies with lotic 377 

versus lentic systems because of differences in the amount of pesticide sampling effort in each 378 

system. For instance, lentic systems are sampled about 4.9 times as much as lotic systems. 379 

Because the relationship between sampling effort and maximum field concentration in lotic 380 

systems is positive, we hypothesized that sampling effort would be important for EECs to predict 381 

field concentrations in this system. In contrast, because sampling effort only has marginal effects 382 

on maximum field concentrations in lotic systems, we predicted that sampling effort would have 383 

little to no effect on the ability of EECs to predict field concentrations. 384 

Consistent with our hypothesis, we show that the ability of maximum EECs to predict 385 

maximum field concentrations can be improved by weighting observations by sampling effort in 386 

both lentic and lotic systems, but the magnitude of this improvement is greater for lentic than 387 

lotic systems. Weighting observation by sampling effort increased the relative amount of 388 

variance explained by 4% for lotic systems and 50% for lentic systems. Consequently, these 389 

results demonstrate that accounting for contaminant sampling effort is an important component 390 

of model validation, especially when sampling efforts fall within the range in which sampling 391 

effort is positively corelated with maximum field concentrations. If scientists validate EECs by 392 

comparing maximum EECs to maximum environmental concentrations in order to determine if 393 

EECs are accurate or not, they must account for the variance in maximum environmental 394 

concentrations that are a function of sampling effort. By accounting for sampling effort, 395 
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scientists can more accurately determine if EECs are valid approximations of contaminant 396 

exposures.  397 

For insecticides in lentic systems, even though the variance explained in maximum field 398 

concentrations by maximum EEC increases when we accounted for sampling effort (as 399 

represented by a shift in the dotted line closer to the 1:1 reference line in Fig. A compared to Fig. 400 

B), the ability of EECs to predict field concentrations was still poor (shallow slope of the dotted 401 

lines in Fig. A. and B). The inability of the maximum EECs to predict maximum field 402 

concentrations of insecticides compared to herbicides might be a function of pesticide use. Use 403 

of herbicides is about five times greater than insecticides in the US30, and so the power to detect 404 

an association between maximum herbicide EECs and maximum herbicide field concentrations 405 

should be greater than that for insecticides. As a result, maximum field concentration of 406 

herbicides might be closer to the true peak concentrations compared to insecticides. 407 

Improving EEC Predictions with Landscape-level Use and Release 408 

Even when field concentrations are the result of intensive sampling, maximum EECs can 409 

still underestimate maximum field concentrations (which is represented by positive residuals in 410 

Fig. 1D). The assumption of a single point source likely results in this underestimation of the 411 

peak environmental concentrations by EECs. For instance, most fate and transport models, 412 

including the PWC, assume a single point source of contamination, but measured concentrations 413 

of contaminants in freshwater ecosystems are often the result of runoff and aerial deposition 414 

from multiple sources of contamination across the landscape. 415 

With this motivation, we attempted to improve the ability of EECs to predict field 416 

concentrations in lentic systems by accounting for landscape-level pesticide use. For both 417 

herbicides and insecticides, landscape-level pesticide use improved the ability of EECs to predict 418 
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maximum concentrations in lentic systems, more than doubling the variance explained compared 419 

to a model without landscape-level use. Most notably, when the model accounted for sampling 420 

effort and pesticide use, the ability of EECs to predict maximum field concentrations in lentic 421 

systems went from no relationship (Fig. 2A) to a significant positive relationship (Fig. 3B). 422 

Improvement in EECs by inclusion of pesticide use is what we would predict if environmental 423 

pollution is the result of multiple point sources of contamination. These results suggest that 424 

pesticide use at the national level is likely an improved indicator of pesticide loading into a 425 

freshwater ecosystem than the single point-source of contamination that is assumed in the current 426 

PWC model. USGS pesticide use estimates are likely a conservative representation of pesticide 427 

inputs because they represent only agricultural applications and ignore pesticide applications in 428 

homes and industry. 429 

Estimated environmental concentrations from contaminant fate and transport models are 430 

favored ways to characterize exposure risk by regulatory agencies because they are low cost, low 431 

effort, and provide consistent methodology for estimates across compounds15. Currently, these 432 

models represent the best methods that have been developed to estimate concentrations of 433 

contaminants in the environment. However, these models stand to be improved to increase the 434 

accuracy of predictions. We demonstrate that not only are pesticide maximum EECs produced by 435 

the PWC model poor characterizations of worst-case exposures, but they also perform poorly at 436 

predicting concentrations of pesticides in their intended lentic systems across pesticide types. 437 

Estimates of field concentrations in lentic systems can be improved by leveraging large datasets 438 

of measured environmental concentration and accounting for sampling effort in validation of 439 

models. In addition, including landscape-level contaminant use as a proxy for multiple-sources 440 

of contamination can improve PWC model predictions. Scientists active in the development of 441 
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environmental fate and transport models recognize the importance of including multiple sources 442 

of contamination. For instance, models widely used in the United States and Europe incorporate 443 

multiple point sources of contamination including the Soil and Water Assessment Tool 444 

(SWAT)31, ChimERA Fate32, and Stream-EU33. The inclusion of field survey information and 445 

landscape-level use for pesticides is easily accomplished because these data are already included 446 

separately in the most current ecological risk assessments used for pesticide regulation34. In 447 

general, because of environmental laws and regulation requiring reporting of pollution, including 448 

the Emergency Planning and Community Right-to-Know Act, the Resource Conservation and 449 

Recovery Act, the Toxic Substances Control Act, the Clean Water Act, and the Clean Air Act, 450 

there is a clear understanding of the identity and amounts of multiple point sources of many 451 

contaminants from industry and agriculture. So, the amounts of contaminants released into the 452 

environment at the landscape-level could be feasibly incorporated into EEC models for non-453 

pesticide contaminants as well.  454 

Given our results, the next step for improvement of the PWC model would be for EPA 455 

staff members to directly include pesticide use in the mechanistic model. Access to the 456 

proprietary computer code that underlies the PWC model prevented us from doing so in the 457 

current study. Improving the understanding of the determinants of maximum concentrations of 458 

pesticides in lentic systems is not only important for improving exposure characterization as a 459 

part of federal ecological risk assessment, but is also critical for the understanding and protecting 460 

small freshwater bodies which provide critical habitat to communities of plants and animals14,35 461 

and serve an underestimated role in the functioning of ecosystems36. Improvement of 462 

contaminant fate and distribution models used in federal risk assessments and in the development 463 
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of regulations is critical if we are to use the best science available to make data driven policy 464 

decisions. 465 
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Table 1. List of pesticide active ingredients and type included in the present analyses. Pesticide 553 

abbreviations are used as point labels in the subsequent figures. 554 

Pesticide Active Ingredient Pesticide Abbreviation Pesticide Type 

2,4-D 24D herbicide 
Acetochlor ACE herbicide 
Alachlor ALA herbicide 
Atrazine ATR herbicide 
Bromoxynil BRO herbicide 
Dicamba DIC herbicide 
Dimethenamid DID herbicide 
Diuron DIU herbicide 
Glyphosate GLY herbicide 
MCPA MCP herbicide 
Metolachlor MET herbicide 
Metribuzin MTR herbicide 
Oxyfluorfen OXY herbicide 
Pendimethalin PEN herbicide 
Simazine SIM herbicide 
Trifluralin TRI herbicide 
Aldicarb ALD insecticide 
Carbaryl CAR insecticide 
Carbofuran CBO insecticide 
Chlorpyrifos CHL insecticide 
Clothianidin CLO insecticide 
Diazinon DIA insecticide 
Dimethoate DIM insecticide 
Imidacloprid IMD insecticide 
Malathion MAL insecticide 
Methomyl MTH insecticide 
Methyl Parathion MLP insecticide 
Phorate PHO insecticide 
Propargite PRO insecticide 
Tefluthrin TEF insecticide 
Terbufos TER insecticide 
  555 
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Table 2. Analyses summaries examining 1) the influence of sampling effort on maximum (max.) 556 

lentic concentration, lotic concentration, and the residuals of maximum field concentration 557 

predicted by maximum estimated environmental concentration (EEC), and 2) the influence of 558 

maximum EECs on maximum lentic and lotic concentrations with and without sampling effort 559 

weighted. In this set of analyses, we used one-tailed tests for the effect of max. EEC on field 560 

concentrations. Finally, 3) we include a summary of the best fitting model predicting maximum 561 

lentic concentrations from model selection. P-values less than 0.05 are bolded. χ2 statistics 562 

correspond with a mixed model. F statistics correspond with non-mixed models. The data 563 

analyzed contained the 27 pesticides detected in lentic systems for all analyses, excluding 564 

evaluations between maximum lotic concentration and maximum EEC that included all 31 565 

pesticides.  566 

Response Source of Variation F/χ2 p 

Max. lentic concentration Lentic sampling effort 4.552 0.043 

Max. lotic concentration Lotic sampling effort 0.436 0.515 
Residuals(max. field 
concentration ~ max. EEC) Sampling effort 12.339 <0.001 
Max. lentic concentration 
   Weighted by sampling effort Max. EEC 2.860 0.052 

 Pesticide type 2.341 0.140 

 Max. EEC * Pesticide type 1.611 0.217 
Max. lentic concentration 
   Not weighted Max. EEC 1.569 0.112 

 Pesticide type 2.028 0.168 

 Max. EEC * Pesticide type 0.944 0.341 
Max. lotic concentration 
   Weighted by sampling effort Max. EEC 21.315 <0.001 

Pesticide type  2.016 0.167 

Max. EEC * Pesticide type 0.362 0.552 
Max. lotic concentration 
   Not weighted Max. EEC 17.395 <0.001 

 Pesticide type  1.290 0.266 

 Max. EEC * Pesticide type 0.775 0.386 
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Max. lentic concentration Max. lotic concentration 1.702 0.204 

 Pesticide use 30.594 <0.001 
  567 
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Figure 1. A) Conceptual model for improving fate and transport models like the Pesticide in 568 

Water Calculator (PWC), which produces estimated environmental concentrations (EEC) for 569 

pesticides. First, predicted EECs need to be validated using measured field concentrations to 570 

determine their accuracy. We predict that accounting for sampling effort will improve the fit 571 

between EECs and field measurements. Second, we will improve EECs by accounting for 572 

multiple sources of contaminant use or release. The accuracy of EECs is important because they 573 

used in federal decision making. B) Predicted asymptotic relationship between sampling effort 574 

and maximum (max.) field concentration. As sampling effort increases, the likelihood of 575 

detecting a peak concentration increases when sampling effort is at low to mid-levels as shown 576 

in gray. At mid to high levels of sampling effort, the influence of increased sampling effort on 577 

the likelihood of detecting a peak concentration reaches a limit, and no discernible relationship 578 

exists between sampling effort and max. field concentration as shown in white. We predict that 579 

sampling effort would account for more variance between maximum field concentration and 580 

maximum estimated environmental concentration (EEC) when sampling effort occurs in the 581 

lower range (in gray) compared to the higher range (in white). C) Observed relationship between 582 

sampling effort and maximum field concentration in lotic (circles, solid line) and lentic 583 

(triangles, dashed line) systems. Increased sampling effort is positively associated with 584 

maximum lentic concentration (Table 2, F = 4.552, p = 0.043) but not maximum lotic 585 

concentration (Table 2, F = 0.436, p = 0.515). The positive relationship for lentic systems 586 

matches the positive relationship at low to mid-sampling effort shown in gray in Figure 1B. The 587 

absence of a relationship for lotic systems matches the asymptote at mid to high sampling effort 588 

in Figure 1B. D) Observed relationship between sampling effort and the residuals of maximum 589 

field concentrations in lotic (circles) and lentic (triangles) in systems and EEC (Table 2, χ2 = 590 
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12.339, p <0.001). As sampling effort increases, the likelihood of a field concentration exceeding 591 

an EEC increases, which is represented by a positive residual. Gray band represent a 95% 592 

confidence interval, and a light gray reference line at 0 represents where maximum field 593 

concentration would equal maximum EEC. 594 

 595 

Figure 2. Associations between herbicide and insecticide maximum (max.) estimated 596 

environmental concentrations (EEC) and measured maximum field concentrations in lentic (A 597 

and B) and lotic (C and D) systems. Models were built with (A and C) and without (B and D) 598 

observations weighted by sampling effort. The association between maximum EEC and 599 

maximum field concentration is significant for the lotic system with and without observations 600 

weighted by sampling effort (Table 2, p <0.001, C and D) and nearly significant for lentic system 601 

when observations are weighted by sampling effort (Table 2, p=0.052, A and B). In all panels 602 

herbicides are shown with solid circles and solid lines, and insecticides are shown with triangles 603 

and dashed lines. Individual pesticides are labeled above and to the left of the point (see Table 1 604 

for abbreviations). Gray bands represent 95% confidence intervals, and light gray lines are 1:1 605 

references lines. 606 

 607 

Figure 3. A) Relative importance scores of factors from model comparisons, evaluating the best 608 

predictors of maximum concentration of pesticides in lentic systems. Maximum estimated 609 

environmental concentration is abbreviated as Max. EEC. B) Conditional plot displaying the 610 

significant effect of estimated national pesticide use on maximum (max.) lentic concentration, 611 

controlling for maximum EEC, soil half-life, and pesticide type (based on best fitting model, 612 
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Table 2, F = 30.594, p <0.001). Gray bands represent 95% confidence intervals. Conditional plot 613 

was generated using the visreg package in R. 614 

  615 
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Figure 2.  618 
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