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Abstract

Here we present and evaluate DeepFLaSH, a unique deep learning pipeline to automatize the segmen-
tation of fluorescent labels in microscopy images. The pipeline allows training and validation of label-
specific convolutional neural network (CNN) models that can be uploaded to an open-source CNN-model
library. As there is no ground truth for fluorescent signal segmentation tasks, we evaluated the CNN with
respect to inter-coding reliability. Similarity analysis showed that CNN-predictions highly correlated with
segmentations by human experts. DeepFLaSH also allows adaptation of pretrained, label-specific CNN-
models from our CNN-model library to new datasets by means of transfer learning. We show consistent
model-performance on datasets from three independent laboratories after transfer learning, thus ensur-
ing its objectivity and reproducibility. DeepFLaSH runs as a guided, hassle-free open-source tool on a
cloud-based virtual notebook with free access to high computing power and requires no machine learning
expertise.
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Introduction

Fluorescence labeling of cells in brain slices
with antibodies is one of the most frequently used
methods in neurobiology. Cell labels are routinely
monitored by fluorescence microscopy techniques.
Recent technical advances provide the possibil-
ity to automatically acquire large image datasets,
even at high resolution and with high throughput
[1, 2, 3]. However, the subsequent analysis of these
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images is very demanding. Typically, an expert
evaluates fluorescent labels and categorizes them
based on individual heuristic criteria, such as mor-
phology, size or signal intensity, as background
or as region of interest (ROI). This cognitive de-
cision process is subjective and long known to po-
tentially limit both objectivity and reproducibility
[4, 5, 6]. Furthermore, manual image segmenta-
tion can become extremely time-consuming as the
borders of thousands, if not tens of thousands of
features need to be outlined. Ultimately, reaching
pixel-wise accuracy manually in this task is virtu-
ally impossible.

In response to this challenge, computational
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tools for semi-automatic or automatic segmenta-
tion of fluorescent labels have been deployed [5,
7, 8]. However, tools that use signal-thresholds
to segment fluorescent labels depend on a high
signal-to-noise ratio to correctly separate ROIs
from background noise [9].Automatic segmenta-
tion is also hampered by variability in the section-
and labeling-quality, often caused by batch-to-
batch differences of reagents, or even variations
between individual animals. Furthermore, stan-
dardization of image acquisition to differences in
label qualities is difficult and thus impedes quan-
titative imaging. Due to all these drawbacks,
heuristic analysis performed by an experimenter
blinded to the experimental condition remained a
gold standard to analyze fluorescent labels [10, 11,
12]. In recent years, deep learning and particu-
larly convolutional neural networks (CNNs) have
shown their remarkable capacities in image recog-
nition tasks [13, 14]. Substantial progress has
been made with deep neural networks for image
feature recognition in biomedical imaging data.
Deep learning has already been used for classi-
fying types of skin cancer [15], to identify blind-
ing retinal diseases [16] or to predict fluorescent
labels from bright field images [17].). Also, seg-
mentation of image features has been addressed
with deep learning approaches and has recently
been provided as a cloud-based segmentation tool,
called CDeep3M [18]. However, the computations
of CNNs in so-called hidden layers are incom-
prehensible, which makes it important to care-
fully validate CNNs before they can be used on
research datasets. CNN validation is essential
for analysis of fluorescent labels in particular, be-
cause there is no ultimate ground truth for the
segmentation of fluorescent signals that can be
used to train or evaluate deep learning networks.
Therefore, objective analysis and reproducibility
tests are key before CNNs can be used to accu-
rately process research datasets. Here we present
a deep learning pipeline, framed as DeepFLaSH
(a Deep-learning pipeline for Fluorescent Label
Segmentation that learns from Human experts), to
create CNN-models for fluorescent signal segmen-
tation. We hypothesized that deep learning can
be used to improve objectivity in image segmen-
tation, when CNNs are trained with equal input
from multiple independent human experts. Here,
we tested DeepFLaSH on brain slices with fluo-
rescent labels of the neuronal plasticity marker
cFOS or the calcium-binding protein Parvalbu-

min [19, 20]. We validated our approach in sev-
eral steps: (1) We demonstrate that the result-
ing CNN-models reach expert-like performance
on related imaging datasets. (2) We show that
both models are suited to extract behavior-related
changes pertaining to signal abundance and inten-
sity of both proteins. (3) Ultimately, we show that
CNN-models trained by DeepFLaSH can easily be
adapted to new datasets acquired from three in-
dependent laboratories, while maintaining expert-
like performance in image segmentation. The
pipeline we designed and provide in this study in-
cludes generic pre- and post-processing of the im-
age data, as well as training, evaluation and fine-
tuning of label-specific CNNs. It can be run ei-
ther in local facilities or - with virtually no require-
ments to both hardware and machine learning ex-
pertise in a cloud-based virtual notebook.

Results

To illustrate a strategy for automated segmenta-
tion of fluorescent images from histological sam-
ples, we used confocal microscopy images of anti-
cFOS and/or anti-Parvalbumin labels in the hip-
pocampus, following behavioral training of mice.
In absence of a ground truth, we performed sim-
ilarity analysis to show that segmentation maps
based on the CNN-prediction correlate with seg-
mentation maps created by multiple human ex-
perts. Finally, we implemented transfer learning
to adapt the CNN-model to microscopy images
from different laboratories and confirmed that the
approach is suited to automatically process fully
independent image datasets.

Contextual fear conditioning and image data acquisi-
tion

First, we prepared an image dataset that com-
prises three experimental groups: mice directly
taken from their homecage as nave learning
controls (HC), mice after retrieval of a previ-
ously explored training context as context controls
(C-) and mice that underwent Pavlovian con-
ditioning (fear/threat conditioning) in the same
training context (C+, Figure 1A). Conditioned
mice showed increased freezing behavior after fear
acquisition and showed strong freezing responses
when re-exposed to the training context 24 h later
(Figure1B and 1C). Unconditioned control mice
showed significantly lower amount of freezing be-
havior in the training context (Figure 1B and 1C).
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Brain sections were prepared and proteins of inter-
est the neuronal activity-related protein cFOS, the
interneuron subpopulation marker Parvalbumin
and the neuronal marker NeuN (Fox3) - were la-
belled by indirect immunofluorescence. NeuN la-
bels served as counterstain for identification of the
corresponding brain sub-regions in the hippocam-
pus. Confocal microscopy images (x,y-z) were ac-
quired and stored as maximum intensity projec-
tions (Figure 1D). Based on these raw 2D-images,
five experts in neurobiology (throughout named as
Expert 1 Expert 5) independently created expert-
specific segmentation maps of regions-of-interest
(ROI) of two fluorescent labels (cFOS and Parval-
bumin) according to their individual heuristic cri-
teria (Figure 1D). In case of Parvalbumin, the aim
was to label the cell somata and not widely rami-
fied neurites of these local interneurons. We also
used a semi-automatic routine (see methods) to
create threshold-based segmentation maps (Figure
1D). As indicated in Figure 1D, both, individual
experts and threshold-based segmentation, reveal
subjective differences in the interpretation of the
fluorescent labels. As expected (Shuvaev et al.,
2017)), the threshold-based segmentation showed
a tendency to prefer high intensity labels (high bit-
value), while ignoring weaker close-to-noise sig-
nals (Figure 1D).

Strategy to train a CNN for segmentation of fluores-
cent labels

Supervised deep learning uses a training dataset
that consists of input pairs of instance (in our case
microscopy images) and the corresponding label
(here the segmentation maps) to iteratively opti-
mize the computational weights in the hidden lay-
ers to minimize the deviation between predicted
output and the ground truth input [14]. However,
neither heuristic nor threshold-based segmenta-
tion maps provide an absolute ground truth in
this particular case of fluorescent labels. To over-
come this fundamental obstacle, we used for each
input image multiple segmentation maps created
by different experts. We then adapted the idea of
inter-coder reliability to limit the subjectivity of
a given ROI being classified as a relevant fluores-
cent label by pooling the segmentation data across
these experts [21]. Inter-coding results in scaling
of segments (or ROIs) such that marking by mul-
tiple coders increases the impact during training
and thus ensures objectivity of the trained CNN-
model. We selected a training dataset of 36 im-

ages, consisting of four randomly chosen images
of each experimental condition (HC, C- and C+)
for every analyzed hippocampal region (DG, CA3
and CA1; 4 x 3 x 3). The five experts served as
inter-coders and processed the training dataset in-
dependently to create coder-specific segmentation
maps. We used the raw images showing the fluo-
rescent label as input for the CNN, and the corre-
sponding coder-specific segmentation maps as the
desired output (Figure 2A). However, CNNs, such
as the one created for the present study, usually re-
quire large training datasets of several thousands
of images to avoid an over-fitting of the network
to the training data [22]. Given limited training
data availability, we apply data augmentation us-
ing elastic deformations to the available training
images. This allows the CNN to acquire robust-
ness to such deformations, without the need to see
these transformations in the annotated image cor-
pus. This is particularly important in biomedical
segmentation, since deformation is the most com-
mon variation in tissue and realistic deformations
can be simulated efficiently. For data augmen-
tation, both the original microscopy image and
the segmentation maps were randomly rotated,
shifted in x-y or flipped (Figure 2B). This created
a large set of unique pairs from each pair of mi-
croscopy image and its corresponding segmenta-
tion map. For an efficient use and evaluation of the
data, a 10-fold cross-validation during the train-
ing process was chosen [23]. For this validation
method, the training dataset was split randomly
in ten subsamples (Figure 2C). In each fold, the
CNN was trained on nine subsamples while the
remaining one was used for validation. This was
repeated ten times, so that every subsample was
ultimately used once for evaluation of the trained
model (Figure 2C). This ensures an efficient use
of the training data and allows an initial evalua-
tion of the CNN based on the training data. The
trained, feature specific CNN-model, can now be
used to compute whole imaging datasets at super-
human speed (Figure 2D).

Model Description
Our CNN (Figure S.1) performs a non-linear

pixel-wise classification. The design of the deep
neural network is inspired by the U-net archi-
tecture [22]. U-net like architectures are, at the
current state, the most common architecture for
biomedical image segmentation. Moreover, they
yield outstanding results in relevant data-science
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competitions (e.g. Kaggle Data Science Bowl
2018). The key principle of a U-net is that one
computational path stays at the original scale, pre-
serving the spatial information for the output,
while the other computational path learns the spe-
cific features necessary for classification by ap-
plying convolutional filters and thus condensing
information [22]. In order to benefit from cur-
rent research and findings in the quickly emerging
field of deep learning, we added two main com-
ponents to our CNN. First, we attached batch nor-
malization layers [24] and secondly, we replaced
the standard 2D-convolutional layers with depth-
wise separable convolution [25] on the down part
of the network. These changes significantly re-
duced trainable parameters (i.e., weights) and im-
proved training speed while the level of perfor-
mance was maintained. Our CNN takes greyscale
microscopy images as an input and outputs a seg-
mentation map. For each mask, the network out-
puts a probability distribution of belonging to the
positive class (i.e., cFOS-positive nucleus) for each
pixel. We implemented the network in Keras [25],
a popular high-level open-source API for deep
learning, with TensorFlow [26] in the backend. It
was trained using the Adam optimizer [27], a com-
monly used gradient-based function optimizer in-
cluded in TensorFlow.

Validation of CNN-based segmentation in absence of
a ground truth

In absence of a ground truth, classical perfor-
mance measures like precision or recall cannot be
computed. Instead, we quantified the similarity
between the segmentation maps of the individ-
ual human experts and our CNN to test, whether
DeepFLaSH can reach expert-like performance in
this segmentation task [28]. The validation of our
CNN is representatively explained on the CNN-
model for deep segmentation of cFOS labels. For
similarity analysis, we calculated the Jaccard sim-
ilarity (J) [29]. It represents the proportion of sig-
nificantly overlapping features among all features
in two segmentation maps (see methods). To il-
lustrate this metric, three representative cFOS im-
ages and segmentation maps with their calculated
Jaccard similarity are shown (Figure 3A). First, we
calculated the Jaccard similarities of the segmen-
tation maps for all 36 images between all human
experts, a threshold-based approach and our CNN
trained on cFOS labelled microscopic images (Fig-
ure 3B and Figure S.2). The median Jaccard simi-

larity between two experts ranged from 0.33 (Ex-
pert 3 vs. Expert 5) to 0.61 (Expert 2 vs. Expert
3, Figure 3B), signifying the high inter-coder vari-
ability [6]. This was particularly reflected in the
segmentations of Expert 5, who focused rather on
high-intensity cFOS labels. Consequently, Expert
5 showed the highest Jaccard similarity compared
to signal threshold computation (Figure 3B and
Figure S.2). Notably, the segmentation maps cre-
ated on base of the CNN predictions show an equal
similarity to those of the human experts (0.43-
0.60, Figure 3B) as they show among themselves
(0.33-0.61, Figure 3B). This demonstrates that the
similarity and variability of human expert analy-
sis was successfully captured by the CNN-model.
On the other side, as one human expert can be-
have very different from another expert, the simi-
larity analysis indicates that inter-coding of train-
ing data may help to increase the objectivity of
deep segmentation results. We suggest that CNN
training profits from data created by multiple ex-
perts, as this may help to include diverse segmen-
tation strategies into one CNN-model. To visu-
alize the segmentation behavior of the individual
coders, we computed error maps that show the de-
viations of each coder from an expert consensus.
The expert consensus contains exclusively those
pixels that are annotated in at least three of five ex-
pert segmentation maps (see methods, Figure 4A).
The error maps indicate that the CNN, which was
trained on the segmentations of all experts, is sim-
ilar to the expert consensus, yet not identical (Fig-
ure 4B, green inlet). The error maps again point to
the different heuristic behavior of the individual
experts. For instance, Expert 1, 3 and 4 annotated
more cFOS-positive ROIs than those present in
the expert consensus (Figure 4C-4F). On the other
hand, Expert 5 and the threshold-based approach
segmented fewer cFOS-positive ROIs (Figure 4G
and 4H). Together, these results demonstrate that
our inter-coding approach was successful in train-
ing a CNN-model to segment cFOS-positive nuclei
in the hippocampus and was able to reach expert-
like performance on the initial dataset of 36 im-
ages. In order to further validate our CNN de-
sign and the generalizability of our approach, we
evaluated our model on a new and larger image
dataset. This ensures that the CNN-model is not
over-fitted on our initial dataset of 36 images, but
instead learned the desired features of the fluo-
rescent labels. Therefore, we compared segmen-
tations of the trained CNN to those of a human
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expert (Expert 3) on 65 new images of cFOS fluo-
rescent labels in the dorsal hippocampus. Jaccard
similarity analysis confirmed that expert-like per-
formance was maintained (Figure 5A and Figure
S.3A). In addition, subsequent data analysis based
on the segmentation maps of either coder shows
equal effects on this dataset (Figure S.3B and S.3C).
Therefore, we conclude that labeling experience
of human experts was successfully incorporated
in the CNN by our inter-coding training approach
and that our trained model is suited to capture the
complexity of cFOS immunolabels at human ex-
pert level.

DeepFLaSH performance in a complex image data
analysis

After having established that our CNN-model
correctly identifies and segments the desired flu-
orescent feature (cFOS-positive nuclei), we asked
whether the validated model can also be used to
analyze and detect changes in cFOS abundance in
a complex image dataset. There is a large body of
evidence that contextual memory processing leads
to increased cFOS expression in the dorsal hip-
pocampus [30, 31, 32, 33, 34]. Thus, the detection
of these behavior-related changes in cFOS abun-
dance appears to be a solid test system to evaluate
whether our deep learning concept is also suitable
for the subsequent image data analysis. There-
fore, we used our cFOS-model for the deep seg-
mentation of a large image dataset of anti-cFOS
labeled hippocampi of mice after behavioral train-
ing (Figure 5B-5J). Based on these segmentation
maps, we analyzed the number of cFOS-positive
cells and the intensity of cFOS labels per cell in
sub-regions of the dorsal hippocampus (CA1, CA3
and dentate gyrus) and compared our results to
previous studies. In line with the principle of the
3Rs for animal research - the replacement, reduc-
tion and refinement of animal testing - microscopy
images of immuno-labeled brain sections cannot
be acquired in an unlimited fashion and exist-
ing datasets should therefore be used with max-
imal efficiency. Instead of excluding the images
used to train the CNN from the final data anal-
ysis, we therefore suggest to re-use the manual
analysis by a human expert on the training data
and to combine it with the CNN-based analysis on
the remaining images. This further facilitates the
use of machine learning approaches to the limited
dataset sizes in biomedical research. The deep seg-
mentation based analysis of CA1 pyramidal neu-

rons in the dorsal hippocampus revealed an in-
crease in cFOS-positive neurons after retrieval of
a previously seen context (C-), as well as after
re-exposure to the conditioning context (C+, Fig-
ure 5B and 5C) [30, 34]. In CA3, we observed
significantly more cFOS-positive cells after con-
text re-exposure (C-), than after retrieval of the
fear-associated context (Figure 5G-5H and Figure
S.4A) [30, 35, 36, 34]. The dentate gyrus is orga-
nized in two blades, the suprapyramidal blade and
the infrapyramidal blade, and the neurons of both
blades are differently embedded in the hippocam-
pal circuitry [37]. With our computed segmenta-
tion maps, we were able to detect an increase in
cFOS abundance in the suprapyramidal blades of
mice after retrieval of a contextual memory and
in mice that retrieved the contextual fear mem-
ory (Figure 5G and Figure S.4B) [38, 39]. In con-
trast, the infrapyramidal blade of the dorsal den-
tate gyrus showed upregulation of cFOS only after
retrieval of the conditioning context, but not af-
ter exploration of a previously seen neutral con-
text (Figure 5I and Figure S.4B). Together, these
data show that our cFOS-model was able to detect
behavior-related changes in all examined regions.
Data analysis based on DeepFLaSH segmentations
are in line with previous studies. In our data,
behavior-related changes were rather reflected in
elevated numbers of cFOS-positive cells, than in
changes of mean cFOS signal intensities (Figure
5C-5J). Consequently, this demonstrates that our
approach to train a CNN with raw image material
representing multiple brain regions, different ex-
perimental conditions, and with the input of mul-
tiple human experts at once was successful to cre-
ate a model that learned the objective segmenta-
tion of the desired fluorescent feature and can be
used to automatize image data analysis.

DeepFLaSH-based segmentation of cFOS in
Parvalbumin-positive interneurons

To demonstrate the flexibility of our approach,
we tested DeepFLaSH on a second fluorescent
label. We trained another CNN-model to seg-
ment only the cell somata of Parvalbumin-positive
(PV+) interneurons in the hippocampal regions
CA1, CA3 and the dentate gyrus. Local PV+ in-
terneurons are intensively ramified due to their
function in soma-near inhibition of hundreds
to thousands of neighboring excitatory neurons
[40]. The calcium-binding protein Parvalbumin
is distributed throughout the whole cytosol of
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these interneurons, including their neurites. This
makes analysis of fluorescent labels of Parvalbu-
min rather intricate compared to cFOS, as it can
be quite complex to distinguish a PV+ soma from
any PV+ neurite wrapping around a neighboring
excitatory neuron. We used again 36 confocal
microscopy images showing fluorescent labels for
Parvalbumin and the corresponding segmentation
maps of PV+ somata created by five human ex-
perts to train and evaluate the CNN-model. No-
tably, the CNN learned to segment also PV+ so-
mata with expert-like performance (Figure S.5 and
Figure S.6) and maintained this level of perfor-
mance on new images as well (Figure 6A). To test
whether also this CNN-model was suited for sub-
sequent image data analysis, we used it to inves-
tigate behavior-related changes in PV+ interneu-
rons in the hippocampus. As suggested, we again
combined the analysis of a human expert (Expert
3) on the training dataset with the analysis of the
remaining images by our PV CNN-model to max-
imize the yield of the limited image data. As
expected, we found no differences in the overall
number of detected PV+ somata in the hippocam-
pus between the three experimental conditions
(Figure S.7A-S.7C). Furthermore, we were not able
to detect any context- or fear-dependent variations
in the somatic Parvalbumin signal intensity in the
dorsal hippocampus, when analyzing all PV+ in-
terneurons (Figure S.7D-S.7F). In order to investi-
gate the possibility of activity-related, rather than
behavior-related changes in Parvalbumin-positive
interneurons, we combined the two CNN-models
for PV+ somata and cFOS-positive signal segmen-
tation. This analysis revealed a higher proportion
of cFOS+ PV+ of all PV+ interneurons in the re-
gions CA3 and CA1 in context control (C-) mice,
and in the CA1 region of context-conditioned (C+)
mice (Figure 6B, 6D and 6E and Figure S.8A)
[10, 41]. We did not observe such effects in the
dentate gyrus of the dorsal hippocampus (Fig-
ure 6C and Figure S.8B). We then calculated for
each image the ratio of Parvalbumin signal inten-
sity of cFOS-positive PV+ somata to that of cFOS-
negative ones. In this ratio, values greater than
one represent a higher Parvalbumin signal inten-
sity in cFOS-positive PV+ somata. Notably, we did
not detect any changes in this ratio in the individ-
ual regions (Figure S.9A S.9C), nor after pooling
the images by conditions (Figure S.9D), by regions
(Figure S.9E) or all together (Figure 6F). With these
data, we show that our CNN-based analysis re-

vealed behavior-related changes also in the popu-
lation of Parvalbumin-positive interneurons in the
dorsal hippocampus after retrieval of a contex-
tual memory [42]. However, in our dataset, these
changes were reflected again in an increased pro-
portion of cFOS+ PV+ interneurons (Figures 6D
and 6E), rather than in changes of Parvalbumin
signal intensities (Figures 6F, Figure S.7D-S.7F and
Figure S.9). Taken together, these results demon-
strate that DeepFLaSH can create CNN-models as
per individual needs - here the segmentations of
cFOS+ nuclei and Parvalbumin-positive somata -
and that these models can be used either individ-
ually or in conjunction with each other to fully
automatize the segmentation of individual image
datasets.

Transfer of a label-specific CNN to new datasets with
minimal training data

Fluorescent labeling is a standard technique
in neuroscience and many groups analyze the
same fluorescent features, like cFOS-positive nu-
clei. Therefore we aimed at testing the general-
izability of our cFOS-model to fully independent
image datasets that show anti-cFOS labels in dif-
ferent brain regions and that were acquired with
different microscopy techniques. Transfer learning
is a computational strategy to adapt feature inter-
pretation in one set of data to new datasets with
similar features. It allows the adaptation of a pre-
trained model to similar images with only little ex-
tra training data and is hence particularly advanta-
geous for the use of machine learning approaches
on datasets with limited sizes, like in biomedical
research [17]. To test whether our cFOS-model
can be adapted to similar images while main-
taining its expert-like performance, we used mi-
croscopy images showing cFOS fluorescent labels
from three different laboratories (marked as Lab-
Mue, Lab-Inns1 and Lab-Inns2). These datasets
were created in a fully independent manner and
included behavioral analysis, brain sectioning, flu-
orescent labeling, microscopy and image analy-
sis according to lab-specific protocols (see meth-
ods: Lab-Mue, Lab-Inns1, Lab-Inns2). First, we
generated lab-specific training datasets consist-
ing of only five microscopy images and corre-
sponding manually prepared segmentation maps
each (according to Figure 2A). After augmenta-
tion of these image pairs (according to Figure
2B), we adopted the cFOS-model, which was pre-
trained on 36 images of Lab-Wue, to create lab-
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specific models by means of transfer learning (Fig-
ure 7A). Finally, we used these fine-tuned mod-
els for the deep segmentation of the correspond-
ing, lab-specific cFOS imaging dataset (Figure 7B).
For one dataset (Lab-Mue), mice experienced re-
straint stress and subsequent Pavlovian fear con-
ditioning (cue-conditioning, tone-footshock asso-
ciation). The number of cFOS-positive cells in
the paraventricular thalamus (PVT) was compared
between early (eRet) and late (lRET) phases of
fear memory retrieval. The analyses by two ex-
perts of Lab-Mue and the fine-tuned CNN-Mue,
all revealed a significantly higher number of
cFOS-positive cells in the PVT of mice 24h af-
ter fear conditioning (lRET; Figure 7C). In Lab-
Inns1, mice underwent Pavlovian fear condition-
ing (cue-conditioning, tone-footshock association)
and extinction in the same context. Again, we
compared the analysis of the experimenter from
that lab (Lab-Inns1) with deep segmentation us-
ing the CNN-Inns1, which resulted from trans-
fer learning solely on five images. Both, the hu-
man expert and the CNN found an increased num-
ber of cFOS-positive cells in the basolateral amyg-
dala (BLA) after extinction of a previously learned
fear (Figure 7D). A third image dataset was pro-
vided by Lab-Inns2 and shows cFOS immunore-
activity in the infralimbic cortex (IL) following
fear renewal (return of extinguished fear in a con-
text different from the extinction training context).
In 129S1/SvlmJ mice, which display impaired
fear extinction acquisition and extinction consol-
idation, we have previously shown that enhanc-
ing dopaminergic signaling by L-DOPA (L-3,4-
Dihydroxyphenylalanine) treatment rescued defi-
cient fear extinction and co-administration of a
cognitive enhancer (MS-275) rendered this effect
enduring and context-independent [43, 44]. In
the present study, we replicated our findings that
L-DOPA/MS-275 reduces fear renewal (see meth-
ods) and now show for the first time that this re-
duction of fear renewal is associated with an in-
creased number of cFOS-positive cells in the in-
fralimbic cortex. Furthermore, since heterogene-
ity in this behavioral response was observed, mice
were classified as responders or non-responders,
based on freezing responses, which was more than
2 x Std. deviations from the average of the re-
sponders. Both, the human expert and the corre-
sponding CNN-Inns2 found increased numbers of
cFOS-positive cells only in the infralimbic cortex
of the L-DOPA responders, compared to controls

as well as non-responders (Figure 7E). These anal-
yses confirmed that a CNN-model trained with
DeepFLaSH on one dataset can be adapted to sim-
ilar images, albeit cFOS labeling and image acqui-
sition was done differently (see methods) and dif-
ferent brain regions (here PVT, BLA and IL) were
investigated. This gives experimental proof that
pretrained CNN-models can easily be adapted to
data from different laboratories, with a very lim-
ited number of training images (here five images)
and can perform on the new data with expertise.

Discussion

Here, we introduce DeepFLaSH, an open-source
deep-learning pipeline for fluorescent label seg-
mentation that learns from human-experts. Deep-
FLaSH is open to be used in local computing facil-
ities, but is also implemented in a computational
notebook and runs as an interactive web tool in a
computer cloud (Jupyter notebook in Google Co-
lab). The deep learning network we developed can
be fed with pairs of raw images showing fluores-
cent labels and the corresponding manually cre-
ated segmentation maps. Once trained on some
image-segmentation pairs, the label-specific con-
volutional neural network (CNN) can be exploited
to analyze independent microscopy image datasets
of similar labels, while maintaining expert-like
performance. This adaption of pretrained mod-
els can dramatically reduce the time and effort re-
quired for CNN training. Consequently, this urges
the creation of open-access CNN-model libraries
that allow the quick adaptation of a suitable model
to individual demands.

Inter-coding reliability and objectivity of CNNs for
fluorescent feature segmentation

Deep learning segmentation approaches, such
as DeepEM3D [8], its cloud-version CDeep3M [18]
or DeepFLaSH (this paper), share the potential to
be applicable for a wide range of segmentation
tasks. However, deep learning requires ground
truth information, meaning data objectively be-
ing true. Ground truthing for image segmentation
tasks can be done automatically or manually, but
both depend on heuristic information [18, 45, 8]
and are therefore never fully objective. This is a
minor problem, when fluorescent signals provide
a high signal-to-noise ratio, as seen for cell nucleus
stains with DNA binding dyes [18, 45]. In such ex-
periments, objective measures are comparable to
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subjective assessments. However, when fluores-
cent signals are not homogenous and are of rele-
vance over a wide signal-to-noise spectrum, man-
ual segmentation becomes rather demanding and
subjectivity increases [5, 6] and this study). Any-
how, manual, heuristic segmentation is still the
most common method to generate training data for
segmentation tasks [18, 45]. In the present study,
we trained our CNN-model by means of multiple
segmentation maps created by different experts for
each training image. This approach assumes no
ground truth per se but pools the input from mul-
tiple independent experts who were unaware of
the segmentations done by the other experts. Sub-
sequently, we used similarity analysis to compare
the segmentations of the individual coders (ex-
perts, CNN-models and thresholding). We found
that our CNN-models showed higher similarities
to four of the five experts (Experts 1-4) and less
to Expert 5, which was in accordance with higher
similarities within Experts 1-4 compared to Expert
5. It indicates that the CNN is capable of learn-
ing the congruent information present in the in-
put of multiple experts and can balance individ-
ual behavior. Based on our data, we therefore sug-
gest to always use input from multiple experts to
train a CNN. This helps to improve reproducibility
and objectivity. In contrast, CNNs based on single
expert training data may be rather subjective and
might create data that are not easy to reproduce.
To facilitate the validation of CNN-predictions, we
implemented similarity analysis in the pipeline of
DeepFLaSH, so that the user can easily compare
the CNN output with manual segmentations.

CNN-model libraries for feature segmentation
DeepFLaSH is designed to be used already with

limited training data. We showed, that for two flu-
orescent labels in brain slices, the neuronal plastic-
ity marker cFOS and the calcium-binding protein
Parvalbumin, training on just 36 images was suf-
ficient to create label-specific CNNs that behaved
like human experts. Furthermore, we show that
a pretrained CNN-model could easily be adapted
to new and independent datasets with only five
images. Consequently, storage of validated CNN-
models in open-access libraries offers great oppor-
tunities. For example, a cFOS label is in its sig-
nature indistinguishable from a variety of other
fluorescent labels, like those of transcription fac-
tors (CREB, phospho-CREB, Pax6, NeuroG2 or
Brain3a), cell division markers (phospho-histone

H3), apoptosis markers (Caspase-3) and multiple
others. Therefore, we surmise that fast trans-
fer learning will allow the adaptation of our pre-
trained cFOS-model as a general tool for nucleo-
somatic fluorescent label segmentation in brain
slices. This highlights the great potential of Deep-
FLaSH and the creation of CNN-model libraries
for the life science community.

Accessibility of DeepFLaSH

Deep learning algorithms require high com-
puting power (graphics processing unit, GPUs or
tensor processing units, TPUs) and artificial in-
telligence expertise that are still rarely found at
biomedical research facilities. To enable facilitated
access for the life science community, we imple-
mented DeepFLaSH as an open-source tool that is
easily accessible in a cloud-based environment. It
allows out-of-the-box segmentation and adaption
of pretrained models as per individual demands.
Using the free service and computational power of
Google Colab (http://colab.research.google.com)
in a Jupyter Notebook, DeepFLaSH is very user-
intuitive and ensures that no compatibility prob-
lems can arise. Jupyter became the computational
notebook of choice for data scientists [46] and
allows interactive guidance through DeepFLaSH,
also for non-AI experts.

Conclusion

We highly recommend creating open source li-
braries with label-specific CNN-models for broad
use in the neuroscience community. Label-specific
CNN-models, validated on base of inter-coding
approaches may become a new benchmark for fea-
ture segmentation in neuroscience. These mod-
els will allow transferring expert performance in
image feature analysis from one lab to any other.
Deep segmentation can better interpret feature-
to-noise borders, can work on the whole dynamic
range of bit-values and exhibits consistent per-
formance. This should increase both, objectiv-
ity and reproducibility of image feature analysis.
DeepFLaSH is suited to create CNN-models for
high-throughput microscopy techniques and al-
lows automatic analysis of large image datasets
with expert-like performance and at super-human
speed. DeepFLaSH is easy to use, can run in a com-
puter cloud and is provided as an interactive web
tool known as open source computational note-
book.
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Figures and legends:

Figure 1: Contextual fear conditioning, immunolabeling and manual segmentation of fluorescent labels in imaging data
(A) Mouse behavior. Three experimental groups were investigated: Mice kept in their homecage (HC), mice that were trained to a
context, but did not experience an electric foot shock (C-), and mice exposed to five foot shocks in the training context (C+). 24 hours
after the initial training (TR), mice were re-exposed to the training context for memory retrieval (RET).
(B) Fear acquisition was observed in conditioned mice (C+), while unconditioned controls (C-) did not show freezing behavior during
initial context exposure (TR). In the memory retrieval session (RET), conditioned mice showed strong freezing behavior, while uncon-
ditioned mice did not freeze in response to the training context. (X2(3) = 25.330, p < 0.0001, NTR C− = 7, NTR C+ = 8, NRET C− = 7,
NRET C+ = 8, Kruskal-Wallis ANOVA followed by pairwise Mann-Whitney tests with Bonferroni correction, *P < 0.05).
(C) Distance travelled in the training context is reduced in fear conditioned mice. (X2 (3)= 19.988, p < 0.01, NTR C− = 7, NTR C+ = 8,
NRET C− = 7, NRET C+ = 8, Kruskal-Wallis ANOVA followed by pairwise Mann-Whitney tests with Bonferroni correction, *P < 0.05).
(D) Representative confocal microscopy image (maximum intensity projection) showing the CA3 region in the dorsal hippocampus
of a context conditioned (C+) mouse. Triple-label for cFOS, Parvalbumin (PV) and NeuN. Merge is the overlay of all three fluorescent
labels. Binary segmentation maps show annotated ROIs for cFOS+ nuclei or PV+ somata. The segmentation maps created by three
human experts indicate the variability in heuristic analysis of the same image. Threshold-based segmentation reliably annotates ROIs
with strong fluorescent labels. Scale bar: 200 µm.
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Figure 2: Workflow for DeepFLaSH
(A) Data preparation. Data consist of fluorescence microscopy images of immunolabeled brain sections. To create a training dataset,
a microscopy image (green frame) is manually segmented by one or multiple human experts. The segmentation data are used to
compute a binary image showing the segmented fluorescent features (ROIs) in white and unrelated image elements in black (segmen-
tation map, marked by blue frame). Each image and its corresponding segmentation map form a pair of images.
(B) Computational data augmentation. The image pairs are augmented to artificially increase the number of training data images.
For this, images are randomly rotated, shifted in x, y, or flipped to create unique pairs of images.
(C) CNN-Training. The augmented dataset is then used to train a convolutional neural network (CNN; U-net). The training process
includes a 10-fold cross-validation procedure. For this, the training dataset is split randomly into ten subsamples and in each fold,
nine are used to train the algorithm, while the remaining one is used for evaluation. After ten folds, each subsample is used once for
validation. This reduces overfitting and allows the user to perform a preliminary CNN validation already on the training data set. The
trained CNN-model is specific for a learned fluorescent feature. To increase the objectivity of a CNN-model, we highly recommend
pooling the training data generated by multiple independent experts on base of the same images (inter-coding approach).
(D) Automatic segmentation. After generic pre-processing (pre) of the microscope images, the CNN-model can be used to segment
fluorescent labels in image datasets at super-human speed. In post-processing (post), the predicted segments are used to generate
binary segmentation maps (ROI masks) for the subsequent data analysis.
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Figure 3: Automatic segmentation of cFOS immunolabels by a trained CNN-model shows expert-like performance
Five experts (Expert 1 – 5) in neurobiology independently segmented cFOS-positive nuclei in microscopy images to create expert-
specific segmentation maps. Manual segmentation cannot create an ultimate ground truth. To evaluate the individual segmentation
performance in absence of a ground truth, we therefore calculated the similarities between the segmentation maps of all experts,
those created by the CNN and a threshold-based segmentation tool. The figure shows the performance of the cFOS-model, which was
trained in an inter-coding approach, in comparison to human experts.
(A) Microscopy images showing cFOS immunoreactivity (upper row) and the corresponding segmentation maps of cFOS+ nuclei by
two representative experts (one in green, one in magenta) and the overlay of both maps (intersection in white; lower row). The Jaccard
similarity between two segmentation maps (ROI-level) is indicated. The three examples visualize three representative Jaccard simi-
larities of 0.3 (low), 0.5 (medium), and 0.85 (high). The Jaccard similarity of 0.85 represents the best overlap between segmentation
maps created by human experts. Scale bar: 200 µm.
(B) Heat map showing the Jaccard similarity (ROI-level) between corresponding segmentation maps. Compared are the segmentation
maps of the five human experts, a semi-automated signal thresholding approach and the trained CNN-model. The Jaccard similari-
ties are shown as median value (color-coded, upper-left half) and as boxplot, together with the individual data points in the normal
distribution curve (lower-right half). The orange lines mark the value of 0.5 (n=36 for each comparison between two coders). The
data shows that the CNN-based segmentations are as similar to those of human experts, as they are among themselves (inter-coder
variability).
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Figure 4: Accuracy of segmentation of cFOS-positive nuclei at pixel-wise resolution
Pixels that overlapped in the segmentation data of at least three of the five experts were used to create a segmentation map that repre-
sents the expert consensus. This consensus was used to compute error maps that visualize the deviation of each coders segmentation
behavior from the expert consensus.
(A) Comparison of cFOS microscopy image with expert consensus segmentation map. Four inlets are selected to highlight the vari-
ability of typical anti-cFOS fluorescent labels.
(B-H) Segmentation maps and computed error maps are shown for the indicated coder. The error maps are pixel-wise comparisons
of the corresponding coder segmentation to the expert consensus map. In cyan: pixels exclusively present in the expert consensus; in
magenta: pixels that were exclusively labeled by the indicated coder. Individual behavior of experts is best seen in the high similarity
between Expert 5 and the threshold-based approach and between the CNN and Experts 1-4.
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Figure 5: Image analysis with a DeepFLaSH-model for cFOS fluorescent label segmentation
Behavior-induced changes in hippocampal cFOS were analyzed with DeepFLaSH-computed segmentation maps. The deep segmen-
tation maps (161 images) and manual segmentation data (36 images) were pooled for the statistical analysis to ensure the use of all
data.
(A) Comparison of ROI-wise Jaccard similarities between the CNN and Expert 3 across the set of 36 images used for training (white
box) and 65 new images (grey box). The trained cFOS-model maintains expert-like performance on new images (p > 0.05, Welchs
two-sample t-test, ntraining data = 36, new data: nnew data = 65).
(B) Representative images showing cFOS labels in CA1 of the three experimental groups (HC, C-, C+). A dashed line marks the
analyzed area in CA1. The segmentation maps are based on CNN predictions. Green: NeuN, magenta: cFOS; so: stratum oriens, sp:
stratum pyramidale, sr: stratum radiatum. Scale bar: 100 µm.
(C-J) Analysis of cFOS fluorescent labels in stratum pyramidale (CA1 and CA3) or granule cell layer (DG blades). All values are
normalized to the mean of the respective homecage control (for all regions: NHC = 4, NC− = 5, NC+ = 4).
(in C, E, G and I) Analysis of cFOS+ nuclei per mm2 in indicated regions. Data reveal context-dependent increase in the number of
cFOS+ nuclei in CA1, CA3, and the suprapyramidal blade of the DG. (CA1: X2(2) = 43.630, p<0.001, nHC = 23, nC− = 24, nC+ = 20,
Kruskal-Wallis ANOVA followed by pairwise Mann-Whitney tests with Bonferroni correction, *P <0.05; CA3: X2(2) = 37.032,
p<0.001, nHC = 21, nC− = 24, nC+ = 21, Kruskal-Wallis ANOVA followed by pairwise Mann-Whitney tests with Bonferroni correction,
*P <0.05; DG infrapyr.: F(2, 61) = 7.272, p<0.01, nHC = 22, nC− = 23, nC+ = 19, one-way ANOVA with post-hoc pairwise comparisons
with Bonferroni correction; DG suprapyr.: F(2, 61) = 6.443, p<0.01, nHC = 22, nC− = 23, nC+ = 19, one-way ANOVA with post-hoc
pairwise comparisons with Bonferroni’s correction, *P <0.05).
(D, F, H and J) Analysis of mean cFOS signal intensities in indicated regions. No context- or threat-dependent effects on cFOS signal
intensities were found for CA1 or in the DG. In CA3, signal intensities differed significantly between the experimental groups (CA1:
F(2, 64) = 1.280, p = 0.285, nHC = 23, nC− = 24, nC+ = 20, one-way ANOVA; CA3: F(2, 62 = 13.719, p<0.0001, nHC = 21, nC− = 24,
nC+ = 21, one-way ANOVA with post-hoc pairwise comparisons with Bonferroni’s correction, *P <0.05; DG infrapyr.: F(2, 61) = 0.595,
p = 0.555, nHC = 22, nC− = 23, nC+ = 19, one-way ANOVA; DG suprapyr.: F(2, 61) = 4.520, p<0.05, nHC = 22, nC− = 23, nC+ = 19,
one-way ANOVA with post-hoc pairwise comparisons with Bonferroni’s correction, *P <0.05).
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Figure 6: Two different DeepFLaSH-models are combined to analyze activity-related changes in Parvalbumin-positive interneu-
rons
(A) Comparison of ROI-wise Jaccard-similarities between the CNN for PV+ somata and Expert 3 across the training data and new
images. The PV-model, which was trained in an inter-coding approach, maintains expert-like performance on new images (p > 0.05,
Mann-Whitney test, ntraining data = 36, nnew data = 65).
(B) Immunolabeled PV and cFOS in CA1 under three experimental conditions (HC, C-, and C+). Green: PV, magenta: cFOS, so: stra-
tum oriens, sp: stratum pyramidale, sr: stratum radiatum. Scale bar: 100 µm. The segmentation maps are based on CNN predictions.
(C-E) Proportion of cFOS-positive PV+ interneurons of all PV+ neurons (DG F(2, 48) = 0.180, p = 0.836, nHC = 18, nC− = 18, nC+
= 15, one-way ANOVA; CA3 F(2, 48) = 13.128, p < 0.0001, nHC = 16, nC− = 19, nC+ = 16, one-way ANOVA with post-hoc pairwise
comparisons with Bonferroni’s correction, *P < 0.05); CA1 F(2, 49) = 23.128, p < 0.0001, nHC = 18, nC− = 19, nC+ = 15, one-way
ANOVA with post-hoc pairwise comparisons with Bonferroni’s correction, *P < 0.05).
Image-wise ratio of mean PV fluorescent signal intensity of cFOS-positive PV+ somata compared to the mean signal intensity of
cFOS-negative PV+ somata. Both types of cells show similar mean intensity in the PV fluorescent signal, thus indicating the same
amount of PV in both cell type somata (p > 0.05, one-sample t-test, n = 152).

17

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 19, 2018. ; https://doi.org/10.1101/473199doi: bioRxiv preprint 

https://doi.org/10.1101/473199
http://creativecommons.org/licenses/by-nc/4.0/


Figure 7: Transfer learning of pretrained CNN-models to independent datasets with DeepFLaSH
(A) Transfer learning adapts pretrained-CNN-models to independent datasets. Here, five pairs of microscopy images and manually
prepared segmentation maps were sufficient to fine-tune the DeepFLaSH pretrained cFOS-model to the data of three individual lab-
oratories (Lab-Mue, Lab-Inns1, and Lab-Inns2).
(B) Representative images show the lab-specific microscopy data for cFOS labels. The investigated brain region and microscopy tech-
nique that was used to acquire the raw image data are indicated. Dashed lines indicate the analyzed regions. The segmentation
maps are based on the prediction of the respective CNNs. PVT: para-ventricular nucleus of thalamus, BLA: basolateral amygdala, IL:
infralimbic cortex; LSM: laser-scanning microscopy, epifluoresc. micro.: epifluorescence microscopy. Scale bars: Lab-Mue 400 µm,
Lab-Inns1 300 µm, Lab-Inns2 150 µm.
(C-E) Comparison of lab-specific experts and the corresponding fine-tuned CNN-models.
(C) Lab-Mue. Two human experts and the transfer-trained CNN-Mue model detect an equal increase of cFOS+ nuclei in the PVT 24
hours after fear conditioning (Expert-Mue1: *p < 0.05, Welchs two-sample t-test; Expert-Mue2: *p < 0.01, Welchs two-sampe t-test;
CNN-Mue: *p < 0.05, Welchs two-sample t-test; for all: NeRet = 4, NlRet = 4, neRet = 12, nlRet = 12).
(D) Lab-Inns1. A significant increase of cFOS+ nuclei in the BLA was found by a human expert as well as the fine-tuned CNN-Inns1
model (Expert-Inns1: *p < 0.001, Mann-Whitney test; CNN-Inns1: *p < 0.01, Welchs two-sample t-test; for both: NCtrl = 5, NExt = 5,
nCtrl = 9, nExt = 10).
(E) Lab-Inns2. Only mice that responded to the treatment with L-DOPA showed a significant increase in cFOS+ nuclei in the infral-
imbic cortex, as detected by a human expert and CNN-Inns2 model (Expert-Inns2: F(2, 22) = 10.045, p < 0.001, one-way ANOVA
with post-hoc pairwise comparisons with Bonferroni’s correction, *P < 0.05; CNN-Inns2: F(2, 22) = 26.849, p < 0.0001, one-way
ANOVA with post-hoc pairwise comparisons with Bonferroni’s correction, *P < 0.05; for both: NSaline = 6, NL−DOPA resp. = 6,
NL−DOPA non−resp. = 3, nSaline = 10, nL−DOPA resp. = 10, nL−DOPA non−resp. = 5).
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Material and methods

Data sets regarding animal behavior, immunofluorescence analysis and image acquisition were per-
formed in four independent laboratories using lab-specific protocols. Experiments were not planned
together to ensure the individual character of the datasets. We refer to the lab-specific protocols as follows:

• (Lab-Wue) Institute of Clinical Neurobiology, University Hospital, Wrzburg, Germany

• (Lab-Mue) Institute of Physiology I, University of Mnster, Germany

• (Lab-Inns1) Department of Pharmacology, Medical University of Innsbruck, Austria

• (Lab-Inns2) Department of Pharmacology and Toxicology, Institute of Pharmacy and Center for Molec-
ular Biosciences Innsbruck, University of Innsbruck

Contact for reagent and resource sharing

Further information and requests for resources and reagents should be directed to and will be fulfilled
by the lead contact, Robert Blum (blum_r@UKW.de). Requests regarding the machine learning model and
infrastructure should be directed to Christoph M. Flath (christoph.flath@uni-wuerzburg.de).

Experimental models

Mice
(Lab-Wue) All experiments were in accordance with the Guidelines set by the European Union and ap-
proved by our institutional Animal Care, the Utilization Committee and the Regierung von Unterfranken,
Wrzburg, Germany (License number: 55.2-2531.01-95/13). C57BL/6J wildtype mice were bred in the ani-
mal facility of the Institute of Clinical Neurobiology, University Hospital of Wrzburg, Germany. Mice were
housed in groups of 3 to 5 animals under standard laboratory conditions (12h/12h light/dark cycle, food
and water ad libitum). All mice were healthy and pathogen-free, with no obvious behavioral phenotypes.
Mice were quarterly tested according to the Harlan 51M profile (Harlan Laboratories, Netherlands). Yearly
pathogen-screening was performed according to the Harlan 52M profile. All behavioral experiments were
performed with male mice at an age of 8-12 weeks during the subjective day-phase of the animals and were
randomly allocated to experimental groups.
(Lab-Mue) Male C57Bl/6J mice (Charles River, Sulzfeld, Germany) were kept on a 12h-light-dark cycle and
had access to food and water ad libitum. No more than five and no less than two mice were kept in a
cage. Experimental animals of an age of 9 10 weeks were single housed for 1 week before the experiments
started. All animal experiments were carried out in accordance with European regulations on animal ex-
perimentation and protocols were approved by the local authorities (Landesamt fr Natur, Umwelt und
Verbraucherschutz Nordrhein-Westfalen).
(Lab-Inns1) Experiments were performed in adult, male C57Bl/6NCrl mice (Charles River, Sulzfeld, Ger-
many) at least 10-12 weeks old, during the light phase of the light/dark cycle. They were bred in the
Department of Pharmacology at the Medical University Innsbruck, Austria in Sealsafe IVC cages (1284L
Eurostandard Type II L: 365 x 207 x 140 mm, floor area cm2 530, Tecniplast Deutschland GmbH, Hohen-
peienberg, Germany). Mice were housed in groups of 3 to 5 animals under standard laboratory conditions
(12h/12h light/dark cycle, lights on: 07:00, food and water ad libitum). All procedures involving animals
and animal care were conducted in accordance with international laws and policies (Directive 2010/63/EU
of the European parliament and of the council of 22 September 2010 on the protection of animals used for
scientific purposes; Guide for the Care and Use of Laboratory Animals, U.S. National Research Council,
2011) and were approved by the Austrian Ministry of Science. All effort was taken to minimize the number
of animals used and their suffering.
(Lab-Inns2) Male 3-month-old 129S1/SvImJ (S1) mice (Charles River, Sulzfeld, Germany) were housed
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(four per cage) in a temperature (22±2 ℃) and humidity (50-60 %) controlled vivarium with food and
water ad libitum under a 12h light/dark cycle. All mice were healthy and pathogen-free, with no ob-
vious behavioral phenotypes. The Austrian Animal Experimentation Ethics Board (Bundesministerium fr
Wissenschaft Forschung und Wirtschaft, Kommission fr Tierversuchsangelegenheiten) approved all exper-
imental procedures.

Method details

Mouse behavior

Contextual fear conditioning

(Lab-Wue) Male animals, initially kept as siblings in groups, were put to a new cage and kept in
single-housing conditions with visual, olfactory and auditory contact in a ventilated cabinet (Scantainer,
Scanbur). To habituate the mice to the male experimenter and the experimental rooms, mice were handled
twice a day for at least two consecutive days prior to behavioral analysis. Mice were put to three different
groups: (1.) the homecage group, (2.) the context control group that experienced the training context, but
did not receive any electric foot shock, and (3.) the context-conditioned group, which received electric
foot shocks in the training context. Contextual fear (threat) conditioning was performed in a square
conditioning arena with a metal grid floor (Multi conditioning setup, 256060 series, TSE, Bad Homburg,
Germany). Before each experiment, the arena was cleaned with 70% ethanol. Mice were transported in
their homecage to the experimental rooms and were put into the conditioning arena. After an initial ha-
bituation phase of 60 s, fear acquisition was induced by five electric foot shocks (unconditioned stimulus,
US; 1 s, 0.7 mA) with an inter-stimulus interval of 60 s. After the foot shock presentation, mice remained
in the training context for 30 s before being returned to their homecages in their housing cabinet. For fear
memory retrieval, 24 hours after the training session, the mice were re-exposed to the conditioning arena
for 360 s, without any US presentation. Mice were again put back to their homecage for 90 min, before
mice were anaesthetized and prepared for immunohistological analysis. Mouse behavior was videotaped.
The videotapes were analyzed with the MCS FCS-SQ MED software (TSE, Bad Homburg, Germany). The
software was also used to automatically track mice behavior and to quantify the freezing behavior during
all sessions. Freezing was defined as a period of time of at least 2 s showing absence of visible movement
except that required for respiration [47]. The percentage time spent freezing was calculated by dividing
the amount of time spent in the training chamber.

Restraint stress and Pavlovian fear conditioning

(Lab-Mue) Animals were randomly assigned to 4 groups considering the following conditions; stress
vs. control and early retrieval vs. late retrieval. Mice experienced restraint stress and a Pavlovian
fear-conditioning paradigm as described earlier [48]. In brief, on day one, animals of the stress group
underwent restraint stress for 2 h by using a perforated standard 50 ml falcon tube, allowing ventilation,
but restricting movement. Animals of the control group remained in their homecages. On day 10,
animals were adapted through two presentations of six CS− (2.5kHz tone, 85dB, stimulus duration 10s,
inter-stimulus interval 20s; inter-trial interval 6h). On the next day, fear conditioning was performed in
two sessions of three randomly presented CS+ (10kHz tone, 85dB, stimulus duration 10s, randomized
inter-stimulus interval 10-30s; inter-session interval 6h), each of which was co-terminated with an un-
conditioned stimulus (scrambled foot shock of 0.4mA, duration 1s). Animals of the early retrieval group
underwent a retrieval phase on the same day (day 11), 1 h after the last conditioning session, whereas
animals of the late retrieval group underwent the retrieval phase on the next day (day 12), 24 h after the
conditioning session. For fear memory retrieval, mice were transferred to a new context. After an initial
habituation phase of 2 min, mice were exposed to 4 CS− and 40 s later to 4 CS+ presentations (stimulus
duration 10s, inter-stimulus interval 20s) without receiving foot shocks. Afterwards, mice remained in
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this context for another 2 min before being returned to their homecages.

Contextual fear conditioning and extinction

(Lab-Inns1) Mice were single housed and stored in the experimental rooms in cages covered by fil-
ter tops with food and water ad libitum 3 days before behavioral testing. Fear acquisition and fear
extinction were performed in a fear conditioning arena consisting of a transparent acrylic rodent condi-
tioning chamber with a metal grid floor (Ugo Basile, Italy). Illumination was 80 lux and the chambers
were cleaned with 70% ethanol. On acquisition day, following a habituation period of 120 s, mice were
fear conditioned to the context by delivery of 5 foot-shocks (unconditioned stimulus, US, 0.5 mA for
2 s) with a random inter-trial interval of 70-100 s. After the test, mice remained in the test apparatus for
an additional 120 s and were then returned to their homecage. On the next day, fear extinction training
was performed. For this, mice were placed into the same arena as during acquisition and left undisturbed
for 25 min. Freezing behavior was recorded and quantified by a pixel-based analysis software in one
min bins (AnyMaze, Stoelting, USA). 90 min after the end of the extinction training, the mice were killed
and the brains were processed for immunohistochemistry. Mice for homecage condition were kept in the
experimental rooms for the same time period.

(Lab-Inns2) Fear conditioning, extinction and extinction retrieval was carried out as previously de-
scribed [44]. Context dependence of fear extinction memories was assessed using a fear renewal tests in
a novel context [49]. Fear conditioning and control of stimulus presentation occurred in a TSE operant
system (TSE, Bad Homburg, Germany). Mice were conditioned in a 25 x 25 x 35 cm chamber with
transparent walls and a metal-rod floor, cleaned with water, and illuminated to 300 lux (context A). The
mice were allowed to acclimatize for 120 s before receiving three pairings of a 30 s, 75 dB 10 kHz sine tone
conditioned stimulus (CS) and a 2 s scrambled-foot-shock unconditioned stimulus (US; 0.6 mA), with a
120 s inter-pairing interval. After the final pairing, mice were given a 120 s stimulus-free consolidation
period before they were returned to the homecage. Fear extinction training was performed in context B, a
25 x 25 x 35 cm cage with a solid grey floor and black walls, cleaned with a 100% ethanol and illuminated
to 10 lux with a red lamp. After a 120 s acclimation period, the mice were subjected to 16x CS-alone
trials, separated by 5 s inter-CS intervals. Extinction retrieval was conducted in context B by repeating
the conditions used in extinction training procedure but presenting only two CS trials. Fear renewal in
a novel context was quantified 11 days following the extinction-retrieval test in a novel context (context
C), a round plexiglas cylinder of 20 cm in diameter, and a height of 35 cm. The cylinder was covered on
the outside with red diamond-printed white paper with an uneven pale ceramic tiled floor, illuminated to
5 lux with white light. After the mice were acclimated for 120 s, they were given two CS-alone trials, with
a 5 s inter-CS interval. A trained observer blind to the animals grouping measured freezing, defined as
showing no visible movement except that required for respiration, as an index of fear [50]. The observer
manually scored freezing based on video recordings throughout the CS and determined the duration of
freezing within the CS per total time of the CS in percent. Freezing during all phases was averaged over
two CS presentations and presented in eight trial blocks during extinction training and a one trail block
each for extinction retrieval and fear renewal. Freezing during fear conditioning was quantified and
presented as single CS.

Immunohistochemistry and microscopy

(Lab-Wue) To analyze anti-cFOS and anti-Parvalbumin immunoreactivity after retrieval of a contex-
tual memory, mice were anesthetized 90 minutes after the end of the retrieval session (C+). Mice that
spent the same time in the conditioning arena without presentation of the US served as context controls
(C-). Single-housed mice that were never exposed to the conditioning arena served as nave learning
controls (homecage; HC).
A rodent anesthesia setup (Harvard Apparatus) was used to quickly anesthetize the mice with the
volatile narcotic isoflurane (airflow 0.4 L/min, 4% isoflurane, Iso-Vet, Chanelle) for one minute. Then a
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mixture of ketamine (120 mg/kg; Ketavet, Pfizer) and xylazine (16 mg/kg; cp-Pharma, Xylavet, Burgdorf,
Germany) was injected (12 µml/g bodyweight, intraperitoneal) to provide sedation and analgesia. Then
anesthetized mice were transcardially perfused (gravity perfusion) with 0.4% heparin (Ratiopharm) in
phosphate-buffered saline (PBS), followed by fixation with 4% paraformaldehyde in PBS. Brains were
dissected and post-fixed in 4% paraformaldehyde for two hours at 4℃The tissue was embedded in 6%
agarose and coronal sections (40 µm) were cut using a vibratome (Leica VT1200). A total of 30 sections
starting from Bregma -1.22 mm [51] were considered as dorsal hippocampus. Immunofluorescent labeling
was performed in 24-well plates with up to three sections per well under constant shaking. Slices were
first incubated in 100 mM glycine, buffered at pH 7.4 with 2 M Tris-base for 1 h at room temperature.
Slices were transferred in blocking solution consisting of 10% normal horse serum, 0.3% Triton X100, 0.1%
Tween 20 in PBS for 1 h at room temperature. Primary antibodies were applied in blocking solution for
48 h at 4℃. The following primary antibodies were used at indicated dilutions: mouse anti-Parvalbumin,
SWANT, PV235, 1:5,000; guinea-pig anti-NeuN, SynapticSystems, 266004, 1:400; rabbit anti-cFOS,
SynapticSystems, 226003, 1:10,000 (lot# 226003/7). Secondary antibodies were used for 1.5 h at room
temperature at a concentration of 0.5 µmg / ml in blocking solution. The following antibodies were used:
goat anti-mouse Alexa-488 conjugated (Life sciences, Thermo); donkey anti-rabbit Cy3 conjugated (Jack-
son ImmunoResearch) and donkey anti-guinea-pig Cy5 conjugated (Jackson ImmunoResearch). Sections
were embedded in Aqua-Poly/Mount (Polysciences). Confocal image acquisition was performed with an
Olympus IX81 microscope combined with an Olympus FV1000 confocal laser scanning microscope, a
FVD10 SPD spectral detector and diode lasers of 473, 559 and 635 nm. Image acquisition was performed
using an Olympus UPlan SAPO 20x/0.75 objective. Images with 1024 pixel to monitor 636 µm2 were
taken as 12 bit z-stacks with a step-size of 1.5 µm, covering the whole section. Images of dentate gyrus
(DG), Cornu ammonis 1 (CA1) and CA3 were taken in each hemisphere of three sections of the dorsal
hippocampus to achieve a maximum of six images (n) per region for each animal (N). During image
acquisition, the experimenter was blinded to the treatment condition (C+ versus C- versus HC).

(Lab-Mue) Mice were anesthetized via inhalation anesthesia (isoflurane, 5% in O2; CP Pharma, Ger-
many) and perfused with phosphate-buffered saline (PBS) and then 4% paraformaldehyde (PFA;
Roti-Histofix 4%, Carl Roth). Brains were isolated and post-fixed overnight in 4% PFA, treated with
30% sucrose/PBS solution for 48 h, and then stored at 4℃until sectioning. Coronal sections (40 µm
thick) were prepared on a freezing microtome (Leica, Wetzlar, Germany) and stored in PBS until use.
Immunostaining was performed on free-floating sections. Sections were washed 3 x 10 min with PBS
and then incubated in blocking solution (10% goat serum, 3% BSA, 0.3% Triton X100 in PBS) for 1 h.
After blocking, sections were treated at 4℃overnight with a primary antibody (rabbit anti-cFOS, 1:500,
Santa Cruz Biotechnology, California, USA) diluted in blocking solution. On the next day, sections were
washed 3 x 10 min with PBS and incubated for 1 h at room temperature with the secondary antibody (goat
anti-rabbit Alexa Fluor 488, 1:1000; Invitrogen, Germany) diluted in blocking solution. The incubation
was followed by three 5 min washing steps in PBS. Sections were then mounted on SuperFrostPlus
slides (Menzel, Braunschweig, Germany) and embedded with Vectashield Mounting Medium (Vector
Laboratories, Burlingame, California) + 4,6-diamidino- 2-phenylindole (DAPI). Fluorescence labeling was
visualized and photographed using a laser-scanning confocal microscope (Nikon eC1 plus) with a 16x wa-
ter objective at a step size of 1.5 µm, covering the whole section. Identical exposure settings were used for
images that show the same region in the brains. The experimenter was blinded to the treatment conditions.

(Lab-Inns1) Ninety minutes after extinction training, mice were injected intraperitoneally with thiopental
(150 mg / kg, i.p., Sandoz, Austria) for deep anesthesia. Transaortal perfusion, 3 min with PBS at room
temperature followed by 10 min of 4% PFA at 4℃, was performed by a peristaltic pump at a flow rate of
9 ml / min (Ismatec, IPC, Cole-Parmer GmbH, Wertheim, Germany). Subsequently, brains were removed
and postfixed in 4% PFA for 90 min at 4℃, cryoprotected for 48 h in 20% sucrose at 4℃and then snap
frozen in isopentane (2-methylbutane, Merck GmbH, Austria) for 3 min at -60℃. Brains were transferred
to pre-cooled open tubes and stored at -70℃until further use. For immunohistochemistry, coronal
40 µm sections were cut by a cryostat from rostral to caudal, collected in Tris-buffered saline (TBS) +
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0.1% sodium azide. Sections from Bregma -1.22 mm [51] were incubated for 30 min in TBS-triton (0.4%),
for 90 min in 10% normal goat/horse serum and overnight with the first primary antibody (diluted in
10% serum containing 0.1% sodium azide). Rabbit anti-cFOS (Millipore, PC-38, 1:20,000) and mouse
anti-Parvalbumin (Sigma-Aldrich, P3088, 1:2,500) were used as primary antibodies. After washing with
TBS-buffer 3 x 5 min, secondary antibodies (goat anti-rabbit, Vector Laboratories inc., PI-1000, 1:1,000
and biotinylated horse anti-mouse, Vector Laboratories inc., PK-4002, 1:200) were added to the sections
for 150 min. Then, sections were incubated in the dark for 8 min in TSA-fluorescein (in-house, 1:100)
staining solution (50 mM PBS and 0.02% H2O2). Sections were rinsed 3 x 5 min in TBS buffer and then
incubated for 100 min in a solution of streptavidin Dylight 649 (Vector laboratories, SA5649, 1:100)
in TBS buffer. Fluorescently stained sections were mounted on slides using gelatin and cover-slipped
with glycerol-DABCO anti-fading mounting medium. Photomicrographs were taken on a fluorescent
microscope (Zeiss Axio Imager M1) equipped with a halogen light source, respective filter sets and a
monochrome camera (Hamamatsu ORCA ER C4742-80-12AG). Images of the basolateral amygdala (BLA)
were taken with an EC Plan-Neofluar 10x/0.3 objective. All images were acquired using the same exposure
time and software settings and the experimenter was blinded to the treatment conditions (homecage vs
extinction).

(Lab-Inns2) Mice were killed 2 h after the start of the fear renewal session using an overdose of
sodium pentobarbital (200 mg/kg) and transcardially perfused with 40 ml of 0.9% saline followed by
40 ml of 4% paraformaldehyde in 0.1 M phosphate buffer, pH 7.4. Brains were then removed and post
fixed at 4℃for 2 h in 4% paraformaldehyde in phosphate buffer. Brains were sectioned at the coronal
plane with a thickness of 40 µm on a vibratome (VT1000S, Leica). Free-floating sections were incubated
for 30 min in blocking solution using 1% BSA in 50 mM Tris buffer (pH 7.4) with 0.1% Triton-X100 and
incubated overnight at 4℃with a rabbit antibody against cFos (1:1000; sc-52, Szabo-Scandic, Vienna,
Austria). The sections were then washed (3 x 15 min in 1% BSA in Tris buffer containing 0.1% Triton-X100)
and incubated for 2.5 h with a secondary CY2-conjugated donkey anti rabbit IgG (1:500, #82371, Jackson
ImmunoResearch). The sections were then washed (3 x 15 min in 50 mM Tris buffer), mounted on
microscope slides and air-dried. Slides were embedded in ProLong Gold anti-fade reagent containing
DAPI (P36935, Life Technologies). Immunofluorescence was assessed using a fluorescent microscope
(Olympus BX51 microscope, Olympus XM10 video camera, CellSens Dimension 1.5 software, Olympus).
Immunolabelled sections were visualized using a 20xoil-objective (UPlanSApo, Olympus) at 488nm
excitation.

Manual image processing

(Lab-Wue) For image preprocessing, 12-bit grey images were projected (maximum intensity) and
converted to 8-bit. The respective regions-of-interest (ROIs) of either the NeuN-positive area, PV-positive
somata or cFOS-positive nuclei were segmented manually using ImageJ [7].The following structures
were marked as ROI: cFOS-positive nuclei, PV-positive somata, and NeuN immunoreactive layers of the
dentate gyrus (granule cell layer), CA1 and CA3. All NeuN-positive areas used for the quantifications
of cFOS-positive cells were manually segmented. All human experts were blinded to another and the
treatment condition.

(Lab-Mue) Images were adjusted in brightness and contrast. The respective regions-of-interest (ROIs) of
the cFOS-positive cells in paraventricular thalamus (PVT) were segmented manually using ImageJ. Two
independent neuroscientists analyzed these images manually for cFOS-positive cells. Both experts were
blinded to the treatment condition.

(Lab-Inns1) Number of cFOS-positive neurons was obtained from two basolateral amygdalae (BLA)
per animal of five homecage mice and five mice subjected to contextual fear extinction. PV staining was
used to identify the localization and extension of the BLA and the borders were manually drawn using
the free shape tool of the Improvision Openlab software (PerkinElmer). Boundaries were projected to the
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respective cFOS-immunoreactive image and cFOS positive neurons were manually counted inside that
area. The experimenters were blinded to the treatment condition.

(Lab-Inns2) The anatomical localization of cells within the infralimbic cortex was aided by using il-
lustrations in a stereotaxic atlas [52], published anatomical studies [53] and former studies in S1 mice
[54, 55]. All analyses were done in a comparable area under similar optical and light conditions. Images
were digitized and viewed on a computer screen using CellSens Dimension 1.5 software (Olympus
Corporation, Tokyo, Japan). cFOS positive cells were evaluated within the infralimbic cortex, the brain
region of the interest. The experimenter was blinded to the treatment conditions.

Image segmentation via thresholding

(Lab-Wue) We used global thresholding of bit-values to divide the pixels of an image into two classes pixels
belonging to background and pixels belonging to foreground to create a binary image. For segmentation,
the threshold plugin of ImageJ was used. For cFOS-positive nuclei, the threshold isolated the two percent
highest bit values (pixel-wise) as foreground. For the segmentation of PV-positive somata, thresholding
isolated one percent of the brightest pixels. Subsequently, we used the Particle Analyzer plugin of ImageJ
to create segmentation masks. The settings for the particle analyzer were derived from the values we
observed in the manual analysis by human experts.

Deep learning approach

Inputs and outputs

Our machine learning model is a deep neural network which takes microscopy images as an input
and outputs a segmentation map (mask). For each mask, the network outputs for each pixel a probability
distribution of belonging to the positive class (i.e., fluorescent label). The input to the network is a
1024x1024 grayscale image (one channel) and we use a batch size of 4 for training. Thus, the input is a
tensor of shape 4x1024x1024x1 of type float32 where the axes represent batch x row x column x channel.
The output tensor of the network has a 4x1024x1024x1 shape of type float32 where the axes are batch x
row x column x pixel-probability.

Architecture

The design of the deep neural network is inspired by the U-net architecture [22]. U-net like archi-
tectures are, at the current state, the most common architecture for biomedical image segmentation.
Moreover, they have demonstrated impressive performance in relevant data-science competitions (Kag-
gle Data Science Bowl: https://www.kaggle.com/c/data-science-bowl-2018/discussion/54741).
The architecture proposed by Ronneberger et al. [22] is designed to process smaller resolution images
(512 x 512 pixel). Therefore, we modified the neural network to enhance the performance on 1024 x
1024 dimensional images. To this end, we increase the depth of the U-net from five to eight modules
(Figure S.1). Furthermore, in order to benefit from current research and findings in the quickly emerging
field of deep learning, we incorporated two novel components in the modules. Batch Normalization Layers
[24] and depthwise separable convolutions [25] instead of standard 2D-convolutional layers on the down
part of the network. These changes significantly reduce trainable parameters (i.e., weights) and improved
training speed while the level of performance is maintained.
Furthermore, the modular architecture enables a quick adjustment to support applications with different
image dimensions.

Data augmentation

Given limited training data availability, we leverage data augmentation by applying elastic deformations
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to the available training images. This allows the network to adopt robustness to such deformations. For
data augmentation both the original microscopy image and the segmentation maps are transformed using
the Keras ImageDataGenerator [25] with the following parameters: degree range for random rotations:
90, width and height shift range: 0.1, shear angle in counter-clockwise direction in degrees: 0.2, randomly
flip inputs horizontally and vertically, constant fill mode: 0 (black).

Training loss

The network is trained using a combination of two loss functions. On the one hand, we use the
weighted cross entropy loss [22]), which provides a probabilistic measure of the similarity between the
prediction and the ground truth and tends toward zero as the neural network gets better at computing the
desired output.
On the other hand, we include the weighted dice overlap coefficient loss to address class-imbalance issue
[56]. This loss function is based on the Dice coefficient, one of the most common measures of region
overlap in medical image analysis [57].

Implementation

We implemented the network in Keras [25], a popular high-level open-source API for deep learn-
ing, with TensorFlow [26] in the backend. It was trained using the Adam optimizer [27], a commonly used
gradient-based function optimizer included in TensorFlow.

Training procedure

For the training phase, weights are updated using adam optimizer [27] with a learning rate of 0.001.
Training is completed after 100 epochs. We use a batch size of 4.

Postprocessing

In order to derive binary segmentation maps from the probabilistic output of the CNN, we consid-
ered each pixel with a positive class probability higher than 94% as a potential part of a fluorescent feature
(ROIs). Then, we applied the Particle Analyzer of ImageJ to detect areas that correspond to fluorescent
features.

Transfer learning

In order to adopt the neural network to different imaging conditions (for instance, different micro-
scopes in different laboratories, see Manual image processing) we used the concept of transfer learning
[17].
While the neural network pretrained on the data of Lab-Wue yields reasonable results on the datasets of
the other labs, the performance improved significantly using only five new sample images and manual
segmentation maps of the new imaging conditions. Here, we train the network for another 50 rounds using
the same training procedure and data augmentation techniques as before. Due to the layer connection
characteristics of the U-net we chose not to freeze any layers for training.

Inter-coding

To train and test the convolutional neural network we used a training dataset of 36 images that
contained equal amounts of images of the different regions (DG, CA1, CA3; 12 images each) and of the
different experimental conditions (HC, C- and C+; 12 images per condition, 4 images per region). Five
independent neuroscientists analyzed these 36 images manually for the NeuN-positive area, PV-positive
somata and cFOS-positive nuclei.
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Expert consensus and error maps

As a reference, we computed an expert-consensus. The expert consensus represents all pixel infor-
mation that was annotated by at least three of five human neurobiology experts. To visualize the spatial
accuracy of all coders (experts, CNN and threshold), we created error maps using the expert-consensus
as reference. We overlaid the expert-consensus with the segmentation map of the respective coder and
computed all pixels that were annotated in the reference but were absent in the coders segmentation area
and vice versa.

Quantification and statistical analysis

Statistical analysis

All statistical analyses were performed using OriginPro 2018G. Grubb‘s test was used to test for
outliers (p<0.05). Normality (Shapiro-Wilk) and equality of variances (Levene’s) were tested and paramet-
ric or non-parametric tests were used accordingly, as reported in the figure legends (parametric: one-way
ANOVA; non-parametric: Kruskal-Wallis-ANOVA, followed by Mann-Whitney tests with Bonferroni
correction for multiple comparisons). Throughout all analyses, N represents the number of animals and n
the number of analyzed images. In boxplots, the area of the box represents the interquartile range (IQR,
1st to 3rd quartile) and whiskers extend to the maximal or minimal values, but no longer than 1.5 IQR.
Normal distribution curves are scaled to 115% of the maximum.

Jaccard similarity coefficient

To evaluate the similarity between two segmentation maps we exploit the Jaccard similarity coeffi-
cient (also known as Jaccard Index or Intersection over the Union), which is a widely used similarity
measure for biomedical images [58, 59, 60]. We compute the Jaccard similarity between two objects A and
B as

J (A,B) =
|AnB|
|A∪B|

(1)

where |AnB| represents the intersection and |A∪B| the union of A and B. We apply the Jaccard similarity
measure for ROI matching and coder segmentation comparison.
To address the issue that segmentation maps of the coders or the CNN often differ on a pixel basis even
if the same ROIs are labelled, we compute the Jaccard similarity of all possible ROI pairs between two
segmentation maps. Similarly to [61] we consider a tuple (A, B) of images with a single ROI as a match if
they satisfy the condition:

J (A,B) > 0.5 (2)

For the coder segmentation comparison, we compute the Jaccard Similarity between two segmentation
maps, where |AnB| denotes the number of matching ROIs and |A∪B| the union of all ROIs in both images.
As the CNN is trained to maximize the similarity on pixel level (not ROI level), we assure the consistency
of our approach by also computing the Jaccard Similarity between two segmentation maps on pixel level.
Here, |AnB| denotes the number of matching positive, i.e., white, pixels and |A∪B| the union of all positive
pixels in both images. As Figure 3B and Figure S2 yield similar results we surmise a strong relationship
between both approaches, while the first approach is more suitable for biological interpretable purposes.

Quantification of cFOS-positive cells

In order to compare the number of cFOS-positive cells across images, we normalized in each image
the number of cFOS-positive cells to the area of the analyzed region (e.g. NeuN-positive area for Lab-Wue).
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For one set of experiment, we pooled this data for each condition (e.g. HC, C- and C+ for Lab-Wue) and
the analyzed brain region (e.g. DG, CA3 and CA1 for Lab-Wue). To compare different sets of experiments
with each other, we normalized all relative cFOS-positive cell counts to the mean value of the respective
control (e.g. HC for Lab-Wue).

Quantification of PV-positive interneurons

To test for differences in overall numbers of Parvalbumin-positive (PV-positive) interneurons and
their staining intensities, we quantified the number of PV-positive interneurons and their mean staining
intensity per image and pooled this data for each condition and the analyzed hippocampal region.
To compare the mean staining intensities across experimental sets, we normalized all mean staining
intensities to the mean value of the respective homecage control group. In DeepFLaSH analysis, a
PV-positive interneuron was defined as cFOS-positive, when the predicted PV-ROI contained a predicted
cFOS-positive ROI. The ratio of cFOS-positive PV-positive interneurons (cFOS+ PV+ INs) to the total
number of PV-positive interneurons was calculated for each image and pooled according to experimental
condition and analyzed hippocampal region.

Data and software availability

DeepFLaSH is a pipeline for label segmentation. The code for running the image segmentation is on
GitHub at https://github.com/matjesg/DeepFlaSH. It includes links to pretrained network parameters.
Users without any programming experience can follow the README to run an iPython Notebook on
Google Colaboratory to create segmentation maps from their own microscopy images. Moreover, it allows
the adoption of pretrained models for individual demands.
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Resource Table

Reagent or resource Source Identifier
Antibodies
(Lab-Wue) guinea-pig anti-NeuN Synaptic systems Cat# 26604,

RRID: AB 2619988
(Lab-Wue) mouse anti-Parvalbumin Swant Cat# PV235,

RRID: AB 10000343
(Lab-Inns1) mouse anti-Parvalbumin Sigma-Aldrich Cat# P3088,

RRID: AB 477329
(Lab-Wue) rabbit anti-cFOS Synaptic systems Cat# 226003,

RRID: AB 2619946
(Lab-Inns1) rabbit anti-cFOS Millipore Cat# PC38,

RRID: AB 2106755
(Lab-Mue, Lab-Inns2) rabbit anti-cFOS Santa Cruz Cat# sc-52,

RRID: AB 2106783
Experimental models
(Lab-Wue, Lab-Mue) Mouse: C57BL/6J Jackson Laboratory Cat# JAX:000664,

RRID: IMSR JAX:000664
(Lab-Inns1) Mouse: C57BL/6N Charles River Cat# CRL:027,

RRID: IMSR CRL:27
(Lab-Inns2) Mouse: 129S1/SvImJ (S1) Jackson Laboratory Cat# 002448,

RRID: MGI:5658424
(all labs) Postnatal brain sections from
adult mice as described

This paper N/A

Software and algorithms
(Lab-Wue, Lab-Mue, Lab-Inns2)
Fiji (ImageJ)

Fiji https://fiji.sc/,
RRID: SCR 002285

(Lab-Wue) Fluoview FV10-ASW Olympus https://www.photonics.com/Product.

aspx?PRID=47380,
RRID: SCR 014215

(Lab-Inns1) Improvision Openlab soft-
ware (5.5.0)

Perkin Elmer http://www.perkinelmer.com/pages/

020/cellularimaging/products/

openlab.xhtml,
RRID: SCR 012158

(Lab-Inns2) CellSens Dimension Desk-
top 1.9 software

Olympus https://www.olympus-lifescience.

com/en/software/cellsens/,
RRID: SCR 016238

(Lab-Inns1) Prism 7.0 Graphpad https://www.graphpad.com/

scientific-software/prism/,
RRID: SCR 015807

TensorFlow Abadi et al. [26] https://www.tensorflow.org,
RRID: SCR 016345

Keras Chollet [25] https://keras.io

ImageJ Rueden et al. [62] https://imagej.net/,
RRID: SCR 003070

SciPy Jones et al. [63] https://www.scipy.org,
RRID: SCR 008058

Code and data for this paper This paper https://github.com/matjesg/

DeepFlaSH
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Supplementary figures:

Figure S.1: Schematic overview of the algorithm architecture
(A) A convolutional neural network with a U-net architecture [22] comprising 15 modules. It takes a 1024x1024 pixel greyscale
image as an input and outputs a probability segmentation map of the same size. Each box corresponds to a module. The name of
the module indicates whether the feature maps are reduced (Down) or upsampled (Up). The number denotes the row and column
dimensions of the tensors.
(B) A detailed illustration of the U-net modules. The white boxes correspond to the input multi-channel feature map of the module,
the blue boxes to the multi-channel feature maps after applying a certain operation defined by the arrows. Arrows that point at the
modules edges connect to the other modules as depicted in (A). The three dimensions of the feature map are row x column x feature-
channel. In addition to Ronneberger et al. [22], we attach Batch Normalization Layers [24] and replace the standard 2D-Convolutional
Layers with depthwise separable convolutions [25] on the down part of the network. These changes significantly reduce trainable
parameters (i.e., weights) and improved training speed while the level of performance is maintained. Arrows indicate the following
computations: green: 2D convolution 3x3, batch normalization, ReLu activation; grey: concatenate; red: 2D max pooling 2x2; blue:
2D separable convolution 3x3, batch normalization, ReLu activation; yellow: 2D upsampling; black: 2D convolution 1x1, sigmoid
activation.
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Figure S.2: Automatic segmentation of cFOS immunolabels by a trained CNN-model shows expert-like performance also on
pixel-level.
Heat map showing the Jaccard similarity (pixel-level) between corresponding segmentation maps. Compared are the segmentation
maps of the five human experts, a semi-automated signal thresholding approach and the CNN. The Jaccard similarities are shown as
median value (color-coded, upper-left half) and as boxplot, together with the individual data points in the normal distribution curve
(lower-right half). The orange lines mark the value of 0.5 (n=36 for each comparison between two coders). Also on pixel-level, our
trained cFOS-model is as similar to human experts (0.37-0.56), as they are among themselves (0.32-0.56).
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Figure S.3: Model performance is maintained on images outside of the training dataset.
To exclude that the trained cFOS-model is over-fitted on the initial 36 images (training data), we tested the model for generalizability
on 65 new images (new data).
(A) The calculation of Jaccard similarities on pixel-level between the segmentation maps created by the cFOS-model or Expert 3 show
no differences between training and new data (p < 0.05, Mann-Whitney test, ntraining data = 36, new data: nnew data = 65)
(B and C) CNN-based analysis compared to manual analysis by a human expert. We calculated the number (B) and cFOS signal
intensity (C) of cFOS-positive ROIs annotated by either Expert 3 or the cFOS-model on images outside of the training dataset. Both
analyses indicate a context-dependent increase in the number of cFOS+ nuclei of 3.5 (C- and C+), compared to a nave learning
control (HC, B). The mean cFOS signal intensity remained unchanged in both analyses (C). All values are normalized to the mean of
the respective homecage control.
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Figure S.4: Representative images of cFOS labels in the hippocampus after behavioral training.
(A) Representative images showing cFOS labels in CA3 of the three experimental groups (HC, C-, C+). A dashed line marks the
analyzed area in CA3. Green: NeuN, magenta: cFOS. Scale bar: 200 µm.
(B) Representative images showing cFOS labels in the dentate gyrus of the three experimental groups (HC, C-, C+). A dashed line
marks the analyzed area of the suprapyramidal blade. A solid line marks the investigated area of the infrapyramidal blade. The
segmentation maps are based on CNN predictions. Green: NeuN, magenta: cFOS. Scale bar: 200 µm.
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Figure S.5: Automatic segmentation of Parvalbumin immunolabels by a trained CNN-model shows expert-like performance.
To demonstrate the flexibility of DeepFLaSH, we trained a second model again in an inter-coding approach to segment the somata of
Parvalbumin-positive interneurons. In absence of a ground-truth, we assessed its performance on base of similarity analysis.
(A and B) Heat map showing the Jaccard similarity on pixel- (A) and on ROI-level (B) between corresponding segmentation maps.
Compared are the segmentation maps of the five human experts, a semi-automated signal thresholding approach and the CNN. The
Jaccard similarities are shown as median value (color-coded, upper-left half) and as boxplot, together with the individual data points
in the normal distribution curve (lower-right half). The orange lines mark the value of 0.5 (n=36 for each comparison between two
coders). CNN-based segmentation maps are on both, pixel- and ROI-level as similar to those of human experts, as they are among
themselves (inter-coder variability).
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Figure S.6: Accuracy of segmentation of Parvalbumin-positive somata at pixel-wise resolution.
Based on a computed expert-consensus, we created error-maps that show the pixel-wise deviation of the individual coder segmenta-
tion of Parvalbumin-positive somata from the expert-consensus.
(A) Comparison of Parvalbumin microscopy image with expert consensus segmentation map. Four inlets are selected to highlight the
variability of typical anti-Parvalbumin fluorescent labels.
(B-H) Segmentation maps and computed error maps are shown for the indicated coder. The error maps are pixel-wise comparisons
of the corresponding coder segmentation to the expert consensus map. In cyan: pixels exclusively present in the expert consensus;
in magenta: pixels that were exclusively labeled by the indicated coder. The trained PV-model was able to detect also ROIs with a
close-to-noise signal intensity (orange inlet).
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Figure S.7: Image analysis with a DeepFLaSH-model for Parvalbumin fluorescent label segmentation.
We used the PV-model to analyze behavior-related changes in Parvalbumin-positive interneurons. The deep segmentation maps (118
images) and manual segmentation data (36 images) were pooled for the statistical analysis to ensure the use of all data.
(A-C) Analysis of the number of Parvalbumin-positive somata per image in the indicated regions show no differences between the
three experimental groups (DG: F(2, 48) = 0.653, p = 0.525, nHC = 18, nC− = 18, nC+ = 15, one-way ANOVA; CA3: F(2, 48) = 1.623,

p = 0.208, nHC = 16, nC− = 19, nC+ = 16, one-way ANOVA; CA1: X2(2) = 2.452, p = 0.293, nHC = 18, nC− = 19, nC+ = 15, Kruskal-
Wallis ANOVA; for all: NHC = 3, NC− = 4, NC+ = 3).
(D-F) Analysis of mean PV signal intensity of all PV+ somata per image, normalized to the mean of the respective homecage control,
in indicated regions. No significant differences were observed for the regions CA3 (E) and CA1 (F). A significantly higher mean
PV signal intensity was detected in the DG of C- mice compared to HC, but not to C+ or between HC and C+ (DG: X2(2) = 6.415,
p<0.05, nHC = 18, nC− = 17, nC+ = 15, Kruskal-Wallis ANOVA followed by Mann-Whitney tests with Bonferroni correction, *P <0.05;
CA3: F(2, 47) = 1.022, p = 0.368, nHC = 16, nC− = 18, nC+ = 16, one-way ANOVA; CA1: X2(2) = 5.013, p = 0.082, nHC = 18, nC− = 19,
nC+ = 15, Kruskal-Wallis ANOVA; for all: NHC = 3, NC− = 4, NC+ = 3).
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Figure S.8: Representative images of cFOS and Parvalbumin labels in the hippocampus after behavioral training.
(A and B) Representative images showing cFOS and Parvalbumin fluorescent labels in CA3 (A) or in the dentate gyrus (B) of the three
experimental groups (HC, C-, C+). The segmentation maps are based on CNN-predictions. Scale bars: 200 µm.
(in A) The cyan inset shows a cFOS+ PV+ soma and a cFOS- PV+ soma, as well as two additional cFOS+ nuclei. Scale bar: 20 µm.
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Figure S.9: Extended analysis of hippocampal Parvalbumin-positive interneurons after behavioral training using two
DeepFLaSH-models in combination.
To analyze behavior-related changes in Parvalbumin-positive interneurons, we used a combination of the cFOS- and the PV-model.
The deep segmentation maps (118 images) and manual segmentation data (36 images) were pooled for the statistical analysis to en-
sure the use of all data.
A-E) Image-wise ratio of mean PV fluorescent signal intensity of cFOS-positive PV+ somata compared to the mean signal intensity
of cFOS-negative PV+ somata. Both types of cells show similar mean intensity in the PV fluorescent signal, thus indicating the same
amount of PV in both cell type somata (DG: F(2, 42) = 0.885, p = 0.420, nHC = 18, nC− = 15, nC+ = 12, NHC = 3, NC− = 3, NC+ = 3,
one-way ANOVA; CA3: F(2, 46) = 2.422, p = 0.100, nHC = 14, nC− = 19, nC+ = 16, NHC = 3, NC− = 4, NC+ = 3, one-way ANOVA; CA1:

X2(2) = 0.211, p = 0.900, nHC = 18, nC− = 19, nC+ = 12, NHC = 3, NC− = 4, NC+ = 3, Kruskal-Wallis ANOVA; condition-wise: p>0.05
for HC, C- and C+, one-sample t-tests, nHC = 50, nC− = 51, nC+ = 40, NHC = 3, NC− = 4, NC+ = 3; region-wise: p>0.05 for DG, CA3
and CA1, one-sample t-tests, nDG = 45, nCA3 = 49, nCA1 = 47, NDG = 9, NCA3 = 10, NCA1 = 10).
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