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Abstract  

Accurate determination of target-ligand interactions is crucial in the drug discovery process. In 

this paper, we propose a two-staged graph-convolutional (Graph-CNN) framework for predicting protein-

ligand interactions. We first describe an unsupervised graph-autoencoder to learn fixed-size 

representations of protein pockets. Two Graph-CNNs are then trained to automatically extract features 

from pocket graphs and 2D molecular graphs, respectively. We demonstrate that graph-autoencoders can 

learn meaningful fixed-size representation for protein pockets of varying sizes and the Graph-CNN 

framework can effectively capture protein-ligand binding interactions without relying on target-ligand co-

complexes. Across several metrics, Graph-CNNs achieved better or comparable performance to 3DCNN 

ligand-scoring, AutoDock Vina, RF-Score, and NNScore on common virtual screening benchmark 

datasets. Visualization of key pocket residues and ligand atoms contributing to the classification decisions 

confirms that our networks recognize meaningful interactions between pockets and ligands. 
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I.  Introduction  

Accurate determination of target-ligand interaction is crucial in the drug discovery process. 

Given a therapeutically relevant target, prioritizing the most potent compounds for the target is often the 

first step towards new drug development. For approved drugs, identifying unexpected off-targets can 

open the possibility of drug repurposing or can lead to insights for predicting and explaining observed 

side-effects. Currently, experimental determination of target-ligand binding affinities remains as the 

most accurate method for determining target-ligand interactions. However, experimental process is time-

consuming and labor intensive, and cannot easily scale up to explore the diverse chemical and structural 

space. Computational methods have therefore been developed to perform virtual screening tasks or to 

predict binding affinities between target-ligand pairs. 

Physic-based methods such as docking use physics-inspired rules to assess protein-ligand 

interactions at the atomic level1-2. Albeit powerful, due to their heavy dependency on atomic distances to 

evaluate scoring functions, these methods can be sensitive to structural error or pocket conformational 

changes3. The recent increase in protein structural data and protein-ligand interaction datasets have 

enabled the development of data-driven methods for target-ligand interaction predictions. These 

methods exploit known binding relationships and compare similarities between ligands or pockets to 

infer possible associations. For example, drugFEATURE4, evaluate pairwise pocket similarity between 

the query pocket and pockets with known binders and transfer binding relationship between similar 

targets. On the other hand, ligand-based methods evaluate molecular similarity between query 

compound and compounds with known targets to predict potential target interactions5-7. Recent methods 

have also integrated target-target similarity and ligand-ligand similarity to predict target-ligand binding 

affinities8-9. These methods have demonstrated promising results. However, their performance depends 

critically on the choice of pocket and ligand representations. Protein pockets are of varying sizes and 

with complex properties. It is challenging to define protein pocket similarity or to embed protein pocket 

as a fixed-size vector for downstream machine learning tasks without emphasizing certain aspects of 

pocket properties while ignoring others. 

The recent success of deep learning has enabled the development of methods that can extract task-

specific features directly from raw data10. Convolutional neural networks (CNN)11 are a subclass of deep 

learning networks that search for recurring spatial patterns in data and compose them into complex 

features in a hierarchical manner. Biochemical interactions start between atoms, and can be similarly 

aggregated over space to form complex interactions. 3DCNNs have been applied to protein structural 
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analysis including 20 amino acid similarity analysis12 and protein functional site annotation13. Recent 

methods have also applied 3DCNNs to protein-ligand interaction prediction14-15. These methods define 

local boxes around pocket-ligand complexes and perform binary classification to predict whether the 

protein-ligand complex can interact favorably. However, since most protein-ligand pairs of interests do 

not have experimentally solved co-crystal structures, to generate protein-ligand co-complex for training 

and testing, these methods require a data-preprocessing step that artificially docks query ligands into their 

targets. This cross-docking step can introduce significant noises, stemming from cross-docking ligands 

into noncognate receptors. Furthermore, these methods are often directly trained on virtual screening 

benchmark datasets such as DUD-E, which has limited number and diversity of protein targets. The 

learned features may therefore be biased towards certain subsets of targets.  

Graph convolution networks employ similar concepts of local spatial filters, but operates on 

graphs, and therefore has been naturally applied to 2D molecular graphs to learn small molecule 

representations16-17. In the network, each neuron is connected to its local graph neighbourhood in the 

previous layer through a set of learnable weights. By stacking multiple layers, each layer is looking at an 

increasingly larger substructure of the molecule. Simple local features can then be hierarchically 

composed into complex features. Kearns et al.17 applied graph convolution networks to ligand-based 

virtual screening and demonstrated improved performances compared to several machine learning 

models using Morgan fingerprints. Tsubaki et al.18 apply graph convolution networks and 1D-CNN to 

learn features from 2D molecular graphs and protein sequences, respectively.  

Protein pockets consist of spatial arrangement of member residues and can go through 

conformational changes upon ligand binding3. Viewing protein pockets as graphs of residue nodes 

allows pockets of arbitrary size to be represented and imposes relatively weak geometry constraints.  In 

this paper, we represent protein pocket as graphs of key residues, each taking in an input attribute that 

describes the local amino acid microenvironment, and propose a novel graph-convolutional framework 

to (1) learn meaningful protein pocket representation on a representative pocket set (2) predict protein-

ligand interactions, without using protein-ligand co-complex. 

Our proposed graph-convolutional framework comprises two-stages: (1) Unsupervised pocket 

graph-autoencoder: A graph autoencoder is first trained on a representative pocket set to embed protein 

pockets into fixed-size low dimensional space that perverse the input pocket properties. (2) Supervised 

target-ligand binding classifier: Two separate graph convolution networks are trained to learn pocket 

and molecular representations from pocket graphs and 2D molecular graphs, respectively. To allow the 
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network to recognized diverse pocket features, the pocket Graph-CNN is initialized with learned weights 

from the pocket graph-autoencoder. The model then integrates interactions between proteins and ligands 

through a fully connected layer and perform binding predictions. Since features of pockets and 

molecules are learned through two Graph-CNN models in parallel, the model does not require protein-

ligand co-complex as input. Furthermore, since the fine-tune stage training is end-to-end, driven by 

supervised labels, the model will automatically extract task-specific features characterizing interactions 

between target and molecules.  

We visualized the learned pocket embedding in 2D space and show that the latent representations 

reflect biological pocket similarity. We then performed head-to-head comparisons of prediction 

performance between our Graph-CNNs, 3DCNN ligand-scoring15, AutoDock Vina2, RF-Score19, and 

NNScore20, on the Database of Useful Decoys: Enhanced (DUD-E)21 and Maximum Unbiased Validation 

(MUV)22 dataset and showed that our model achieved better or comparable performances on both datasets 

without requiring co-crystal structures. In addition to the conventional virtual screening setting, we further 

examined the ability of our model to predict binding propensity of a given compound to different targets 

and showed that the model can predict meaningful ligand-target binding profiles. Finally, we visualized 

individual contributions of each pocket residue and ligand atom to the classification decision and showed 

that our networks recognize meaningful interactions between protein pockets and ligands. 

II.  Methods 

2.1 Datasets 

2.1.1 Representative Protein Pocket Dataset 

 To train graph auto-encoders for extracting general features from protein pockets, we employed 

the druggable pocket set constructed by Liu et al.4 Briefly, small-molecule drugs labeled “approved” or 

“approved; investigational” were collected from DrugBank23. The drugs were mapped to their PDB24 IDs 

and high-resolution structures bound to the drug-like ligands are retrieved, resulting in 863 high-quality 

structures representing binding sites of 262 distinctive drugs. The above pocket set was combined with 

the 102 DUD-E binding pockets, resulting in a total of 965 pockets. The constructed pocket set represents 

a comprehensive collection of druggable binding sites. 

2.1.2 Database of Useful Decoys: Enhanced (DUD-E) 

DUD-E dataset 

To enable head-to-head comparisons between Graph-CNNs, existing deep-learning-based 

methods and docking programs, we choose the widely-used DUD-E dataset to train our target-ligand 
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binding classifiers. The DUD-E dataset consists of 102 targets across different protein families. On 

average, each target has 224 actives and over 10,000 decoys. Computational decoys are chosen such that 

they are physically similar but topologically dissimilar to the actives. To further improve model 

performance, we constructed two datasets based on the original DUD-E dataset by introducing negative 

pockets and experimentally validated negative ligands, as described below.  

2.1.2 (A) DUD-E – Pairwise interaction dataset 

To train models that can predict all potential target-ligand pairwise interactions, an ideal training 

dataset should provide information of all positive and negative interactions between the targets and ligands 

in the dataset. Because the DUD-E dataset was designed for virtual screening tasks, it emphasizes on 

assessing binding preferences of a given target to different ligands. However, it does not provide much 

information regarding preferences of a given ligand to different targets. In the dataset, a given active 

molecule is positively associated with its true target, but not negatively associated with any targets.  

To provide such information, we employ the PocketFEATURE25 program to assign negative 

binding relationships between each active ligand to a subset of the DUD-E targets. Specifically, given a 

protein pocket pair, the PocketFEATURE program assigns a score to quantify the extent of similarities 

between microenvironments in the two pockets. For a given active molecule, we calculate pairwise pocket 

similarity score between its true target and all the other DUD-E targets, and identify the subset of pockets 

in the training fold that are less similar to its true target than a predefined PocketFEATURE score threshold 

of -1.9 25. We randomly sample 50 pockets from the identified subset and assign them as the negative 

pockets for the given active ligand.  

2.1.2 (B) DUD-E – CHEMBL assay negatives dataset 

Another limitation of the original DUD-E dataset is the lack of experimentally validated negatives. 

Since the computational decoys are chosen to be dissimilar to actives, the benchmark excludes challenging 

cases where actives and negatives are similar. We construct a separate dataset that considers these 

challenging cases by substituting computational decoys with experimentally validated negatives from the 

CHEMBL26 database. A molecule is defined as an assay negative if its measured IC50 is higher than 

50µM. To ensure the recorded interaction is direct, and only with a single protein target, only assay 

negatives with target confidence equal to 9 are considered. Similar to the DUDE - Pairwise interaction 

dataset (section 2.1.2(A)), we further added negative ligand-pocket associations using the 

PocketFEATURE program. 

2.1.3 Maximum Unbiased Validation (MUV) Dataset 
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To perform external validation of our models, we choose the maximum unbiased validation (MUV) 

data set as our independent test set. The MUV dataset consists of assay data from 17 targets, each with 30 

actives and 15,000 decoys. Unlike the DUD-E dataset, the MUV dataset does not use computational 

decoys as negatives. Both actives and negatives are experimentally validated based on PubChem 

bioactivity data. Actives were selected from confirmatory screens. The decoys were selected from a 

primary screen for the same target. To avoid analog bias and artificial enrichment, actives were selected 

to be maximally spread based on simple descriptors and embedded in decoys.  

To ensure the independence of our external validation dataset, we validated our models on the 

MUV dataset. Following procedures described in Ragoza et al.15, we selected MUV targets that have no 

more than 80% global sequence identity to any DUD-E target. Furthermore, targets with significant 

binding site structural similarity to any of the DUD-E target binding site were removed. Finally, only 

unique targets with available crystal structure of the pocket site were included. The above procedure 

results in eight final MUV targets. We use the same PDB structures selected by Ragoza et al.15 to construct 

our pocket graphs.  

2.2. Input Featurization and Processing  

Protein Pockets 

We represent each protein pocket as a graph of key residues. For each of the PDB structure, we 

identify the pocket residues by retrieving residues that have any atom within 6 Å of the bound ligand. We 

define the pocket graph by viewing each of the key residue as nodes, and connecting any pair of nodes 

that are within 7 Å of each other with edges. For each key residue, we use the FEATURE 27 program to 

generate a fixed-size vector that describe the local amino acid microenvironment and assign the vector as 

the node attribute of the corresponding node. The FEAUTRE program characterizes a specified location 

in protein structure by dividing the local environment into six concentric shells, each of 1.25 Å in thickness. 

Within each shell, 80 different physicochemical properties are evaluated, resulting in a numeric vector of 

length 480. We normalize the FEATURE vectors such that all attributes have values between 0-1. 

Small molecules 

Small molecules can be naturally represented as 2D molecular graphs, with nodes representing 

individual atoms and edges representing bonds. We follow the pipeline developed by Duvenaud et al.16 to 

construct the molecular graphs. Briefly, SMILES (Simplified Molecular Input Line Entry System)28 string 

encoding of each molecule is converted into a 2D molecular graph using RDKit29. Hydrogen atoms were 

treated implicitly. Each atom node is associated with simple atom descriptors including one-hot encoding 
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of the atom’s element, the degree of the atom, the number of attached hydrogen atoms, the implicit valence, 

and an aromaticity indicator. The edges are associated with bond features including the bond type (single, 

double, triple, or aromatic), whether the bond was conjugated, and whether the bond was part of a ring. 

2.3 Network Architecture - Graph Convolutional Neural Network 

2.3 (A)  Unsupervised Pretraining - Pocket Graph Auto-encoder 

Since the DUD-E dataset only contains 102 targets, without any unsupervised pretraining, the 

pocket graph convolution network will be exposed to a limited variety of protein pockets. To address this 

issue, we design an unsupervised framework to learn general protein pocket features on a set of 965 

representative protein pockets (section 2.1.1). The unsupervised framework allows us to exploit available 

protein structures that have known binding sites but no sufficient binding data to learn general-purposed, 

fixed-sized protein pocket descriptors. 

To perform unsupervised learning on graphs, we generalize basic auto-encoders30 onto graphs. A 

typical auto-encoder comprises an encoder and a decoder. The encoder project the input x into a low 

dimensional space (hidden layer) using the encoder weight matrix W, bias b and a non-linear activation 

function. The hidden layer is then transformed by the decoder weight matrix W’, bias b’ and a non-linear 

activation function back to its original dimension. The loss function minimizes the difference between the 

input signal x and the reconstructed x’. The weight matrix of the decoder may optionally be constrained 

by W’ = WT, in which case the autoencoder is said to have tied weights.  

ℎ = 𝑡𝑎𝑛ℎ(𝑊𝑥 + 𝑏)   Eq (1) 

𝑥, = 𝑡𝑎𝑛ℎ(𝑊-𝑥 + 𝑏,)  Eq (2) 

We generalize the autoencoder framework onto graphs by adapting the graph convolution 

operations proposed by Duvenaud et al.16 Specifically, our graph-convolutional autoencoder comprises two 

encoder-decoder stages (Figure 1), trained one after another in a greedy fashion. 

Stage I. Compress local neighborhood information into low-dimensional embedding 

The first encoder-decoder stage compresses local graph neighborhood information into low-

dimensional embedding. Specifically, let 𝑣/0 denotes the node attribute vector of node x in layer i, the first 

encoder and decoder stage can be described as below. 

Encoder 

The encoder consists of a set of graph neighborhood convolutional filters (𝑊1234_6  , 𝑦 ∈

0,1…𝐷,𝑤ℎ𝑒𝑟𝑒	𝐷	𝑖𝑠	𝑡ℎ𝑒	𝑚𝑎𝑥𝑖𝑚𝑢𝑚	𝑑𝑒𝑔𝑟𝑒𝑒), each operating on nodes of different degrees, and a self-

filter (𝑊H2IJ_6), which is shared across all nodes in layer i. The encoder compresses information of graph 
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neighborhood centered on a given node x, with degree y, by the following steps: (1) It first computes the 

average neighborhood vector (𝑣K0) of nodes in node x’s neighborhood. (2) 𝑣K0 is then multiplied by a 

weight matrix 𝑊1234_6	 to obtain 𝑧K0 , where 𝑑𝑒𝑔M  specifies that the filter only operates on graph 

neighborhoods with degree y. (3) The node attribute vector of node x (𝑣/0) is multiplied by 𝑊H2IJ to obtain 

a transformed self-vector 𝑧/0. (4) The two resulting vectors 𝑧K0 and 𝑧/0 are then summed and transformed 

through a ReLU31 function to obtain the node attribute of node x in the next layer 𝑣/0NO.  

The operations can be summarized by the below equations, where L denotes the total number of 

layers, Hi denotes the number of hidden nodes (number of filters) in graph convolution layer 𝑖,  𝑖 ∈ 1,2. . 𝐿, 

and H0  represents the dimension of the input node attributes. 

𝑣K0 = 	
∑ TU0U	∈	VW0XYZ[\(])

123^22(/)
  Eq(3) 

𝑧K0 = 𝑊_`a4_6 	𝑣K0  Eq(4) 

𝑧/0 = 𝑊H2IJ_6	𝑣/0 Eq(5) 

	𝑣/0NO = 	𝑅𝑒𝐿𝑈(𝑧K0 + 𝑧/0 + 𝑏6	)		 Eq(6) 

Where 𝑣d0 ∈ 𝑅[𝐻6gh, 1]		, 𝑣/0 	 ∈ 𝑅[𝐻6gh, 1]		, 𝑣/0NO 	 ∈ 𝑅[𝐻6, 1]		, 

𝑊H2IJ_6 ∈ 	𝑅[𝐻6, 𝐻6gh], 𝑊1234_6 ∈ 	𝑅[𝐻6, 𝐻6gh], 𝑏6 ∈ 	𝑅[𝐻6, 1], 

Decoder 

The decoder reconstructs the original neighborhood vector  𝑣K0 and self-vector 𝑣/0 from the lower-

dimension node embedding 	𝑣/0NO  using the tied-weights scheme. Specifically, to reconstruct the 

neighborhood vector 𝑣K0, the decoder first multiplies 	𝑣/0NO with 𝑊123_M
-  to map the hidden vector into the 

original dimension, adds the bias 𝑏K′ , and transforms the resulting vector with a ReLU function. Similarly, 

to reconstruct the original node attribute 𝑣/0, the decoder multiplies 	𝑣/0NO with 𝑊H2IJ
- , adds the bias 𝑏H2IJ′  

and transforms the resulting vector with a ReLU function.  

𝑣K0′ = 𝑅𝑒𝐿𝑈(𝑊12340
-	𝑣/0NO + 𝑏K′) Eq(7) 

𝑣/0′ = 𝑅𝑒𝐿𝑈(𝑊H2IJ_6
-𝑣/0NO + 𝑏H2IJ′) Eq(8) 

Where  𝑏K′ ∈ 	𝑅[𝐻6gh, 1], 	𝑏H2IJ′ ∈ 	𝑅[𝐻6gh, 1]  

Combining the encoder and decoder, the loss function minimizes the sum of difference between 

𝑣/0	and 𝑣/0′ and between 𝑣K0	and 𝑣K0′. Different from conventional autoencoders, the decoder needs to 

decode two different vectors from a single hidden vector. This process forces the hidden vector to encode 
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information required to reconstruct both the neighborhood and self-vector information. 

To conclude, the first encoder-decoder stage compresses local neighborhood information of each 

node in a given layer into low-dimensional embedding in the next layer. After training, the decoder layer 

is then discarded, and the resulting hidden node vectors are then used as input for the second encoder-

decoder stage. 

Stage II. Encode information from each node into fixed-size graph-level embedding 

The second encoder-decoder stage compresses information from each node into a fixed-size graph-

level embedding. 

Encoder 

All node vectors in layer i are first multiplied by the same weight matrix 𝑊kl0, and added by bias 

term 𝑏kl0 to obtain scores for each fingerprint attribute. The scores are then normalized by a Softmax32 

function to obtain a node fingerprint (𝐹𝑃/0), where the elements range from 0 to1 and sum to one. In this 

step, each node is classifying itself into one or multiple fingerprint categories, where each category 

represents a certain type of pocket property.  

𝑆/0 = 	𝑊kl0	𝑣/0p	𝑏kl0   Eq(9) 

𝐹𝑃/0 = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝑆/0) Eq(10) 

Where  𝑊kl0 	∈ 	𝑅[𝐻kl, 𝐻6gh], 𝑏kl0 ∈ 	𝑅[𝐻kl, 1],  𝐹𝑃/0 	 ∈ 	𝑅[𝐻kl, 1], 

𝐻kl	𝑑𝑒𝑛𝑜𝑡𝑒𝑠	𝑡ℎ𝑒	𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛	𝑜𝑓	𝑡ℎ𝑒	𝑝𝑜𝑐𝑘𝑒𝑡	𝑓𝑖𝑛𝑔𝑒𝑟𝑝𝑟𝑖𝑛𝑡 

Decoder 

The decoder reconstructs the original node vector 𝑣/0 from the node fingerprint 𝐹𝑃/0,  using the 

tied-weights scheme. Specifically, to reconstruct 𝑣/0 , the decoder multiplied 𝐹𝑃/0  with 𝑊kl0
- , and 

transform the resulting vector with a tanh activation function.  

𝑣/0′ = tanh	(𝑊kl0
-𝐹𝑃/0 + 𝑏kl0′	) Eq (11) 

Where 	𝑏kl0′ ∈ 	𝑅[𝐻6gh, 1]   

Combining the encoder and decoder, the loss function minimizes the sum of differences between 

𝑣/0	and 𝑣/0′for all nodes in the graph. This process forces the learned node fingerprints (𝐹𝑃/0) to further 

encode information of individual nodes (𝑣/0 ). After the training, the decoder is then discarded. The 

resulting node fingerprints 𝐹𝑃/0 of all nodes in layer i are averaged to obtain a single fixed-size graph-

level embedding 𝐹𝑃 for layer i, regardless of the size of the graph. 

𝐹𝑃z{M2^_6 = 𝐴𝑣𝑒𝑟𝑎𝑔𝑒}𝐹𝑃/0~, 𝑥 ∈ 𝑉(𝐺) Eq (12) 
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 Where 	𝑉(𝐺)	𝑑𝑒𝑛𝑜𝑡𝑒𝑠	𝑡ℎ𝑒	𝑠𝑒𝑡	𝑜𝑓	𝑛𝑜𝑑𝑒𝑠	𝑖𝑛	𝑡ℎ𝑒	𝑝𝑜𝑐𝑘𝑒𝑡	𝑔𝑟𝑎𝑝ℎ	𝐺   

We consider the two stages as a single graph autoencoder layer. Multiple graph autoencoder layers 

can be stacked and trained greedily, allowing features of different complexity to be integrated through a 

hierarchical manner. Our final network architecture comprises two layers of graph autoencoders (Table 

1). The final graph fingerprint is then obtained by summing the graph fingerprints of all layers. 

𝐹𝑃3^{�� = 	∑ 𝐹𝑃z{M2^_66∈z 	 Eq(13) 

 

 

Figure 1. Graph convolutional autoencoder. A single graph convolutional autoencoder layer comprises two 

encoder-decoder stages. The two encoder-decoder stages are trained one after another in a greedy fashion. (a) The 

first encoder-decoder stage compresses local graph neighborhood information into low-dimensional embedding. 

The encoder consists of a set of graph neighborhood convolutional filters (𝑊1234_6), each operates on nodes of 

different degrees, and a self-filter (𝑊H2IJ_6 ), which is shared across all nodes in layer i. For each center node 

(𝑣{0 ),𝑊1234_6  convolves on the node attribute vectors of the neighborhood nodes (𝑣�0, 𝑣�0, 𝑣10 ), whereas 𝑊H2IJ 

compresses the center node attribute vector (𝑣{0)). The resulting vectors are summed and transformed through ReLU 
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to obtain 𝑣{0NO. The decoder reconstructs the original neighborhood vectors and self-vector 𝑣{0 from 	𝑣{0NO using 

the tied-weights scheme. (b) The second encoder-decoder stage compresses information from each node into a 

fixed-size graph-level embedding. The encoder transforms all node vectors (𝑣/0) in layer i to node fingerprints (𝐹𝑃/0) 

through 𝑊kl0, 𝑏kl0 and the Softmax function. The decoder reconstructs the original node vector 𝑣/0 from the node 

fingerprint 𝐹𝑃/0,  using the tied-weights scheme. (c) The resulting node fingerprints 𝐹𝑃/0 of all nodes in layer i are 

averaged to obtain a single fixed-size graph-level embedding 𝐹𝑃 for layer i. 

 

2.3 (B)  Supervised Binding Classifier - Graph Convolution Neural Network 

After training graph autoencoders to extract general-purposed protein pocket features, we proceed 

to construct a full model to predict drug-target interactions. Our framework comprises the following 

modules (Figure 2): (1) Pocket graph convolution module (2) Molecule graph convolution module (3) 

Interaction layer (4) Softmax classifier. Parameters of our network are summarized in Table 2. 

(1) Pocket Graph Convolution Module 

The pocket graph convolution module consists of two pocket graph convolution layers. Each 

pocket graph convolution layer has the same architecture as the pocket graph autoencoder (section 2.3 (A)) 

with the decoders removed. Specifically, the pocket graph convolution layer starts with the encoder from 

Stage I in the pocket graph autoencoder to extract information from local graph neighborhoods, and 

continues with the encoder from Stage II to compress node features into a single fixed-size graph-level 

embedding. This design allows us to initialize our pocket graph convolution module with the learned 

weights from the unsupervised graph autoencoder. 

(2) Molecule Graph Convolution Module 

We employ the graph convolution architecture developed by Duvenaud et al.16 to learn molecular 

fingerprints. Our molecular graph convolution module comprises two molecular graph convolution layers. 

(3) Interaction Layer 

The interaction layer concatenates the pocket and molecular fingerprint to generate a joint target-

ligand fingerprint. A fully-connected layer takes the joint fingerprint as input and output a lower 

dimensional interaction hidden layer. Each node in the interaction hidden layer represents a favorable or 

non-favorable interaction type between the target and ligand.  

(4) Softmax Classifier 

 The Softmax Classifier takes in the interaction hidden layer and calculate the class scores of 

“binding” or “non-binding” based on the observed favorable and non-favorable interactions.  
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Table 1. Network architecture and parameters of unsupervised pocket graph autoencoders. 

 Graph Autoencoder 
Input Layer node attribute ∈	R [480,1] 
Layer 1 - CNN 200 filters, max degree = 20 
Layer 1 - FP Size 512 
Layer 2 - CNN 100 filters, max degree = 20 
Layer 2 - FP Size 512 

 
Table 2. Network architecture and parameters of target-ligand binding classifier 
 
 Pocket Graph-CNN  Ligand Graph-CNN 
Input Layer node attribute ∈	R [480,1] Input Layer node attribute ∈	R [62,1] 

bond attribute ∈	R [6,1] 
Layer 1 - CNN 200 filters, max degree = 20 Layer 1 - CNN 200 filters, max degree = 6 
Layer 1 - FP Size 512 Layer 1 - FP Size 216 
Layer 2 - CNN 100 filters, max degree = 20 Layer 2 - CNN 100 filters, max degree = 6 
Layer 2 - FP Size 512 Layer 2 - FP Size 216 
Interaction Layer 728 * 100 nodes 
Softmax Layer 100*2 nodes 

 

 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 19, 2018. ; https://doi.org/10.1101/473074doi: bioRxiv preprint 

https://doi.org/10.1101/473074
http://creativecommons.org/licenses/by-nc-nd/4.0/


 14 

Figure 2. Supervised Binding Classifier. Our binding classifier comprises the following modules: (1) Pocket graph 

convolution module (bottom right, purple) takes in protein pockets represented as graphs, where each node 

corresponding to a key pocket residue and is associated with a FEATURE vector that describes the local amino acid 

microenvironment. The pocket graph convolution module is initialized with the learned weights from the pocket 

graph autoencoder and is fine-tuned to extract features from pockets that are specific to protein-ligand binding. (2) 

Molecule graph convolution module (bottom left, green) similarly learn features from 2D small molecular graphs. 

(3) The interaction layer (blue) concatenates the pocket and molecular fingerprint to generate a joint target-ligand 

fingerprint. The joint fingerprint is then fed to a fully-connected layer to generate the interaction hidden nodes. Each 

interaction hidden node represents a favorable or non-favorable interaction type between the target and ligand. (4) 

The Softmax classifier (orange) takes in the interaction hidden layer and calculate the class scores of “binding” or 

“non-binding” based on the observed favorable and non-favorable interactions.  

2.4 Network Training 

The unsupervised graph autoencoder was trained on the representative pocket set (section 2.1.1) 

in a greedy fashion until convergence. The supervised binding classifiers was trained under two different 

settings: 

(1) Four-fold cross validation model - Evaluating performances on the DUDE dataset 

We adopt a four-fold cross-validation strategy to train and evaluate our Graph-CNNs on the 

DUD-E - Pairwise interaction dataset (section 2.1.2 (A)). The folds are split between targets, where all 

ligands of the same target belong to the same fold. To avoid evaluating model performance on targets 

similar to those in the training set, we ensured that no any two folds have targets with greater than 75% 

global sequence identity. Within each training fold, we randomly selected three targets as our validation 

dataset, and choose our model hyper-parameters based on the validation performances.  

The pocket graph convolution module is initialized with the pre-trained weights from section 

2.3(A). The weights in the molecular graphs, the interaction layer and the final classifier are randomly 

initialized. During the supervised-training phase, the weights of the first pocket graph convolution layer 

are fixed to preserve the low-level features. We allow the higher-level weights in the pocket graph to be 

fine-tuned. The training process is driven by the supervised binding labels.  

(2) Full dataset model - Evaluating performances on the independent test set: MUV dataset 

To evaluate our performances on independent test dataset, we train a full model on the DUDE – 

CHEMBL assay negatives dataset (section 2.1.2 (B)). In addition to initializing the pocket graph 

convolution module with the pre-trained weights from section 2.3(A), we also pre-train a molecule 
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graph autoencoder on all molecules in the DUDE – CHEMBL assay negatives dataset, and initialize the 

molecule graph convolution module with the learned weights. Similarly, weights of the first layers of the 

pocket and molecular graph convolution networks are fixed during the supervised training stage. The 

supervised model was trained for a full epoch and no rigorous attempt was made to optimize the hyper-

parameters.  

All models were optimized using the RMSProp algorithm33. The graph convolution architectures 

were implemented in Theano and trained on the Stanford Sherlock and Xstream servers. 

2.5 Evaluation  

2.5.1 Pre-trained model: Pocket Representation 

To evaluate our pre-trained pocket representation, we visualize the learned final-layer pocket 

fingerprints in 2D space using t-SNE34. We label the pockets by their corresponding SCOP35 families 

(version 2.0.7), resulting in a total of 92 classes. To facilitate better visualization, we define the majority 

classes as the SCOP families with more than five members, resulting in a final of 631 pockets from 38 

SCOP families, and highlight each class in different colors. We additionally visualize DUDE targets and 

their corresponding SCOP family members, which comprises 393 pockets from 47 SCOP families. 

2.5.2 Supervised model: DUDE virtual screening – AUC, RE 

 For each target, we evaluate the virtual screening performance by the area under the receiver 

operating characteristic (ROC) curve metric (AUC). Specifically, binding probability of each target-ligand 

pair is evaluated by the corresponding test fold model. Predicted binding probabilities for all ligands for a 

given target is then used to calculate the AUC score for the target. For early enrichment, we employ the 

ROC enrichment metric (RE)36-37, chosen by Ragoza et al.15 Specifically, the RE score is defined as the 

ratio of the true positive rate (TPR) to the false positive rate (FPR) at a given FPR threshold. Here, we 

report the RE scores at 0.5%, 1%, 2%, and 5% FPR thresholds. We benchmark our method with 3DCNN 

protein-ligand scoring, Vina, and two other machine learning scoring functions, RF-Score and NNScore, 

using performance reported in Ragoza et al.15 

2.5.3   DUDE binding profile 

Target-ligand binding interactions are known to be promiscuous. A given target can bind to 

multiple different ligands and vice versa. The former type of promiscuous interactions is often the focus 

of conventional virtual screening benchmarking datasets, whereas ligand-to-target promiscuity is often 

less evaluated but are nonetheless critical in predicting potential off-target effects. To assess the ability of 

our network to predict binding propensity of a given molecule to different targets, we use our trained 
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networks to generate binding profiles of each active molecule in the dataset against all the DUDE targets. 

Specifically, we generate the binding profiles by the following steps:  

(1) For a given active molecule in the DUDE dataset, we pair the active ligand with all the 102 

DUDE targets, and feed the 102 ligand-target pairs into a chosen fold model. The network will then 

generate the “single ligand-target binding profile”, consisting of 102 binding probability scores. 

(2) For a given DUDE target, we then generate the “average ligand-target binding profile” by first 

generating the single ligand-target binding profiles for all the actives of the given target, and average over 

all binding profiles.  

(3) By generating the average ligand-target binding profile for all the DUDE targets and arranging 

them as individual rows, we can then construct a ligand-target binding propensity matrix for a given fold 

model. The binding propensity matrix consists of 102 rows and 102 columns, where each row correspond 

to the actives of the corresponding target, and each column correspond to the pocket of the corresponding 

target. 

(4) We construct the ligand-target binding propensity matrices for all the four fold-models and 

evaluate the obtained matrices as follow:  

I. Hierarchical clustering on single-fold binding propensity matrices 

We perform hierarchical clustering38 on the rows and then the columns of each of the four binding 

propensity matrices to allow visualization of the groupings of targets and ligands automatically discovered 

by the network. The hierarchical clustering is performed using the scipy.cluster.hierarchy39 module. 

II. Hierarchical clustering on test target profiles across all fold models 

Since each of the four binding propensity matrices is generated using a particular fold-model, only 

a subset of the rows and the corresponding columns are unseen by the corresponding fold model in each 

fold matrix. To evaluate our model explicitly on the test cases, we generate the test-target binding 

propensity matrix, which is formed by the union of all the test columns from all the four binding propensity 

matrices. Similarly, hierarchical clustering is performed on the rows and then the columns of the matrix 

to discover groupings of targets and ligands. 

2.5.4   MUV – AUC, RE  

We evaluate the performances of our models on the MUV dataset using the AUC and RE metrics. 

In addition to comparing our performances to the 3DCNN protein-ligand scoring, Vina, RF-Score and 

NNScore, since ligand-based methods are known to achieve better performances than structure-based 
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methods on the MUV dataset, we also include performances of two representative ligand-base methods 

extended connectivity fingerprints (ECFP4)5 and atom pair (AP) fingerprints6 for comparisons. Among 

them, AP is the best performing method reported in a large-scale virtual screening study of ligand-based 

methods conducted by Riniker et al.7, and ECFP4 serves as a ligand-based baseline method in our study. 

Performances of 3DCNN protein-ligand scoring, Vina, RF-Score and NNScore are reported as in Ragoza 

et al.15 Performances of AP and ECFP are reported as in Riniker et al.7  

Error analysis of MUV - Case Analysis plot 

To gain further insights into the advantages and disadvantages of ligand-based and structure-based 

methods, we plotted the eight MUV datasets on a 2-D plot, where the X-axis represents the extent of 

separation of the actives from the negatives in simple chemical descriptor space and the Y-axis quantifies 

the average pocket similarity of the MUV target to the DUD-E pockets. Calculation of the two metrics are 

described in detail in Supplementary Note S1. 

Contribution from Pocket side 

 To quantify the extent of the pocket graph convolution module contributing to the binding 

predictions, for each MUV target, we replace the target protein pocket with a dummy pocket by 

substituting the pocket fingerprint with a zero-vector. We compare the AUC performances of all MUV 

targets with and without the true pockets.  

Cross-Validation on the MUV dataset 

 To verify whether the consistent low performance of Graph-CNNs and 3DCNN protein-ligand 

scoring on the MUV targets 832, 846, 852, arises from biases present in the DUD-E training dataset, we 

additionally trained a separate set of models using five-fold cross validation on the MUV dataset. Similar 

to the training of the DUD-E models, the folds are split between targets. We compare performance of the 

resulting models to the Graph-CNN-DUD-E models, 3DCNN protein-ligand scoring, RF-Score, NNScore, 

Vina, AP and ECFP4. 

2.6     Network Visualization: Target-Ligand Interaction Map  

Our target-ligand interaction map shows the contribution of pocket residues and ligand atoms to 

the classification decision by displaying the importance score of each pocket residue and ligand atom in 

heat map colors. As described in Section 2.3 (B), hidden nodes in the interaction hidden layer capture 

favorable or non-favorable interactions between the target and ligand. To inspect interactions captured by 

our network between a given input pocket and ligand pair, we identify the interaction nodes that contribute 

most heavily to the classification decision and visualize the contribution of each pocket residue and 
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molecular atom to these key interactions. The identification of the key interaction nodes and the derivation 

of the pocket and ligand importance scores are based on stage-wise saliency map computation42 and are 

described in detail in Supplementary Note S2. 

III. Results 

3.1 Unsupervised Pretraining - Pocket Graph Auto-encoder 

To visualize protein pocket representations learned by the unsupervised graph auto-encoder, we 

project the learned pocket fingerprints to 2D space using t-SNE, and color the pockets by their 

corresponding SCOP families. Figure 3a shows the distribution of 631 pockets from 38 SCOP families 

that have more than five members. Figure 3b and 3c shows the distribution of the DUDE targets and the 

corresponding SCOP family members (401 pockets from the 48 SCOP families). 

3.2 DUDE  

AUC and RE scores of Graph-CNNs, Vina, 3DCNN protein-ligand scoring, RF-Score, and 

NNScore on the DUD-E dataset are summarized in Table 3.  

 

Table 3. Performance of Graph-CNN, Vina, 3DCNN, RF-Score, and NNScore on the DUD-E dataset 
 

Metric Graph CNN 3DCNN Vina RF-Score NNScore 
AUC 0.886 0.868 0.716 0.622 0.584 

0.5% RE 44.406 42.559 9.139 5.628 4.166 
1.0% RE 29.748 29.654 7.321 4.274 2.980 
2.0% RE 19.408 19.363 5.881 3.499 2.460 
5.0% RE 10.735 10.710 4.444 2.678 1.891 
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Figure 3. t-SNE visualization of the latent protein pocket space learned by the unsupervised Graph auto-

encoder. (a) 3D t-SNE visualization of the distribution of 631 pockets from 38 SCOP families that have more than 

five members. The pockets are colored by their corresponding SCOP families. Pockets from the same SCOP family 
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tend to lie closer to each other than to pockets in different SCOP families. (b) 3D t-SNE visualization of the 

distribution of the DUDE targets and the corresponding SCOP family members (401 pockets from the 48 SCOP 

families) in the latent pocket space. The pockets are colored by their corresponding SCOP families. (c) 2D 

projection of the 3D t-SNE visualization shown in (b), where the DUD-E targets are labeled with target names. The 

pockets are colored and marked by the same legend scheme in (b). Kinases (FAK1, BRAF, MK14, CDK2, IGF1R, 

CSF1R, EGFR, MK10, VGFR), nuclear receptors (PPARA, PPARD, PPARG, MCR, GCR, PRGR, ESR1, ESR2, 

THB), proteases (UROK, TRYB1, FA10, FA7 and TRY1) form distinct clusters in the pocket space. 

 

3.3 DUDE Binding Profile 

Figure 4 shows the binding propensity matrix of the fold-0 Graph-CNN model, where the rows 

correspond to the active ligands of the targets and the columns correspond to the binding pockets of the 

targets. Each row of the matrix contains the average ligand-target binding profile of all the actives of the 

corresponding target to the DUD-E targets. In other words, entry [i,j] in the matrix contains the predicted 

average binding propensity of active ligands of target i to target j. Note that each element in matrix are 

independently predicted by the model. Unlike confusion matrices, the scores of each row or each column 

do not sum up to 1. 

Hieratical clustering was performed on the rows and on the columns to discover similarities within 

the ligand-target binding profiles and within the target-ligand binding profiles. Targets of different known 

protein families: nuclear receptors, proteases, kinases, and GPCRs are highlighted in red, purple, green, 

blue respectively. Test targets and ligands in fold-0 are highlighted in yellow. Figure 5 shows the test-

target binding propensity matrix across the four folds, which contains the union of the test columns from 

the four fold-models. 
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Figure 4. Binding propensity matrix of fold 0 model. The matrix inspects the average predicted promiscuity of 

ligands of a given target to all the other DUDE targets, where entry [i,j] in the matrix contains the average predicted 

binding propensity of active ligands of target i to target j. Hierarchical clustering on the rows reveals similarities 

among the ligand-target binding profiles, dividing the actives into four major clusters: (1) kinases (green), (2) 

nuclear receptors (red), (3) proteases (purple) and GPCRs (blue), and (4) other miscellaneous targets. Clustering on 

the columns similar divides the targets into four major groupings. Local high-scored blocks form at the intersections 

of the corresponding row and column clusters, showing that ligands are predicted to have stronger interactions with 

targets that are similar to its primary target compared to unrelated targets and vice versa.  Test targets and ligands 

in fold-0 (highlighted in yellow) are clustered reasonably among the targets / ligands in the training set. 
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Figure 5. Test-target binding propensity matrix across all folds. The test-target binding propensity matrix 

contains the union of the test columns from the four fold-models. Although hierarchical clustering on the columns 

results in slightly more disperse clusters, similar targets are generally grouped together, and local high-scored blocks 

are observed between actives of similar targets and their corresponding targets.  
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3.4 External Validation –MUV 

3.4.1 Performance of Graph-CNNs on the MUV dataset 

Average AUC and RE scores of Graph-CNNs, Vina, 3DCNNs, RF-Score, and NNScore on the 

MUV dataset are summarized in Table 4. AUC scores of each MUV target using Graph-CNNs, Vina, 

3DCNNs, and ligand-based methods AP and ECFP4 are reported in Table 5. 

Table 4. Average performance of Graph-CNN, 3DCNN, Vina, RF-Score, and NNScore on the MUV 
dataset 

Metric Graph CNN 3DCNN Vina RF-Score NNScore 
AUC 0.563 0.518 0.545 0.497 0.430 

0.5% RE 3.333 1.667 0.000 0.000 0.000 
1.0% RE 3.750 1.667 1.250 1.667 0.417 
2.0% RE 2.500 1.459 1.459 1.042 0.417 
5.0% RE 2.083 1.583 1.167 1.019 0.75 

 
Table 5. Individual performance on MUV dataset using structure-based and ligand-based methods 

 Structure-Based Ligand-Based 
Target Graph CNN 3DCNN Vina ECFP4 AP 

859 0.6021 0.56 0.517 0.546 0.547 
692 0.6234 0.48 0.413 0.532 0.588 
689 0.7172 0.514 0.596 0.561 0.685 
466 0.6927 0.663 0.593 0.494 0.6 
548 0.6879 0.791 0.46 0.749 0.792 
832 0.3859 0.402 0.61 0.76 0.771 
852 0.4484 0.348 0.515 0.755 0.821 
846 0.347 0.384 0.655 0.823 0.822 

 
3.4.2 Error analysis of MUV - Case Analysis plot  

To gain further insights into the advantages and disadvantages of ligand-based and structure-based 

methods, we analyze properties of the ligands and pockets of the eight MUV datasets. Figure 6 shows the 

distribution of eight MUV target-ligand datasets according to their pocket and ligand properties, where 

the X-axis shows the extent of separation of the actives from the negatives of the corresponding MUV 

target and the Y-axis shows the average pocket similarity of the MUV target to the DUDE binding sites. 
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Figure 6. Distribution of eight MUV target-ligand datasets in the pocket-ligand property space. The X-axis 

shows the extent of separation of the actives from the negatives of the corresponding MUV target and the Y-axis 

shows the average pocket similarity of the MUV target to the DUDE binding sites. The eight MUV datasets can be 

divided into four categories, corresponding to the four quadrants in the ligand-pocket property space. (I) Pocket 

distant, Ligands mixed: actives and negatives are similar in chemical descriptor space; target pocket is distant from 

DUD-E targets (dataset 859,466,692) (II) Pocket similar, Ligands mixed: actives and negatives are similar in 

chemical descriptor space; target pocket is more similar to DUD-E targets (dataset 689) (III) Pocket distant, Ligands 

separated: actives and negatives are well separated in chemical descriptor space; target pocket is distant from DUD-

E targets (dataset 852, 846, 832) (IV) Pocket similar, Ligands separated: actives and negatives are well separated 

in chemical descriptor space; target pocket is more similar to DUD-E targets (dataset 548). Ligand-based methods 

outperformed structure-based methods on datasets in category III: target 852, target 846, target 832. On the other 

hand, Graph-CNNs outperformed ligand-based methods on the hard cases in category I and II. 
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3.4.3 Contribution of Performance from the Pocket Graphs 

 The AUC scores of the eight MUV datasets with dummy pockets and with true MUV target pocket 

are shown in Figure 7. 

 

Figure 7. Comparisons of AUC scores on the eight MUV datasets between dummy pockets and true pockets. 

To examine the contribution of the pocket graph convolution module to the binding predictions, we evaluate 

performance of the Graph-CNN models when the true pocket is replaced with a dummy pocket. Performance of 

most MUV target datasets dropped substantially when the true target pockets are absent. Interestingly, target 832, 

852 and 846 showed improved performance when only ligand information is provided.  

 

3.4.4 Cross-Validation on the MUV dataset 

Average AUC and RE scores of the five-fold MUV-Graph-CNN models are summarized in Table 

6. Comparisons of AUC scores between different methods on the MUV dataset are shown in Figure 8. 

 

Table 6. Average performance of Graph-CNN-DUD-E, Graph-CNN-MUV, 3DCNN, Vina, RF-
Score, and NNScore on the MUV dataset 
 

Metric Graph CNN-
DUD-E 

Graph CNN-
MUV 

3DCNN Vina RF-Score NNScore 

AUC 0.563 0.707 0.518 0.545 0.497 0.430 
0.5% RE 3.333 5.000 1.667 0.000 0.000 0.000 
1.0% RE 3.750 5.833 1.667 1.250 1.667 0.417 
2.0% RE 2.500 6.190 1.459 1.459 1.042 0.417 
5.0% RE 2.083 4.417 1.583 1.167 1.019 0.75 
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Figure 8. Comparisons of AUC scores between Graph-CNN-DUD-E, Graph-CNN-MUV, ECFP4, and AP on 

the MUV dataset. The Graph-CNN-MUV models achieve significant improvements over Graph-CNN-DUDE on 

targets 832, 846, and 852, achieving AUC scores comparable to AP.  

 

3.5 Network Visualization 

Example visualizations for target SRC, MUV-689, HDAC2, and ESR1 with their corresponding 

actives are shown in Figure 9. The color shows the contribution of each ligand atom and pocket residue to 

the classification decision. On the pocket side, the red to blue heat map spectrum highlights the most 

important to the least important residues. On the ligand side, the ten most important atoms are highlighted 

in red. 
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Figure 9. Importance visualization of pocket and ligand pairs. The color shows the contribution of 

each ligand atom and pocket residue to the classification decision. On the pocket side, the red to blue 

heat map spectrum highlights the most important to the least important residues. On the ligand side, the 

ten most important atoms are highlighted in red. (a) SRC (Tyrosine-protein kinase SRC) with 

compound 1. Middle and bottom: ligand and pocket importance maps for compound 1 and target SRC 

(PDB: 3EL8). The pocket importance map highlights residues GLU 310, TYR 338, ASP 404, VAL 323 

and LEU 393. The ligand importance map highlights the nitrogen and oxygen atoms in compound 1. 

The identified key residues and atoms highly correspond to the observed interacting residues and ligand 

atoms in the co-crystalized complex of SRC and pyrazolopyrimidine 5 (Top, PDB: 3EL8). (b) MUV – 

689 (EPHA4) with compound 2. Middle and bottom: ligand and pocket importance maps for compound 

2 and EPHA4 (PDB: 2Y6O). The pocket importance map highlights residues Met 674, Thr 699, Ala 

651, Ile 683, Leu 753, which highly overlap with the key pocket residues observed in the EPHA4- 

Dasatinib co-complex (Top, PDB: 2Y6O). The ligand interaction map highlights the benzene ring, the 

nearby oxygen, and the polycyclic ring in compound 2 as the key features, which may play the roles of 

the pyrimidine ring, the amino-thiazole ring, and the 2- chloro-6-methyl phenyl group, respectively. (c) 

HDAC2 (Histone deacetylase 2) with compound 3. Middle and bottom: ligand and pocket importance 

maps for compound 3 and HDAC2 (PDB: 3MAX). The pocket importance map highlights residues HIS 

146, HIS 145, ASP 181, TYR 29, and ASP 269. The ligand importance map highlights the long carbon 

chain and the NH-OH group in compound 3. The highlighted key residues and ligand functional groups 

in the importance maps show high similarity to observed interactions in the HDAC2-SAHA co-complex 

(Top, PDB: 4LXZ). (d) ESR1 (Estrogen receptor alpha) with compound 4. Middle and bottom: ligand 

and pocket importance maps for compound 4 and ESR1 (PDB: 1SJ0). The pocket importance map 

highlights residues Ala 350, Leu 387, Leu 391, Leu 346, Met 343, and Gly 521, Met 528, and Arg 394. 

The ligand importance map highlights the two hydroxyl groups and the polycyclic ring region, which 

agrees with the interactions observed between ESR1 and THC (Top, PDB: 1L2I). 
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Table 7. SMILES strings of compound 1 to compound 4 
 SMILES 
Compound 1 CN(C)CCOc5ccc4Nc3c(C(N)=O)c(c2ccc(Oc1ccccc1)cc2)nn3CCc4c5 
Compound 2 COc1ccc(S(=O)(=O)Nc2cc(Sc3ncn[nH]3)c(O)c3ccccc23)cc1 
Compound 3 ONC(=O)CCCCCCOc2ccc(c1ccccc1)cc2 
Compound 4 C[C@]34CC[C@H]1[C@@H](CCc2cc(O)ccc12)[C@@H]3CC[C@@H]4O 

 
IV. Discussion 

Unsupervised Pocket Representation Learning 

The graph autoencoder learned meaningful pocket embeddings that reflect known pocket 

similarities. As shown in Figure 3a, the 631 pockets formed visible clusters, where pockets from the same 

SCOP family tend to lie closer to each other than to pockets in different SCOP families. Furthermore, local 

proximity among the clusters also reflects natural similarities between the SCOP families. For example, in 

the latent space, members of family b.60.1.2 (Fatty acid binding protein-like) are close to members of 

family b.60.1.1 (Retinol binding protein-like), both of which belonging to superfamily b.60.1 (Lipocalins). 

Figure 3b and 3c shows similar trends among the DUD-E targets and their SCOP family members. 

For example, kinases (including FAK1, BRAF, MK14, CDK2, IGF1R, CSF1R, EGFR, MK10, VGFR) 

and members of the family d.144.1.7 (Protein kinases, catalytic subunit) form a visible cluster in the pocket 

space. Similarly, nuclear receptors (PPARA, PPARD, PPARG, MCR, GCR, PRGR, ESR1, ESR2, THB) 

all reside within the same region in the pocket space and are surrounded by pockets from the same SCOP 

family a.123.1.1 (Nuclear receptor ligand-binding domain). UROK, TRYB1, FA10, FA7 and TRY1 

belong to family b.47.1.2 (Eukaryotic proteases) and form a tight cluster in the pocket space. 

 

DUD-E Performance and Ligand-Target Binding Profile 

As shown in Table 3, the Graph-CNN models outperformed Vina, RF-score, and NNscore models 

and achieved comparable performance with 3DCNN protein-ligand scoring on the DUD-E dataset, 

without requiring co-crystal structures as input.  The reported AUC and RE scores evaluate the methods 

on predicting the target-to-ligand binding relationships. To further assess the ability of our network to 

predict binding propensity of a given molecule to different targets, we constructed binding propensity 

matrices for each of the fold models. The matrix allows us to inspect average predicted promiscuity of 

ligands of a given target to all the other DUDE targets.  

Figure 4 shows the binding propensity matrix of the fold-0 model. Hierarchical clustering on the 

rows reveals similarities among the ligand-target binding profiles, where two rows are clustered together 
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if the corresponding ligands interact favorably with similar sets of targets. On the other hand, hierarchical 

clustering on the columns reveals similarities within the target-ligand binding profiles, where two columns 

are clustered together if the targets show strong binding propensity to similar sets of ligands. As shown in 

Figure 4, clustering on the rows divides the actives into four major clusters: (1) kinases (green), (2) nuclear 

receptors (red), (3) proteases (purple) and GPCRs (blue), and (4) other miscellaneous targets. Clustering 

on the columns divides the targets into similar four major groupings. Importantly, local high-scored blocks 

form at the intersections of the corresponding row and column clusters, showing that ligands are predicted 

to have stronger interactions with targets that are similar to its primary target compared to unrelated targets 

and vice versa.  Moreover, test targets and ligands in fold-0 (highlighted in yellow) are clustered 

reasonably among the targets / ligands in the training set.  

To further inspect the aggregated performance of the four fold-models on the test cases, we extract 

the test columns from all the four fold-models binding propensity matrices. Figure 5 shows the test-target 

binding propensity matrix, which contains the union of the test columns from the four fold-models. 

Although clustering on the columns results in slightly more disperse clusters, similar targets are generally 

grouped together, and local high-scored blocks are observed between actives of similar targets and their 

corresponding targets, demonstrating that the learned ligand-target binding relationship is generalizable 

to unseen targets. 

 

External Dataset Validation: MUV 

We further validated our Graph-CNN models on the independent MUV benchmark. As shown in 

Table 4 and Table 5, performance of all methods substantially dropped on the MUV dataset. Nevertheless, 

the Graph-CNN models achieved the best performance among the structure-based methods across all 

metrics. While Vina, 3DCNN, RF-score, and NNscore have no more than two targets achieving an AUC 

greater than 0.6, the Graph-CNN models attain AUC greater than 0.6 for 5 out of 8 targets. 

We hypothesize that the drop of performance across all methods are due to the design choices 

employed to construct the MUV dataset. Unlike DUD-E, the MUV dataset does not use computational 

decoys. Both actives and negatives are experimentally validated based on PubChem43 bioactivity data. 

Furthermore, the actives are selected to be maximally spread based on simple descriptors and embedded 

in decoys. Importantly, both chemical-based and cell-based assays are used to construct dataset, and thus 

some of the measured bioactivities may not be direct target-ligand interactions. These design choices make 

MUV particularly challenging for structure-based methods. 
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To gain insights into the advantages and disadvantages of ligand-based and structure-based 

methods on the MUV benchmark, we compare performance of Graph-CNN, 3DCNN, and Vina to two 

representative ligand-based methods AP and ECFP4 reported in a large-scale study.7 As shown in Table 

5, Graph-CNN achieved the best performance among the 5 methods for target 859, 692, 689, 466 whereas 

AP achieved the best performance for target 548, 832, 852, 846.  

Further analysis on the ligand and pocket properties of each MUV dataset reveals that Graph-

CNNs and AP thrives at different scenarios. As shown in Figure 6, the 8 MUV datasets can be divided 

into four categories, corresponding to the four quadrants in the ligand-pocket property space. (I) Pocket 

distant, Ligands mixed: actives and negatives are similar in chemical descriptor space; target pocket is 

distant from DUD-E targets (dataset 859,466,692) (II) Pocket similar, Ligands mixed: actives and 

negatives are similar in chemical descriptor space; target pocket is more similar to DUD-E targets (dataset 

689) (III) Pocket distant, Ligands separated: actives and negatives are well-separated in chemical 

descriptor space; target pocket is distant from DUD-E targets (dataset 852, 846, 832) (IV) Pocket similar, 

Ligands separated: actives and negatives are well-separated in chemical descriptor space; target pocket is 

more similar to DUD-E targets (dataset 548).  

As expected, ligand-based methods outperformed structure-based methods on datasets in category 

III: target 852, target 846, target 832, where actives and negatives are well-separated in the chemical space. 

On the other hand, Graph-CNNs outperformed ligand-based methods on the hard cases in category I and 

II, where the active and negative ligands are mixed in simple molecular descriptor space, regardless of the 

pocket similarities between the MUV target and DUD-E targets. All methods, except Vina, performed 

well on category IV (target 548) where ligands are separated and the pocket similarity is relatively high.  

To examine the contribution of the pocket graph convolution module to the binding predictions, 

we evaluate performance of the Graph-CNN models when the true pocket is replaced with a dummy 

pocket. As shown in Figure 7, performance of most MUV target datasets dropped substantially when the 

true target pockets are absent. Interestingly, target 832, 852 and 846 showed improved performance when 

only ligand information is provided. Two factors may have contributed to this observation: (1) These three 

targets had the lowest Graph-CNN performance using true pockets (2) Among the 8 MUV targets, these 

targets have the most separated actives and negative ligands.    

The low performance on target 852, 846, and 832 are not unique to Graph-CNN models but are 

also observed with 3DCNN protein-ligand scoring. Graph-CNNs and 3DCNNs are both trained on the 

DUD-E dataset, using deep-learning-based methods. The consistent low performance of Graph-CNNs and 
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3DCNN protein-ligand scoring on these targets suggests that the poor performance might arise from biases 

in the DUD-E dataset. To investigate the hypothesis, we additionally trained Graph-CNNs on the MUV 

dataset using five-fold cross validation. As shown in Table 6 and Figure 8, the Graph-CNN-MUV models 

achieve significant improvements on the three targets, achieving AUC scores comparable to AP. This 

suggests that the low performance may be due to the limited coverage of interactions in the DUD-E dataset 

and that high-quality and large-scale datasets may be needed to improve performance of deep-learning 

based methods. 

 

Network Visualization  

To visualize target-ligand interactions captured by the Graph-CNNs, we present four examples 

of pocket residue and ligand atom importance maps of pocket-ligand pairs, highlighting the key features 

contributing to the Graph-CNN classifications. Example visualizations for target SRC, MUV-689, 

HDAC2, and ESR1 with their corresponding active ligands are shown in Figure 9.  

(A) SRC (Tyrosine-protein kinase SRC) 
Figure 9a (middle, bottom) shows the ligand and pocket importance maps for target SRC (PDB: 

3EL844) and compound 1 (Table 7). The pocket importance map shows that the positive prediction 

depends on residues Glu 310, Tyr 338, Asp 404, Val 323 and Leu 393. The ligand importance map 

shows that the decision primarily depends on the nitrogen and oxygen atoms in compound 1. The 

identified key residues and atoms highly correspond to the observed interacting residues and ligand 

atoms in the co-crystalized complex of SRC and pyrazolopyrimidine 5 (PDB: 3EL8.) As shown in 

Figure 9a (top), residue Glu 310, Tyr 338, Asp 404 form hydrogen bonds with the nitrogen and oxygen 

atoms in pyrazolopyrimidine 544. The surrounding hydrophobic residues Val 323, Leu 393, Met 314 

potentially stabilize the ligand through hydrophobic interactions. The high correspondence of the 

predicted and observed key residues and ligand atoms in the two target-ligand pairs suggests that the 

Graph-CNN is able to recognize meaningful target-ligand interactions to make predictions. 

(B) MUV – 689 (EPHA4) 

Figure 9b (middle, bottom) shows the ligand and pocket importance maps for target MUV – 689 

(PDB: 2Y6O45) and compound 2. The Graph-CNN correctly classify the pocket-ligand pair as positive. 

The pocket importance map shows that the decision depends on residues Met 674, Thr 699, Ala 651, Ile 

683, Leu 753, which highly overlap with the key pocket residues observed in the EPHA4- Dasatinib co-

complex (PDB: 2Y6O). Figure 9b (top) shows the EPHA4- Dasatinib co-complex45. The 2- chloro-6-
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methyl phenyl group of dasatinib occupies the hydrophobic pocket and makes van der Waals contacts 

with Met 674, Ile 683, Ile 697 and Thr 699. The amino-thiazole ring has van der Waals contacts with 

Leu 753 and Ala 651, and also forms hydrogen bonds with Met 702. The amide group forms hydrogen 

bond with Thr 699. The pyrimidine ring makes contact with Ile 627. Our ligand interaction map 

highlights the benzene ring, the nearby oxygen, and the polycyclic ring in compound 2 as the key 

features, which may play the roles of the pyrimidine ring, the amino-thiazole ring, and the 2- chloro-6-

methyl phenyl group, respectively. 

(C) HDAC2 (Histone deacetylase 2)  

Figure 9c (middle, bottom) shows the ligand and pocket importance maps for target HDAC2 

(PDB: 3MAX46) and ligand compound 3. The pocket importance map highlights residues His 146, His 

145, Asp 181, Tyr 29, and Asp 269. The ligand importance map shows that the classification decision 

depends on the long carbon chain and the NH-OH  group in compound 3. The highlighted key residues 

and ligand functional groups in the importance maps show high similarity to observed interactions in the 

HDAC2-SAHA co-complex (PDB: 4LXZ47). Compound 3 belongs to the category of hydroxamic 

acids, which often play the role of metal chelators. Figure 9c (top) shows how SAHA, an hydroxamate 

inhibitor binds to the HDAC2 pocket and is coordinated to the catalytic zinc47. The carbon chain sits in a 

hydrophobic tunnel and the benzamide moiety resides at the solvent protein interface. The zinc ion is 

held by His 183, Asp 181, Asp 269 and chelated by the NH-OH group of the ligand. His 145, His 146, 

and Tyr 29 often form hydrogen bonds with hydrogens and carbonyl oxygens in the ligand46. The high 

correspondence between the predicted and observed key residues and functional groups suggests that the 

network was using meaningful interactions to make predictions. 

(D) ESR1 (Estrogen receptor alpha)  

Figure 9d (middle, bottom) shows the ligand and pocket importance maps for target ESR1 (PDB: 

1SJ048) and ligand compound 4. The pocket importance map shows that the Graph-CNNs made the 

positive prediction using residues Ala 350, Leu 387, Leu 391, Leu 346, Met 343, and Gly 521, Met 528, 

and Arg 394. The ligand importance map highlights the two hydroxyl groups and the polycyclic ring 

region, which agrees with the interactions observed between ESR1 and (R,R)-5,11-cis-diethyl-5,6,11,12-

tetrahydrochrysene-2,8-diol (THC). Figure 9d (top) shows the ESR1-THC complex (PDB: 1L2I49), 

where the hydroxyl group in the phenol group forms hydrogen bonds with Arg 394 and Glu 353 and the 

other hydroxyl group forms hydrogen bonds with His 524 and forms van der Waals contacts with Gly 
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52149. The polycyclic ring interacts with the hydrophobic residues including Ala 350, Leu 387, Leu 384, 

Leu 525, Leu 391, Met 388 and Leu 34649. 

 

Conclusion  

In this study, we propose a two-staged graph-convolutional framework to learn protein pocket 

representation and predict protein-ligand interactions. Our results show that graph-autoencoders can learn 

meaningful fixed-size representation for protein pockets of varying sizes that reflects protein family 

similarities. Such representation has the potential to enable efficient pocket similarity search, pocket 

classification, and can serve as input for downstream machine learning algorithms. We further demonstrate 

that the Graph-CNN framework can effectively capture protein-ligand binding interactions without relying 

on target-ligand co-complexes. Across several metrics, Graph-CNNs achieved better or comparable 

performance to 3DCNN ligand-scoring, AutoDock Vina, RF-Score, and NNScore on the DUD-E and 

MUV benchmark, and showed complementary advantages to ligand-based methods. 

Our study also points out limitations in the current method and opportunities for improvement. To 

learn a generalizable model of protein−ligand binding, the quality of the training dataset is crucial. Virtual 

screening dataset often provide information about ligand binding propensity to given targets but have 

limited information on target preferences of given ligands. Moreover, current benchmark datasets often 

include limited number of targets, which only cover a subset of potential target space. Training on such 

dataset can result in models that perform well on prioritizing ligands for targets that are similar to those 

in the training set while perform badly on ranking a ligand’s true target over random targets or perform 

less than ideal on target-ligand interactions beyond the relationship inherent in the training data.  

In this study, we impute the DUD-E with negative pocket information for each active ligand in the 

dataset, and initialize our pocket Graph-CNN with pretrained weights that capture prior distribution of 

general pocket features. We show that our model can generate meaningful ligand-target binding profiles 

and achieved better generalizability on the MUV dataset compared to other machine-learning and deep-

learning structure-based methods. Visualization of individual contributions of each pocket residue and 

ligand atom also confirmed that our Graph-CNNs recognize meaningful interactions between protein 

pockets and ligands. However, the significant difference between performance of Graph-CNN-DUD-E 

and Graph-CNN-MUV models on MUV targets 832, 852 and 846 suggests that the interactions learned 

from the DUD-E dataset are still incomplete. We believe high quality, large-scale datasets that include 

both target-ligand and ligand-target binding propensities can vastly improve the performance of deep-
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learning-based methods on predicting ligand-target binding. 

Finally, in this study, we used the FEATURE vectors to characterize microenvironments of the 

pocket residues. We have previously shown that 3DCNNs can extract meaningful features of amino acid 

microenvironments directly from raw atom distribution12.  The proposed Graph-CNN framework can be 

layered on top of 3DCNNs that characterize local pocket residue environments to further enable an end-to-

end framework that learns biochemical features directly from raw crystal structures. Such design can 

simultaneously allow detailed characterization at the local amino acid environment level and global 

flexibility at the pocket level. 
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