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ABSTRACT 

Thermostable group II intron reverse transcriptases (TGIRTs) with high fidelity and processivity 

have been used for a variety of RNA sequencing (RNA-seq) applications, including 

comprehensive profiling of whole-cell, exosomal, and human plasma RNAs; quantitative tRNA-

seq based on the ability of TGIRT enzymes to give full-length reads of tRNAs and other 

structured small ncRNAs; high-throughput mapping of post-transcriptional modifications; and 

RNA structure mapping. Here, we improved TGIRT-seq methods for comprehensive 

transcriptome profiling by (i) rationally designing RNA-seq adapters that minimize adapter 

dimer formation, and (ii) developing biochemical and computational methods that remediate 5’- 

and 3’-end biases. These improvements, some of which may be applicable to other RNA-seq 

methods, increase the efficiency of TGIRT-seq library construction and improve coverage of 

very small RNAs, such as miRNAs. Our findings provide insight into the biochemical basis of 

5’- and 3’-end biases in RNA-seq and suggest general approaches for remediating biases and 

decreasing adapter dimer formation. 

 

Keywords: high-throughput sequencing, miRNA, RNA-seq, thermostable group II intron reverse 

transcriptase, transcriptome profiling 

 

INTRODUCTION 

High-throughput RNA sequencing (RNA-seq) has revolutionized biology and will become ever 

more powerful as new methods that address weaknesses and expand capabilities of current 

methods are developed (Mortazavi et al. 2008; Levin et al. 2010; Ozsolak and Milos 2011). A 

weakness of most current RNA-seq methods is their use of a retroviral reverse transcriptase (RT) 

to copy target RNAs into cDNAs, which are then be sequenced on different high-throughput 

DNA sequencing platforms (Head et al. 2014). Retroviral RTs have inherently low fidelity and 

processivity, and the extent to which these properties can be improved by protein engineering or 

in vitro evolution is limited by the retroviral RT structural framework (Hu and Hugh 2012). 

To address this issue, we have been developing RNA-seq applications using the RTs 

encoded by mobile group II introns, bacterial retrotransposons that are evolutionary ancestors of 
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introns and retroelements in eukaryotes (Mohr et al. 2013; Nottingham et al. 2016; Qin et al. 

2016; Belfort and Lambowitz 2019). Unlike retroviral RTs, which evolved to help retroviruses 

evade host defenses by introducing and propagating mutational variations (Hu and Hughes 2012), 

group II intron RTs evolved to function in retrohoming, a retrotranposition mechanism that 

requires faithful synthesis of a full-length cDNA of a long, highly structured group II intron 

RNA (Lambowitz and Belfort 2015). Their beneficial properties for RNA-seq include high 

fidelity, processivity, and strand displacement activity, along with a proficient template-

switching activity that is minimally dependent upon base pairing and enables the seamless 

attachment of RNA-seq adapters to target RNAs without RNA tailing or ligation (Mohr et al. 

2013; Zhao et al. 2018). Thermostable group II intron RTs (TGIRTs) from bacterial 

thermophiles combine these beneficial properties with the ability to function at high temperatures 

(60-65οC), which help melt out stable RNA secondary structures that can impede reverse 

transcription (Mohr et al. 2013). A recent crystal structure of a full-length TGIRT enzyme (GsI-

IIC RT, a form of which is sold commercially as TGIRT-III; InGex) in active conformation with 

bound substrates revealed that group II intron RTs are closely related to RNA-dependent RNA 

polymerases, as expected for an ancestral RT, and identified a series of novel structural features 

that may contribute to their high fidelity and processivity (Stamos et al. 2017). These features 

include more constrained binding pockets than retroviral RTs for the templating RNA base, 3’ 

end of the DNA primer, and the incoming dNTP, as well as a larger fingers region that enables 

more extensive contact with the template-primer substrate than is possible for retroviral RTs 

(Stamos et al. 2017). 

GsI-IIC RT (TGIRT-III) has been used for a variety of applications, including 

comprehensive profiling of whole-cell, exosomal and plasma RNAs (Nottingham et al. 2016; 

Qin et al. 2016; Shurtleff et al. 2017; Boivin et al. 2018); quantitative tRNA-seq based on the 

ability of the TGIRT enzyme to obtain full-length end-to-end reads of tRNAs with or without 

demethylase treatment (Shen et al. 2015;  Zheng et al. 2015; Qin et al. 2016); determination of 

tRNA aminoacylation levels (Evans et al. 2017); high-throughput mapping of post-

transcriptional modifications by distinctive patterns of misincorporation (Katibah et al. 2014; 

Zheng et al. 2015; Shen et al. 2015; Shurtleff et al. 2017; Li et al. 2017; Safra et al. 2017); 
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identification of protein-bound RNAs by RIP-Seq or CLIP (Katibah et al. 2014; Zarnegar et al. 

2016); and RNA-structure mapping by DMS-MaPseq (Zubradt et al. 2017; Wang et al. 2018)  or 

SHAPE (Mohr et al. 2018). A study comparing TGIRT-seq to benchmark TruSeq v3 datasets of 

rRNA depleted (ribodepleted) fragmented Universal Human Reference (UHR) RNA with 

External RNA Control Consortium (ERCC) spike-ins showed that TGIRT-seq: (i) better 

recapitulates the relative abundance of mRNAs and ERCC spike-ins; (ii) is more strand-specific; 

(iii) gives more uniform 5’- to 3’-gene coverage and detects more splice junctions, particularly 

near the 5’ ends of genes, even from fragmented RNAs; and (iv) eliminates sequence biases due 

to random hexamer priming, which are inherent in TruSeq (Nottingham et al. 2016). Other recent 

studies have shown that TGIRT-seq more accurately depicts the quantitative relationship 

between mRNAs and structured small ncRNAs than other tested methods (Boivin et al. 2018) 

and eliminates artifacts due to RT mispriming in RNA-seq reactions (Shivram and Iyer 2018). 

The TGIRT-seq method currently used for comprehensive transcriptome profiling (also 

referred to as TGIRT Total RNA-seq method) is outlined in Figure 1. This method uses the 

ability of TGIRT enzymes to template-switch directly from an artificial RNA template/DNA 

primer substrate containing an RNA-seq adapter sequence to the 3’ end of an RNA template, 

thereby coupling RNA-seq adapter addition to the initiation of cDNA synthesis (Mohr et al. 

2013). For Illumina RNA-seq, the initial RNA template/DNA primer consists of a 34-nt RNA 

oligonucleotide containing an Illumina Read 2 sequence (R2 RNA) with a 3’ blocking group (C3 

Spacer, 3SpC3) annealed to a 35-nt DNA primer (R2R DNA) that leaves a single nucleotide 3’ 

DNA overhang. The latter can base pair to the 3’ end of the target RNA, serving as a springboard 

for TGIRT template switching and initiation of cDNA synthesis (Mohr et al. 2013). To capture 

heterogeneous 3’ ends in a pool of RNAs, this single nucleotide 3’ overhang is an equimolar 

mixture of A, C, G, and T (denoted N) and is added in excess to the target RNA. After reverse 

transcription, a second RNA-seq adapter (R1R DNA; containing the reverse complement of an 

Illumina Read 1 sequence) is ligated to the opposite end of the cDNA by a single-stranded DNA 

ligation with thermostable 5’ App RNA/DNA ligase (New England Biolabs), and this is followed 

by minimal PCR amplification with primers that add Illumina capture sites and sequencing 
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indices. By avoiding gel-purification steps, TGIRT-seq libraries can be generated rapidly (2 h up 

to the PCR step) from small amounts of starting material (1-2 ng input RNA). 

Unlike retroviral RTs, which have been studied extensively and optimized for 

biotechnological applications for decades, the recently introduced TGIRT enzymes and TGIRT-

seq methods are potentially subject to considerable further improvement. In this regard, a 

weakness of the TGIRT Total RNA-seq method is the thermostable 5’ App RNA/DNA ligase 

used to attach the R1R adapter to the 3’ end of the cDNA, which introduces sampling biases for 

cDNA ends and produces unwanted adapter dimers by ligating the R1R adapter to residual R2R 

adapter carried over from previous steps. To avoid wasting reads, these adapter dimers are 

removed by AMPure beads clean-up of the library prior to sequencing (Fig. 1A), a step that can 

result in the differential loss of sequences corresponding to miRNAs and other very small RNAs, 

whose library products are close in size to adapter dimers (146 and 124 nt, respectively; Boiven 

et al. 2018). The problem is particularly acute with low abundance RNA samples where multiple 

rounds of AMPure beads clean-up may be required to sufficiently decrease the ratio of adapter 

dimers to small amounts of library products (Qin et al. 2016). Due in part to this limitation, 

miRNAs and other very small RNAs have been analyzed by an alternative TGIRT-seq method 

(the TGIRT CircLigase method), which was patterned after the method commonly used for 

ribosome profiling with retroviral RTs (Ingolia et al. 2009; Heyer et al. 2015). In the TGIRT-

based version of this method, template-switching rather than RNA ligation is used to add a larger 

adapter containing both R1R and R2R sequences, and the resulting cDNAs with the linked 

R1R/R2R adapter are gel-purified and circularized with CircLigase for RNA-seq library 

construction (Mohr et al. 2013; Katibah et al. 2014). 

Here, we used the previously determined ligation biases of the thermostable 5’ App 

RNA/DNA ligase (Jackson et al. 2014; Nottingham et al, 2016; Wu and Lambowitz 2017) to 

design an R2/R2R adapter with just a single nucleotide change that dramatically decreases the 

formation of adapter dimers, thereby improving the recovery of miRNA sequences and enabling 

the construction of TGIRT-seq libraries from smaller amounts of starting material. Additionally, 

using a miRNA reference set containing an equimolar mix of 962 human miRNAs, we 

systematically analyzed 5’- and 3’-end biases in TGIRT-seq introduced by the thermostable 5’ 
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App RNA/DNA ligase and template switching, respectively, and developed biochemical and 

computational methods for ameliorating these biases. We found that the 5’-sequence biases 

introduced mainly by the ligase could be computationally corrected and that 3’-biases introduced 

by TGIRT template-switching could be corrected either computationally or by employing an 

altered ratio of 3’-overhang nucleotides in the R2 RNA/R2R DNA primer mix.  

 

RESULTS 

A single nucleotide change in the R2R adapter strongly decreases adapter dimer formation 

Analysis of TGIRT-seq datasets obtained for fragmented UHRs or plasma DNA suggested that a 

major source of sequence bias is the DNA ligation step using the thermostable 5’ App 

DNA/RNA ligase, which has a preference for A or C and against U/T at position -3 from the 3’ 

end of the acceptor nucleic acid (Jackson et al. 2014; Nottingham et al. 2016; Wu and 

Lambowitz 2017). We noticed that the R2R adapter used currently for TGIRT-seq (denoted NTC 

based on its 3’ end sequence) has a C-residue at position -3 from its 3’ end, which favors the 

formation of R1R-R2R adapter dimers during the ligation step (Fig. 1B). 

To address this difficulty, we designed a new R2R adapter (denoted NTT) in which a single 

T residue was inserted at position -3, thereby replacing the favored C at this position with a 

disfavored T, but leaving the remainder of the R2R sequence unchanged (Fig. 1B). This internal 

insertion requires a complementary insertion in the R2 RNA to maintain base pairing in the R2 

RNA/R2R DNA heteroduplex. In a test reaction in which the NTC and NTT R2R DNAs were 

ligated to R1R DNA followed by PCR with primers that add Illumina indices and capture sites as 

in the TGIRT-seq protocol (Fig. 1A), this single nucleotide change decreased the recovery of the 

R1R-R2R adapter dimers by 82-89% (n = 3; Fig. 1C). The lower levels of adapter dimer 

formation enable the construction of TGIRT-seq libraries with fewer rounds of AMPure beads 

clean-up and better recovery of library products corresponding to miRNAs and other very small 

RNAs. These improvements in turn enable the construction of TGIRT-seq libraries from smaller 

amounts of starting material than is possible with the NTC adapter (0.05 pmole of a 40-nt RNA 

and 0.5 pmole of a 20-nt RNA with 96-98% and 88-99% lower levels of adapter dimers than the 

NTC adapter after 1 round of 1.4X AMPure beads clean-up; n = 3; Fig. 2). 
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TGIRT-seq of ribodepleted, fragmented UHR RNA with ERCC spike-ins using the 

modified R2R adapter 

To assess the performance of the NTT R2R adapter, we used it for TGIRT-seq of ribodepleted 

fragmented UHR RNA with ERCC spike-ins, as done previously for TGIRT-seq with the NTC 

adapter (Nottingham et al. 2016). The TGIRT-seq libraries were constructed in triplicate with 

one round of 1.4X AMPure beads clean-up to remove adapter dimers and sequenced on an 

Illumina NextSeq 500 to obtain 61-105 million 75-nt paired-end reads (Supplemental Table S1). 

The read-pairs were mapped to a human genome reference sequence (Ensembl GRCh38 

modified to include additional rRNA repeats) by using an updated TGIRT-seq mapping pipeline 

(Materials and Methods). For comparison, raw sequencing reads from published TGIRT-seq 

datasets generated from similarly prepared fragmented UHR RNA samples using the NTC 

adapter (Nottingham et al 2016) were downloaded (NCBI SRA accession number SRP066009) 

and processed using the same bioinformatic pipeline. 

The datasets obtained using the NTT adapter had mapping rates similar to those for the 

NTC adapter (84-86% and 84-89%, respectively), with similar proportions of the mapped reads 

mapping concordantly in the correct orientation to annotated genomic features (92-94%; 

Supplemental Table S1). Scatter plots comparing the representation of UHR RNAs in technical 

replicates obtained using the NTT and NTC adapters gave Spearman’s correlation coefficients 

(ρ) of 0.95-0.96 (Supplemental Fig. S1), and a histogram of the coefficients of variation of 

normalized counts from the replicates confirmed their similarly high reproducibility (94% and 

92% of the protein-coding gene transcripts and spike-ins with normalized read count >10 have a 

coefficient of variation 25% for the NTT and NTC adapters, respectively, compared to 87% for 

TruSeq v3 in benchmark datasets (Li et al. 2014; Supplemental Fig. S2). Likewise, the 

normalized abundances (transcripts-per-million; TPM) of ERCC s-ins from the TGIRT-seq 

datasets correlated well with the expected spike-ins inputs (ρ = 0.98; Supplemental Fig. S3). The 

datasets obtained using the NTT and NTC adapters showed no substantial differences in the 

profiles of reads mapping to different genomic features (Fig. 3A,B), the distribution of reads 
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between the sense and antisense strands of protein-coding genes (Fig. 3C), or the proportions of 

bases mapping to different regions of protein-coding genes (Fig. 3D).  

To assess sequence biases in the TGIRT-seq libraries, we plotted aggregate nucleotide 

frequencies as a function of position from both the 5’- and 3’-ends of the sequenced RNA 

fragments (Fig. 3E). The plots show that 5’- and 3’-end sequences biases are similar for the NTT 

and NTC adapters, with the 5’ bias reflecting in large part the sequence preferences of the 

thermostable 5’ App DNA/RNA ligase (for C or A and against T at the -3 position of the cDNA, 

resulting in reciprocal biases for G or U and against A at position +3 from the 5’ end of the 

RNA), and the 3’ bias (for G and against U at position -1 from the 3’ end of the RNA) including 

a contribution from TGIRT-template switching. However, the contribution of the TGIRT-seq 

library preparation steps to the 5’- and 3’-end biases is difficult to assess from these datasets 

because the end biases could also include a contribution from the RNA fragmentation process 

(Parekh et al. 2016). Whatever the cause, nearly all of the sequence bias in libraries prepared 

from the fragmented human reference RNAs is confined to the first 3 positions from the 5’ and 3’ 

ends of the RNA fragments. Together, these results show that the NTT adapter performs 

similarly to the previous NTC adapter for analysis of ribodepleted fragmented whole-cell RNA 

preparations, but with fewer rounds of AMPure beads clean-up required to remove adapter 

dimers (1 round for the NTT adapter compared to 3 rounds in the previous libraries obtained 

with the NTC adapter; Supplemental Table S1). 

 

TGIRT-seq of a miRNA reference set and analysis of 5’- of 3’-end biases 

To evaluate the performance of the NTT adapter in miRNA sequencing, we used it to construct 

TGIRT-seq libraries of a miRNA reference set containing an equimolar mixture of 962 human 

miRNA sequences (miRXplore Universal Reference; Miltenyi Biotech) and compared its 

performance to that of the NTC adapter tested in parallel. Libraries prepared using each adapter 

were constructed in triplicate, with the libraries constructed using the NTT adapter requiring 1 

round of 1.4X AMPure beads clean-up prior to sequencing compared to 4 rounds for those 

constructed using the NTC adapter (Supplemental Table S2). The libraries were sequenced on an 

Illumina NextSeq 500 to obtain 10-16 million 2 x 75-nt paired-end reads, which were mapped to 
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the 962 reference miRNA sequences. The proportion of uniquely mapped reads was higher for 

the NTT adapter than the NTC adapter (86-88% and 63-74%, respectively), possibly reflecting 

that the multiple rounds of AMPure bead clean-up required for the NTC adapter result in 

differential loss of bona fide miRNAs, which map uniquely, compared to larger aberrant 

products (e.g., resulting from multiple template switches), which do not map uniquely. Scatter 

plots comparing datasets for technical replicates gave ρ values of 1.00 for replicates with the 

same adapter and 0.94 for replicates with different adapters (Supplemental Fig. S4). 

To assess sampling and end biases of the miRNAs in the TGIRT-seq datasets, we 

combined the 3 technical replicates for each adapter and compared the representation of miRNAs 

in the combined datasets to that in the reference set (Fig. 4A-C). Plots of the empirical 

cumulative distribution function (ECDF) of log2 normalized count for each miRNA in the 

reference set showed that the NTC and NTT adapters gave similar representations of different 

miRNA species (RMSE = 2.57 and 2.72, respectively; Fig. 4A-C, left panels). Additionally, the 

plots showed that, as from the fragmented UHR RNAs (Fig. 3E), much of the sequence bias in 

the TGIRT-seq datasets is confined to the first three nucleotides from the 5’- and 3’-ends of the 

miRNAs and is similar for the two adapters (Fig. 4A-C, middle and left panels). 

Because the miRNAs in the reference set have known sequences, we could now more 

accurately assess the degree and cause of the bias introduced by TGIRT-seq than could be done 

with fragmented whole-cell RNAs. The 5’ bias includes but is not limited to the known sequence 

preferences of the 5’ App DNA/RNA ligase (e.g., over-representation of G at position +3 of the 

RNA sequence compared to the reference set RNAs), while the 3’ bias due primarily to template-

switching favors reference set miRNAs with a 3’ G residue and strongly disfavors miRNAs with 

a 3’ U residue (Fig. 4A-C, middle and right panels). 

  

Contribution of TGIRT-seq 5’- and 3’-end biases to miRNAs measurement errors 

To quantify the contribution of TGIRT-seq 5’- and 3’-end biases to measurement errors for the 

miRNA reference set, we correlated the representation of each miRNA in the combined datasets 

obtained with the NTT adapter with its 5’- and 3’-end sequences. As the results for both the 

fragmented UHR RNAs (Fig. 3E) and the miRNA reference set (Fig. 4B,C, middle and right 
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panels) showed that much of the bias is confined to the first 3 nucleotides from each end of the 

RNA, we focused on these positions. For this analysis, we defined over- and under-represented 

miRNAs as those whose log10 Counts-Per-Million (CPM) values were ≥1 standard deviation 

higher or lower than the mean log10 CPM for all of the miRNAs in the reference set 

(Supplemental Fig. S5). Principal component analysis (PCA) based on the first 3 nucleotides 

from the 5’- and 3’-end showed that the over- and under-represented miRNAs were almost 

linearly separable along the first principal component (PC1) of the PCA biplot (Fig. 5A). 

To identify the contribution of different nucleotides to the miRNA recovery rate, we 

inspected the factor loadings on PC1 (Fig. 5B). This showed that 3 of the top 4 contributing 

factors in over-represented miRNAs were from 5’ positions with the most favored bases being 5’ 

+1U; +3G, and +2G (Fig. 5B, right side of plot). Moreover, 3 out of the top 4 contributing 

factors in under-represented miRNAs were also from the 5’ positions with the most disfavored 

bases being 5’ +1A, +2A, and +3A (Fig. 5B, left side of plot). However, the largest contributor 

for under-represented miRNAs and second largest for over-represented miRNAs was the 3’ 

terminal nucleotide (position -1), which favors a G residue and disfavors a U residue (Fig. 5B). 

By fitting the data to a random forest regression model, we found that the position-specific 

nucleotide preferences at the first three nucleotides from the 5’- and 3’-ends of the miRNA 

account for 81% (R2 = 0.81) of the measurement errors (Fig. 5C). A k-fold cross-validation test 

of the random forest regression model in which the 962 miRNAs were divided into 8 subgroups, 

each of which was tested with a model trained on the remaining subgroup, gave R2 values of 0.46 

to 0.66 (Supplemental Fig. S6). By contrast, a model trained similarly using the internal positions 

+4 to +6 and -4 to -6 performed poorly (R2 = -0.06 to 0.06; Supplemental Fig. S6), confirming 

the importance of the first three 5’- and 3’-end positions. 

As the random forest regression model predicts the continuous spectrum of miRNA 

measurement errors, we could use it to quantitatively assess the contributions of each of the first 

three 5’- and 3’-end position to the measurement errors (Fig. 5D). The results were generally 

consistent with the PCA, which identifies nucleotide combinations that separate over- and under-

represented miRNAs. Thus, the -1 position was identified as having the greatest contribution to 

the bias, followed by the +2, +1 and +3 positions (Fig. 5D and Supplemental Fig. S6). A simple 
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calculation summing the relative importance of the positions suggested that the 5’- and 3’-end 

biases contribute 40% and 60%, respectively, of the measurement errors due to end biases. 

However, we also found that nucleotides at some 5’- and 3’-end positions of the miRNAs in the 

reference set are correlated, in some cases with χ2-test -log10 p-values >10 (e.g., 42% of the 

miRNAs with a disfavored A at +3 have a disfavored U at -1 position; Supplemental Fig. S7). 

This correlation raises the possibility that some of the apparent bias at 3’-end position -1 may 

reflect the 5’ adapter ligation bias rather than template-switching bias, consistent with this lower 

3’-end bias seen in TGIRT-seq of a miRNA reference set using CircLigase instead of the 5’ App 

DNA/RNA ligase (Mohr et al. 2013, and see below). 

 

Biochemical and computational methods for remediating 5’- and 3’-biases in TGIRT-seq 

Having investigated the sources of the 5’- and 3’-end bias in the TGIRT-seq protocol, we next 

explored biochemical and computational approaches for mitigating these biases. For the 3’ bias, 

we first thought that the preference for a G residue and against a U residue at position -1 might 

reflect the strength of the base-pairing interaction between that nucleotide and the 3’-overhang 

nucleotide of the DNA primer that is used to direct TGIRT-template switching, with a strong 

rG/dC base pair favored over a weak rU/dA pair. However, changing the 3’ A overhang in the 

NTT primer mix to a diaminopurine (denoted MTT) to enable a stronger base pair with 3 instead 

of 2 H-bonds to a 3’ U only slightly ameliorated this bias (RMSE decreased from 2.72 to 2.45; 

Fig. 4C,D). 

We next tried an alternate approach based on previous findings that increasing or 

decreasing the proportion of a 3’-overhang nucleotide in the primer mix increases or decreases 

the recovery of miRNAs having a complementary 3’ end in the TGIRT-seq libraries (Mohr et al. 

2013). We repeated this finding by constructing TGIRT-seq libraries from the miRNA reference 

set with a series of R2/R2R adapter mixes with higher proportions of 3’ A overhangs residues 

and lower proportions of 3’ C overhangs (Fig. 6) and found that we could almost completely 

eliminate the 3’ bias in TGIRT-seq of the miRNA reference set by using a primer mix with the 

ratio of 3’ overhang nucleotides A:C:G:T of 6.6:0.4:1:1 (denoted NTTR; RMSE = 1.88; Fig. 4E). 
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For the 5’-ligation bias, we noted that established small RNA-seq methods that employ T4 

RNA ligases I and II to sequentially ligate DNA adapters to RNA 5’ and 3’ ends benefit from 

employing DNA adapters with four randomized nucleotides at the ligated ends (referred to as 4N 

protocols), with such adapters giving lower bias and better coverage at low sequencing depths 

than those with invariant sequences at their ends (Hafner et al. 2011; Jayaprakash et al, 2011; 

Zhuang et al. 2012; Giraldez et al. 2018). However, miRNA libraries prepared by TGIRT-seq 

with an R1R adapter containing six randomized 3’-end positions (denoted NTT/6N) did not 

decrease the ligation bias (RMSE = 2.89 compared to 2.72 for NTT with the R1R adapter 

without randomized nucleotides; Fig. 4F compared to Fig. 4C). This result may reflect that a 

major component of the ligation bias in methods that benefit from 4N adapters is thought to 

result from miRNA/adapter base-pairing interactions (referred to as “co-folding”), which can be 

ameliorated by providing more diverse adapter sequences (Hafner et al. 2011; Zhuang et al. 

2012). By contrast, because TGIRT-seq employs a thermostable ligase for a single-stranded 

ligation of a DNA adapter to a cDNA at high temperature, the bias resulting from base-pairing 

interactions between the adapter and acceptor cDNA may already be minimal. 

As an alternative for addressing the sampling biases in TGIRT-seq, we built a proof-of-

concept bias corrector for TGIRT small RNA-seq using the random forest regression model 

described above (Fig. 5C,D) to correct the measurement errors due to 5’- and 3’-end biases. The 

bias corrector uses the first and last 3 nucleotides of each miRNA to predict the measurement 

errors, such that a corrected abundance can be computed by subtracting the predicted 

measurement error from the experimentally determined abundance for each miRNA. By 

employing this simple computational correction on the TGIRT-seq datasets obtained using the 

NTT adapter (denoted NTTc), both the 5’- and 3’-end biases were largely corrected, and the 

frequencies of miRNA 5’- and 3’-end nucleotides in the dataset closely approached those in the 

miRNAs in the reference set with the RMSE decreased to 1.17 (Fig. 4G). 

 

Comparison of TGIRT-seq to other miRNA sequencing methods  

Fig. 7 compares TGIRT-seq of the miRNA reference set using the different methods of bias 

correction described above with published datasets obtained by using established small RNA 
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library preparation methods on RNA samples containing the 962 miRNAs in the Miltenyi 

miRXplore reference set. Because some of the published datasets contain additional miRNAs, 

we created in silico subsamples containing only the 962 reference set miRNAs from each dataset 

for these comparisons. Fig. 7A shows saturation curves (i.e., plots of the recovery of miRNAs 

with a read count of ≥10 as a function of sequencing depth), and Fig. 7B shows violin plots of 

the log10CPM values for the reference set miRNAs obtained by the different methods. The plots 

confirm the previous finding (Giraldez et al. 2018) that the 4N protocols perform better than 

other widely used small RNA-seq methods both in sampling miRNAs (reaching the plateau at 

smaller library sizes; Fig. 7A) and in obtaining expected log10CPM values (median closest to the 

red line) with smaller variance across the measured miRNA CPM values (shorter distance 

between the two ends of the tails; Fig. 7B). TGIRT-seq with NTTR adapter performed almost as 

well as the 4N protocols and better than TGIRT-seq with other adapters in the recovery of 

miRNA sequences as a function of read depth, likely reflecting that the altered ratio of R2R 

adapters 3’ overhangs improves the recovery or miRNAs with disfavored 3’ end sequences (Fig. 

7A). Further, TGIRT-seq with the NTT or NTC adapters with computational correction (denoted 

NTTc and NTCc, respectively) performed slightly better than the 4N protocols in overall 

sampling bias and variance and substantially better than other commercial small RNA 

sequencing methods, including NEXTflex, TruSeq, CleanTag, and NEBNext (Fig. 7B). Based on 

a previously published dataset (Mohr et al. 2013; SRA accession number SRR833775), the 

TGIRT CircLigase method, employing TGRT-template-switching by TeI4c RT instead of GsI-

IIC RT and a cDNA gel-purification step prior to circularization, performed about as well as the 

4N protocols both in miRNA recovery as a function of sequencing depth and in overall sample 

bias and variance (Fig. 7A,B). 

 

Factors other than end biases that may contribute to measurement errors in TGIRT-seq 

To further investigate sources of bias in miRNA sequencing, we compared the over- and under-

represented reference set miRNAs in datasets obtained by TGIRT-seq NTT and the 4N ligation 

protocols (Fig. 8). In agreement with the findings above, we found that most of the under- and 

over-represented miRNAs in TGIRT-seq compared to 4N are due to ligation and template-
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switching biases that could be substantially corrected computationally, so that the distribution of 

most of the reference miRNAs after correction largely matched that in 4N protocols (Fig. 8A,B). 

However, a small number of miRNAs remained substantially under- or over-represented in both 

TGIRT-seq and 4N protocols. 

To identify other factors that might contribute to the biased representation of these outlier 

miRNAs in TGIRT-seq, we defined over- and under-represented miRNAs as those whose 

log10CPM values after computational correction for end biases were ≥2 standard deviations 

higher (n = 8) or lower (n = 27) than the mean log10CPM, and then compared several potentially 

bias-inducing characteristics of these miRNAs to the remaining 927 more uniformly represented 

miRNAs (those in the center box in Fig. 8B). The compared characteristics included miRNA 

length, GC content, stability of potential secondary structure (self-fold free energy), potential of 

the miRNA cDNA with attached R2R adapter (resulting from the first step of TGIRT-seq) to 

base pair (co-fold) with the R1R adapter, and the numbers of unpaired (i.e., free) 5’ and 3’ 

nucleotides in the most stable predicted secondary structure. Violin plots of the distribution of 

miRNAs in each group as a function of the compared characteristic showed that miRNA length 

was the only tested factor that contributes significantly to the under- or over-representation of 

these outlier miRNAs (Wilcoxon test p-values = 0.004 and 0.03, respectively; Fig. 9). However, 

for the larger group of 962 miRNAs, a plot of miRNA representation as a function of length 

showed only a weak correlation (R2 = 0.073; Fig. 8C). The Violin plots confirmed that neither 

self-folding of the miRNAs nor co-folding of the miRNA cDNAs with the R1R adapter 

contributes significantly to the under-representation of the outlier miRNAs in TGIRT-seq (Fig. 

9C,D). 

 

DISCUSSION 

By avoiding gel-purification steps, the TGIRT Total RNA-seq method enables the rapid 

construction of comprehensive RNA-seq libraries containing nearly all RNA biotypes from small 

amounts of starting materials with less overall bias than other transcriptome-profiling methods 

(Qin et al. 2016; Nottingham et al. 2016; Boivin et al. 2018). Here, we addressed two issues in 

TGIRT-seq library preparation, the disproportionate loss of miRNA sequences during AMPure 
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beads clean-up of adapter dimers, and sampling biases resulting from 5’- and 3’-end sequences 

preferences in the ssDNA ligation and TGIRT template-switching steps. 

First, to address the adapter dimer problem, we used the known sequence biases of the 

thermostable 5’ App DNA/RNA ligase employed for R1R adapter ligation to design an R2R 

adapter with a single nucleotide change that strongly decreases adapter dimer formation during 

TGIRT-seq library preparation (88-99% lower compared to the previous NTC adapter; Fig. 2). 

The redesigned R2R adapter (denoted NTT) decreases the number of rounds of AMPure beads 

clean-up required to remove adapter dimers, thereby increasing the recovery of very small RNAs 

and enabling the construction of TGIRT-seq libraries from smaller amounts of starting materials. 

A previous approach for decreasing adapter dimer formation in RNA-seq protocols in which 

DNA adapters are ligated to both 5’- and 3’-RNA ends uses adapters with chemical 

modifications near the ligated ends of both adapters (Shore et al. 2016). These chemical 

modifications were hypothesized to inhibit ligation and impede subsequent reverse transcription 

when brought into close proximity in adapter dimers, but not when separated by a library insert. 

The authors carefully noted, however, that adapter dimer suppression was largely dependent 

upon the sequence of the adapters and that the same chemical modifications did not achieve the 

same degree of suppression with other adapter sequences (Shore et al. 2016). Our results extend 

these findings by showing that, at least for some ligases, small changes in adapter sequences 

based on analysis of ligase sequence preferences is by itself sufficient to strongly suppress 

adapter dimer formation without resorting to chemical modifications. 

Next, we used TGIRT-seq of miRNA reference sets to analyze and correct 5’- and 3’-end 

biases. The 5’-end bias in TGIRT-seq is due in large part to sequence biases of the thermostable 

5’ App DNA/RNA ligase used for single-stranded ligation of the R1R adapter to the 3’ end of 

the cDNA (Fig. 1A). We found that this bias could not be mitigated by using an R1R adapter 

with randomized nucleotides near its 5’ end, as in 4N ligation RNA-seq protocols, but could be 

corrected computationally by using a random forest regression model to give the same level of 

bias as in 4N protocols. The 3’-end bias in TGIRT-seq is confined largely to the 3’ nucleotide of 

the target miRNA, which base pairs with the 3’ overhang of the DNA primer mix during 

template switching. We first thought that this 3’ bias might reflect the relative strengths of the 
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rG/dC and rU/dA base pair between the 3’ nucleotide of the miRNA and the 3’ overhang 

nucleotide of the primer. However, the 3’ bias could be only slightly ameliorated by substituting 

a diaminopurine 3’ overhang to enable a stronger base pair to a 3’ U, suggesting that it results 

largely results from nucleotide sequence preferences of the TGIRT enzyme. This 3’ bias could 

be almost completely remediated either by using primer mixes with a different ratio of 3’ A, C, 

G, and T overhang nucleotides to compensate for the sequence preferences of the TGIRT 

enzyme or computationally by using the random forest regression algorithm, which 

simultaneously corrects the 5’ bias (Fig. 4). The degree of computational correction that can be 

attained for TGIRT-seq is possible because sequences biases are almost entirely confined to the 

first 3 nucleotides from either end of the RNA template. 

Surprisingly, although the computational correction for 5’ and 3’ end bias in TGIRT-seq and 

4N ligation RNA-seq protocols address different factors, sequence bias in TGIRT-seq and 

adapter/miRNA co-folding in the 4N protocols (Giraldez et al. 2018), they achieve very similar 

degrees of overall correction in the datasets for miRNA reference sets, with relatively few 

outliers that are differentially corrected by one or the other method (Fig. 8). This likely reflects 

that the biases corrected by the two methods are orthogonal. The TGIRT-seq correction for 5’ 

end bias addresses sequencing preferences of the ligase, which are already minimal for the T4 

RNA ligases used in the 4N protocols (Jayaprakash et al. 2011; Hafner et al. 2011; Zhuang et al. 

2012; Fuchs et al. 2015; Giraldez et al. 2018), while the 4N correction addresses adapter/miRNA 

co-folding, which is likely already minimal in the high temperature ssDNA ligation in TGIRT-

seq. Examination of outlier miRNAs after TGIRT-seq sequence bias correction indicates that 

miRNA length may be a contributing factor for under- and over-representation of some but not 

most miRNAs (Fig. 9). Although the recovery of miRNA sequences from pools of synthetic 

miRNAs, such as that used here, could in principal be used for bioinformatic approaches that 

fully correct all sources of biases, biological samples would likely behave differently from 

synthetic RNA pools tested at a single concentration in vitro (noted previously by (Giraldez et al. 

2018)). Longer term, the 5’- and 3’-end biases in TGIRT-seq could be addressed further by using 

an alternative or modified ligase for 5’-adapter addition, while the 3’ bias and might be 

addressed by using a modified TGIRT enzyme. The recently determined crystal structure of full-
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length GsI-IIC RT in active conformation with bound substrates (Stamos et al. 2017) provides a 

platform for detailed analysis of the structural basis and possible alleviation of this 3’-end bias. 

An attractive feature of the TGIRT Total RNA-seq method is that it enables the 

comprehensive analysis of different RNA size classes in a single RNA-seq experiment, enabling 

applications such as comparison of mRNA codon usage with cellular tRNA levels (Bazzini et al. 

2016; Smith et al. 2018), co-expression of small ncRNAs and mRNAs encoding components of 

RNP complexes (Boiven et al. 2018), and analysis of tRNAs and tRNA fragments or mature, 

pre-, and pri-miRNA in the same RNA-seq (Nottingham et al. 2016; Qin et al. 2016; Burke et al. 

2016; Wang et al. 2018). Previous work showed that the total RNA-seq protocol with TGIRT-III 

works well for quantitation of small RNAs down to ~60 nt (Boivin et al. 2018), and the 

introduction of the NTT adapter in the present work substantially improves the representation of 

miRNAs in the datasets. We note, however, that even with the NTT adapters, the recovery of 

miRNA sequences in the TGIRT Total RNA-seq method with GsI-IIC RTs (TGIRT-III) is less 

efficient than that of larger RNAs (Fig. 2), reflecting that miRNA library products may still be 

differentially lost at different clean-up steps in TGIRT-seq library construction (including the 

single round of Ampure beads clean-up that is still required to remove PCR primers) and that 

larger RNAs out compete very small RNAs (<60 nt) for reverse transcription by GsI-IIC RT in 

mixed-sized RNA preparations (Qin et al. 2016). For studies in which mature miRNAs are of 

primary interest, the latter issue could be minimized by introducing a size-selection step to obtain 

more uniformly sized RNA preparations and/or by employing an orthogonal approach, such as 

microarrays, RT-qPCR, or Firefly bead assay, to confirm inferences about miRNA abundance 

(Willenbrock et al. 2009; Chen et al. 2011; Wolter et al. 2014). Additionally, based on 

comparison of published datasets, we find that alternative TGIRT-CircLigase method, which 

includes a gel-purification step, performed similarly to 4N protocols in recovery of miRNA 

sequences as a function of sequencing depth as well as overall variance from the expected CPM 

values (Fig. 7), and at present, this may be the TGIRT method of choice for studies focused 

primarily on mature miRNAs. We also note that the another TGIRT enzyme, TeI4c RT, which 

has so far not been used extensively for RNA-seq, has significantly different properties than GsI-

IIC RT, including the ability to synthesize even longer cDNAs and more uniform representation 
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of RNAs <60 nt in mixed-sized RNA preparations (Qin et al. 2016). The numerous group II 

intron RTs identified by the sequencing of bacterial, archaeal, and organellar genomes may 

provide a rich resource for the identification of enzymes with even more beneficial properties for 

RNA-seq than those tested thus far. 

 

MATERIALS AND METHODS 

DNA and RNA oligonucleotides 

The sequences of DNA and RNA oligonucleotides used in this work are summarized in Table 1. 

All oligonucleotides were purchased from Integrated DNA Technologies (IDT) in RNase-free 

HPLC-purified form. R2R oligonucleotides with different 3’ nucleotides were hand mixed prior 

to annealing to the R2 RNA oligonucleotide to obtain the desired ratio of single nucleotide 3’-

overhangs (Nottingham et al. 2016; Qin et al. 2016). The NTT and NTC primer mixes contain an 

equimolar mix of R2R DNAs with 3’ A, C, G, and T residues. In the MTT primer mix, the R2R 

DNA with a 3’ A is replaced with a 3’ diaminopurine. In the NTTR primer mix, R2R DNAs with 

3’ A, C, G, and T were mixed at a ratio of 6.6:0.4:1:1. Primer mixes with other ratios of 3’ 

nucleotides described in Results (Fig. 6) were prepared similarly. 

 

RNA preparations 

The miRXplore miRNA reference set was purchased from Miltenyi Biotech. The RNA was 

dissolved in nuclease-free water (Invitrogen), adjusted to 1 µM, and aliquoted for storage at -

80oC.  Fragmented human reference RNA samples were prepared as described (Nottingham et al. 

2016). 50 µl of Universal Human Reference RNA (UHR; Agilent) at 1 µg/µl was mixed with 1 

µl of ERCC ExFold Mix 1 (Thermo Fisher Scientific; denoted ERCC spike-ins) prepared 

according to the provided protocol. 2 µl of the resulting UHR sample with ERCC spike-ins was 

ribo-depleted by using a Human/Mouse/Rat Ribo-zero rRNA removal kit (Illumina), fragmented 

to 70-100 nt by using an NEBNext Magnesium RNA Fragmentation Module (94°C for 7 min; 

New England Biolabs), and treated with T4 polynucleotide kinase (Epicentre) to remove 3’ 

phosphates that impede template switching (Nottingham et al. 2016). After each of the above 

steps, RNA was cleaned-up by using a Zymo RNA Clean & Concentrator kit, with 8 volumes of 
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ethanol added to the input RNA to maximize the recovery of small RNAs (Nottingham et al. 

2016). The fragment size range and RNA concentration were verified by using a 2100 

Bioanalyzer (Agilent) with an Agilent 6000 RNA pico chip and aliquoted into 6 ng/3 µl portions 

for storage in -80oC. 

 

TGIRT-seq 

TGIRT-seq libraries were prepared as described (Qin et al. 2016; Nottingham et al. 2016) using 

6 ng of fragmented Universal Human Reference (UHR) RNAs with ERCC spike-ins or 50 nM 

Miltenyi miRXplore RNA prepared as described above. The template-switching and reverse 

transcription reactions were done with 1 µM TGIRT-III (InGex) and 100 nM pre-annealed R2 

RNA/R2R DNA in 20 µl of reaction medium containing 450 mM NaCl, 5 mM MgCl2, 20 mM 

Tris-HCl, pH 7.5. The reactions were set up with all components except dNTPs, pre-incubated 

for 30 min at room temperature, a step that increases the efficiency of reverse transcription, and 

initiated by adding dNTPs (final concentrations 1 mM each of dATP, dCTP, dGTP, and dTTP). 

The template-switching reactions were incubated for 15 min at 60°C and then terminated by 

adding 1 µl 5 M NaOH to degrade RNA and heating at 95°C for 5 min followed by 

neutralization with 1 µl 5 M HCl and two rounds of MinElute column clean-up (Qiagen) to 

decrease the amount of unused R2R DNA adapter. The R1R DNA adapter was pre-adenylated 

by using an adenylation kit (New England Biolabs) and then ligated to the 3’ end of the cDNA 

by using thermostable 5’ App DNA/RNA Ligase (New England Biolabs) for 2 h at 65°C 

(Nottingham et al. 2016; Qin et al. 2016;). The ligated products were purified by using a 

MinElute Reaction Cleanup Kit and amplified by PCR with Phusion High-Fidelity DNA 

polymerase (Thermo Fisher Scientific; denaturation at 98°C for 5 sec followed by 12 cycles of 

98°C 5 sec, 60°C 10 sec, 72°C 15 sec and then held at 4°C). The PCR products were cleaned up 

by using Agencourt AMPure XP beads (1.4X volume; Beckman Coulter), and sequenced on an 

Illumina NextSeq 500 instrument to obtain 2 x 75-nt paired-end reads. 

 

Bioinformatic analysis 
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Published TGIRT-seq data for identically prepared ribodepleted, fragmented UHR RNA plus 

ERCC spike-ins using NTC adapters were downloaded from NCBI (SRA accession number 

SRP066009). For UHR RNA plus ERCC spike-ins datasets, Illumina TruSeq adapters and PCR 

primer sequences were trimmed from the reads with cutadapt 1.16 (Martin 2011) (sequencing 

quality score cut-off at 20) and reads <15-nt after trimming were discarded. Reads were then 

mapped by using HISAT2 v2.0.2 with default settings to a human genome reference sequence 

(Ensembl GRCh38 Release 76) combined with additional contigs for 5S and 45S rRNA genes 

and the E. coli genome sequence (Genebank: NC_000913) (denoted Pass 1). The additional 

contigs for the 5S and 45S rRNA genes included the 2.2-kb 5S rRNA repeats from the 5S rRNA 

cluster on chromosome 1 (1q42, GeneBank: X12811) and the 43-kb 45S rRNA repeats that 

contained 5.8S, 18S and 28S rRNAs from clusters on chromosomes 13,14,15,21, and 22 

(GeneBank: U13369). Unmapped reads from Pass 1 were re-mapped to Ensembl GRCh38 

Release 76 by Bowtie 2 v2.2.6 (Langmead and Salzberg 2012) with local alignment to improve 

the mapping rate for reads containing post-transcriptionally added 5’ or 3’ nucleotides (e.g., 

CCA and poly(U)), short untrimmed adapter sequences, or non-templated nucleotides added to 

the 3’ end of the cDNAs by the TGIRT enzyme (denoted Pass 2). The uniquely mapped reads 

from Passes 1 and 2 were combined using Samtools v1.8 (Li et al. 2009). To process multiply 

mapped reads, we collected up to 10 distinct alignments with the same mapping score and 

selected the alignment with the shortest distance between the two paired ends (i.e., the shortest 

read span). In the case of ties between reads mapping to rRNA and non-rRNA sequences, the 

read was assigned to the rRNA sequence, and in other cases, the read was assigned randomly to 

one of the tied choices. Uniquely mapped reads and the filtered multiply mapped reads were 

combined and intersected with gene annotations (Ensembl GRCh38 Release 76) supplemented 

with RNY5 gene and its 10 pseudogene sequences, which were not annotated in this release, to 

generate the counts for individual features. Coverage of each feature was calculated by Bedtools 

(Quinlan and Hall 2010). To avoid mis-mapping reads with embedded sncRNAs, reads were first 

intersected with sncRNA annotations and the remaining reads were then intersected with the 

annotations for protein-coding genes, lincRNAs, antisense, and other lncRNAs. To further 

improve the mapping rate for tRNAs and rRNAs, we combined reads that were uniquely or 
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multiply mapped to tRNAs or rRNAs in the initial alignments and re-mapped them to tRNA 

(Genomic tRNA Database and UCSC genome browser website) or rRNA (GeneBank: X12811 

and U13369) reference sequences using Bowtie 2 local alignment. Because similar or identical 

tRNAs with the same anticodon may be multiply mapped to different tRNA loci by Bowtie 2, 

mapped tRNA reads were combined according to their anticodon (N = 48) prior to calculating 

the tRNA distributions. 

For correlation analysis, RNA-seq datasets were normalized for the total number of 

mapped reads by using DESeq2 (Love and Huber 2014) and plotted in R. Reads that mapped to 

protein-coding genes were analyzed by Picard (http://broadinstitute.github.io/picard/) to calculate 

the percentage of bases in CDS, UTR, intron, and intergenic regions.  

For datasets obtained for the Miltenyi miRXplore miRNA reference set, Illumina TruSeq 

adapters and PCR primer sequences were trimmed from the reads with cutadapt (sequencing 

quality score cut-off at 20) and reads <15-nt after trimming were discarded. Reads were then 

mapped with Bowtie2 using the local alignment with default settings to the Miltenyi miRXplore 

reference sequences. Uniquely mapped read with read lengths between 15 and 40 nt (86-88% of 

the mapped reads for the NTT adapter; Supplemental Table S2) were retrieved and used to 

calculate the counts table for 962 miRNAs. Counts from each dataset were median normalized, 

log2 transformed, and used to generate scatter plots, empirical cumulative distribution function 

(ECDF) plots, and nucleotide frequency plots in R. RMSE was calculated using log2 transformed 

median normalized counts. 

 

Correction of 5’- and 3’-end biases  

miRNA sequence biases were analyzed with customized scripts using pysam (Li et al. 2009) and 

SciPy ecosystem (Jones et al. 2001). The deviations between the expected log10 miRNA 

abundance (log10CPM; 962 equilmolar miRNAs from Miltenyi miRXplore reference set) and 

measured log10 abundance were predicted from the first and last three bases for each miRNA 

using a random forest regression model implemented in R (Liaw and Wiener 2001) according to 

the following equation:  
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where  indicates the difference between observed log10CPM and expected log10CPM for 

miRNA m. f indicates the random forest regression function, and indicates the nucleotide of 

miRNA m at position i. Only the first 3 bases (i = 1 to 3) and the last 3 bases (i = -3 to -1) of each 

miRNA were considered. Correction of miRNA abundances was done by subtracting  from 

the experimental log10CPM for each miRNA. All codes for miRNA modeling are deposited in 

GitHub at: https://github.com/wckdouglas/tgirt_smRNA.  

 

Comparison of TGIRT-seq of miRNAs to established small RNA-seq methods 

miRNA count tables for 4N ligation, NEXTflex, TruSeq, NEBNext and CleanTag were 

downloaded from the National Center for Biotechnology Information (NCBI) Sequence Read 

Archive (SRA accession number SRP126845; Giraldez et al. 2018), and counts from the 962 

Miltenyi miRXplore RNAs were extracted for the comparisons. Raw reads obtained by the 

TGIRT-CircLigase method (Mohr et al. 2013) were downloaded from NCBI (SRA accession 

number SRR833775), and aligned to the Miltenyi miRXplore reference sequences using Bowtie2 

(settings local -D 20 -R 3 -N 0 -L 8 -i S,1,0.50 -k 5 --norc --no-mixed --no-discordant; Langmead 

et al. 2012) to generate a miRNA count table. miRNA counts from TGIRT-seq datasets and the 

downloaded datasets were normalized to CPM for the comparisons. The predicted RNA folding 

and co-folding patterns and energies were computed by the ViennaRNA package (Lorenz et al. 

2011). 

 

DATA DEPOSITION 

The TGIRT-seq datasets described in this manuscript have been deposited in the National Center 

for Biotechnology Information Sequence Read Archive under SRA accession number 

SRP168562. 

 

SUPPLEMENTAL MATERIAL 

Supplemental material is available for this article. 
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FIGURE 1. TGIRT-seq workflow and design of an improved R2R adapter that decreases 

adapter-dimer formation. (A) TGIRT-seq workflow. In the first step, TGIRT enzyme binds to an 

artificial template-primer substrate comprised of an RNA oligonucleotide containing an Illumina 

R2 sequence with a 3’-end blocking group (C3) annealed to a complementary DNA 

oligonucleotide (R2R) that leaves a single nucleotide 3’ overhang, which can direct template-

switching by base pairing to the 3’ end of an RNA template. For the preparation of TGIRT-seq 

libraries from pools of RNAs, the DNA primer consists of a mixture of DNA oligonucleotides 

that leave A, C, G, and T 3’ overhangs (denoted N). After pre-incubation of the TGIRT enzyme 

with the target RNAs and template-primer (see Materials and Methods), template-switching and 

reverse transcription of an RNA template are initiated by adding dNTPs. The resulting cDNA 

with an R2R adapter attached to its 5’ end is incubated with NaOH to degrade the RNA template 
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and neutralized with HCl, followed by two rounds of MinElute clean-up using the same column 

(Qiagen). A pre-adenylated oligonucleotide containing the reverse complement of an Illumina 

R1 sequence (R1R) is then ligated to the 3’ end of the cDNA by using thermostable 5’ App 

DNA/RNA ligase (New England Biolabs), followed by MinElute clean-up and 12 cycles of PCR 

amplification with primers that add indices and capture sites for Illumina sequencing. Unused 

R2R adapters that are carried over from previous steps are also ligated to the R1R adapter by 

using 5’ App DNA/RNA ligase (New England Biolabs), resulting in formation of adapter dimers 

(pathway at right), which are removed by AMPure beads clean-up prior to sequencing. (B) 

Taking into account known biases of the 5’ App DNA/RNA ligase (Jackson et al. 2014; 

Nottingham et al. 2016; Wu and Lambowitz, 2017), the R2R adapter used previously in TGIRT-

seq (denoted NTC) was modified by inserting a single T-residue at position -3, creating a 

modified R2R adapter (denoted NTT), which decreases adapter-dimer formation. (C) 

Bioanalyzer traces comparing adapter-dimer formation using the previous NTC and improved 

NTT R2R adapters. 2 pmole of the each R2R adapter was ligated to 40 pmole of adenylated R1R 

adapter followed by 12 cycles of PCR according to the TGIRT-seq protocol and 1 round of 

clean-up with 1.4X AMPure beads to remove salt and PCR primers. The traces were obtained by 

using a 2100 Bioanalyzer (Agilent) with a high sensitivity DNA chip. 

FIGURE 2. Bioanalyzer traces of TGIRT-seq libraries constructed from varying amounts of 

different-sized RNA oligonucleotides using either the NTC or NTT adapter. TGIRT-seq libraries 

were prepared from (A) 40-nt or (B) 20-nt RNA oligonucleotides using the workflow of Fig. 1A. 

After PCR for 12 cycles and one round of 1.4X AMPure beads clean-up, the libraries were 

analyzed on a 2100 Bioanalyzer (Agilent) using a high sensitivity DNA chip. M: internal marker.  

FIGURE 3. TGIRT-seq of ribodepleted fragmented UHR RNA with ERCC spike-ins using the 

NTT and NTC adapters. TGIRT-seq libraries were prepared in triplicate for each adapter and 

sequenced on an Illumina NextSeq 500 to obtain 58-105 million 75-nt paired-end reads, which 

were mapped to a human reference genomic (Ensembl GRCh38) modified to include additional 

rRNA repeats (Materials and Methods and Supplemental Table S1). The data were used to 

generate stacked bar graphs showing the percentages of: (A) read-pairs that mapped concordantly 
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to the annotated orientation of different categories of genomic features; (B) small ncRNA reads 

that mapped to different classes of small ncRNAs; (C) protein-coding gene reads that mapped to 

the sense or antisense strand; (D) bases in protein-coding gene reads that mapped to coding 

sequences (CDS), introns, 5’- and 3’-untranslated regions (UTRs), and intergenic regions. The 

name of the dataset is indicated below. (E) Sequence biases at the 5’- and 3’-ends of RNA 

fragments in combined technical replicates of datasets obtained by TGIRT-seq of fragmented 

UHR RNAs with either the NTC or NTT adapters. Mapped reads from fragmented human 

reference RNAs using NTC (datasets NTC-F1 to -F3) or NTT (datasets NTT-F1 to F3) adapters 

were combined to calculate the nucleotides frequency at 14 positions at the 5’- and 3’-ends of the 

RNA fragments (positions +1 to +14 at the 5’ end of read 1 and -1 to -14 at the 5’ end of read 2, 

respectively).  

FIGURE 4. TGIRT-seq of the Miltenyi miRXplore miRNA reference set using the NTT or NTC 

adapters and different methods for mitigating 5’- and 3’-end biases. TGIRT-seq libraries were 

prepared from the Miltenyi miRXplore miRNA reference set containing 962 equimolar human 

miRNAs (Supplemental Table S2 and Materials and Methods). The datasets for each method 

(combined n = 3 for NTC, NTT, MTT, and NTTR; n =1 for NTT/6N) were used to plot both the 

empirical cumulative distribution (ECDF) function of the log2 median-normalized counts for 

each miRNA ranked from least to most abundant (left panels), and the abundance-adjusted 

nucleotide frequencies at the 5’-end (N+1 to N+6) and 3’-end (N-1 to N-6) for all miRNAs in the 

dataset relative to those in the miRNA reference set (middle and right panels). Only uniquely 

mapped reads were counted. The numbers within the ECDF plots for each method indicate the 

root-mean-square error (RMSE) for over-represented miRNAs (top right), under-represented 

miRNAs (bottom left), and all miRNAs (top left). (A) Miltenyi miRXplore reference set showing 

the ECDF plot layout (left panel) and 5’- and 3’-nucleotide frequencies for all miRNAs in the 

Miltenyi miRXplore reference set assuming equimolar concentrations of the 962 miRNAs. (B-G) 

ECDF plots (left panels) and plots of the ratio between the abundance-adjusted nucleotide 

frequencies at the 5’ and 3’ ends of miRNAs for TGIRT-seq and those in the miRNA reference 

set (middle and right panels) for datasets obtained using (B) the NTC adapter; (C) the NTT 
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adapter; (D) a modified NTT adapter mix in which the 3’ A overhang is replaced with 3’ 

diaminopurine (MTT); (E) a modified NTT adapter mix with an altered ratio (6.6:0.4:1:1) of A, 

C, G, and T 3’ overhangs (NTTR); (F) the NTT adapter used together with an R1R adapter with 

six randomized nucleotides at its 3 end (NTT/6N); and (G) the NTT adapter after computational 

correction of 5’- and 3’-end biases (denoted NTTc). 

FIGURE 5. Effect of 5’- and 3’-end sequences on the representation of miRNAs in TGIRT-seq 

datasets. (A) Principal component analysis biplot for over- and under-represented miRNAs in 

TGIRT-seq of the Miltenyi miRXplore miRNA reference set in combined datasets for the three 

technical replicates obtained using the NTT adapter. The first three bases from the 5’- and 3’ 

ends of over- and under-represented miRNAs, defined as those whose log2CPM was at least one 

standard deviation greater or lower, respectively, than the mean log2CPM for all miRNAs in the 

reference set (Supplemental Fig. S5), were subject to principal component analysis. The first two 

principal components are shown. Each point indicates a miRNA, with over- and under-

represented miRNAs colored as indicated in the Figure. (B) Relative importance of features of 

the first principal component. The fitted values from the first principal component are plotted for 

each base at each nucleotide position (feature) in ascending order. 5’- and 3’-end nucleotides are 

color coded as indicated in the Figure. (C) Random forest regression modeling of miRNA-seq 

quantification errors. A random forest regression model (R2 = 0.81) based on the first three 5’- 

and 3’-end positions was trained on the 962 miRNAs in the combined datasets for the 3 technical 

replicates obtained using the NTT adapter, and the predicted measurement errors ( log10CPM 

predicted by the model) were plotted against the observed measurement errors ( log10CPM 

obtained directly from sequencing data) for each miRNA. The blue line shows the fitted linear 

regression for the model, and the red line indicates hypothetical perfect prediction with slope = 1 

and y-intercept = 0. (D) Relative importance of the position-specific preferences in TGIRT-seq. 

The relative importance of the 5’- and 3’-end positions from the random forest regression model 

were plotted in descending order. Each bar represents the relative importance of the indicated 

position color coded as indicated in the Figure. 
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FIGURE 6. TGIRT-seq of the Miltenyi miRXplore miRNA reference set using R2 RNA/R2R 

DNA adapters with different ratios of the 3’-DNA overhang nucleotides. The stacked bar graphs 

show the percentages of miRNAs having A, C, G, and U 3’-end nucleotides, color coded as 

indicated in the Figure, in the datasets compared to those in the miRNA reference set (right). 

Only uniquely mapped reads were counted. 

FIGURE 7. Saturation curves and differences in coverage for the 962 miRNAs in the Miltenyi 

miRXplore miRNA reference set for TGIRT-seq with or without different bias correction 

methods compared to published datasets for established small RNA-seq methods. For published 

datasets containing additional miRNAs, in silico subsamples containing only the 962 reference 

set miRNAs were used for the comparisons. (A) RNA-seq saturation curves. The curves show the 

number of reference set miRNAs with at least 10 reads at bins of 200 reads. As additional reads 

are included, the number of miRNAs with at least 10 reads increases. Curves are truncated at 3 

million reads. The dotted red line at the top indicates the number of miRNAs in the Miltenyi 

miRXplore reference set. Each curve represents combined datasets, color-coded by the 

sequencing method as shown in the Figure for the best (4N ligation/NEXTflex; n = 24) and 

worst (NEBNext; n = 12) methods from the comparison of Giraldez et al. (2018), as well as 

TGIRT-seq (n = 3 for libraries prepared with the NTT, MTT, and NTC adapters), TGIRT-seq 

with the NTTR adapter (n = 3), TGIRT-seq with an R1R adapter containing six randomized 3’-

end positions (NTT/6N; n=1), and the TGIRT-CircLigase method (n = 1; Mohr et al 2013). 

Other library preparation methods (gray lines) include NEBNext, TruSeq and CleanTag. (B) 

Violin plots of miRNA abundance in datasets obtained by different methods. The plots show the 

distribution of log10CPM for each miRNA in the reference set for each library preparation 

method (miRNA count = 2,886 for NTTc, 2,885 for NTCc, 23,088 for 4N ligation, 961 for 

TGIRT-CircLigase, 2,886 for NTTR, 5,522 for NEXTflex, 2,886 for MTT, 2,886 for NTC, 

2,886 for NTT, 962 for NTT/6N, 30,757 for TruSeq, 3,815 for CleanTag, and 11,452 for 

NEBNext). NTTc and NTCc denoted TGIRT-seq datasets obtained using the NTT or NTC 

adapters that were computationally corrected using the random forest regression model trained 

with NTT dataset (Fig. 5C,D). The black horizontal line indicates the expected CPM values 
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(CPM = 1,039.5) for each miRNA for a uniform distribution of 1,000,000 reads to 962 miRNAs 

(i.e., unbiased sampling for each miRNA). The library preparation methods and correction 

methods are ordered from the lowest to highest deviation between the median CPM (white point 

within the violin) and the expected CPM. Median log10CPM values for each prep are connected 

by a blue line. The black boxes in the violins indicate the interval between first and third 

quartiles, with the vertical lines indicating the 95% confidence interval for each method. 

FIGURE 8. Representation of the Miltenyi miRXplore miRNA reference set in datasets 

obtained by TGIRT-seq with the NTT adapter before and after computational correction 

compared to representation of the same miRNAs in datasets obtained using 4N protocols. (A) 

miRNA representation for TGIRT-NTT versus 4N. Log10CPM values for each miRNA in 

combined TGIRT NTT datasets (n = 3) are plotted against those in combined datasets for 4N 

protocols (n = 24; Gilardez et al. 2018). Each point represents one miRNA. (B) The same 

comparison as (A) after computational correction of the TGIRT-seq NTT dataset using the 

random forest regression model (Fig. 5C,D). In (B), miRNAs are color-coded by their lengths 

(scale to the right). The purple dotted lines delineate 95% confidence intervals (2 standard 

deviations from the mean) of the miRNAs for 4N (vertical dotted lines) or NTT (horizontal 

dotted lines). The box delineates 892 miRNAs that lie within these confidence intervals and were 

used for comparison with over- and under-represented miRNAs in Fig. 9. The expected CPM 

values (CPM = 1,039.5 for each of the 962 equilmolar miRNAs) are indicated by horizontal and 

vertical orange lines for TGIRT-seq and the 4N protocols, respectively. The diagonal red line 

indicates cases where the CPM values from NTT are equal to those for 4N protocols. (C) 

Correlation between miRNA abundances and miRNA length. Two-dimensional kernel density 

estimation of the distribution for miRNA abundances and lengths (n = 962) is shown. The linear 

regression, with the equation: log10CPM= 0.09(miRNA size) + 0.9, is plotted as a red line, and 

miRNAs with length <21 or >23 nt are indicated as white crosses. The coefficient of determinant 

(R2) is indicated in the plot. The color scale indicates the numbers of miRNAs not shown as 

crosses.  
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FIGURE 9.  Factors other than end biases that may contribute to measurement errors in miRNA 

representation in TGIRT-seq. The figure shows violin plots comparing several potentially bias-

inducing characteristics in over-represented (n = 8) or under-represented miRNAs (n = 27) 

defined as those with log10CPM values two or more standard deviations higher than the mean 

log10CPM compared to the remaining 927 miRNAs (those within the center box in Fig. 8B). The 

characteristics compared include: (A) miRNA length; (B) GC content; (C) the free energy of the 

most stable predicted secondary structure (self-fold energy) computed by the Vienna RNA 

package (Lorenz et al. 2011); (D) the predicted free energy of base pairing between the cDNA 

with attached R2R adapter (the product of the first step of TGIRT-seq) and the R1R adapter 

computed by Vienna RNA package  (co-fold energy; Lorenz et al. 2011); (E) the number of 

unpaired (free) 3’ nucleotides in the predicted secondary structure; and (F) the number of 

unpaired (free) 5’ nucleotides in the predicted secondary structure. Asterisks on the top of the 

violins indicate significance of the difference between the outliers and remaining miRNAs 

determined by Wilcoxon test (*: p = 0.03; **: p = 0.004). 

FIGURE S1. Scatter plot matrix of technical replicates in TGIRT-seq datasets of fragmented 

UHR RNAs plus ERCC spike-ins using either the NTC or NTT adapters. The x- and y-axes 

show DESeq2 normalized counts (log2 scale). Spearman’s correlation coefficient (ρ) are 

indicated in the upper right boxes.  

FIGURE S2. Histogram of coefficients of variation of protein-coding gene transcripts and 

ERCC spike-ins for TGIRT-seq of ribodepleted fragmented UHR RNA samples using the NTC 

or NTT adapters compared to those for TruSeq v3 (Li et al. 2014; SRA accession number 

SRP026126). Coefficients of variation were computed for each gene among technical replicates 

(n = 3 for NTC and NTT; n = 4 for TruSeq v3) and plotted as a histogram (bin size = 2.5). Only 

genes with DESeq2 (Love and Huber 2014) mean normalized counts >10 were included (n = 

18,457, 18,459, and 16,723 for NTC, NTT, and TruSeq v3, respectively). 

FIGURE S3. Scatter plot of ERCC spike-ins from fragmented UHR RNAs using either the NTC 

(left) or NTT (right) adapters. The x- and y-axes show the normalized counts (TPM, log2 scale) 
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and expected concentration (attomoles/µl), respectively, for each ERCC spike-in. Spike-ins from 

the three technical replicates are shown in different colors and symbols. Spearman’s correlation 

coefficients (ρ) are indicated at the upper left.  

FIGURE S4. Scatter plot matrix comparing TGIRT-seq datasets obtained from the Miltenyi 

miRXplore miRNA reference set using either the NTC or NTT adapters (datasets NTC1-3 and 

NTT1-3, respectively). The x- and y-axes show median normalized counts (log2 scale). 

Spearman’s correlation coefficients (ρ) are indicated in the upper right boxes. miRNAs with 

different 3’ end nucleotides are colored coded (A, green; C, blue; G, black; U, red). 

FIGURE S5. miRNA grouped by representation of sequences TGIRT-seq datasets obtained 

from the Miltenyi miRXplore miRNA reference set with the NTT adapter. (A) Histogram 

showing all 962 reference set miRNAs as a function of their log10CPM in combined TGIRT-seq 

datasets for the three technical replicates obtained using the NTT adapter. The red line indicates 

expected CPM value for the equimolar mix of 962 miRNAs. The histogram was computed using 

bin size of 0.45 in a log10CPM scale. (B) Histogram of under-represented (red) and over-

represented (purple) miRNAs with log10CPM at least one standard deviation lower or higher than 

the mean log10CPM for all miRNAs in the reference set. The histogram was computed using bin 

size of 0.15 in a log10CPM scale. 

 
FIGURE S6. k-fold cross-validations of random forest regression bias-correction models based 

on the 5’- and 3’-end or internal nucleotide positions of miRNAs in combined TGIRT-seq 

datasets obtained with the NTT adapter for the Miltenyi miRXplore miRNA reference set. (A) 

shows results for models trained on the first 3 nucleotide positions from the 5’ and 3’ end of each 

miRNA (positions +1 to +3 and -1 to -3, respectively), and (B) shows results for models trained 

on the next 3 internal positions (positions +4 to +6 and -4 to -6, respectively). In each case, the 

962 miRNAs in the dataset were randomly partitioned into 8 subgroups (120 or 121 miRNAs per 

group), and random forest regression models were trained against the observed measurement 

errors for each miRNA in a dataset comprised of 7 of the subgroups ( log10CPM: the difference 

between the observed and expected log10CPM for that miRNA) and tested on the remaining 

subgroup. The plots at the left show the predicted measurement errors ( log10CPM predicted by 
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the random forest regression model) plotted against the observed measurement errors 

( log10CPM obtained directly from sequencing data) for each miRNA color-coded by the 

subgroup on which the model was tested. The fitted linear regressions for each model were 

plotted as similarly color-coded solid lines, with the red diagonal line indicating hypothetical 

perfect prediction with slope = 1 and y-intercept = 0. The plots in the middle show R2 values for 

each of the models, and the plots at the right show the relative importance of each nucleotide 

position in each model, in each case color-coded by the subgroup on which the model was tested. 

FIGURE S7. Sequence correlations between 5’- and 3’-end nucleotide positions in reference set 

miRNAs. Co-occurrences of nucleotide pairs from 5’ and 3’ ends (position N+1 to +3 and N-1 to 

-3, respectively) of the miRNAs in the Miltenyi miRXplore reference set were counted, and each 

pair was tested against a uniform distribution (16 different nucleotide patterns per position pair) 

using a χ2-test. Minus log10 p-values were adjusted for multiple comparisons by using the 

method of (Benjamini and Hochberg 1995) from the χ2-test and plotted as heat map for each of 

the paired nucleotide position color-coded by significance as indicated in the color bar. 
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