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Summary 
Population health research is increasingly focused on the genetic determinants of healthy 
ageing, but there is no public resource of whole genome sequences and phenotype data 
from healthy elderly individuals. Here we describe the Medical Genome Reference Bank 
(MGRB), comprising whole genome sequence and phenotype of 2,570 elderly Australians 
depleted for cancer, cardiovascular disease, and dementia. We analysed the MGRB for 
single-nucleotide, indel and structural variation in the nuclear and mitochondrial genomes. 
Individuals in the MGRB had fewer disease-associated common and rare germline variants, 
relative to both cancer cases and the gnomAD and UK BioBank cohorts, consistent with risk 
depletion. Pervasive age-related somatic changes were correlated with grip strength in men, 
suggesting blood-derived whole genomes may also provide a biologic measure of 
age-related functional deterioration. The MGRB provides a broadly applicable reference 
cohort for clinical genetics and genomic association studies, and for understanding the 
genetics of healthy ageing. This research has been conducted using the UK Biobank 
Resource under Application Number 17984. 

Introduction 
Most developed nations face crises in health care associated with population ageing (Prince 
et al., 2015). Healthy ageing is a complex phenotype, influenced by both environmental and 
genetic factors (Lowsky et al., 2014). Healthy ageing – the absence of clinically significant, 
non-communicable disease or morbidity in old age – is distinct from longevity, which 
disregards quality of life. Healthy ageing captures the critical distinction between a long life 
with minimal impairment, and one bearing significant, costly, and potentially prolonged 
morbidity (Brooks-Wilson, 2013). 
 
Relatively little is known about the genetic determinants of ageing that account for the broad 
spectrum of health states observed in older people. Genetic variation contributes to healthy 
ageing through pleiotropic effects on many diseases, immune responses, anthropomorphic, 
and behavioural phenotypes (Tobacco and Genetics Consortium, 2010; Wray et al., 2018). 
For example, alleles associated with behavioural phenotypes that contribute to a healthy 
lifestyle, such as avoidance of smoking, or propensity for regular exercise, might be 
anticipated to have an effect on healthy ageing. However, to date, Genome Wide 
Association Studies (GWAS) of common variants have only consistently associated the 
APOE  and FOXO3A  loci with lifespan and longevity (Brooks-Wilson, 2013), with TERT also 
implicated in ageing rate (Lu et al., 2018). Rare pathogenic variants that hasten the onset of 
common diseases associated with age, such as cancer, cardiovascular disease, and 
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neurodegenerative disorders, might also be expected to be depleted in healthy aged 
individuals. While the single study using whole genome sequencing (WGS) in 511 healthy 
aged individuals confirmed the link with the APOE locus, and suggested depletion of 
polygenic risk for Alzheimer’s disease and coronary artery disease (Erikson et al., 2016), no 
evidence was found for depletion of rare pathogenic variation. Limited by sample size, these 
studies have focussed on single nucleotide variants and indels, while large scale structural 
variation remains unexplored. In addition, somatic variation such as clonal haematopoiesis 
(CH) is known to correlate with both age and susceptibility to disease (Genovese et al., 
2014; Jaiswal et al., 2014). A synthesis of all forms of somatic and germline genomic 
variation is needed to inform our understanding of healthy ageing and disease susceptibility. 
 
The advent of WGS is driving intense interest in mapping the genetic basis of disease, less 
than 50% of which is currently understood (Visscher et al., 2017). The missing heritability 
arguably resides in the total burden of both common and rare variation, structural variation 
untagged by simple polymorphisms, and their interactions (Zuk et al., 2012, 2014). WGS 
enables more comprehensive characterization of common, rare, and complex variation in 
human cohorts. The next few years will see the release of large-scale WGS studies in rare 
diseases and cancer, such as the 100,000 Genomes Project, and population studies like the 
UK Biobank. Maximising the analytic power of whole genome association studies using 
these cohorts will require well-phenotyped and high-quality control data. The concept of 
extreme phenotype sampling maximizes statistical power by comparing the extremes of 
phenotypes of interest (Barnett et al., 2013; Li et al., 2011; Zhou et al., 2016). We postulate 
that an elderly cohort depleted of the major common diseases constitutes a powerful and 
broadly applicable tool for genome-wide association studies of disease. 
 
With this background, we undertook WGS of 2,570 elderly individuals with no reported 
history of cancer, cardiovascular disease, or neurodegenerative diseases up to age 70, to 
create the Medical Genome Reference Bank (MGRB) (Lacaze et al., 2018). For comparison, 
we have also undertaken whole genome sequencing of 344 young subjects, and 273 elderly 
individuals with cancer. These cohorts have been subjected to a broad spectrum, systematic 
analysis of germline and somatic variation within the nuclear and mitochondrial genomes, 
which we have linked to both chronologic age as well as frailty measures. 

Results 

Cohort characteristics and sequencing 
We identified 2,926 individuals from the ASPREE study (McNeil et al., 2017), and Sax 
Institute’s 45 and Up Study (45 and Up Study Collaborators et al., 2008), who lived to at 
least 70 years of age without any history of cancer, cardiovascular disease, or dementia, 
confirmed either at baseline entry or study follow-ups (Lacaze et al., 2018). We sequenced 
all samples by WGS, mapping to build 37 of the human reference genome, and calling 
variants following GATK best practices. After exclusion of 356 samples that failed quality 
control and relatedness checks, 2,570 samples remained, forming the MGRB cohort (Table 
1). 
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Table 1:  Summary metrics for the MGRB well elderly cohort, sourced from the ASPREE or 45 and Up 
studies. Aggregate statistics are medians, with ranges in parentheses. Genetic background (ancestry) 
was determined from genotype data. Although blood was occasionally drawn at younger than 70 
years, all individuals lived to at least 70 years without known cancer, cardiovascular disease, or 
dementia. 

Measure ASPREE 45 and Up 

Individuals 
 (percent female) 

1,853 
(48.2%) 

717 
(59.3%) 

Age at blood draw (years) 79 
(75 – 95) 

70 
(64 – 91) 

Height (m) 1.65 
(1.33 – 1.91) 

1.66 
(1.37 – 1.91) 

Mass (kg) 74.5 
(33.4 – 127.1) 

72.0 
(36.0 – 147.0) 

Mean sequencing depth 
(genome-wide) 

38.0 
(26.8 – 46.0) 

39.0 
(27.3 – 45.5) 

Genetic background 
 Non-Finnish European 
 South and Central American 
 South Asian 
 Finnish European 
 East Asian 

 
1,805 

23 
14 
10 
1 

 
695 

5 
6 
7 
4 

 
A broad diversity of genetic variation was found in the MGRB cohort. We identified 
69,996,670 small variant loci in canonical chromosome contigs, with a call rate of 99.5%. 
Our small variant detection sensitivity was 99.3% and false positive rate 4.84 / Mbp, as 
assessed by comparing an internal RM 8398 sample against a gold standard (Zook et al., 
2014). MGRB participants were primarily of non-Finnish European genetic background 
(Table 1, Supplementary Figure 1). Consistent with previous studies (Lek et al., 2016; 
Telenti et al., 2016), 51.8% of small variants were singletons, and 4.6% of loci were 
multi-allelic. 
 
In addition to small scale variants, an average of 4,036 structural variants (SVs) per 
individual were observed, most commonly deletions (Supplementary Table 1, 
Supplementary Figure 2). In contrast to small variants, only 17% of structural variants were 
unique (Supplementary Table 2). Each individual carried an average of 4,264 mobile 
element insertions (MEI), predominantly of the ALU and L1 classes, consistent with a 
previous report (Chaisson et al., 2015), and most MEIs were copy number polymorphisms at 
known loci. However, on average 1,535 MEI events per individual were in regions of the 
reference genome not currently described as containing mobile elements. In summary, while 
small variants comprise the majority of genetic diversity in the MGRB, structural and mobile 
elements constitute a rich and understudied source of potentially disease-related variation. 
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The well elderly carry clinically reportable genetic variation 
Population genomic studies are contributing to the substantial revision of clinical 
interpretation of genetic variation thought to drive disease in some cases (Walsh et al., 
2017). It is therefore clinically important to understand the frequency of variants currently 
considered pathogenic in a clinical context, but which are observed in well elderly individuals 
(Lacaze et al., 2017). To this end, we identified pathogenic variants that are considered 
clinically reportable as incidental findings under current American College of Medical 
Genetics (ACMG) guidelines (Kalia et al., 2016; Richards et al., 2015). Forty pathogenic or 
likely pathogenic heterozygous small variants were identified, with 28/2,570 (1.1%) 
individuals carrying dominantly acting variants linked to disease (Table 2, Supplementary 
Data File 1). We sought further evidence of disease phenotypes in individuals carrying 
relevant pathogenic variants from the ASPREE cohort. We did not identify personal histories 
of breast or colorectal cancer in individuals harbouring BRCA2, MSH2, or PMS2 mutations; 
cardiac arrest or strokes in individuals harbouring DSG2, DSP, KCNH2, KCNQ1 , MYBPC3 , 
MYL3, and SCN5A mutations; or elevated blood lipid levels in APOB carriers. 
Cancer-associated genotypes are dependent on stochastic factors which may account for 
variable penetrance, while anaesthetic-associated malignant hyperthermia linked to loss of 
function variation in RYR1 is contingent on environmental exposure. We specifically sought, 
but did not find, evidence of cardiovascular disease history or related clinical phenotypes in 
carriers of variants linked to atrial fibrillation, cardiomyopathy and hypertension. Notably, no 
genotypes predicted to cause severe childhood-onset diseases were identified (Chen et al., 
2016); the single RYR2 variant detected was a truncation not expected to cause autosomal 
dominant catecholaminergic polymorphic ventricular tachycardia. In five individuals, variants 
were noted in PCSK9 that are predicted to be protective against high blood cholesterol 
(Langsted et al., 2016), comparable to the rate observed in the gnomAD non-Finnish 
European cohort (Fisher exact test, p = 0.37). Four SVs were found that may disrupt the 
coding sequence of genes associated with cancer and cardiovascular health 
(Supplementary Table 3), comprising 10% of potentially pathogenic variation in genes 
considered reportable by the ACMG. 
 
Table 2 : Counts of clinically significant small variation in the MGRB for all genes in the ACMG SF 2.0 
set. Abbreviations: ARVC, Arrhythmogenic right ventricular cardiomyopathy; CPVT, 
Catecholaminergic polymorphic ventricular tachycardia; HCM, Hypertrophic cardiomyopathy; DCM, 
Dilated cardiomyopathy; VA, Ventricular arrhythmia. 
 

Condition Gene Carriers 

Cancer BRCA2 4 (2 female) 

 MSH2 1 

 MSH6 1 

 PMS2 3 

Neurofibromatosis NF2 1 

ARVC DSG2 1 
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 DSP 3 

CPVT RYR2 1 

HCM, DCM MYBPC3 2 

 MYL3 1 

 TNNI3 1 

Hypercholesterolemia APOB 5 

Long QT, VA KCNH2 1 

 SCN5A 1 

Marfan syndrome MYH11 1 

Malignant hyperthermia RYR1 1 

TOTAL  28 
 

Rare and common risk variants are depleted in the well elderly 
One of the primary purposes of the MGRB is to serve as a genetic risk-depleted control 
cohort for studies of the common causes of morbidity and mortality. To test its utility, we 
compared the rates of pathogenic variants in tumour suppressor genes between the 717 
MGRB individuals from the 45 and Up Study, with 269 demographically-matched cancer 
cases from the same study (45 and Up Study; Supplementary Table 4). Considering all 
cancers in aggregate, the MGRB samples were significantly depleted for pathogenic alleles 
in tumour suppressor genes relative to cancer cases, with 2 of 717 controls carrying 
pathogenic tumour suppressor variants compared to 12 of 269 cancer cases (Figure 1a, 
odds ratio 0.060, 95% confidence interval 0.0065 to 0.27, p < 0.001, Fisher’s exact test). In 
addition to all cancers, we specifically examined colorectal cancer due to its high incidence 
in our case set, and well-defined genetic risk (De Rosa et al., 2015). The MGRB samples 
were significantly depleted for rare pathogenic variation in the APC, MLH1, MSH2 , MSH6 , 
PMS2, and SMAD4 genes, relative to colorectal cancer cases (Figure 1a, 1 of 717 MGRB 
with pathogenic variants, versus 2 of 40 cancer cases, odds ratio 0.027, 95% CI 0.001 to 
0.53, p = 0.008). We did not detect a difference in the rate of rare coding loss of function 
variants in the MGRB relative to the gnomAD non-Finnish European cohort, either 
genome-wide, or in genes associated with cardiovascular disease or cancer, potentially due 
to technical factors dominating differences in rare variant patterns between cohorts (8 tests, 
all p > 0.08). 
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Figure 1: The MGRB is depleted for genomic risk relative to reference and disease cohorts. a) the 
rate of rare pathogenic variants in tumour suppressor genes is lower in MGRB than in a cohort of 
cancer cases (log odds for an individual to carry a pathogenic tumour suppressor variant shown). b) 
the MGRB also has lower polygenic score (PS) estimates for a range of phenotypes, when compared 
to the gnomAD non-Finnish European population and the UK BioBank samples. MGRB is the 
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reference in (b), with PS mean set at zero; bootstrap 95% confidence intervals are shown for each 
PS. q-values represent false discovery rate estimates by the Benjamini-Hochberg method (Benjamini 
and Hochberg, 1995). c) the MGRB has lower PS compared to prostate cancer cases, here 
considering only samples from the 45 and Up Study. d) for any given sample size, the MGRB has 
greater statistical power to detect PS difference from a case cohort than to gnomAD, demonstrated 
here for prostate cancer. AU: arbitrary units. 
 
We next sought evidence for depletion of common disease-associated variation in the 
MGRB, relative to the gnomAD and UKBB datasets. Although SNP allele frequencies were 
highly concordant across all three cohorts (Supplementary Figure 3), the MGRB cohort was 
significantly depleted for alleles specifically associated with risk of cancer, cardiovascular 
disease, and neurodegenerative disease (Supplementary File 2, 698 loci, odds ratios 0.38 vs 
gnomAD, 0.47 vs UKBB, both p < 1.1x10 -6, Fisher’s exact test). This enrichment of protective 
alleles was specific to the clinical phenotypes excluded from MGRB, and was not observed 
for negative control loci linked to anthropometric (449 loci, both p > 0.69) or behavioural (575 
loci, both p > 0.55) traits. 
 
The aggregate burden of common disease-related variants within individuals can be 
summarised in a polygenic score (PS). We constructed polygenic predictors for a range of 
phenotypes measured or depleted in the MGRB, and compared PS distributions between 
MGRB, the gnomAD non-Finnish European reference cohort, the UK BioBank (UKBB), and 
the 45 and Up Study cancer cohort. Significant depletion in PS was observed in MGRB for 
eight of the eleven scores tested (Figure 2b). Notably, a PS associated with short lifespan 
(Deelen et al., 2014) was significantly depleted in MGRB relative to gnomAD and UKBB, 
consistent with the MGRB healthy elderly phenotype. MGRB individuals were significantly 
depleted for prostate cancer risk relative to both gnomAD and prostate cancer cases, 
indicating that MGRB is an extreme depletion cohort for prostate cancer polygenic risk 
(Figure 2c). Critically, for the extreme phenotype sampling hypothesis, the use of the MGRB 
as a control cohort reduced the sample size required to reach a given target power by 
approximately 25% by comparison with the widely-used gnomAD dataset (Figure 1d). 
 
In addition to the allele frequency-based comparisons above, the availability of individual 
genotypes for the MGRB and 45 and Up Study cancer cohorts enabled the direct evaluation 
of the influence of PS on cancer risk. We first confirmed that our polygenic scoring method 
estimated individual height using published loci (Wood et al., 2014): height PS was 
significantly predictive of measured height, with a slope of 4.5 cm per polygenic score unit, 
complete model R2 = 0.62, polygenic score partial R2 = 0.14, n = 2,537 (Supplementary 
Figure 5). We then compared the distribution of PS for prostate, colorectal, and melanoma 
skin cancer between the 45 and Up cancer-free cases in the MGRB, and individuals from the 
45 and Up cohort with these cancers (Supplementary Table 4). Consistent with the relative 
depletion of rare cancer variants in the MGRB observed above, MGRB individuals had 
significantly lower polygenic risk scores than cases for prostate cancer (p < 0.001, Figure 2a) 
and colorectal cancer (p = 0.022, Figure 2b), but not melanoma. The contribution of PS to 
cancer-specific risk was significant: by age 70, individuals with a cancer PS in the top 5% of 
MGRB had a 7.7-fold increased odds for prostate cancer, and a 3.6-fold increased odds for 
colorectal cancer, relative to individuals with a score in the bottom 5%. 
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Figure 2 : Polygenic risk is strongly related to cancer diagnosis risk. Cumulative distribution functions 
(top panels) and associated probability of cancer diagnosis by age 70 (bottom panels) are shown for 
both prostate cancer (a) and colorectal cancer (b). Unaffected individuals are MGRB men (prostate), 
or all MGRB individuals (colorectal) and were completely cancer-free up to age 70; affected 
individuals were sourced from the 45 and Up Study cancer cohort and had recorded evidence of the 
relevant cancer diagnosis prior to age 70. Polygenic scores were computed based on reported loci 
and model coefficients (Hoffmann et al., 2015; Schumacher et al., 2015). Fits are from logistic 
regression using a GCV-penalised thin plate spline smooth; bands denote 95% confidence intervals 
around the mean. 

Clonal somatic variation is detectable by WGS 
In addition to its use as a surrogate for the germline, peripheral blood DNA carries somatic 
variation reflecting the life history and health state of the donor. Clonal haematopoiesis of 
Indeterminate Potential (CHIP) occurs in at least 10% of individuals over the age of 65 
years, evidenced by somatically acquired SNVs (Genovese et al., 2014; Young et al., 2016). 
Previous studies have used deep whole-exome or targeted sequencing to identify CHIP, 
which lacks sensitivity to detect the SVs commonly observed in myelodysplasia and 
leukemia. Low depth WGS, a powerful tool for measuring SV, has not been applied to the 
detection of CHIP. Here we estimate the burden of cancer-associated somatic variation in 
peripheral blood DNA using whole genome data in the MGRB cohort. 
 
In total, 184/2,570 (7.2%) of MGRB individuals displayed evidence of CHIP, with SNVs 
associated with overgrowth and neoplasia observed in more than 10% of reads. 
Predominantly nonsense mutations (96%), these variants were most commonly seen in 
TET2 (47 individuals), DNMT3A (23), or ASXL1 (11). We also observed known 
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gain-of-function missense variants in JAK2 V617F (9 individuals), NRAS G12D (1), a 
dominant negative allele in DNMT3A, R882H (1) (Russler-Germain et al., 2014), and a 
putative loss-of-function variant in TP53, C275Y (1). JAK2 V617F is a recognised driver of 
myeloproliferative disorders (Percy and McMullin, 2005), which are also associated with 
ASXL1 loss (Gelsi-Boyer et al., 2012), and TET2 and DNMT3A loss-of-function variants are 
frequent in CHIP (Buscarlet et al., 2017). In total, the blood of 91/2,570 (3.5%) cancer-free 
MGRB individuals carried deleterious small variation in at least one of these four genes, and 
13 individuals had multiple deleterious mutations in this gene set. We next sought evidence 
for subclonal copy number variation (CNV). 1975 of 2570 MGRB individuals were 
successfully fit to a subclonal CNV model; of these 55 (2.8%) showed evidence of subclonal 
CNV, as determined by the presence of an aneuploid lineage representing more than 10% of 
nucleated blood cells (Supplementary Figure 6). In total, 9.2% (95% CI 7.9 to 10.5%) of 
MGRB samples demonstrated evidence of CHIP by either SNV or CNV, consistent with 
results from deep WES (Jaiswal et al., 2014). In sum, subclonal blood DNA changes are 
detectable from WGS at routine read depths used for germline purposes, providing a 
quantitative fingerprint of age-related somatic events. 

Age-related mitochondrial load is associated with grip strength 
As well as CHIP, ageing is associated with telomere shortening (von Zglinicki and 
Martin-Ruiz, 2005), somatic Y chromosome loss, decreased mitochondrial copy number, and 
increased mitochondrial heteroplasmy (Kennedy et al., 2013; Wachsmuth et al., 2016). We 
therefore studied the relationship of age to telomere length, mitochondrial copy number and 
variation, Y copy number in males, a somatic mutation signature linked to ageing 
(Alexandrov et al., 2015), and CHIP. Using standard depth WGS data from multiple cohorts, 
consistent patterns of change with age were observed across all six somatic metrics (Figure 
3a-f). Compared to a population of younger individuals (the ASRB cohort, median age 40, 
Supplementary Figure 4), the MGRB, despite being ascertained on the basis of healthy 
ageing, was still associated with shorter telomere lengths, increased somatic mutation 
burden, and decreased Y chromosome and mitochondrial copy number (Table 3). 
Interestingly, there were differences between each cohort in the relationship with age, with 
apparent stabilisation of telomere length in the elderly cohorts past approximately 70 years, 
compared to the expected progressive shortening with increasing age observed in the 
younger ASRB cohort. In addition, while mitochondrial copy number/nuclear genome was 
stable up to age 60, significant declines were observed in the older age groups. The rate of 
change was significantly different between the young (ASRB) and aged (MGRB) cohorts (5 
likelihood ratio tests on linear fits, Holm correction, all p < 0.003), while the rate of change of 
the two aged cohorts was consistent across all measures (5 likelihood ratio tests, Holm 
correction, all p > 0.28). Taken together, these results are suggestive of altered kinetics of 
age-related somatic mutation in the elderly compared to younger populations, although we 
note longitudinal measurements will be necessary to definitively establish this relationship. 
 
Table 3 : The rates of somatic measure change with age are different between middle-aged 
and old individuals. Numbers show the rate of change of each somatic measure with age in 
the middle-aged ASRB cohort (median age 40), and the older MGRB cohorts (median age 
70 or older). Changes are significantly different between the younger ASRB and older 
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MGRB cohorts, and consistent within the two older MGRB cohorts. Linear model slopes as 
change per decade are reported for each of five somatic measures in each cohort, with 95% 
Wald confidence intervals. Values significantly different from zero are represented in bold. 
Note that somatic burden and mitochondrial count per nucleus are reported on the natural 
logarithm scale. N.D.: Not determined due to data use agreement constraints. 

 
Measure 

Cohort 

ASRB 45 and Up Study ASPREE 

Individuals 
 Percent female 

344 
N.D. 

717 
59.3% 

1853 
48.2% 

Median age 
(range) 

40 
(18 - 65) 

70 
(64 - 91) 

79 
(75 - 95) 

Telomere length 
(AU/decade) 

-0.115 
[-0.157, -0.073] 

0.040 
[-0.010, 0.090] 

0.115 
[0.035, 0.196] 

Mitochondria count 
(log 10 mt/nucleus/decade) 

-0.004 
[-0.018, 0.010] 

-0.046 
[-0.065, -0.027] 

-0.038 
[-0.059, -0.017] 

Y copy number in males 
(Y chromosomes/nucleus/decade) 

-0.011 
[-0.022, 0.001] 

-0.050 
[-0.068, -0.033] 

-0.043 
[-0.065, -0.021] 

Somatic variant burden 
(log 10 variants/Mb/decade) 

0.038 
[-0.002, 0.079] 

0.207 
[0.167, 0.247] 

0.228 
[0.173, 0.282] 

Mitochondrial variants 
(mt variants/decade) 

0.051 
[-0.177, 0.278] 

1.665 
[1.315, 2.015] 

0.893 
[0.195, 1.591] 

 
We next considered whether individual age-related genomic measures may reflect physical 
function status, independently of chronologic age. To address this question, somatic 
changes in MGRB samples from the ASPREE cohort were studied in the context of age, grip 
strength, and gait speed, all representing key predictors of age-related morbidity (Chainani 
et al., 2016; Dudzińska-Griszek et al., 2017; Syddall et al., 2003). As expected, grip strength 
and gait speed both consistently decreased with age in both genders (Figure 3g,h). To 
correct for the strong influence of age on all measures, a conditional analysis was performed 
to explore whether any somatic measures were associated with physical function even when 
age is taken into account. Intriguingly, we found that grip strength was positively correlated 
with the count of mitochondria per nuclear genome, but only in males (two-stage test, first 
stage p = 0.051, validation p = 0.036). 
 
To illustrate the magnitude of effect of mtDNA copy number on grip strength in men, we 
modelled the change in “effective age” as determined by grip strength, as a function of 
mtDNA copy number. This revealed that men with an mtDNA copy number in the lowest 5% 
for their age have the same grip strength as men with average mtDNA levels, but who are 
2.5 years older (Figure 3i). 
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Figure 3 : Age-related somatic changes detectable in blood DNA by whole genome sequencing are 
associated with two measures of physical function. Across multiple cohorts, a consistent decrease 
with age is observed for telomere length (a), mitochondria per nucleus (b), and Y copy number in 
males (c). In contrast, advanced age is associated with an increase in somatic mutation burden (d,e) 
and the fraction of samples with detectable clonal haematopoiesis (f), as well as a decrease in the key 
physical function measures gait speed (g) and grip strength (h). The count of mitochondria per 
nucleus is significantly related to grip strength beyond age alone in men, as indicated by the change 
in effective age as judged by grip strength with varying mitochondria count (i). For (a-c,g,h) individual 
measurements corrected for cohort batch effect are shown with LOESS smooths, and for (d) a logistic 
fit was used. Bands around estimates delimit 99% confidence intervals for the mean. 
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Discussion 
Understanding the genetic underpinnings of healthy ageing is as important as, and relevant 
to, understanding the genetic basis of disease. The next decade will see the fruits of 
population-scale sequencing programs, much of which will be aimed at understanding the 
genetic origins of disease. To realise this mission, we need to understand the spectrum of 
genetic variability in the healthy, and whole genome data sets of healthy controls will be 
essential to identify genetic variation unrelated to disease (Manrai, Patel, Ioannidis, JAMA, 
2018). To this end we created the MGRB, a whole-genome sequencing resource of 
deeply-phenotyped aged individuals (Lacaze et al., 2018). 
 
Although depletion of some common disease-related alleles has been reported in the 
healthy aged (Brooks-Wilson, 2013; Deelen et al., 2014; Erikson et al., 2016), the MGRB 
reveals a striking depletion in disease-associated common and rare variation, relative to both 
affected cases, as well as datasets frequently used as controls in genetic studies, but not 
specifically depleted for disease phenotypes. In addition, the MGRB was enriched for 
protective alleles linked to healthy ageing. Our data also substantiate the premise that 
extreme phenotype enrichment can enhance statistical power in case:control genetic studies 
(Li et al., 2011) (Figure 1c,d). 
 
Despite being healthy, over 1% of the MGRB still carry pathogenic small variants that are 
clinically-reportable under current ACMG guidelines (Table 2), consistent with previous 
observations (Erikson et al., 2016). A detailed review of individual phenotypes from a subset 
of mutation carriers excluded even subclinical manifestations of the expected disorders. 
These data suggest that many apparently pathogenic small variants have variable 
penetrance, echoing a theme emerging from population genomic studies. Additionally, 
several rare structural variants were identified that may abrogate function of 
clinically-reportable genes (Supplementary Table 3). Future studies using whole 
genome-based data will benefit from the MGRB in quantitating the contribution of structural 
variation to ageing and disease. These observations suggest the MGRB may provide a filter 
for rare variants currently thought pathogenic in a clinical context. 
 
The ageing process is accompanied by the emergence of somatic mutations in tissues other 
than blood, mitochondrial depletion and heteroplasmy, and progressive telomere shortening 
(Acuna-Hidalgo et al., 2017; Genovese et al., 2014; Jaiswal et al., 2014; Martincorena et al., 
2015). We developed a suite of methods to detect these age-related changes using 30X 
whole-genome sequencing, and applied it to the elderly MGRB and a younger cohort. 
Telomere shortening itself may directly increase the likelihood of neoplasia (Artandi et al., 
2000), while oncogenic mutations in genes such as TP53 may rescue the effects of telomere 
loss (Chin et al., 1999). Telomere dysfunction has been associated with impaired 
mitochondrial function (Sahin et al., 2011), linking these genomic features of ageing. Many of 
the somatic changes of ageing observed in the MGRB are associated with marrow stem cell 
depletion (de Haan and Van Zant, 1999), consistent with studies in telomerase-deficient 
mice (Lee et al., 1998).  
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Interestingly, we observed a shift in the age trajectory of multiple somatic metrics in the 
elderly compared to younger individuals, coincident with the emergence of clonal 
hematopoiesis. It is paradoxical that, in this and other cohorts, somatic clonal expansion 
driven by oncogenic mutations appears compatible with normal organ function (Genovese et 
al., 2014; Jaiswal et al., 2014; Martincorena et al., 2015). It is even possible that neoplastic 
events, such as telomere stabilisation, loss of tumor suppressor genes, or acquisition of 
oncogenic kinase mutations, might increase clonogenic efficiency of an ageing marrow stem 
cell compartment. Some support for this concept, reminiscent of antagonistic pleiotropy 
(Williams, 1957), comes from mice carrying a hypermorphic form of Trp53, in which 
protection from neoplasia was accompanied by accelerated hematopoietic ageing and 
diminished marrow reserve (Dumble et al., 2007; Tyner et al., 2002). If true, these findings 
suggest that strategies that suppress tumor formation may accelerate ageing. 
 
We observed an intriguing link between somatic burden and decline in physical function, 
providing a potential measure of what distinguishes individuals sharing the same age, but 
different physical function status. The relative depletion of mitochondria per leukocyte 
appeared to be associated with reduced grip strength in males, after adjustment for age. 
This finding is consistent with evidence that mitochondrial dynamics are strongly involved in 
ageing and function, particularly in males (Latorre-Pellicer et al., 2016; Wachsmuth et al., 
2016). We note that our power to detect such an effect is low when using a well elderly 
cohort, but believe there will be great interest in deriving quantitative measures of biological 
ageing from standard-depth whole genome sequencing. 
 
Although the largest cohort of healthy elderly whole genomes amassed to date, the MGRB is 
still subject to limitations as a research and clinical tool. The investigation of extremely rare 
variants is limited by the MGRB’s size, and complicated by batch effects in rare variant calls 
(Tom et al., 2017). Furthermore, the MGRB comprises almost exclusively white Australians, 
and follow-up studies will be required to assess the spectrum of genetic variation in the 
healthy elderly from other backgrounds. The MGRB was recruited on the basis of a 
restricted definition of healthy ageing, being depletion of cancer, cardiovascular disease, and 
dementia, and MGRB participants do bear other morbidities. However we note that the deep 
phenotype which accompanies the MGRB enables more focussed participant selection and 
the construction of for-purpose subset cohorts, making the MGRB of value as a universal 
control that can be depleted of any measured phenotype. Finally, although we observed 
associations between somatic measures and age that are suggestive of changes in ageing 
kinetics, this cannot be definitively established using our cross-sectional study design. 
Further studies with longitudinal samples will be required to verify our hypothesis of altered 
ageing kinetics, for which the methodology established here will be valuable. 
 
Quantitative biomarkers of age may provide a summative metric of diverse genetic and 
environmental effects on health. Interpreted as endophenotypes, such biomarkers show 
promise to increase our ability to detect genetic patterns associated with ageing rate (Lu et 
al., 2018), but their true utility may be greater still as clinical tools in their own right. By 
encoding the aggregate influence of complex and potentially unmeasurable genetic and 
environmental effects over the life of an individual, biomarkers of age may represent health 
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and disease risk with greater fidelity than external indicators such as calendar age or 
functional state. 
 
Particularly with respect to cancer, the DNA-based measures of biological age we have 
demonstrated here may represent an individual’s underlying mutation rate, and therefore 
true cancer risk, due to combined genetic and environmental factors. This biomarker-centric 
perspective on cancer risk represents a synthesis and simplification of the traditional 
genotype- and environment-centric views, and we believe is a promising lens through which 
to consider disease risk, and differentiate normal compensatory changes associated with 
ageing, from those that precede malignancy. 
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STAR Methods 

Experimental Model and Subject Details 

Human subjects 
Participants of the MGRB were consented through the biobank programs of the ASPREE 
and 45 and Up studies following protocols described previously (45 and Up Study 
Collaborators et al., 2008; Lacaze et al., 2018). At the time of blood collection, each 
participant was aged 60 years or older. 
 
Samples from the ASPREE study were from individuals aged 75 years or older at time of 
enrolment, with no reported history of any cancer type, no clinical diagnosis of atrial 
fibrillation, no serious illness likely to cause death within the next 5 years (as assessed by 
general practitioner), no current or recurrent condition with a high risk of major bleeding, no 
anaemia (haemoglobin > 12 g/dl males, > 11 g/dl females), no current continuous use of 
other antiplatelet drug or anticoagulant, no systolic blood pressure ≥180 mm Hg and/or a 
diastolic blood pressure ≥105 mm Hg, no history of dementia or a Modified Mini-Mental 
State Examination (3MS) score ≤77 (Teng and Chui, 1987), and no severe difficulty or an 
inability to perform any one of the 6 Katz basic activities of daily living (Katz and Akpom, 
1976). 
 
Samples from the 45 and Up Study were from individuals with no self-reported history of 
cancer, heart disease, or stroke. Neurological disease was not explicitly excluded, but 
participants were required to correctly self-complete a health survey at enrolment. We 
confirmed no record of cancer diagnosis in the NSW Central Cancer Registry, and no record 
of cancer diagnosis in the NSW Admitted Patient Data Collection, for all 45 and Up Study 
individuals in the MGRB. 
 
Participants in the Australian Schizophrenia Research Bank (ASRB) were recruited through 
a national media campaign and consented to data and sample collection genomic analyses 
as previously described (Loughland et al., 2010). 

Ethics 
The ASPREE Biobank study was approved by the Monash University Human Research 
Ethics Committee, and subsequent whole genome sequencing of Australian ASPREE 
participants was approved by the Alfred Hospital Ethics Committee. The use of 45 and Up 
Study samples in the MGRB is covered by ethics approvals from the University of New 
South Wales Human Research Ethics Committee and the NSW Population & Health 
Services Research Ethics Committee. The use of the ASRB data was approved by the 
University of Newcastle Human Ethics Research Committee. 
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Method Details 

Sample collection and processing 
 
For ASPREE participants of the MGRB, peripheral blood samples were processed to buffy 
coat within 4 hours of collection, then stored at −80°C. DNA was later purified from buffy coat 
via magnetic bead extraction (Qiagen). 
 
For 45 and Up Study participants of the MGRB, peripheral blood samples were refrigerated 
at 4°C and processed to buffy coat within 48 hours of collection. Buffy coat was stored at 
−80°C, and DNA purified via column extraction (Qiagen). 
 
ASRB participant PBMCs were extracted from whole blood by centrifugation in Lymphoprep 
(Vital Diagnostics). Genomic DNA (gDNA) was extracted from PBMCs using salt extraction 
and quantified by PicoGreen assay (Life Technologies). The integrity of gDNA was 
determined by agarose gel electrophoresis prior to sequencing. 

Sequencing 
Whole genome sequencing of the MGRB, 45 and Up cancer, and ASRB cohorts was 
performed on Illumina HiSeq X sequencers at the Kinghorn Centre for Clinical Genomics 
(KCCG), Sydney, using paired-end Illumina TruSeq Nano DNA HT libraries and v2.5 
clustering and sequencing reagents. 100 / 2,926 MGRB and 85 / 520 ASRB samples were 
sequenced to high depth (3 HiSeq X lanes per sample, equivalent to approximately 105X 
human genome), the remainder were sequenced to one lane per sample. Only one lane of 
data per sample was used to create the MGRB Phase 2 data release. 

Quantification and Statistical Analysis 

Sequence alignment and processing 
All sequence data generated at the KCCG were processed following the Genome Analysis 
Toolkit (GATK) best practices (Van der Auwera et al., 2013). We first defined a custom 
reference genome tailored to Illumina HiSeq X sequencers, being the 1000 Genomes Phase 
3 decoyed version of build 37 of the human genome (The 1000 Genomes Project 
Consortium, 2015), with an added contig of NC_001422.1 to act as a decoy for the 
HiSeq-specific ΦX174 sequence spike-in. Reads were aligned to this reference using bwa 
0.7.15 mem in paired mode, and duplicates marked with biobambam2 2.0.65 bamsormadup, 
with a minimum optical pixel distance of 2,500. All other parameters for both bwa and 
bamsormadup were left at defaults. For high-depth samples run on multiple sequencing 
lanes, data merging was performed at this point using samtools 1.5. Indel realignment and 
base quality score recalibration of mapped reads were performed using GATK 3.7-0 and 
best practices parameters; unmapped reads were left unmodified. GATK HaplotypeCaller 
was used to generate g.vcfs from all single-lane realigned and recalibrated BAMs using 
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recommended parameters. Pipeline steps were accelerated using GNU parallel 20170722 
(Tange, 2011). 

Locus confidence tiers 
We defined locus confidence tiers for WGS genotyping on the basis of prior annotations, 
sequence complexity, and empirical metrics on our data. Locus tiers ranged from 1 to 3, with 
1 indicating the highest confidence in WGS variant detection performance, and 3 the lowest. 
 
To specify the locus confidence tiers, we first identified regions of the genome which 
empirically had unusual coverage in the MGRB and 45 and Up cancer sequencing data. For 
each sample we defined bounds on the expected sequence coverage as the 0.001 and 
0.999 quantiles of a Poisson distribution, with rate equal to the modal nonzero coverage 
observed across all autosomal loci within that sample. As typically 15 reads are required for 
high genotyping performance (Meynert et al., 2014), the lower bound was thresholded to 
always be at least 15. Within each sample, we defined each autosomal locus as being either 
in-bound (depth within the sample-specific bounds), or out-of-bound. We then calculated 
across all samples the rate at which each locus was out-of-bounds, considering the entire 
MGRB cohort. Regions for which this rate exceeded 5% (in other words, loci which had 
unusual coverage in at least 5% of MGRB + 45 and Up cancer samples) were marked as 
problematic. These problematic regions were smoothed by a morphological closing 
operation followed by an open operation, with structuring elements being centred intervals 
on the genome of size 131 bp and 11 bp, respectively, to yield a final definition of regions of 
unusual depth in the MGRB cohort. These regions totalled 409 Mb, 13.0% of the reference 
genome, 13.2% of the canonical chromosomes (1-22, X, Y), and 14.9% of the CCDS coding 
sequence (accessed 21 Nov 2017). 
 
We then defined a poor-quality subset of the genome as all loci within 5 bp of the union of: 
the unusual depth regions, repeat regions identified by RepeatMasker, low complexity 
regions of the reference genome detected by mdust with default parameters, excludable 
regions from the ENCODE project, and poorly aligned or non-unique regions from the 
ENCODE project (Key Resources Table). This poor-quality subset totalled 1,832 Mb in size, 
58.4% of the reference genome, 59.0% of the canonical chromosomes, and 18.1% of the 
CCDS coding sequence. 
 
Variants in non-canonical chromosomes, the pseudoautosomal regions (X: 60001 - 
2699520, 154931044 - 155260560; Y: 10001 - 2649520, 59034050 - 59363566), or within 
the poor-quality subset of the genome defined above, were assigned to the lowest 
confidence tier 3. For the remaining variants in canonical chromosomes, if the variant 
overlapped a high-confidence HG001 region identified by the GiaB consortium v3.3.2 (Zook 
et al., 2014) it was assigned the highest confidence tier 1, else it was assigned an 
intermediate confidence tier of 2. In total, 81.9% of the CCDS coding genome was in 
confidence tier 1 or 2 (Table 3). 
 
Table 3 : Quantity in megabases of the reference genome, the canonical chromosomes 
(1-22, X, Y), or the CCDS coding regions in each locus confidence tier. 
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Locus confidence tier Reference 
genome 

Canonical 
chromosomes 

CCDS 

1 -- highest 1,212 1,212 25.40 

2 52 52 1.19 

3 -- lowest 1,874 1,832 5.88 

Total 3,137 3,096 32.47 

Initial sample quality control 
Poor quality MGRB and 45 and Up cancer samples were identified on the basis of genotype 
metrics at a small diagnostic set of loci. All 3,033 single-lane samples were genotyped at 
SNP loci on the Illumina Infinium QC Array 24 v1.0, using GATK GenotypeGVCFs, and 
quality metrics calculated within Hail v0.1 (Ganna et al., 2016). 2,904 / 3,033 (95.7%) 
samples passed initial quality thresholds (Table 4). Of these, 14 (0.5%) had a reported sex 
that did not match their genetic sex, as determined from the X chromosome inbreeding 
coefficient; these sex-discordant samples were not considered further. In total, 2,890 / 3,033 
(95.3%) MGRB and 45 and Up cancer samples passed initial quality control (QC). 
 
Table 4 : Quality metric conditions for samples to pass quality control (QC). Two rounds of 
QC were performed, with different metric cutoffs: a first round based on genotypes at 
Illumina Infinium QC Array 24 SNPs only, and a second round based on genotypes called 
across the whole genome. Only samples passing all cutoffs in both rounds were included in 
the MGRB Phase 2 release. 

Metric Initial QC (Infinium SNPs) Final QC (full genotypes) 

Call rate > 0.98 > 0.98 

Depth standard deviation < 10 < 10 

VAF standard deviation at 
loci called heterozygous 

< 1 < 1 

Heterozygous : 
Homozygous variant ratio 

< 2 < 2 

X chromosome inbreeding 
coefficient 

< 0.2 or  
> 0.8 

Not tested 

Singleton rate < 0.001 Not tested 

Small variant genotyping, final QC 
The 2,890 MGRB and 45 and Up cancer samples passing initial QC were joint called in a 
single batch using GATK GenotypeGVCFs, and imported to Hail v0.1 for processing. A 
second round of QC (Table 4) identified an additional 31 samples with poor quality metrics 
not revealed by the initial QC round; these were dropped. The PCRELATE component of the 
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GENESIS 2.8.0 package (Conomos and Thornton, 2016) was used to determine 
structure-corrected relatedness between the 2,859 samples remaining, using autosomal 
SNPs LD-pruned with an r2 threshold of 0.1, KING robust relatedness estimates from 
SNPrelate 1.12.1 (Zheng et al., 2012), and without a population reference cohort. 14 pairs of 
individuals related to 2nd degree or closer were identified and excluded from the cohort. 
MGRB (cancer-free) and 45 and Up cancer samples were split into separate cohorts at this 
point, and four 45 and Up cancer samples excluded on the basis of incomplete or 
inconsistent clinical data. In summary 2,841 unrelated samples passed all data quality 
requirements, comprising 2,570 cancer-free MGRB individuals, 269 45 and Up cancer 
samples, and the reference materials RM 8391 and RM 8398. 

Cohort population structure 
The MGRB cohort population structure was determined using principal components analysis 
(PCA), with reference to the 1000 genomes (1000G) populations. A merged dataset of all 
MGRB and 45 and Up cancer genotypes and the 1000G Phase 3 genotypes (The 1000 
Genomes Project Consortium, 2015) was generated in Hail. To ensure high genotype 
concordance between platforms, merged variants were restricted to autosomal 
strand-specific SNPs in Tier 1 regions of the genome (see Locus confidence tiers), with a 
1000G allele frequency in the range of 5% to 95%, and no evidence of deviation from 
Hardy-Weinberg equilibrium within any of 17 homogeneous 1000G populations (PHWE > 0.01 
/ 17 for each of population codes BEB, CDX, CEU, CHB, CHS, FIN, GBR, GWD, IBS, ITU, 
JPT, KHV, LWK, MSL, STU, TSI, and YRI). Merged variants were LD-pruned in Hail with an 
r2 threshold of 0.1, and PCA performed in Hail on biallelic variants with a combined MGRB 
and 1000G allele frequency in the range of 5% to 95%. 
 
A hierarchical eigenvalue decomposition discriminant analysis classifier was constructed to 
assign MGRB samples to 1000G populations on the basis of PCA scores. The first classifier 
layer predicted a sample’s 1000G superpopulation (AFR, AMR, EAS, EUR, or SAS), and the 
second a sample’s European population (CEU, FIN, GBR, IBS, or TSI), conditional on EUR 
being the predicted superpopulation by the first layer. Models were trained on 1000G sample 
scores only using PC1-4 as predictors, then were applied to predict population source for the 
MGRB samples. All models were implemented using mclust v5.3 (Scrucca et al., 2016). 

Small variant processing and annotation 
Small variant processing and annotation was performed within Hail v0.1. Variant 
consequences were determined using Ensembl VEP 90 with default Ensembl release 90 
databases (McLaren et al., 2016). Variants were further annotated with a range of population 
allele frequencies, database cross-references, and pathogenicity predictions (Table 5) 
 
Table 5 : Annotations applied to MGRB small variant data 
 

Annotation Version Source or citation 

1000 genomes allele 
frequencies 

Phase 3 (2 May 
2013) 

(The 1000 Genomes Project 
Consortium, 2015) 
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Haplotype reference 
consortium allele frequencies 

1-1 (McCarthy et al., 2016) 

GnomAD allele frequencies 2.0.1 http://gnomad.broadinstitute.org
/ 

dbSNP 150 (Sherry et al., 2001) 

ClinVar 9 Sep 2017 (Landrum et al., 2014) 

CATO 1.1 (Maurano et al., 2015) 

Eigen coding 1.1, 9 May 2016 (Ionita-Laza et al., 2016) 

Germline structural variant detection 
Germline structural variants in the MGRB and 45 and Up cancer cohorts were detected 
using GRIDSS v1.4.1 (Cameron et al., 2017), excluding regions in the Encode DAC 
Mappability Consensus Excludable list (Key Resources Table). Where possible, linked sets 
of breakend calls resulting from a single rearrangement were merged into higher-level 
structural events. To eliminate overlap with GATK indel calls and enable assessment of 
cohort frequencies, structural variant events were filtered to be of length at least 50 bp, and 
those of the same type within a window of 100 bp were merged to the one call. 
 
Germline mobile element insertions (MEIs) were identified using Mobster v0.2.2 (Thung et 
al., 2014) without blacklisting existing mobile element regions. MEI calls were then 
processed to remove false positive events in existing mobile element regions and to 
estimate variant zygosity by local realignment to the reference genome. MEIs occurring in 
different samples within 100 bp of each other were merged to the one call. 

Rare variant burden comparison 
To compare rare variant burden between the platform-matched MGRB and 45 and Up 
cancer cohorts, missense or nonsense variants (as judged by VEP) in ACMG SF 2.0 
cancer-associated genes were joint called across both cohorts, and each variant scored for 
pathogenicity by ACMG criteria, blinded to cohort. The rate of individuals carrying 
pathogenic variants was then directly compared by Fisher’s test. To exclude potential 
confounding due to source cohort, the 45 and Up component of the MGRB only was 
compared to the 45 and Up cancer cases. 
 
To compare rare variant burden between the platform-mismatched MGRB and gnomAD 
non-Finnish European (NFE) WGS cohorts, the following procedure was used. Missense, 
nonsense, and synonymous variants in protein-coding genes were identified in each cohort 
using VEP, with identical parameters across both MGRB and gnomAD. Variants were further 
reduced to a very high-quality set, defined by the intersection of the Genome in a Bottle gold 
standard regions, and regions sequenced to a depth of at least 15 in at least 98% of 
samples in both the MGRB and gnomAD WGS cohorts. Variants with alternate alleles 
present at a frequency of 1% or greater in either cohort were discarded. 
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Given these high-confidence rare variant alleles, we calculated rare variant burden as 
, where  and  are the expected rates of individuals carrying anyb = E(b )D

E(b )+E(b )N D
(b )E D )E(bN  

deleterious or all neutral genotypes in the cohort, respectively, assuming random 
assortment. Forms for these expectations depend on the genetic model used; for a dominant 

model , and for a recessive model , with (b )E D = ∑
 

i∈V D

AA +RAi i
AA +RA +RRi i i

(b )E D = ∑
 

i∈V D

AAi
AA +RA +RRi i i

V D  

denoting the set of alleles called deleterious, and , , and  the counts ofAAi RAi RRi  
individuals with homozygous alternate, heterozygous, and homozygous reference genotypes 
for allele , respectively. Double-alternate heterozygous loci (eg genotype AB) were noti  
considered in this calculation, but given the rarity of the alleles considered these were very 
uncommon. Expectations for neutral variation  are defined analogously, except)E(bN  
summed over the set of neutral alleles .V N  
 
To test the significance of differences in  between cohorts we employed a bootstrapb  
procedure. Bootstrap draws of each source cohort genotypes were created by independent 
sampling with replacement of observed genotypes at each locus, and used to generate 

 bootstrap distributions of . A two-sided p-value was calculated as000B = 1 b  

min  p = 2
B+1 ,(∑

 

i
b[ 1,(i) < b2,(i)] 

+ 2
1 ∑

 

i
b[ 1,(i) = b2,(i)] 

+ 2
1 ∑

 

i
b[ 1,(i) > b2,(i)] 

+ 2
1 ∑

 

i
b[ 1,(i) = b2,(i)] 

+ 2
1)

, with  denoting bootstrap draw  of the statistic for cohort .bc,(i) i c  
 
Deleterious alleles were defined as non-synonymous changes with a CONDEL score over 
0.7; neutral alleles were defined as synonymous changes. Tests examined variants in all 
VEP-identified protein coding genes, or variants associated with arrhythmia, 
cardiomyopathy, or cancer (Supplementary File 5). Eight tests were performed (two models, 
one neutral/deleterious classification, four gene sets). 

Genome-wide common variant frequency comparison 
To compare patterns of common variation between the MGRB and other cohorts, we 
merged the MGRB variants with gnomAD v2.0.1 non-Finnish European (NFE) WGS allele 
frequencies, and allele frequencies from a homogeneous subset of the UK BioBank 
genotype set, generated as previously described (Nagpal et al., 2018). To minimise the 
influence of technical artefacts, variants were restricted to strand-specific biallelic SNPs 
listed in the EBI GWAS database, that were located in regions of the genome covered by the 
Genome in a Bottle standard, and were sequenced to a depth of at least 15 in at least 98% 
of samples in both the MGRB and gnomAD WGS cohorts. Further, variants which were not 
observed in one or more cohorts, or were genotyped at a rate of less than 97% in any 
cohort, were excluded. 21,033 SNPs remained following this filtering, with very similar allele 
frequencies across all cohorts (Supplementary Data File 2, sheet 1; Supplementary Figure 
3); these loci and frequencies were used in the following common variant analyses. 
 
We tested for phenotype-linked bias in allele frequency between the cohorts as follows. For 
a given phenotype-associated set of variants, each variant was scored on two metrics: its 
variant allele frequency enrichment or depletion in MGRB versus gnomAD or UKBB, and the 
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positive or negative association of the variant allele with the trait. A Fisher’s exact test was 
then used to test for dependence of variant enriched/depleted status on the trait direction of 
effect, with deviation from the null indicating an allele frequency bias between MGRB and 
gnomAD or UKBB that is specific to the phenotype considered. 
 
Three sets of variants were tested by this procedure: a test set of variants reported to be 
associated with phenotypes depleted in the MGRB (Supplementary Data File 2, sheets 2-3), 
and two negative control sets of variants linked to anthropometric traits (Supplementary Data 
File 2, sheets 4-5), or behavioural traits (Supplementary Data File 2, sheets 6-7). 

Polygenic score estimation and testing 

Polygenic scores were calculated as  where  is the polygenic score fordSi = ∑
 

j
βj ij Si  

individual ,  the GWAS-reported coefficient for a single variant allele at locus , and i βj j dij  
is the variant allele dosage for individual  at locus . We considered only autosomali j  
variants, and if a variant dosage was not available for an individual, it was imputed as 

, with  the variant allele frequency reported by the source publication. To reducefdij
︿

= 2 j f j  
bias due to this imputation, variants with a call rate under 97% were excluded from polygenic 
score calculation in all individuals. 
 
Polygenic score GWAS coefficients were derived from processing of summary statistics for 
genome-wide significant loci in reporting papers, for colorectal cancer (Schumacher et al., 
2015), melanoma (Law et al., 2015), breast cancer (Michailidou et al., 2017), prostate cancer 
(Hoffmann et al., 2015), blood pressure (Warren et al., 2017), early-onset coronary artery 
disease (EOCAD) (Thériault et al., 2018), atrial fibrillation (Lubitz et al., 2017), height (Wood 
et al., 2014), Alzheimer’s disease (Lambert et al., 2013), and longevity (Deelen et al., 2014). 
GWAS coefficients were used as-is for the continuous trait of height. For all other binary 
traits, coefficients were converted to a log-odds scale. The Alzheimer’s disease PRS as 
originally reported lacked the highly significant APOE locus; accordingly this locus was 
manually added to the PRS using the tag SNP rs10414043, and an estimated .34β = 1  
(Genin et al., 2011). rs10414043 was used in preference to the more conventional rs429358 
as the latter was not robustly genotyped on all platforms. All loci, alleles, and coefficients 
used in the PRS calculations are detailed in Supplementary File 2. 
 
An approximate bootstrap procedure was used to test for polygenic score shift between 
MGRB, gnomAD, UKBB, and the 45 and Up cancer cohort. All cohorts were first collapsed to 
allele-frequency data only, with individual genotypes discarded. For a given polygenic score 
and a set of cohorts to compare, testing then proceeded as follows. Polygenic score variants 
were first subset to those called at a rate of at least 97% in each cohort, and with an 
absolute difference in alternate allele frequency between MGRB, gnomAD, or UKBB of less 
than 4%. A bootstrap sample of genotypes was then drawn independently for each cohort 
and locus, polygenic scores calculated for each bootstrapped individual as above, and the 
mean cohort polygenic scores calculated. This was repeated for 5,000 bootstrap rounds to 
yield bootstrap distributions of the mean polygenic score in each cohort. To facilitate 
comparisons between scores of different scales, bootstrap distributions for each score were 
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normalised by an affine transformation that brought the 0.025 and 0.975 quantiles of the 
MGRB scores to values of -0.5 and 0.5 respectively. The 95% bootstrap confidence intervals 
for each cohort were then defined as the 0.025 and 0.975 quantiles of the normalised 
scores. Approximate two-sided p values for the overlap between two bootstrap distributions 

were estimated as  where  and  are( in( [s ], [s ]))p ≈  2
B+1 2

1 + m ∑
B

k=1
1,(k) < s2,(k) ∑

B

k=1
1,(k) > s2,(k) s1,(k) s2,(k)  

samples from the the bootstrap mean values for cohorts 1 and 2, respectively,  is00000B = 1  
the number of samples taken with replacement from the bootstrap mean values, and  ][  
denotes Iverson brackets. 
 
The statistical power improvement from using the MGRB extreme phenotype cohort as a 
control versus gnomAD was estimated by asymptotic approximation. Bootstrap distribution 
means of the mean prostate cancer score difference between the 45 and Up cancer cases, 
and gnomAD and MGRB controls, were used as mean shift values for statistical power 
calculation. After correcting for varying cohort sample size, bootstrap distribution variance 
was highly consistent across all three cohorts, and pooled variance scaled to a sample size 
of 1 was used as the dispersion parameter. Power was then calculated across a range of 
sample sizes for both the MGRB vs 45 and Up cancer, and gnomAD vs 45 and Up cancer 
tests, by direct root finding of the relevant t distributions. Finally, the power vs sample size 
relationship was inverted by piecewise linear interpolation to yield the sample size vs power 
curves. 
 
Individual genotypes were available for both MGRB and 45 and Up cancer cohorts. In these 
cases, a secondary analysis was performed that directly compared the distributions of 
individual polygenic scores between cohorts. Height prediction was validated by ordinary 
linear regression of measured individual height against the polygenic height predictor (Wood 
et al., 2014) with additional additive linear covariates of sex and age at measurement; no 
evidence for model misspecification was observed. The association between polygenic 
score and risk of specific cancers was assessed by logistic regression, with the effect of 
polygenic score on cancer risk modelled by GCV-penalised thin plate splines. Comparisons 
were restricted to the specific cancers of prostate, colorectal, and melanoma, as other 
cancers were either poorly sampled in the 45 and Up cancer cases, or did not have 
polygenic scores defined. 

Incidental somatic variant detection 
Somatic variants were identified in post-BQSR BAM files using FreeBayes, with options: 
--pooled-continuous --standard-filters --min-alternate-fraction 0 --min-alternate-count 3 
--hwe-priors-off --allele-balance-priors-off --use-mapping-quality. FreeBayes was restricted to 
detecting variants within 10 kb of RefSeq genes in the COSMIC Cancer Gene Census 
(Forbes et al., 2017) downloaded 11 December 2017. Variant annotation was performed 
using the Ensembl VEP (McLaren et al., 2016) release 90, with default options, and variants 
were notated with COSMIC 83 frequencies. 
 
Annotated variants were filtered to retain only non-synonymous variation (missense, splice 
donor or acceptor, start lost, stop gained, frameshift, or inframe indel) affecting Cancer Gene 
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Census Tier 1 genes, with a maximum population allele frequency of less than 0.1%, a 
variant allele fraction (VAF) of at least 10%, and three or more reads supporting the variant. 
We then identified likely driver mutations from these filtered variants by the following criteria: 
either a variant had a HIGH consequence in a canonical tumour suppressor gene transcript, 
or the variant was observed at least 100 times in the COSMIC database. Consequences and 
canonical transcripts were as defined by Ensembl VEP; tumour suppressor genes were Tier 
1 genes from the COSMIC Cancer Gene Census with a TSG annotation. 

Sequence-based measures of age 

Telomere length 
Telomere lengths were estimated using Telseq v0.0.1 (Ding et al., 2014). To reduce batch 
effects between the ASRB and MGRB cohorts, ASRB telomere length estimates were 
calibrated using Deming regression, fit to 85 ASRB samples sequenced both in the original 
ASRB batch, and contemporaneously with the MGRB. 
 
Telomere length estimation by Telseq was validated by qPCR on a subset of 120 samples 
from the ASRB and MGRB cohorts (Supplementary Figure 7), as described previously 
(Cawthon, 2002) with minor modifications. Briefly, qPCR was conducted in triplicate. 
Reactions included: genomic DNA (5 ng), 2x Rotor-Gene SYBR Green Master Mix (Qiagen), 
500 nM Tel forward [5’-CGGTTT(GTTTGG)5GTT-3’] and 500 nM Tel reverse 
[5’-GGCTTG(CCTTAC)5CCT-3’] or 300 nM 36B4 forward 
[5’-CAGCAAGTGGGAAGGTGTAATCC-3’] and 500 nM 36B4 reverse 
[5’-CCCATTCTATCATCAACGGGTACAA-3’] in a 25 μL reaction. Amplification was 
conducted in a Rotor-Gene Q qPCR cycler (Qiagen) at 95°C for 5 min, followed by 30 cycles 
of 95°C for 7 sec and 58°C for 10 sec (telomere reaction) or 35 cycles of 95°C for 15 sec 
and 58°C for 30 sec (single copy gene reaction). Telomere content for each sample was 
determined by the telomere to single copy gene ratio (T/S ratio) by calculating ΔCt (Cttelomere / 
Ctsingle copy gene). The T/S ratio of each sample was normalized to the mean T/S ratio of a 
reference sample, which was included in each run. The experiment was accepted if the 
reference sample T/S ratio ranged within 95% variation interval, and if the standard curve 
had a high correlation factor (R2 > 0.95). 

Mitochondria and Y chromosome copy number 
Mean mitochondrial genome copy number in each sample was estimated using read counts, 
as 2 × (R MT ÷ S MT) ÷ (RA ÷ S A), where RZ and SZ denote the number of reads mapping to 
contig set Z and the total size of contig set Z, and MT and A denote mitochondrial and 
autosomal contigs, respectively. Read counts were mapped and aligned reads reported by 
samtools idxstats, and were not corrected for read duplication. Patch contigs were not 
included in counts. Y copy number in males was estimated by an analogous procedure, as 2 
× (RY ÷ S Y) ÷ (RA ÷ S A). 

Mitochondrial variants 
Variants in the mitochondrial genome were detected using FreeBayes, considering only 
reads with base quality over 24 and mapping quality over 30; all other parameters were left 
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at defaults. Variants with fewer than 10 alternate reads, or an alternate allele fraction under 
0.001, were discarded. For each variant passing these filters a Phred-like quality score q  
was calculated as , with  the count of alternate allele reads, − 0log (1 (n; , ))q = 1 10 − F p N n N  
the total depth at the variant locus,  a fixed error rate estimate, and  the.0025p = 0 (n; , )F p N  
cumulative density function of a binomial distribution with  draws and success probabilityN  

. Variants with , high depth variants ( ) with an alternate read strand bias ofp 0q < 3 5n > 1  
greater than 0.9, or variants in the highly variable locations MT:302-319 or MT:3105-3109 
were discarded. The final metric of mitochondrial variant burden for a sample was defined as 
the number of low-frequency (variant allele fraction under 0.01) variants passing all above 
filters in that sample. 

Somatic single nucleotide variants 
Somatic SNV burden was estimated using a combination of statistical filtering and spectral 
denoising. Putative somatic SNVs were first identified on the basis of a variant allele 
frequency that was statistically inconsistent with either machine error or germline variation. 
The burden of these variants in each sample was then dimensionally reduced by spectral 
factorization, and per-sample signature scores used as the final somatic variant estimates. 
 
We first developed a statistical filtering procedure to identify likely somatic variants, that uses 
dynamic thresholds to optimise sensitivity while controlling signal to noise ratio. This 
procedure calls a variant at a given locus as likely somatic if it satisfies the following criterion: 

cE ≤ nA ≤ cH  
where  is the number of non-reference allele reads at the locus, and  and  arenA cE cH  
integers which maximise: 

p (1 )pn = rRR ∑
cH

n =cA E

( )nnA A
nA − pA

n−nA  

subject to: 
rc

1−rc
pn

r α +r αRR E H H
≥ gr  

with , and . Here  is the sum of reference and rRR = 2
1 1( − rH + √1 r− 2 H)  pA = 1 ε( − 3

4 ) f + ε n  
alternate allele depths at the locus,  is the expected rate of heterozygous variant germline rH  
loci,  the expected rate of somatic variant loci,  the base read error rate,  the rC ε gr  
minimum acceptable ratio of true positive calls to false positive, and  is the expectedf  
somatic variant allele fraction.  and  are test sizes corresponding to thresholds  andαE αH cE  

: , , ,cH nf  cE ≡ i {n r(err) }A : P < αE up  cH ≡ s {n r(het) }A : P < αH r(err) ε (1 )P =  ∑
n

i=nA
( )i
n i − ε n−i  

 . Informally, this procedure selects variants with anr(het) ε ( ε)P = ∑
nA

i=0
( )i
n ( 2

1 + 3
1 )i 2

1 − 3
1 n−i  

alternate allele count  too large to be due to sequencing error ( , yet too low to benA )  nA ≥ cE  
from a poorly-sampled heterozygous germline locus ( . The derivation of this)  nA ≤ cH  
procedure and further details are available in Supplementary File 4. A notable advantage of 
this procedure is that it yields per-locus estimates of variant detection sensitivity, as .pn  
These estimates are critical in normalization of variant detection rates to account for 
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differential coverage across variable sequencing runs, which is necessary for the accurate 
estimation of sample somatic variant burden. 
 
Insufficiencies of the simple error model used above result in incomplete control of the signal 
to noise ratio, and further filtering is required to reliably quantify somatic variant burden. 
Assuming that true somatic events and false positive machine noise exhibit differential 
sequence context bias, we use a spectral dimensionality reduction approach to achieve 
additional denoising and summarise the total somatic variant burden in each sample. 
Extending previous cancer somatic signature work (Alexandrov et al., 2013; Gehring et al., 
2015), we calculate per-sample sensitivity-normalised somatic variant burden for each of 96 
single-nucleotide variant classes, as the total number of detected somatic events of a given 
class in that sample, divided by the sum of  in that sample for all loci corresponding to thepn  
given variant class. The resulting  normalised burden matrix is then reduced by6 n9 ×   
non-negative matrix factorization (Brunet et al., 2004), using 100 random optimisation 
starting points per cardinality. To select the appropriate factorization cardinality, we reduce 
the burden matrix by merging groups of 16 age-consecutive samples by summing burden for 
each variant class, and factorize this reduced matrix with 100 random restarts and cardinality 
ranging from 2 to 10. The lowest cardinality that gives an inflection point on the plot of 
explained variance versus cardinality is selected, and applied to the full burden matrix. 
Per-sample scores are extracted from the best of 100 random runs at this final selected 
cardinality. 
 
We applied the above procedure to the MGRB and ASRB samples, with parameters adapted 
to maximise sensitivity with low-depth sequencing data: , , ,gr = 5  0.2f =  2.0 0ε =  × 1 −3  

, . Our filtering process employed SNVs identified by samtools1.0 0rH =  × 1 −4 .0 0rC = 5 × 1 −7  
mpileup, with maximum depth 101, mapping quality adjustment of 50, BAQ recalculation, no 
indel reporting, and minimum read and mapping qualities of 30, and employed a blacklist of 
common SNPs observed in either MGRB or dbSNP. The factorization cardinality procedure 
applied to our data indicated that three signatures best described the mutation patterns 
observed (Supplementary Figure 8). Signature 3 in this work was quantitatively similar to 
COSMIC signature 5 (cosine similarity 0.81), previously reported to be associated with age 
at cancer diagnosis (Alexandrov et al., 2015), and the per-sample scores for this signature 
were used as the summative somatic burden measure. Signature 1 from this work was very 
similar to COSMIC signature 1 (cosine similarity 0.95), which has also been associated with 
spontaneous deamination processes and age. However, we observed substantial 
inter-cohort differences in score distribution for this signature, suggestive of high technical 
variability, and did not examine it further. 

Somatic copy number variants 
We developed a model-based strategy to identify subclonal copy number variants (CNVs), 
assuming a single genetically homogeneous subclone present on a background of diploid 
cells. 
 
We first defined a set of autosomal SNPs with highly stable sequencing characteristics on 
our platform. We selected loci containing autosomal biallelic SNPs in the MGRB cohort, with 
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a variant allele fraction between 5% and 95%, and a mean GC content in the surrounding 
100 bp of between 30% and 55%. These were further filtered to retain only loci with highly 
consistent coverage in both the MGRB and ASRB cohort data, with mean(DPrel ) ∈ [0.9, 1.1] 
in both cohorts, var(DPrel ) ∈ [0.025, 0.033] in the MGRB, and var(DPrel ) ∈ [0.025, 0.040] in 
the ASRB cohort. Here DPrel  is locus depth relative to mean sample depth, and statistics are 
calculated over all samples in each cohort. 1,862,065 loci passed all filters, with a median 
inter-locus distance of 626 bp, and 5th and 95th percentiles of 30 and 4,904 bp, respectively. 
 
We individually genotyped MGRB, 45 and Up cancer, and ASRB samples at this set of 
highly reliable loci using GATK HaplotypeCaller with default parameters, except for a variant 
window size of 100 bp (-ip 100). Within each sample, the depths of reference and variant 
alleles at all heterozygous SNV target loci were fit to the following subclonal CNV model, to 
produce estimates of local ploidy and global sample subclonal fraction. 
 
Consider a locus  in a single sample which contains fraction  of aneuploid cells, thei f  
remaining  being entirely diploid (gonosomes are not modeled). We denote the copy1 − f  
number (ploidy) of the aneuploid cells at  with  and , . For example,i k1i k2i k•i ∈ ℵ  

 denotes a diploid state (no aneuploidy),  the deletion of one, 1, )k1i k2i = ( 1 , 1, )k1i k2i = ( 0  
allele, and  duplication of both alleles. Our task is to estimate ,  for all ,, 2, )k1i k2i = ( 2 k1i k2i i  
and  globally, given reference and non-reference allele depths  and .f dri dai  
 
The extent to which the aneuploid cell ploidies  and  affect the representation of allelesk1i k2i  
in the mixed cell population depends on the aneuploid cell fraction . Let  and f p1i p2i  
represent the mean ploidy of each chromatid in the mixed cell DNA pool. As the pool is 
assumed to consist of only two populations, with  of the cells diploid, 1 − f k  (1 )p1i = f 1i +  − f  
and .k  (1 )p2i = f 2i +  − f  
 
We assume that the sequencer does not exhibit allelic bias. Then, ,[d ] pE 1i = ci 1i  

, with  a normalising constant to account for the depth at locus . Here [d ] pE 2i = ci 2i ci i d1i  
and  denote the depths of reads from chromatid 1 and 2, respectively. Unfortunately wed2i  
do not have phased genotypes, and so cannot easily determine the chromatid source of 
each read. Instead we have unphased reference and non-reference depths  and , anddri dai  
must account for the resulting phase uncertainty with a mixture model. 
Disregarding allele phasing we model the depths of reference and non-reference reads at i 
using a mixture:  with probability , else ,, p ), p )dri dai ~ D(ci 1i D(ci 2i 2

1 , (c p ), (c p )dri dai ~ D i 2i D i 1i  
 denoting a distribution function with expected value . In our implementation we(μ)D μ  

employ a negative binomial distribution for , with probability mass functionD  
, . The size term  captures overdispersion relative to(x; , ) q (1 )fD μ s ≡ Γ(x+s)

Γ(x+1)Γ(s)
s − q x  q ≡  s

s+μ s  
the Poisson distribution, and is optimised per-sample in the model fit. 
 
The normalising constant  is half the expected depth at locus , which is itself a complexci i  
function of locus- and sample-specific factors. We model this function at the locus- and 
sample-level using empirical cohort depth measurements, and a sample-specific GC bias 
correction. Specifically, we define , where  is the mean relative depth ofexp(h(g ))ci ≡ bi i bi  
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locus  (where relative depth is defined as , with  and  the number ofi di ÷ n
1 ∑

 

i
di di ≡ dri + dai n  

target loci, ), across the sample’s cohort (either MGRB or ASRB),  is a smooth862065n = 1 h  
function, and  is a vector of GC fraction in windows of various size around locus . For thisgi i  
work,  was a 5-vector of GC fraction in windows of size 100, 200, 400, 600, and 800 bp,gi  
calculated on the reference sequence centered at locus . The sample-specific GCi  
correction function  was implemented using a generalised additive model (GAM) with fiveh  
smooth terms, and fit to all heterozygous loci for each sample as 

, with  being the score of the th principaln(c ) (r ) (r ) (r ) (r ) (r )  l i ÷ bi ~ s 1i + s 2i + s 3i + s 4i + s 5i  rji j  
component of the GC fraction matrix for locus , and  denoting a penalised regressioni s  
spline term. GAMs were fit using mgcv 1.8-17 (Wood, 2004) with default parameters. 
 
A greedy agglomerative algorithm was used to segment the genome of each sample into 
regions of differing ploidy state. Initially the genome was divided into segments of 100 
consecutive heterozygous loci, with segment boundaries enforced between chromosomes. 
Adjacent segments were tested for identical distribution of  by a 2-sample,dri ÷ ci dai ÷ ci  
Kolmogorov-Smirnov test, and the two segments with the highest p value genome-wide were 
merged. This process was repeated until either no segment pairs remained to merge, or all 
Kolmogorov-Smirnov test p values were less than 0.01. Segments were never merged 
between chromosomes. 
 
The above model was fit to the allele counts within each genome segment by maximum 
likelihood. Ploidies of each segment,  and , as well as the global aneuploid fraction k1i k2i f  
and overdispersion , were optimised by grid search with local polishing. As very highs  
ploidies coupled with low  result in highly expressive but likely incorrect models, thef  
maximum allowable ploidy ;  was determined in an outer loop throughkmax , k  k1i  2i ≤ kmax  
minimisation of the Bayesian Information Criterion (BIC). A final polishing step was applied 
to the BIC-optimal model, which merged consecutive segments of the genome if they were 
assigned identical chromatid ploidies by the model. This final polished model yielded global 
cell fraction , as well as local ploidies across the genome, for the single aneuploid clonef  
assumed to be present in each sample. 

Clonal haematopoiesis 
Extending previous work (Jaiswal et al., 2014), clonal haematopoiesis of indeterminate 
potential (CHIP) was defined in an individual if either: a somatic small variant (see section 
Incidental somatic variant detection) was detected with a variant allele frequency of at least 
10%, or somatic copy number variation (see section Somatic copy number variants) 
indicated the presence of a clone comprising at least 10% of nucleated blood cells. 

Somatic burden statistical analysis 
Exploratory analysis indicated that variable transformation was required for some measures. 
For the following analyses, telomere length and Y copy number were modelled as-is; 
somatic variant burden, mitochondrial load, and mitochondrial variant count were 
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log-transformed prior to modelling; and grip strength in kg was power transformed with 
exponent 0.7. 
 
Within-cohort trends in somatic measures were estimated by linear regression, with 95% 
Wald confidence intervals. Likelihood ratio tests of nested models were used to evaluate 
inter-cohort trend differences, with p-values corrected for multiple testing by Holm’s step-up 
procedure (Holm, 1979). 
 
We used a permutation procedure to test the importance of somatic burden measures in 
predicting grip strength and gait speed, conditioned on age. For each of eighteen possible 
frailty measure x somatic measure x sex combinations (Frailty measures: grip strength, gait 
speed; Somatic measures: Telseq telomere length, nuclear somatic variant burden, mtDNA 
copy number, mitochondrial variant count, and Y copy number in males only), we calculated 
the deviance of the following generalised additive model 

, with age in years, weight in kg,railty (age) (weight) (BMI) (abdocirc) (somatic)  f ~ s + s + s + s + s  
BMI in kg/m2, abdominal circumference (abdocirc) in cm, and the somatic measure of 
interest (transformed if relevant following exploratory analysis). In this model specification, 

 denotes a GCV-penalised thin plate spline smooth term in  as implemented in R(x)s x  
package mgcv (Wood, 2004), with Gaussian error and identity link. This model’s deviance d  
was compared to the deviance of 10,000 models fit in the same manner but with the d(i)  

somatic variable permuted, and a p-value estimated as . To( .5)  p︿ = 1
10,001 ∑

 

i
d[  

(i) ≤ d] + 0  

address multiple testing concerns we used a two stage process. In the first stage p-values 
were calculated as above for all 18 tests on a randomly selected subset of 25% of the 
ASPREE samples. Tests with a p-value less than 0.2 in the first stage were tested in the 
second validation stage on the remaining 75% of the ASPREE samples, and these 
second-stage p-values corrected for multiple testing by Holm’s method. 
 
We observed cohort differences in intercepts in plots of somatic measures versus age. To 
remove these solely for the purposes of illustration (Figure 3), for each somatic measure we 
fit the generalised additive model , with Gaussian error andeasure (age, y ex) ohort  m ~ s b = s + c  
identity link. In this model specification  denotes a GCV-penalised thin plate(age, y ex)s b = s  
spline with age as the predictor variable, stratified by sex. Model fits were performed using 
the R package mgcv (Wood, 2004). After confirming the suitability of the model fits, 
cohort-specific effects were removed by calculating the quantity  fory′

i = yi − s︿C + s︿ASPREE  
each individual and measure, where  is the cohort-corrected somatic measure fory′

i  
individual , to be plotted;  is the original measurement for individual  in cohort ; andi y 

i i C  
 and  are the model estimates of the cohort intercept term for cohort  and thes︿C s︿ASPREE C  

ASPREE cohort, respectively. In this manner, somatic measurements were transformed to 
have an intercept matching that fitted to the ASPREE cohort. 
 
We used the following procedure to illustrate the effect of mtDNA copy number on grip 
strength in males. For each male individual  in the ASPREE cohort, an age-local quantile ofi  
mitochondrial DNA copy number  was defined as , where  is the empiricalci (c )qi ≡ F

︿

i i F
︿

i  
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cumulative distribution function of  in the neighbourhood of individual , with thec i  
neighbourhood of an individual  defined as all male ASPREE individuals within  year ofi ± 1  
age of . Ages were rounded to the nearest integer for the purposes of neighbourhoodi  
definition; for the median ASPREE male age of 80 years, this neighbourhood contained 293 
men with ages in  years. Given these local mtDNA copy number quantile estimates79, 1][ 8  

, a generalised additive model of the form  was fit using the Rq ripstrength ge (q)  g ~ a + s  
package mgcv (Wood, 2004), with  smooth term as above. Predictions from this model withs  

 and varying  defined the estimated influence of age-local mtDNA copy numberge 0a = 8 q  
on grip strength for an 80 year old man. These grip strength predictions were transformed to 
effective age estimates assuming typical mtDNA copy number by inversion of the model 
predictions for , and used to calculate an age excess as a function of . Variability of.5s = 0 q  
this relationship was estimated using 100,000 bootstrap samples, and results presented as 
highest posterior density intervals. 

Data and Software Availability 
Summary variant frequency data for the MGRB cohort are available at the web portal: 
https://sgc.garvan.org.au/explore . Complete genotype, phenotype, and raw data are 
available upon application to Prof. David Thomas (d.thomas@garvan.org.au ), or 
sgc@garvan.org.au . Source code for all analyses is available at 
https://github.com/mpinese/mgrb-manuscript; source code for the somatic SNV and LoH 
detection tools can be found at https://github.com/mpinese/soma-snv and 
https://github.com/mpinese/soma-cnv. 

Additional Resources 
The Medical Genome Reference Bank web portal: https://sgc.garvan.org.au/explore 

Key Resources Table 

REAGENT or RESOURCE SOURCE IDENTIFIER 

Critical Commercial Assays 

TruSeq Nano DNA HT library Illumina  

HiSeq X clustering and sequencing reagents Illumina v2.5 

Deposited Data 

Human reference genome, 1000 Genomes 
Project phase 3 build 37 with decoy 

1000 Genomes 
Project 

ftp://ftp.1000genome
s.ebi.ac.uk/vol1/ftp/te
chnical/reference/hu
man_g1k_v37.fasta.
gz 

ΦX174 genome NCBI RefSeq  NC_001422.1 
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Consensus CDS coding regions, accessed 21 
Nov 2017 

UCSC browser table 
ccdsGene 

https://genome.ucsc.
edu/cgi-bin/hgTables 

Repetitive regions, last updated 27 April 2009 UCSC annotations 
database 

http://hgdownload.so
e.ucsc.edu/goldenPa
th/hg19/database/rm
sk.txt.gz 

ENCODE excludable regions, DAC, last updated 
5 May 2011 

UCSC browser table 
wgEncodeDacMapabi
lityConsensusExcluda
ble 

http://hgdownload.so
e.ucsc.edu/goldenPa
th/hg19/database/wg
EncodeDacMapabilit
yConsensusExcluda
ble.txt.gz 

ENCODE excludable regions, Duke, last 
updated 29 March 2011 

UCSC browser table 
wgEncodeDukeMapa
bilityRegionsExcludab
le 

http://hgdownload.so
e.ucsc.edu/goldenPa
th/hg19/database/wg
EncodeDukeMapabili
tyRegionsExcludable
.txt.gz 

Poor alignment or uniqueness, CRG, last 
updated 27 April 2010 

UCSC browser table 
wgEncodeCrgMapabil
ityAlign100mer score 
< 1 

https://genome.ucsc.
edu/cgi-bin/hgTables 

Poor alignment or uniqueness, Duke, last 
updated 12 May 2011 

UCSC browser table 
wgEncodeDukeMapa
bilityUniqueness35bp 
score < 1 

https://genome.ucsc.
edu/cgi-bin/hgTables 

Infinium QC Array 24 1.0 loci Illumina https://support.illumin
a.com/downloads/infi
nium-qc-array-24-v1-
0-support-files.html 

GiaB HG001 high-confidence regions 3.3.2 (Zook et al., 2014) ftp://ftp-trace.ncbi.nl
m.nih.gov/giab/ftp/rel
ease/NA12878_HG0
01/latest/GRCh37/H
G001_GRCh37_GIA
B_highconf_CG-IllFB
-IllGATKHC-Ion-10X-
SOLID_CHROM1-X_
v.3.3.2_highconf_nos
omaticdel.bed 

1000 Genomes Project phase 3 genotypes, 
released 2 May 2013 

(The 1000 Genomes 
Project Consortium, 
2015) 

ftp://ftp.1000genome
s.ebi.ac.uk/vol1/ftp/re
lease/20130502/ 
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Haplotype reference consortium allele 
frequencies, 1-1 

(McCarthy et al., 
2016) 

 

GnomAD allele frequencies 2.0.1  http://gnomad.broadi
nstitute.org/ 

dbSNP 150 (Sherry et al., 2001) http://www.haplotype
-reference-consortiu
m.org/ 

ClinVar, downloaded 9 September 2017 (Landrum et al., 2014) https://www.ncbi.nlm.
nih.gov/clinvar/ 

CATO 1.1 (Maurano et al., 2015) http://www.mauranol
ab.org/CATO/ 

Eigen coding 1.1 (9 May 2016) (Ionita-Laza et al., 
2016) 

http://www.columbia.
edu/~ii2135/eigen.ht
ml 

COSMIC Cancer Gene Census, downloaded 26 
April 2018 

 http://www.sanger.ac
.uk/science/data/can
cer-gene-census 

UK BioBank (Sudlow et al., 2015) https://www.ukbioban
k.ac.uk/ 

Software and Algorithms 

BWA 0.7.15   https://github.com/lh3
/bwa 

biobambam2 2.0.65-release-20161130121735  (Tischler and 
Leonard, 2014) 

https://github.com/gt
1/biobambam2 

samtools 1.5  (Li et al., 2009) https://github.com/sa
mtools 

mdust commit 3e3fed8    https://github.com/lh3
/mdust 

GATK 3.7.0-gcfedb67 (DePristo et al., 2011) https://software.broa
dinstitute.org/gatk/ 

vt 0.5722-60f436c3 (Tan et al., 2015) https://github.com/atk
s/vt 

Hail 0.1-0320a61 (Ganna et al., 2016) https://github.com/hai
l-is/hail 

VEP 90-3fcc9dd (McLaren et al., 2016) https://github.com/En
sembl/ensembl-vep 
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https://paperpile.com/c/8Qyjfl/sysV
https://paperpile.com/c/8Qyjfl/6A2B
https://paperpile.com/c/8Qyjfl/byDi
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TelSeq 0.0.1-be185ec (Ding et al., 2014) https://github.com/zd
1/telseq , tagged 
release 0.0.1, 
commit be185ec, 
downloaded Feb 8, 
2017 

GRIDSS 1.4.1 (Cameron et al., 
2017) 

https://github.com/Pa
penfussLab/gridss, 
version 1.4.1  

FreeBayes 1.1.0-54-g49413aa  https://github.com/ek
g/freebayes, version 
1.4.1 

R 3.5.0 (R Core Team, 2017) https://www.r-project.
org/ 

GENESIS 2.8.0 (Conomos and 
Thornton, 2016) 

https://bioconductor.
org/packages/releas
e/bioc/html/GENESI
S.html 

SNPrelate 1.12.1 (Zheng et al., 2012) https://bioconductor.
org/packages/releas
e/bioc/html/SNPRelat
e.html 

mclust 5.3 (Scrucca et al., 2016) https://cran.r-project.
org/web/packages/m
clust/index.html 

mgcv 1.8-17 (Wood, 2004) https://cran.r-project.
org/web/packages/m
gcv/index.html 

SomaticSignatures 2.16.0 (Gehring et al., 2015)  https://bioconductor.
org/packages/releas
e/bioc/html/SomaticS
ignatures.html 
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Supplemental Information 
 

 

 
 

Supplementary Figure 1 : Population structure in the MGRB. The MGRB was combined 
with the 1000 Genomes cohort at high-confidence SNVs, and PCA was performed following 
LD pruning. Four strong components resulted, scores for which are shown relative to 95% 
kernel density estimates of the 1000 Genomes superpopulations. The MGRB cohort was 
largely homogeneous and clustered with the 1000 Genomes European superpopulation. 
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Supplementary Figure 2 : Distribution of structural variant event types and sizes detected in 
the MGRB by GRIDSS. 
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Supplementary Figure 3 : SNP alternate allele frequencies compared between MGRB, 
gnomAD, and UK BioBank cohorts. Strand-specific biallelic SNPs in well-called regions and 
reported in the EBI GWAS catalogue only shown. 
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Supplementary Figure 4 : Distribution of participant ages in the Australian Schizophrenia 
Research Bank (ASRB), gnomAD, MGRB, and UK BioBank (UKBB) cohorts. Ages were 
truncated at 100 years and binned into five year intervals except for terminal bins, which vary 
in size as shown. 
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Supplementary Figure 5 : Prediction of height in MGRB using a polygenic score (Wood et 
al., 2014). Each point represents the predicted and observed height of an MGRB individual; 
lines denote GCV-penalised generalised additive model thin plate spline fits.  

Page 40 of 54 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 18, 2018. ; https://doi.org/10.1101/473348doi: bioRxiv preprint 

https://paperpile.com/c/8Qyjfl/EYfP
https://paperpile.com/c/8Qyjfl/EYfP
https://doi.org/10.1101/473348
http://creativecommons.org/licenses/by/4.0/


Pinese, Lacaze, et al: A universal whole genome reference cohort for population-scale 
studies into the genetic basis of common diseases and healthy ageing 

 
Supplementary Figure 6 : Examples of subclonal copy number variation observed in the 
MGRB. Figures show background-corrected coverage (top panels) and heterozygous variant 
allele frequency (bottom panels) as a function of genomic location. Individual locus 
measurements are represented by semi-transparent dots, with model fits indicated by 
horizontal segments. These samples demonstrated loss of a single copy of TET2 in an 
estimated 70% of nucleated blood cells (a), or loss of a single copy of RB1 in approximately 
36% of cells (b). Coverage is background-corrected and on a log 2 scale, with zero indicating 
diploidy. 
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Supplementary Figure 7 : Comparison of Telseq WGS telomere length estimates to qPCR 
measurements. Points denote 119 randomly-selected samples from the MGRB and ASRB 
cohorts; one outlier with a Telseq estimate over 5 was excluded. Telseq estimates are 
directly as reported by the software; qPCR measurements are telomere / single copy gene 
copy ratios. Lines represent fits from 1000 bootstrap replicates of Deming regression using 
within-bootstrap median absolute deviation as an empirical variance estimate. The measures 
are significantly correlated (Kendall’s , )..370τ = 0 .2p = 3 × 10−9  
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Supplementary Figure 8 : Somatic variant motif factorization. A cardinality search on 
age-grouped samples indicated that a cardinality of 3 was appropriate, being the inflection 
point on the explained variance vs cardinality plot (a, selected cardinality marked with red 
circle). When the single-sample motif frequencies were factorized at this selected cardinality, 
the three signatures resulting were well resolved (b), with Signatures 1 and 3 respectively 
resembling Signatures 1 and 5 as previously reported (Alexandrov et al., 2015). 
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Supplementary Table 1 : Rates of structural variation (SV) detected in the MGRB. Mean 
event counts per individual are given, with standard deviation in parentheses. 
 

SV class Rate (SD) Fraction 

GRIDSS-reported    

Insertion 45  (7) 0.5% 

Deletion 2750 (136) 33.1% 

Indel 327 (21) 3.9% 

Duplication 882 (98) 10.6% 

Inversion 32  (5) 0.4% 

Total GRIDSS 4036 (249) 48.6% 

    

Mobster-reported    

L1 insertion 1072 (380) 12.9% 

ALU insertion 2754 (246) 33.2% 

SVA insertion 436 (92) 5.3% 

HERV insertion 3  (2) < 0.1% 

Total Mobster 4264 (634) 51.4% 

    

Grand total 8300 (675) 100% 
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Supplementary Table 2 : Singleton and polymorphic rates for structural variants (SVs) 
identified in the MGRB. Structural variant count and fraction are given as a function of the 
number of samples identified to share that variant. Sample ranges are inclusive. 
  

Samples with variant SV count (fraction) 

1 (singletons) 155287 (17.1) 

2 - 10 589771 (65.0) 

11 - 100 139340 (15.3) 

101 - 500 13669 (1.5) 

501 - 1000 4623 (0.5) 

1001 - 1500 2178 (0.2) 

1501 - 2000 1367 (0.2) 

2001 - 2500 1218 (0.1) 

2501 - 2570 486 (0.1) 
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Supplementary Table 3 : Structural variants identified in MGRB that may disrupt an ACMG 
incidentally-reportable gene. 

Gene Variant Predicted effect 

PCSK9 1:g.55494888_55509044del Loss of 5’ UTR and exon 1. 

SMAD4 18:g.48556989_48573287del Loss of 5’ UTR. 

TMEM43 3:g.141047610_14277101del Deletion of entire TMEM43 
locus. 

VHL 3:g.10067411_10421889inv Inversion of entire VHL locus. 
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Supplementary Table 4 : Clinical and demographic characteristics of the 45 and Up cancer 
cases, compared to the 45 and Up cancer-free individuals included in the MGRB. Cancer 
cases had some evidence of a cancer diagnosis prior to age 70, either by self report or 
admission and registry records; cancer-free individuals had no such evidence prior to age 
70. Aggregate statistics are medians, with ranges in parentheses. As some individuals had 
multiple cancers, the sum of cancer types exceeds the number of cancer cases. 
 

Measure Cancer cases Cancer-free 

Individuals 
 (percent female) 

269 
(45.3%) 

717 
(59.3%) 

Age at collection (years) 71 
(64 – 88) 

70 
(64 – 91) 

Height (m) 1.70 
(1.47 – 1.96) 

1.66 
(1.37 – 1.91) 

Mass (kg) 76.0 
(44.5 – 120.0) 

72.0 
(36.0 – 147.0) 

Cancer type 
 Prostate 
 Melanoma of skin 
 Colorectal 
 Breast 
 Non-melanoma skin 
 Lung 
 Bladder 
 Other 

 
74 
58 
40 
26 
20 
13 
10 

124 

  
—— 
—— 
—— 
—— 
—— 
—— 
—— 
—— 
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