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 2 

Abstract  22 

The chromosome-derived Ran-GTP gradient is believed to promote spindle assembly 23 

by releasing spindle assembly factors (SAFs) such as NuMA and HURP from inhibitory 24 

importins near chromosomes. The Ran-GTP gradient plays critical roles in meiosis, but 25 

how the Ran-based network spatiotemporally defines SAF localization and function in 26 

mitosis remains incompletely understood. Here, we systematically depleted RCC1 27 

(Ran-GEF), RanGAP1, and importin-β using auxin-inducible degron (AID) technology in 28 

somatic human cells. We demonstrate that the Ran-Importin network does not 29 

substantially affect NuMA localization and functions at spindle poles. In contrast, the 30 

Ran-based network polarizes both HURP and importin-β on K-fibers near 31 

chromosomes, where HURP, but not importin-β, stabilizes microtubules. In addition, 32 

acute RCC1 degradation during metaphase reveals that HURP’s K-fiber localization is 33 

dynamically maintained by Ran-GTP even after spindle assembly. Together, we 34 

propose that the Ran-Importin network locally promotes microtubule-binding and 35 

dissociation cycle of HURP, but not NuMA, to dynamically organize stable K-fibers near 36 

chromosomes in mitotic human cells. 37 

 38 

 39 
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A condensed title (50 characters) 41 

Ran-based polarization of SAFs on human mitotic spindle 42 

 43 

 44 

Summary (40 words) 45 

Using auxin-inducible degron technology, we systematically analyzed the mechanisms 46 

of Ran-based polarization of spindle assembly factors on human mitotic spindles. We 47 

find that the Ran-based network dynamically polarizes and maintains HURP, but not 48 

NuMA, by promoting local microtubule binding-dissociation cycle.  49 

 (40 words) 50 

 51 

 52 

Highlights 53 

・ Ran-GTP is dispensable for NuMA localization and function at spindle poles in mitotic 54 

human cells. 55 

・ Ran-Importin network is indispensable for HURP and importin-β to accumulate at K-56 

fibers near chromosomes. 57 

・ HURP, but not importin-β, is required to stabilize K-fibers. 58 

・ HURP is dynamically maintained on K-fibers even after spindle assembly. 59 
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Introduction 61 

To achieve accurate capture and segregation of chromosomes by spindle microtubules, 62 

chromosomes generate intracellular gradients that promote spindle assembly near 63 

chromosomes in both mitosis and meiosis (Heald and Khodjakov, 2015; Kalab and 64 

Heald, 2008). During animal mitosis, the chromosome-derived gradients and 65 

centrosome-dependent pathways coordinately regulate microtubule nucleation, 66 

polymerization/depolymerization, transport, sliding, and cross-linking to organize bipolar 67 

spindle structure (Goshima and Scholey, 2010; Petry, 2016; Walczak and Heald, 2008). 68 

In contrast, chromosome-derived signals play particularly dominant roles in spindle 69 

assembly during female meiosis as centrosomes are absent (Beaven et al., 2017; 70 

Bennabi et al., 2016; Mogessie et al., 2018).  71 

Chromosome-derived signals consist of two distinct pathways - the Ran-GTP 72 

gradient and chromosome passenger complex (CPC)-based signals (Zierhut and 73 

Funabiki, 2015). The Ran-GTP gradient is generated by two spatially-separated 74 

opposing enzymes. Regulator of chromosome condensation 1 (RCC1), is a guanine 75 

nucleotide exchange factor (GEF) for Ran (Bischoff and Ponstingl, 1991) and localizes 76 

to chromosomes to convert the small GTPase Ran from its GDP- to GTP-bound form 77 

(Moore et al., 2002) (Fig. 1A). In contrast, RanGAP1, a GTPase-activating protein 78 

(GAP) for Ran, predominantly localizes to the cytoplasm to promote Ran’s intrinsic 79 

GTPase activity (Bischoff et al., 1994) (Fig. 1A). The Ran-GTP gradient has been best 80 

characterized in meiotic Xenopus egg extracts, but is also found in other meiotic and 81 

mitotic cell types (Dumont et al., 2007; Hasegawa et al., 2013; Kalab et al., 2006; 82 

Moutinho-Pereira et al., 2013). 83 
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 5 

Pioneering work using Xenopus egg extracts established a model in which a 84 

chromosome-derived Ran-GTP gradient promotes spindle assembly by activating 85 

spindle assembly factors (SAFs) such as NuMA and TPX2 by releasing them from 86 

inhibitory importin proteins in the vicinity of chromosomes (Fig.1A) (Kalab and Heald, 87 

2008; Nachury et al., 2001; Wiese et al., 2001). At present, several other microtubule-88 

binding proteins, such as HURP (Sillje et al., 2006), have been identified as spindle 89 

assembly factors that promote spindle assembly downstream of Ran-GTP gradient 90 

(Forbes et al., 2015). In addition to a role in spindle assembly, we previously 91 

demonstrated that the Ran-GTP gradient promotes spindle positioning by controlling the 92 

spatial organization of cortical proteins such as NuMA-LGN complex and Anillin in 93 

somatic human cells (Kiyomitsu and Cheeseman, 2012; Kiyomitsu and Cheeseman, 94 

2013). 95 

In mitotic human cells, NuMA localizes to spindle poles and the cell cortex, where 96 

NuMA acts for spindle-pole focusing and astral microtubule capture/pulling, 97 

respectively, in cooperation with a microtubule motor dynein (Hueschen et al., 2017; 98 

Kiyomitsu, 2019; Okumura et al., 2018). Although the mechanisms remain unclear, 99 

cortical localization of NuMA-LGN complexes is negatively regulated by the 100 

chromosome-derived Ran-GTP gradient in a distance dependent manner (Kiyomitsu 101 

and Cheeseman, 2012). Similarly, NuMA is excluded from spindle microtubules near 102 

chromosomes, and accumulates around spindle poles. How Ran-GTP regulates the 103 

spindle localization of NuMA is also mysterious, but recent structural and in vitro studies 104 

demonstrated that importin-α/β recognizes nuclear localization signal (NLS) of NuMA, 105 

and sterically inhibits NuMA’s 2nd microtubule-binding domain (Chang et al., 2017). The 106 
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authors predicted that NuMA would be liberated from importin-β near chromosomes by 107 

Ran-GTP gradient and subsequently acts for spindle assembly (Chang et al., 2017). 108 

However, this model has not been rigorously tested with cell biological approaches. In 109 

addition, the significance of the Ran-GTP gradient for mitotic spindle assembly has 110 

been debated and appears to vary across cell types (Furuta et al., 2016; Hasegawa et 111 

al., 2013; Moutinho-Pereira et al., 2013). 112 

To define the significance and mechanisms of Ran-based spindle assembly in 113 

mitotic cells, we sought to systematically deplete Ran-associated proteins in mitotic 114 

human cells using auxin-inducible degron (AID) technology (Natsume et al., 2016). We 115 

found that degradation of the Ran-based network does not substantially affect NuMA 116 

localization or function at spindle poles. In sharp contrast, Ran-GTP polarizes both 117 

HURP and importin-β on kinetochore-fibers (K-fibers) near chromosomes, where HURP 118 

and importin-β have distinct roles in K-fiber stabilization. Furthermore, we first 119 

demonstrated that HURP is dynamically maintained on K-fibers after spindle assembly. 120 

Based on our findings, we propose a local cycling model in which the Ran-based 121 

network promotes a local microtubule binding-dissociation cycle of HURP to 122 

dynamically organize stable K-fibers near chromosomes. 123 

  124 
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 7 

Results   125 

Ran-Importin network does not substantially affect spindle-pole localization of 126 

NuMA in human cells 127 

NuMA is required for mitotic spindle assembly in mammalian cells (Gaglio et al., 1995; 128 

Hueschen et al., 2017; Okumura et al., 2018; Silk et al., 2009), and has been proposed 129 

to be regulated by Ran-GTP (Chang et al., 2017; Nachury et al., 2001; Wiese et al., 130 

2001). However, how the chromosome-derived Ran-GTP gradient regulates NuMA’s 131 

spindle-pole localization is poorly understood in mitotic human cells. To address this, we 132 

sought to systematically deplete RCC1 (RanGEF), RanGAP1, and importin-β using 133 

auxin-inducible degron (AID) technology (Fig. 1A-B) (Natsume et al., 2016). We 134 

introduced a C-terminal mAID-mClover (mAC) tag into both alleles of either RCC1, 135 

RanGAP1, or importin-β at their genomic loci (Fig. 1C-E and Fig. S1A, D, G) in parental 136 

tet-OsTIR1 HCT116 cells that conditionally express OsTIR1 following the addition of 137 

doxycycline (Dox) (Fig.1B) (Natsume et al., 2016).  To visualize endogenous NuMA in 138 

living cells, we integrated an mCherry tag into both alleles of the NuMA genomic locus 139 

(Fig. 1C-E and S1B-C, E-F, H-I). As expected, RCC1-mAC accumulated on mitotic 140 

chromosomes (Fig. 1C top) (Moore et al., 2002), whereas RanGAP1-mAC localized to 141 

the cytoplasm and was excluded from chromosomes with weak accumulation at 142 

kinetochores (Fig. 1D top)(Joseph et al., 2002). NuMA-mCherry localized to the spindle 143 

poles in metaphase (Fig. 1C-E) (Compton et al., 1992; Kiyomitsu and Cheeseman, 144 

2012). Unexpectedly, we found that endogenous importin-β-mAC was detected not only 145 

in cytoplasm, but also at the chromosome-proximal region of bundled kinetochore-146 

microtubules (K-fibers) in living cells (Fig. 1E top, S1J). Although this contrasts with 147 
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spindle-pole localization of importin-β observed using pre-extracted fixed cells 148 

(Ciciarello et al., 2004), the K-fiber localization of importin-β was not a consequence of 149 

mAC tagging, as we observed K-fiber localization after immunostaining for endogenous 150 

importin-β (Fig. S1K).  151 

To understand how NuMA is regulated by the Ran-Importin network (Fig. 1A), we 152 

next depleted RCC1, RanGAP1, or importin-β by treatment with Dox and auxin (IAA). 153 

After 20-24 hrs, the fluorescence intensities of mAC-tagged RCC1, RanGAP1, and 154 

importin-β were reduced to undetectable levels (Fig. 1C-E bottom), although some 155 

populations of cells still displayed fluorescent signals, likely due to heterogeneous 156 

induction of OsTIR1 (see cells with * in Fig.  1E bottom). Importantly, degradation of 157 

either RCC1, RanGAP1, or importin-β did not substantially affect the spindle-pole 158 

localization of NuMA at metaphase (Fig. 1C-E). These results indicate that the Ran-159 

importin network is dispensable for spindle-pole localization of NuMA in cultured human 160 

cells. 161 

 162 

NuMA acts for spindle-pole focusing independently of RCC1 163 

NuMA depletion causes spindle-pole focusing defects in human cells (Hueschen et al., 164 

2017; Okumura et al., 2018). Given that RCC1 depletion did not substantially affect 165 

spindle bipolarity (Fig. 1C, F), NuMA is still functional at spindle poles in the absence of 166 

RCC1. To confirm this, we next co-depleted RCC1 and NuMA. We integrated mAID-167 

mCherry tag into both alleles of the NuMA genomic locus in the parental RCC1-mAC 168 

cell line (Fig. 1G and S1L). As expected, co-depletion of RCC1 and NuMA caused 169 

defects in spindle-pole focusing and/or bipolar spindle formation (Fig. 1F, 1G bottom, 170 
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and Fig. S1M). These results indicate that NuMA is still functional for spindle-pole 171 

focusing in the absence of Ran-GTP in mitotic human cells. 172 

 173 

Degradation of RCC1 during prometaphase does not substantially affect 174 

localization and function of NuMA at spindle poles 175 

NuMA is transported into the nucleus via its nuclear localization signal (NLS) during 176 

interphase (Fig. 2A, see cells with (+) (Chang et al., 2017; Tang et al., 1994). In the 177 

interphase nucleus, NuMA is likely released from importins by nuclear Ran-GTP. 178 

Because we found that NuMA is maintained in the nucleus following RCC1 degradation 179 

in interphase (Fig. 2A, see cells with (-), Fig. 2B, t = -1:35 and -0:15), this raises another 180 

possibility that the majority of NuMA is maintained as an active form free from importin-β 181 

in the nucleus and works properly in the subsequent mitosis in RCC1-depleted cells 182 

(Fig. 1). To exclude this possibility, we next depleted RCC1 in nocodazole-arrested cells 183 

and analyzed the phenotypes following nocodazole washout (Fig. 2C). 184 

In RCC1-positive control cells, NuMA localized diffusely to the cytoplasm during 185 

nocodazole arrest (Fig. 2D, t = -90), but rapidly accumulated near chromosome masses 186 

within 10 min following nocodazole washout (Fig. 2D, t = 10). NuMA localized at the 187 

poles of metaphase spindles within 60 min (Fig. 2D, t = 60) and entered the nucleus 188 

following mitotic exit (Fig. 2D, t = 85). Following nocodazole washout, NuMA also 189 

displayed punctate foci in the cytoplasm (Fig. 2D, t = 10), which were rarely observed in 190 

normal prometaphase cells (Fig. 2A t = 0:05) and disappeared during spindle assembly 191 

(Fig. 2D, t = 60). Importantly, NuMA behaved similarly when RCC1 was degraded 192 

during nocodazole arrest. RCC1-mAC signals were detectable on chromosome masses 193 
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in nocodazole-arrested cells (Fig. 2E, t = -90), and were reduced to undetectable levels 194 

after the addition of IAA (Fig. 4E, t = 0). NuMA accumulated near chromosome masses 195 

within 10 min following nocodazole washout (Fig. 2E, t = 10), and localized to spindle 196 

poles around 60 min (Fig. 2E, t = 55). Although cortical NuMA signals appeared to be 197 

reduced, RCC1-depleted cells entered anaphase with similar timing (Fig. 2E, t = 70, Fig. 198 

2G). In addition, even if RCC1 was degraded before the addition of IAA due to a basal 199 

activity of OsTIR1 (Fig. 2F, see cells indicated by (3) at t = -90, Fig. S2A) (Yesbolatova 200 

et al., 2019), there were no significant differences in timing for bipolar spindle assembly 201 

and mitotic exit (Fig. 2F-G, Fig. S2A). These results indicate that RCC1 is dispensable 202 

for NuMA localization and function at spindle poles even if RCC1 is degraded during 203 

mitosis. 204 

 205 

RCC1 regulates kinetochore-fiber localization of HURP and importin-β 206 

The above results indicate that RCC1 is dispensable for localization and function of 207 

NuMA at spindle poles. However, RCC1 depletion in asynchronous cultures caused 208 

shorter mitotic spindle (Fig. 1C, 2A-B, 3A), suggesting that Ran-GTP plays roles for 209 

proper spindle assembly in somatic human cells. To identify spindle assembly factors 210 

downstream of RCC1, we next analyzed the localization of TPX2 (Gruss et al., 2001) 211 

and HURP (Sillje et al., 2006), since these proteins are well-recognized as Ran-212 

regulated spindle assembly factors. TPX2 localized to spindle microtubules in 213 

metaphase (Fig. 3B top). However, the localization of TPX2 was virtually unaffected in 214 

RCC1-depleted cells (Fig. 3B and Fig. S3A) as observed for NuMA (Fig. 1C). In sharp 215 

contrast, K-fiber accumulation of HURP was completely abolished following RCC1 216 
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depletion (Fig. 3C and Fig. S3B).  HURP localized diffusely in the cytoplasm with weak 217 

accumulation on the spindle in RCC1-depleted cells (Fig. 3C). Because HURP directly 218 

interacts with importin-β (Sillje et al., 2006) and co-localized with importin-β at K-fibers 219 

(Fig. S1K), we next analyzed the localization of importin-β. As observed for HURP, the 220 

K-fiber localization of importin-β was diminished in RCC1-depleted cells (Fig. 3D and 221 

Fig. S3C). These results suggest that the chromosome-derived Ran-GTP gradient acts 222 

primarily to target HURP and importin-β near chromosomes, but not NuMA and TPX2 223 

around spindle poles, in cultured human cells. 224 

 225 

HURP, but not importin-β, is required to stabilize K-fibers 226 

HURP is required to stabilize K-fibers (Sillje et al., 2006). To understand the relationship 227 

between HURP and importin-β for their K-fiber localization and function, we next 228 

targeted endogenous HURP by introducing a mAID-mClover-3xFLAG (mACF) tag (Fig. 229 

4A and Fig. S4A-C). Endogenous HURP-mACF accumulated at K-fibers near 230 

chromosomes (Fig. 4A) as observed with anti-HURP antibodies (Sillje et al., 2006). 231 

HURP depletion resulted in diminished importin-β localization to K-fibers (Fig. 4A-B) and 232 

reduced mitotic spindle length (Fig. 4C). Because K-fibers are resistant to cold 233 

treatment (Sillje et al., 2006), we next incubated cells with ice-cold medium for 20 min 234 

and analyzed cold-stable microtubules. HURP localized to cold-stable microtubules 235 

(Fig. 4D, top), which was disrupted by HURP depletion (Fig. 4D bottom), consistent with 236 

the previous study (Sillje et al., 2006).  237 

We next depleted importin-β and analyzed its effects on HURP and K-fibers (Fig. 238 

4E, S4D). Importin-β depletion caused a remarkable relocalization of HURP from K-239 
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fibers near chromosomes to spindle microtubules (Fig. 4E-F). Although K-fiber 240 

localization of HURP was unclear in importin-β depleted cells due to the relative 241 

accumulation of HURP on spindle microtubules around spindle poles (Fig. 4E bottom), 242 

HURP was clearly detected on cold-stable K-fibers in importin-β depleted cells (Fig. 243 

4G). These results suggest that HURP acts for K-fiber stabilization independently of 244 

importin-β. 245 

 246 

HURP and importin-β localize throughout the spindle in RanGAP1-depleted cells 247 

Whereas HURP and importin-β have different roles for K-fiber stabilization (Fig. 4D, G), 248 

both proteins accumulate at K-fibers near chromosomes downstream of RCC1 (Fig. 3C-249 

D). To comprehensively understand mechanisms of Ran-based spatial regulation of 250 

HURP and importin-β, we next analyzed the behaviors of HURP and importin-β in 251 

RanGAP1-depleted cells, in which Ran-GTP should exist throughout cells. RanGAP1 252 

degradation did not cause clear phenotypes in spindle length (Fig. 4H-I, Fig. S4E). 253 

However, both HURP and importin-β localized throughout the spindle with increased 254 

intensities in RanGAP1-depleted cells (Fig. 4H-I, Fig. S4F). These results suggest that 255 

HURP and importin-β behave together and preferentially interact with microtubules in 256 

the presence of Ran-GTP (Fig. 4J). 257 

 258 

RCC1 is required to maintain HURP’s K-fiber localization during metaphase 259 

Based on our results, we constructed a revised model for the control of spindle 260 

assembly downstream of the Ran-GTP gradient (Fig. 4J). In this model, importin-β 261 
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globally inhibits HURP’s microtubule-biding activity by masking HURP’s 2nd microtubule-262 

binding domain (MTBD2) (Sillje et al., 2006; Song et al., 2014), and the chromosome-263 

derived Ran-GTP gradient locally dissociates HURP from importin-β resulting in the 264 

activation of HURP near chromosomes (Fig. 4J).  In this model, Ran-GTP and importin-265 

β underlie a dynamic cycle of HURP’s microtubule binding and dissociation near 266 

chromosomes. To test this model and whether this is valid after the spindle has already 267 

assembled, we next sought to acutely degrade RCC1 during metaphase by combining 268 

AID-mediated degradation with APC/C inhibitors (Fig. 5A). Cells were synchronized in 269 

G2 using RO-3306 (Vassilev et al., 2006) and released in the medium containing the 270 

APC/C inhibitors, Apcin and proTAME (Sackton et al., 2014), to arrest cells at 271 

metaphase without inhibiting the proteasome. RCC1-mAC signals were reduced to 272 

undetectable level by 60-90 min following the addition of IAA under metaphase-arrested 273 

condition (Fig. 5B). In the presence of RCC1, HURP-mCherry accumulated on K-fibers 274 

near chromosomes (Fig. 5B, t = -5 and 30). In contrast, following the degradation of 275 

RCC1, HURP weakly localized throughout the spindle (Fig. 5B, t= 60 and 90). 276 

Interestingly, spindle length was not substantially affected during this process (Fig. 5B-277 

C, compare t = -5 with t = 60 min), suggesting that K-fiber stabilization by HURP 278 

contributes to spindle length regulation primarily during prometaphase. Together, these 279 

results support our model (Fig. 4J) and further indicate that the Ran-based network 280 

dynamically maintains HURP’s K-fiber localization even after the spindle is assembled. 281 

  282 
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Discussion 283 

NuMA acts for spindle-pole focusing independently of the Ran-importin network 284 

in cultured human cells 285 

In the prevailing models (Fig. 1A), all SAFs including NuMA, TPX2, and HURP are 286 

expected to be similarly regulated by the chromosome-derived Ran-GTP gradient 287 

(Chang et al., 2017). However, SAFs localize and function at different locations on the 288 

spindle: NuMA accumulates around spindle poles distant from chromosomes (Fig.1C), 289 

whereas HURP localizes to K-fibers near chromosomes (Fig.3C, Fig. 6). Consistent with 290 

this distinct spatial localization, we demonstrated that the Ran-based network is 291 

dispensable for the localization and functions of NuMA (Fig. 1C-G, Fig. 2D-G), but is 292 

indispensable for HURP (Fig. 3C, 4E, 4H), in mitotic human cells. Considering mitotic 293 

arrest and abnormal spindle phenotypes caused by TPX2 depletion (Garrett et al., 294 

2002; Kufer et al., 2002) (T.K. unpublished results), majority of TPX2 would also be 295 

functional even in the absence of Ran-GTP in mitotic human cells (Fig. 3B). Although 296 

we do not exclude the possibility that Ran-GTP liberates NuMA and TPX2 from 297 

importin-β near chromosomes, this contribution must be very minor in mitotic human 298 

cells. In mitotic cells, centrosomes act as a major microtubule-nucleation sites and 299 

recruit multiple signaling molecules including kinases. Other parallel pathways derived 300 

from centrosomes may act to liberate NuMA from inhibitory importins and make the 301 

Ran-GTP gradient dispensable for NuMA in mitosis. From this point of view, NuMA may 302 

be more potently regulated by Ran-GTP in human oocyte, in which Ran-GTP plays a 303 

dominant role in assembling meiotic spindle independently of centrosomes (Holubcova 304 

et al., 2015). 305 
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 306 

The Ran-based network dynamically polarizes and maintains HURP on K-fibers 307 

near chromosomes  308 

In contrast to NuMA, we demonstrated that HURP is dynamically regulated by the Ran-309 

based network in mitotic human cells (Fig. 3C, 4E, H). Although HURP has been 310 

identified previously as a downstream target of Ran-GTP (Sillje et al., 2006), we found 311 

that HURP additionally colocalizes with importin-β on K-fibers near chromosomes (Fig. 312 

S1K, Fig. 4A, E), and acts for K-fiber stabilization independently of importin-β (Fig. 4D, 313 

G). In addition, we demonstrated that HURP is dynamically maintained on K-fibers after 314 

spindle assembly downstream of Ran-GTP (Fig. 5B). Based on our results, we propose 315 

a local cycling model for the establishment and maintenance of HURP’s polarized 316 

localization to spindle microtubules (Fig. 6). After nuclear envelope break down (NEBD), 317 

HURP strongly interacts with microtubules through its two microtubule binding domains 318 

(MTBD1 and MTBD2) (Sillje et al., 2006; Song et al., 2014) (Fig. 6-a). Importin-β binds 319 

to the HURP on microtubules, and then dissociates HURP from the microtubules (Fig. 320 

6-b) because importin-β masks HURP’s 2nd microtubule binding domain (MTBD2) (Song 321 

et al., 2014). However, in the vicinity of chromosomes, chromosome-derived Ran-GTP 322 

releases HURP from importin-β (Sillje et al., 2006) (Fig. 6-c), and the liberated HURP 323 

quickly interacts with microtubules around chromosomes (Fig.6-d). As importin-β is 324 

diffusively localized throughout cells (Fig. 4A, E), importin-β again binds and dissociates 325 

the HURP from microtubules near chromosomes (Fig. 6-e), but Ran-GTP again 326 

releases HURP from importin-β (Fig. 6-c). By repeating this local binding-dissociation 327 

cycle (Fig 6 c-d-e), HURP, but not importin-β, would act to stabilize microtubules and 328 
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generates stable K-fibers (Fig. 4D, G). This dynamic property would be suitable for 329 

bundling short microtubules nucleated around kinetochores (Sikirzhytski et al., 2018) 330 

and for coupling HURP’s polarized localization with microtubule flux on the mitotic 331 

spindle.   332 

 333 

A new toolkit and mitosis-specific degradation assays to dissect mitotic roles of 334 

Ran-importin network  335 

To define mitotic functions of the Ran-based network, it is critical to inactivate the 336 

network specifically during mitosis due to its central role in nuclear-cytoplasmic 337 

transport during interphase. Previously, tsBN2, a temperature-sensitive RCC1 mutant 338 

hamster cell line (Nishimoto et al., 1978), and a small molecule inhibitor, importazole 339 

(Soderholm et al., 2011), have been developed to acutely inhibit functions of RCC1 or 340 

importin-β, respectively. Here, we established three human cell lines for RCC1, 341 

RanGAP1 and importin-β using AID technology (Natsume et al., 2016), that allowed us 342 

to systematically deplete the Ran-Importin network in human cells. Importantly, by 343 

combining nocodazole or APC/C inhibitors, we succeeded in degrading the Ran-based 344 

network specifically in prometaphase (Fig. 2C-F) or metaphase (Fig. 5A-B), 345 

respectively. Given that spindle length was virtually unaffected by RCC1 degradation at 346 

metaphase (Fig. 5B-C), HURP-based K-fiber stabilization would act during 347 

prometaphase to define proper spindle length. Because there are many other mitotic 348 

proteins regulated downstream of Ran-GTP (Forbes et al., 2015; Kiyomitsu and 349 

Cheeseman, 2012; Kiyomitsu and Cheeseman, 2013), these AID-cell lines will be useful 350 

to dissect these downstream functions. In addition, as this AID-mediated mitotic 351 
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degradation can be applicable for other multi-functional proteins such as dynein and 352 

NuMA (Natsume et al., 2016; Okumura et al., 2018), these new assays will further 353 

provide novel insights into mechanisms and roles of spindle assembly and maintenance 354 

in animal cells. 355 

  356 
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Materials and methods  376 
 377 
・ Plasmid Construction 378 

Plasmids for CRISPR/Cas9-mediated genome editing and auxin-inducible degron 379 
were constructed according to the protocol described in Natsume et al., (Natsume et 380 
al., 2016) and Okumura et al., (Okumura et al., 2018). To construct donor plasmids 381 
containing homology arms for RCC1 (~500-bp homology arms), RanGAP1 (~500-bp 382 
arms), importin-β (~500-bp homology arms), HURP (~200-bp homology arms), and 383 
TPX2 (~200-bp homology arms), gene synthesis services from Eurofins Genomics 384 
K.K. (Tokyo, Japan) or Genewiz (South Plainsfield, NJ) were used for RCC1 and 385 
others, respectively. Plasmids and sgRNA sequences used in this study are listed in 386 
Supplementary Tables S1 and S2, and will be deposited to Addgene. 387 
 388 

・ Cell Culture, Cell Line Generation and Antibodies 389 
HCT116 cells were cultured as described previously (Okumura et al., 2018). Knock-in 390 
cell lines were generated according to the procedures described in Okumura et al., 391 
(Okumura et al., 2018). To activate the auxin-inducible degradation, cells were treated 392 
with 2 µg/mL Dox and 500 µM indoleacetic acid (IAA) for 20–24 h. Cells with 393 
undetectable signals for mAID-fusion proteins were analyzed. The cell lines and 394 
primers used in this study are listed in Tables S1 and S3, respectively. 395 
            Antibodies against tubulin (DM1A, Sigma-Aldrich, 1:2,000), NuMA (Abcam, 396 
1:1,000), RCC1 (Cell Signaling Technology, D15H6, Rabbit mAb, 1:100), RanGAP1 397 
(Santa Cruz Biotechnology, H-180, 1:200), importin-β (GeneTex, 3E9 Mouse mAb, 398 
1:100), and HURP (E. Nigg laboratory, 1：200) were used for western blotting. For 399 
RCC1 immunoblots, the membrane was incubated with the anti-RCC1 antibody 400 
overnight at 4 °C. 401 
 402 

・ Microscope System 403 
Imaging was performed using spinning-disc confocal microscopy with a 60× 1.40 404 
numerical aperture objective lens (Plan Apo λ, Nikon, Tokyo, Japan). A CSU-W1 405 
confocal unit (Yokogawa Electric Corporation, Tokyo, Japan) with five lasers (405, 488, 406 
561, 640, and 685 nm, Coherent, Santa Clara, CA) and an ORCA-Flash4.0 digital 407 
CMOS camera (Hamamatsu Photonics, Hamamatsu City, Japan) were attached to an 408 
ECLIPSE Ti-E inverted microscope (Nikon) with a perfect focus system. DNA images 409 
in Figure 2A/B or Figure 4D/G were obtained using either SOLA LED light engine 410 
(Lumencor, Beaverton, OR) or 405 nm laser, respectively. 411 

 412 
・ Immunofluorescence and Live Cell Imaging 413 

For immunofluorescence in Figure S1K, HURP-mACF cells were fixed with PBS 414 
containing 3% paraformaldehyde and 2% sucrose for 10 min at room temperature. 415 
Fixed cells were permeabilized with 0.5% Triton X-100™ for 5 min on ice, and 416 
pretreated with PBS containing 1% BSA for 10 min at room temperature after washing 417 
with PBS. Importin-β was visualized using the anti-importin-β antibody (1:500). 418 
Images of multiple z-sections were acquired by spinning-disc confocal microscopy 419 
using 0.5-μm spacing and camera binning 2. Maximally projected images from 3 z-420 
sections were shown. 421 
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   For live cell imaging, cells were cultured on glass-bottomed dishes 422 
(CELLview™, #627860 or #627870, Greiner Bio-One, Kremsmünster, Austria) and 423 
maintained in a stage-top incubator (Tokai Hit, Fujinomiya, Japan) to maintain the 424 
same conditions used for cell culture (37 °C and 5% CO2). In most cases, three to five 425 
z-section images using 0.5-μm spacing were acquired and single z-section images 426 
were shown, unless otherwise specified. Microtubules was stained with 50 nM SiR-427 
tubulin or SiR700-tubulin (Spirochrome) for >1 h prior to image acquisition. DNA was 428 
stained with 50 ng/mL Hoechst® 33342 (Sigma-Aldrich) or 20 nM SiR-DNA 429 
(Spirochrome) for > 1 h before observation. To visualize SNAP-tagged HURP in Fig. 430 
4E, cells were incubated with 0.1 μM TMR-Star (New England BioLabs) for > 2 h, and 431 
TMR-Star were removed before observation. To optimize image brightness, same 432 
linear adjustments were applied using Fiji and Photoshop. 433 
             434 

・ Prometaphase degradation assay and nocodazole washout 435 
To degrade mAID-tagged proteins during nocodazole arrest, cells were treated with 2 436 
μg/mL Dox and 3.3 μM nocodazole at the indicated times (Fig. 2C). Five hours after 437 
the addition of nocodazole, cell culture dishes were moved to the stage of a 438 
microscope equipped with a peristaltic pump (SMP-21S, EYELA, Tokyo Rikakikai). 439 
Two z-section images were acquired using 2 μm spacing at three different (X.Y) 440 
positions and at 5 min intervals, with 500 μM IAA added during the first interval. After 441 
90 min, the nocodazole-containing medium was completely replaced with fresh 442 
medium using the peristaltic pump at a velocity of 20 sec/ml for 15 min. Images were 443 
acquired for a further 2 h and maximum intensity projection images are shown in 444 
Figure 2D-F. 445 
 446 

・ Metaphase degradation assay  447 
To degrade mAID-tagged proteins in metaphase-arrested cells, the cells were treated 448 
with 50 μM Apcin (I-444, Boston Biochem) and 20 μM proTAME (I-440, Boston 449 
Biochem) at the indicated times (Fig. 5A). Three z-section images were acquired using 450 
1 μm spacing at six different (X.Y) positions and at 5 min intervals, with 500 μM IAA 451 
added during the first interval. Maximum intensity projection images are shown in 452 
Figure 5B. 453 
 454 

・ Cold treatment assay 455 
To increase the number of cells in metaphase, cells were treated with 20 μM MG132 456 
(C2211, Sigma-Aldrich) for 90 min. To visualize SNAP-tagged HURP (Fig. 4G), cells 457 
were incubated with 0.1 μM TMR-Star (S9105S, New England BioLabs) for at least 458 
30 min. Before fixation, cells were incubated in ice-cold medium for 20 min (Sillje et 459 
al., 2006) to depolymerize non-kinetochore microtubules.  460 
 461 

・ Statistical Analysis 462 
To determine the significance of differences between the mean values obtained for 463 
two experimental conditions, Welch’s t-tests (Prism 6; GraphPad Software, La Jolla, 464 
CA) or a Z-test for proportions (Allto Consulting, Leeds, UK) were used as indicated 465 
in the figure legends. 466 

  467 
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Table S1: Cell lines used in this study. 468 

No. Name Description Clo
ne 
No. 

Plasmids used Pare
ntal 
cell 

Reference 

1 HCT116 tet-
OsTIR1 

AAVS1::PTRE3G OsTIR1 (Puro)  pAAVS1 T2 and 
MK243 
(Addgene#7283
5) 

 (Natsume 
et al., 2016) 

2 RCC1-mAC AAVS1::PTRE3G OsTIR1 (Puro), RCC1:: 
RCC1-mAID-mClover (Neo) 

1 pTK361+ pHH45 1 This study 

3 RCC1-mAC + 
NuMA-mCh 

AAVS1::PTRE3G OsTIR1 (Puro), RCC1:: 
RCC1-mAID-mClover (Neo), NuMA1:: 
NuMA-mCh (Hygro) 

1 pTK372+ 
pTK435 

2 This study 

4 RanGAP1-mAC AAVS1::PTRE3G OsTIR1 (Puro), 
RanGAP1:: RanGAP1-mAID-mClover (Neo) 

9 pHH49 + pHH51 1 This study 

5 RanGAP1-mAC + 
NuMA-mCh 

AAVS1::PTRE3G OsTIR1 (Puro), 
RanGAP1:: RanGAP1-mAID-mClover (Neo), 
NuMA1:: NuMA-mCh (Hygro) 

5 pTK372+ 
pTK435 

4 This study 

6 importin-β-mAC AAVS1::PTRE3G OsTIR1 (Puro), importin-
β:: importin-β-mAID-mClover (Neo) 

7 pHH50 + pHH57 1 This study 

7 importin-β-mAC + 
NuMA-mCh 

AAVS1::PTRE3G OsTIR1 (Puro), importin-
β:: importin-β-mAID-mClover (Neo), 
NuMA1:: NuMA-mCh (Hygro) 

1 pTK372+ 
pTK435 

6 This study 

8 RCC1-mAC + 
importin-β-mCh 

AAVS1::PTRE3G OsTIR1 (Puro), RCC1:: 
RCC1-mAID-mClover (Neo), NuMA1:: 
NuMA-mCh (Hygro) 

6 pHH50 +pTK481 2 This study 

9 RCC1-mAC + 
HURP-mCh 

AAVS1::PTRE3G OsTIR1 (Puro), RCC1:: 
RCC1-mAID-mClover (Neo), HURP:: HURP-
mCh (Hygro) 

8 pTK532+ 
pTK541 

2 This study 

10 RCC1-mAC + 
TPX2-mCh 

AAVS1::PTRE3G OsTIR1 (Puro), RCC1:: 
RCC1-mAID-mClover (Neo), TPX2:: TPX2-
mCh (Hygro) 

1 pTK527+ 
pTK502 

2 This study 

11 RanGAP1-mAC + 
HURP-mCh 

AAVS1::PTRE3G OsTIR1 (Puro), 
RanGAP1:: RanGAP1-mAID-mClover (Neo), 
HURP:: HURP-mCh (Hygro) 

5 pTK532+ 
pTK541 

4 This study 

12 RanGAP1-mAC + 
importin-β-mCh 

AAVS1::PTRE3G OsTIR1 (Puro), 
RanGAP1:: RanGAP1-mAID-mClover (Neo), 
importin-β:: importin-β-mCh (Hygro) 

12 pHH50 +pTK481 4 This study 

13 importin-β-mAC + 
HURP-SNAP 

AAVS1::PTRE3G OsTIR1 (Puro), importin-
β:: importin-β-mAID-mClover (Neo), HURP:: 
HURP-SNAP (Hygro) 

3 pTK532+ 
pTK589 

6 This study 

14 HURP-mACF  AAVS1::PTRE3G OsTIR1 (Puro), HURP:: 
HURP-mAID-mClover-3FLAG (Neo) 

13 pTK532+ 
pTK596 

1 This study 

15 HURP-mACF + 
importin-β-mCh 

AAVS1::PTRE3G OsTIR1 (Puro), HURP:: 
HURP-mAID-mClover-3FLAG (Neo), 
importin-β:: importin-β-mCh (Hygro) 

14 pHH50 +pTK481 14 This study 

 469 
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Table S2: sgRNA sequences for CRISPR/Cas9-mediated genome editing 471 

Gene locus sgRNA (5'-3') PAM Plasmid Name 
NuMA1 (C-terminus) gtggggccactcactggtac tgg pTK372 (Okumura et 

al., 2018) 
RCC1 (C-terminus) gactgtatgctggcccccgc tgg pTK361 
RanGAP1 (C-terminus) tctgctgcagacgctgtaca agg pHH49 
importin-β (C-terminus) agttcgagccgccgcccgaa agg pHH50 
HURP  caaaattctcctggttgtag agg pTK532 

TPX2 tgcggataccgcccggcaat ggg pTK527 

 472 

Table S3: PCR primers to confirm gene editing 473 

Gene Primer sequence Primer name Figures 
RCC1 gaatgccattccaggcag oHH88 Figure S1A 

RCC1 ttctgcacgttcctctgg oHH89 Figure S1A 

NUMA1 gagcctcaaagaaggccc oTK542 Figure S1B, S1E, S1H 

NUMA1 agcaggaaccagggcctac oTK566 Figure S1B, S1E, S1H 

RanGAP1 gctgccgcaggaccagggcttggtg oHH93 Figure S1D 

RanGAP1 attccctggcctatgtctgctggaa oHH94 Figure S1D 

HURP ctcttgatggatactttactg oTK749 Figure S3B, S4A, S4D, S4F 

HURP cccttgagaaagagtatatcta oTK750 Figure S3B, S4A, S4D, S4F 

importin-β ggagtaaggagttttgagagtatcg oHH97 Figure S1G, S3C, S4C, S4F 

importin-β aaatcttctctagagctaggcaacg oHH98 Figure S1G, S3C, S4C, S4F 

TPX2 tctgacatccctctcactg oTK660 Figure S3A 

TPX2 ggagtctaatcgagacattc oTK661 Figure S3A 
 474 
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 Figure 1

Figure 1. NuMA localizes at spindle poles and acts for spindle-pole focusing independently of RCC1. 
(A) The prevailing model of the mitotic spindle assembly regulated by Ran-related factors. 
(B) Schematic of the auxin-inducible degradation (AID) system. 
(C-E) Metaphase RCC1-mAC (C), RanGAP1-mAC (D) or importin-β-mAC cells (E) showing live fluorescent 
images of mAC-tagged proteins, NuMA-mCherry (mCh), and SiR-TUB after 24 h following Dox and IAA treatment. 
* in E indicates cells with importin-β signals in the presence of Dox and IAA. 
(F) Quantification of RCC1-mAC (n = 27, 34) or RCC1-mAC + NuMA-mAID-mCh (n = 37, 113) cells with unfocused 
spindles in the presence or absence of Dox and IAA, respectively. Bars indicate the mean ± SEM of >4 independent
experiments. * indicates statistical significance as determined by Welch’s t-test (p < 0.05). 
(G) Live fluorescent images of SiR-DNA, RCC1-mAC, NuMA-mAID-mCherry, and SiR700-TUB in RCC1-mAC and 
NuMA-mAID-mCh double knock-in cells following 24 h of Dox and IAA treatment. Two cells with or without RCC1 
and NuMA signals were analyzed in the same field. Eight z-section images were acquired using 1.0 μm spacing and 
maximum intensity projection images are shown. Scale bars = 10 μm.
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A

Figure 2. Acute RCC1 degradation during prometaphase does not substantially affect localization and 
function of NuMA at the spindle poles. 
(A-B) Live fluorescent images of NuMA-mCh, RCC1-mAC, and DNA (Hoechst 33342 staining) in RCC1-mAC positive (A) 
and RCC1-depleted (B) cells. Following 21 h of Dox treatment, auxin (IAA) was added and cells were imaged for 6 h. 
RCC1-positive and -depleted cells are indicated by (+) or (-), respectively, in A. The RCC1 signal was reduced to an 
undetectable level following IAA treatment during interphase in B. Two z-section images were acquired using 2 μm spacing 
and single z-section images are shown. 
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 Figure 2

(C) Schematic diagram of the prometaphase degradation assay. Following Dox treatment, a high dose of nocodazole 
(3.3 μM) was added for 6 h to completely disrupt the mitotic spindle and arrest cells in prometaphase. IAA was then 
added for 90 min (indicated by the red line) to degrade RCC1 during mitosis. Nocodazole was washed away for 15 min 
(indicated by the light blue line) to initiate mitotic spindle assembly. 
(D-E) Live fluorescent images of NuMA-mCh and RCC1-mAC in RCC1 positive (D) and RCC1-depleted cells after IAA 
treatment (E). 
(F) Live fluorescent images of NuMA-mCh and RCC1-mAC in three different cells. RCC1 was not degraded in the cell (1), 
whereas RCC1-mAC was degraded in the cell (2) or (3) after or before IAA treatment, respectively. A cell identical to (E) 
is shown as the cell (2) to compare the phenotypes of the three different cell types in the same field. 
(G) Scatterplots of anaphase entry time in RCC1 positive cells (66.5 ± 10.5, n = 33), RCC1-depleted cells after IAA 
treatment (61.5 ± 12.0, n = 10), and RCC1-depleted cells before IAA treatment (66.9 ± 12.2, n = 8). Bars indicate the mean 
± SD of > 3 independent experiments. Scale bars = 10 μm.. 
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Figure 3. RCC1 regulates kinetochore-fiber localization of HURP and importin-β. 
(A) Scatterplots of the ratio of spindle length and cell diameter in control (0.54 ± 0.04, n = 32) and RCC1-depleted (0.47 
± 0.04, n = 23) cells. Bars indicate mean ± SD from >3 independent experiments. * indicates statistical significance 
according to Welch’s t-test (p < 0.0001). 
(B-D) Left: Metaphase RCC1-mAC cells showing live fluorescent images of RCC1-mAC, SiR-TUB and TPX2-mCh (B),
 HURP-mCh (C), and importin-β-mCh (D) after 24 h following treatment with Dox and IAA. Right: Quantification of spindle or
 K-fiber localization of TPX2, HURP, or importin-β in control (n > 40) and RCC1-depleted (n > 40) cells from 3 independent 
experiments. * indicates statistical significance according to Z-test (99.9% confidence interval). Scale bars = 10 μm.
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Figure 4. HURP, but not importin-β, is required to stabilize K-fibers. 
(A) Metaphase HURP-mACF cells showing live fluorescent images of HURP-mACF, importin-β-mCh and SiR-TUB after 24 hrs 
following Dox and IAA treatment. 
(B) Quantification of K-fiber localization of importin-β in control (n = 49) and HURP-depleted (n = 46) cells from 3 independent 
experiments. * indicates statistical significance according to Z-test (99.9% confidence interval). 
(C) Scatterplots of the ratio of spindle length and cell diameter in control (0.64 ± 0.05, n = 49) and HURP-depleted (0.52 ± 0.06,
 n = 43) cells. * indicates statistical significance according to Welch’s t-test (p < 0.0001). 
(D) Fluorescent images of HURP-mACF, TUB, and DNA (Hoechst 33342 staining) in metaphase fixed cells treated with ice-cold 
medium for 20 min. Two cells with or without HURP signals were analyzed in the same field. 
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 Figure 4

(E) Metaphase importin-β-mAC cells showing live fluorescent images of importin-β-mAC, HURP-SNAP and SiR-TUB after 24 h 
following treatment with Dox and IAA. 
(F) Quantification of spindle localization of HURP in control (n = 49) and importin-β-depleted (n = 43) cells from 3 independent 
experiments. * indicates statistical significance according to Z-test (99.9% confidence interval). 
(G) Fluorescent images of importin-β-mAC, HURP-SNAP, TUB, and DNA (Hoechst 33342 staining) in metaphase fixed cells 
treated with ice-cold medium for 20 min. Five z-section images were obtained using 0.5 μm spacing and maximum intensity 
projection images are shown in (D) and (G). 
(H-I) Left: metaphase RanGAP1-mAC cells showing live fluorescent images of RanGAP1-mAC, SiR-TUB and HURP-mCh (H) 
or importin-β-mCh (I) after 24 h following Dox and IAA treatment. Right: quantification of K-fiber localization of HURP or importin-β 
in control (n = 45) and RanGAP1-depleted (n > 45) cells from 3 independent experiments. * indicates statistical significance 
according to Z-test (99.9% confidence interval). (J) A local cycling model of HURP on K-fibers regulated by Ran-GTP and 
importin-β. See text for details. Scale bars = 10 μm.
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Figure 5. RCC1 is required to maintain HURP K-fiber accumulation during metaphase. 
(A) Schematic diagram of the metaphase degradation assay. Following release from RO-3336-mediated G2 arrest, 
proTAME and Apcin were added to arrest the cells in metaphase. Auxin (IAA) was added (indicated by the red line) 
to induce RCC1 degradation during metaphase. 
(B) Live fluorescent images of SiR-DNA, RCC1-mAC, NuMA-mCh, and SiR700-TUB showing acute auxin-mediated 
RCC1 degradation in metaphase-arrested cells. 
(C) Spindle length measurement (n = 6) at t = -5 and 60 min in (B). Scale bar = 10 μm.
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Figure 6. A local cycling model for the polarization and maintenance of HURP on K-fibers near 
chromosomes. 
In the vicinity of chromosomes, Ran-GTP and importin-β promote the microtubule binding and dissociation cycle of 
HURP (c-d-e), resulting in stable HURP-dependent K-fiber formation. Chromosome-derived Ran-GTP regulates the 
localization of HURP on K-fibers, but not the localization and function of NuMA at the spindle poles in mitotic human 
cells. See text for details.
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Figure S1. Generation of cell lines for auxin-induced degradation of endogenous RCC1, RanGAP1, and importin-β. 
(A) Genomic PCR showing clone genotypes after neomycin (Neo) selection. Clone No.1 was used as a parental cell in the second selections. 
* indicates a non-specific band. 
(B) Genomic PCR showing clone genotypes after hygromycin (Hygro) selection. Clone No.1 was used in this study. 
(C) Immunoblotting for anti-NuMA, anti-RCC1 and anti-α-tubulin (TUB, loading control) showing bi-allelic insertion of the indicated tags. 
(D) Genomic PCR showing clone genotypes after neomycin (Neo) selection. The clone No.9 was used as a parental cell in the second selections. 
(E) Genomic PCR showing clone genotypes after hygromycin (Hygro) selection. The clones No.3 was selected for further use. 
(F) Immunoblotting for anti-NuMA, anti-RanGAP1 and anti-α-tubulin (TUB, loading control) showing bi-allelic insertion of the indicated 
tags. * and ** indicate RanGAP1 and SUMO-1 conjugated RanGAP1, respectively. 
(G) Genomic PCR showing clone genotypes after neomycin (Neo) selection. The clone No.7 was used as a parental cell in the second selections. 
(H) Genomic PCR showing clone genotype after hygromycin (Hygro) selection. Clone No.1 was selected for further use. 
(I) Western blot detection using anti-NuMA, anti-importin-β and anti-α-tubulin antibodies (TUB, loading control) showing bi-allelic 
insertion of the indicated tags. 
(J) Metaphase importin-β-mAC cells showing live fluorescent images of importin-β-mAC, and SiR-TUB. Single z-section images are shown. 
(K) Immunofluorescence images of fixed metaphase cells showing K-fiber localization of endogenous importin-β and mAID-tagged 
HURP (HURP-mACF). The maximally projected images from 3 z-sections are shown. 
(L) Genomic PCR showing clone genotype after hygromycin (Hygro) selection. Clone No.3 was selected for further use. 
(M) Live fluorescent images of SiR-DNA, RCC1-mAC, NuMA-mAID-mCh, and SiR-TUB. A spindle-pole focusing defect (indicated by 
the arrow in panel 2) and abnormal spindle formation (panel 3) were observed in RCC1-mAC and NuMA-mAID-mCh co-depleted cells 
20-24 h after Dox and IAA treatment. Five z-section images were acquired using 1.0 μm spacing and maximum intensity projection 
images are shown. Scale bars = 10 μm.
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Figure S2. Phenotypes of RCC1-degraded cells following nocodazole washout. 
(A)  Live fluorescent images of NuMA-mCh and RCC1-mAC in an RCC1-depleted cell. RCC1 was degraded during nocodazole arrest 
and before IAA treatment due to basal OsTIR1 activity; however, NuMA localized to the spindle poles and the RCC1-degraded cell exited 
mitosis as observed in RCC1-positive cells. Two z-section images were acquired using 2 μm spacing and maximal intensity projection 
images are shown. Scale bar = 10 μm.

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted June 11, 2019. ; https://doi.org/10.1101/473538doi: bioRxiv preprint 

https://doi.org/10.1101/473538


 Supplemental Figure S3

HURP-mCh
Parent No.1 82

3.6 kb

0.3 kb

3.0
4.0
5.0

2.0
1.5

1.0

6.0
(Kb)

0.5

Parent: RCC1-mAC No.1

 3.6 kb

 3.3 kb

 0.3 kb

PCR
products

Primer
Primer

HURP gene

HURP gene

HygromCherry

3.0
4.0
5.0

2.0
1.5
1.0

6.0
(Kb)

0.5

TPX2-mCh
ParentNo.1 2

Parent: RCC1-mAC No.1

 3.6 kb

 3.3 kb

 0.3 kb

PCR
products

Primer
Primer

TPX2 gene

TPX2 gene

HygromCherry

3.6 kb

0.3 kb

3.0
4.0
5.0

2.0
1.5

1.0

6.0
(Kb)

importin-β-mCh
Parent No.5 6

Parent: RCC1-mAC No.1

 4.1 kb

 3.3 kb

 0.8 kb

PCR
products

Primer
Primer

Importin-β gene

Importin-β gene

HygromCherry

4.1 kb

0.8 kb

A B C

Figure S3. Generation of double knock-in cell lines that express RCC1-mAC and mCherry-fuzed TPX2, HURP, or importin-β. 
(A-C) Genomic PCRs showing clone genotypes after hygromycin (Hygro) selections. Clones No.1 (A), No. 8 (B), and No.6 (C) were used. The 
mCherry cassette was inserted into only one copy of TPX2 gene loci (A).
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Figure S4. Generation of cell lines that degrade or visualize endogenous HURP. 
(A) Genomic PCR showing clone genotype after neomycin (Neo) selection. Clone No.13 was used as a parental cell in the second selections. 
(B) Immunoblotting for anti-HURP and anti-α-tubulin (TUB, loading control) showing bi-allelic insertion of the indicated tags. 
(C-D) Genomic PCR showing clone genotypes after hygromycin (Hygro) selection. Clone No.14 (C) and No. 3 (D) were used, respectively. 
The SNAP cassette was inserted into only one copy of HURP gene loci (D). 
(E) Scatterplots of the ratio of spindle length and cell diameter in control (0.54 ± 0.04, n = 26) and RanGAP1-depleted (0.52 ± 0.07, n = 19) cells. 
Bars indicate mean ± SD from >3 independent experiments. The differences were not statistically significant based on Welch’s t-test in C 
(p = 0.2108). 
(F) Genomic PCR showing clone genotypes after hygromycin (Hygro) selection. The clones No.5 (HURP-mCh), and No.12 (importin-β-mCh) 
were used, respectively.
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