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Abstract 
Recent advancements in computational methods have facilitated large-scale sampling of protein 
structures, leading to breakthroughs in protein structural prediction and enabling de novo protein 
design. Establishing methods to identify candidate structures that can lead to native folds or 
designable structures remains a challenge, since few existing metrics capture high-level structural 
features such as architectures, folds, and conformity to conserved structural motifs. Convolutional 
Neural Networks (CNNs) have been successfully used in semantic segmentation — a subfield of 
image classification in which a class label is predicted for every pixel. Here, we apply semantic 
segmentation to protein structures as a novel strategy for fold identification and structural quality 
assessment. We represent protein structures as 2D α-carbon distance matrices (“contact maps”), 
and train a CNN that assigns each residue in a multi-domain protein to one of 38 architecture 
classes designated by the CATH database. Our model performs exceptionally well, achieving a 
per-residue accuracy of 90.8% on the test set (95.0% average accuracy over all classes; 87.8% 
average within-structure accuracy). The unique aspect of our classifier is that it encodes 
sequence agnostic residue environments from the PDB and can assess structural quality as 
quantitative probabilities. We demonstrate that individual class probabilities can be used as a 
metric that indicates the degree to which a randomly generated structure assumes a specific fold, 
as well as a metric that highlights non-conformative regions of a protein belonging to a known 
class. These capabilities yield a powerful tool for guiding structural sampling for both structural 
prediction and design.   
 
Introduction 

While the 3D structures of proteins arise as a consequence of their amino acid sequences, 
computational design methods operate by creating sequences that minimize the energy of a pre-
defined protein backbone. This approach has provided solutions to challenging design problems 
ranging from enzyme catalysis to viral inhibition(1–8). Computational design begins with defining 
a set of constraints that constitute the design problem, followed by either acquiring a natural 
backbone (from the Protein Data Bank) or building one from scratch (de novo design). Once a 
backbone is defined, amino acid sequences are designed onto it(9). 
 Obtaining a suitable backbone is the most challenging step in computational protein 
design. Highly evolved native backbones tolerate only minimal deviations from their original 
sequences, leading to a restricted set of solutions for a given design problem. De novo design, 
which uses physical and chemical principles to build proteins from scratch, offers at least three 
advantages over native-based methods(10). First, because the role of each residue in a de novo 
structure is precisely defined, the range of tolerated modifications is well understood, allowing for 
more controlled customization. Second, de novo proteins often have greater thermodynamic 
stability, which facilitates the introduction of function(11, 12). Lastly, by not being restricted to 
existing structures, de novo backbones offer solutions otherwise unattainable from native 
scaffolds, are likely more adaptable to a wider range tasks(10).  
 Despite these advantages, de novo design is challenging because it requires the 
construction of a protein with neither a known structure nor sequence. Since the vastness of the 
protein torsion space (φ, ψ, χ) prohibits an exhaustive search, current de novo design protocols 
generate backbones by combining small, continuous segments of φ-ψ torsions (“fragments”) 
collected from the Protein Data Bank (PDB). While this allows for a significant reduction in search 
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space, an enormous amount of sampling is still required to find the lengths, types (e.g. helix, beta-
sheet) and order of secondary structure elements (here on, “topologies”) that result in viable 
structures. The process of identifying successful models and topologies currently relies on a 
combination of scoring functions, hydrogen-bonding patterns, and other discernible regularities to 
screen for models that satisfy the desired criteria(13–19). However, such heuristics are often 
subjective and chosen ad hoc, and there are currently no unbiased, generalizable methods that 
can perform automated structure selection based on the overall organization of a protein. 
 Meanwhile in the field of computer vision, convolutional neural networks (CNNs) have 
revolutionized pattern-recognition tasks ranging from facial recognition(20) to object 
detection(21). In applications to proteins, several groups have used 1D and 3D CNNs to process 
protein sequence and structure data, performing tasks such as domain prediction(22) and 
mutation stability evaluation(23). Nonetheless, several limitations have prevented the use of these 
models in protein design. In the case of 1D CNNs, low-dimensionality often results in loss of 
important features needed to describe realistic structures. In the case of 3D CNNs, model sizes 
(i.e. the number of weights in a network) scale quickly with input size, resulting in significant 
hardware requirements for efficient processing of full-length protein structures. Most 3D 
representations also lack rotational and translational invariance, thus requiring large quantities of 
data to train deep models. Surprisingly, few reported studies have used 2D CNNs to perform 
protein structure analysis, despite the fact that 2D CNNs are the most well-studied and widely 
implemented class of neural network.  

In this study, we demonstrate how CNNs intended for 2D image processing can be used 
as powerful 3D structure analysis tools to guide computational protein design. A number of 
recently reported 2D CNN architectures have enabled advanced forms of image classification, 
namely instance(24) and semantic(25) segmentation, which predict class labels for individual 
pixels as opposed to entire images — segmentation provides information about where exactly an 
object is in an image, rather than simply indicating whether or not an object is present. We 
speculated that this capability is pertinent to protein structure analysis and hypothesized that 
image segmentation networks could be adapted to create a model that quantifies structural 
features at various scales within a protein (e.g. per-residue, per-domain).  

We trained a 2D CNN that classifies each residue in a protein into one of 38 architecture 
classes designated by the CATH(26) protein database (Figure 1a).  We represent a protein using 
the pairwise distance matrix (here on, “contact map”) between all α-carbons in its structure(27, 
28) (Figure 1b). This representation is rotationally and translationally invariant, and provides an 
image-like rendering of 3D protein structures in 2D. In the same way that image segmentation 
predicts a class for the basic unit of an image -- a pixel, our model predicts classes for the basic 
unit of a protein -- a residue.  
 While the most obvious function of our network is in protein classification, its true 
significance lies in its utility as a de novo design tool. On the single-residue level, Shannon 
entropies(29) of the CNN-predicted probability distributions can be used as indicators of local 
structure quality, allowing for identification of low-confidence regions that require further 
refinement or reconstruction. On the full-protein level, per-residue class probabilities predicted by 
our classifier can be averaged across an entire protein to provide a quantitative measure of the 
degree to which a structure assumes a fold. This function is useful for quickly searching large 
design trajectories for proteins that adopt specific architectures. 
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Results 
Our motivation for using a per-residue classifier as a protein evaluation tool is based on 

the assumption that the environment of each residue is rich in structural information(30), which 
can be aggregated to describe higher level features such as domains boundaries, architectures, 
and structure quality. Importantly, the goal of our study is not to create a protein classifier, but 
rather to show how a classifier can be used to quantify residue-level environments in the form of 
probability distributions, which can then be averaged over regions of a protein to obtain 
information at the desired size scales. Our classifier thus differs from past protein classification 
methods(26, 31) in that it performs per-residue domain-architecture classifications based only on 
distance information and is completely sequence agnostic. In the Supplementary Information, we 
describe how our classifier can be extended to perform conventional protein classification. 

 
Performance as a Per-Residue Classifier 

Class predictions for a row (or column) in a contact map are effectively a prediction in 3D 
space, because each row can be mapped to the location of a residue in the original structure. 
Using this fact, we trained a CNN to perform semantic segmentation on proteins, which entails 
predicting one of 38 architectural classes for each residue. In the same way that image 
segmentation models assess the context of individual pixels in an image, our CNN evaluates local 
features in the contact map, which encode structural features centered around a residue in 3D 
space.  
 A diagram of our CNN is shown in Figure 2a, with additional technical details provided in 
the Methods section. The network converged within 100 epochs of training (Figure. 2b) and 
achieves average test accuracies of 90.8% per residue, 95.0% per architecture class, and 87.8% 
per structure. Because the proportion of the dataset comprised by each class is highly variable, 
one concern is that the model may have simply learned to predict frequently occurring classes. 
Figure 3a suggests otherwise, as there is no correlation between the frequency of a class in the 
training set and class accuracy in the test set. The majority of class accuracies are above 90% 
even for the rarest classes (Figure 3a and 3b). 

Example outputs (PDB IDs: 3gqyA, 3sahB, 4i1eA) are shown in Figure 4. Overall the 
model is able to closely reproduce per-residue architecture classifications provided by the CATH 
database. Inspection of outputs suggests that our model is able to accurately classify individual 
residues, even if they constitute fragments of a domain that are isolated in sequence space. This 
is illustrated in the case of the central αβ-barrel in 3gqyA (Figure 4, 3gqyA classifications, 
cyan), which is comprised of multiple fragments from distal regions in primary sequence (Figure 
4, 3gqyA, chainbow). This observation suggests that the network is able to correlate delocalized 
features in the 2D contact map corresponding to the same domain in the 3D structure. 
Additionally, our network is able to recognize differences in secondary structure organization. For 
example, both the orthogonal-bundle in 3sahB (Figure 4, 3sahB, green) and the α-horseshoe in 
4i1eA (Figure 4, 4i1eA, green) are purely alpha-helical in content, and both are comprised of 
residues in contiguous sequence. Although these architectures differ only in their secondary 
structure organization, the model is able to successfully differentiate between the two. 
 A characteristic of our model that distinguishes it from most conventional structure 
classification algorithms(26, 31) is that it is sequence-agnostic. This is particularly important for 
de novo proteins, which have sequences that lack homology with naturally occurring families. The 
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de novo designed TIM barrel structure, sTIM-11 (PDB ID: 5bvl), is one such example(13). sTIM-
11 belongs unequivocally to the αβ-barrel architecture class, however it remains unclassified in 
both CATH(26) and SCOPe(31), the two largest protein classification database, likely due to its 
lack of sequence homology to native TIM barrels. Our model is able to correctly classify this 
structure.  
  
Generalizability of Learned Structural Features 
 Although our model is able to achieve high classification accuracies, accuracy metrics 
alone provide little information about the generalizability of the features it has learned. Given that 
neural networks are highly flexible, it is possible that our classifier is fitting to features such as 
protein length, which may correlate with architecture class but provide little structural information. 
To control for such possibilities, we tested whether the features encoded by our classifier could 
generalize to other structure evaluation tasks (viz. transfer-learning(32)). Specifically, we trained 
a “small” 6-layer CNN and assessed its ability to predict the Global Distance Test Total Score(33) 
(here on, GDT) of CASP submissions(34). The input to the small network is the 1x512@38 layer 
of the classifier network, which encodes the probability distributions over the 38 architecture 
classes at each residue (Figure 2a, orange)  — this is effectively a reduced representation of a 
protein, encoded by our classifier (Figure 5a). 
 The small network was trained on 41,029 CASP submissions for 98 target domains 
exclusively in the free-modeling categories of CASP 10-12, and that were not contained in the 
training set of the classifier network. 20 randomly chosen submissions from each of the 98 targets 
were reserved for use in the test set. The small CNN model was able to accurately predict the 
GDT of the CASP submissions, yielding an R-squared value of 0.962 between the real and 
predicted GDT values (Figure 5b). Plots of the real versus predicted GDT values for each target 
are provided in the Supplementary Figure S6. 

While the predictive power of the small model is limited to the 98 targets, these results 
suggest that the representation learned by the classifier is rich in structural information at sub-Å 
resolution. The accurate predictions despite that many of the CASP targets did not fall into any 
CATH architecture class, suggesting that the learned structural features are useful for describing 
any protein, not just those belonging to the predefined classes.  
 
Selecting Valid Design Topologies 
 A significant challenge in de novo design is that it is necessary to find a viable set of 
lengths, types, and orders of secondary structure elements that can adopt a target fold. “12-
residue α-helix, 3-residue loop, 5-residue β-strand” is one such example, and is referred to as a 
“topology.” In shorthand we denote this topology as “H12-E5”, where “H” and “E” denote helix and 
sheet, while numbers denote element lengths. 
 To test whether our CNN can be used to perform topology selection, we generated a series 
of design trajectories targeting the TIM-barrel fold (αβ-barrel architecture). Our previous study 
discovered that a four-fold repeat of E5-H13-E5-H11, with 3-residue loops interspersed between 
each secondary structure element, constitutes a viable TIM-barrel topology(13). In order to test 
whether our model could distinguish this validated topology from a pool of random ones, we 
generated backbones for every permutation of the secondary structure elements in the four-fold 
E5-H13-E5-H11 repeat while maintaining the 3-residue loops between each of the helix or sheet 
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elements; this resulted in 12 unique topologies. We used RosettaRemodel(35), which was used 
in the original study, to generate 7000 backbone designs for each of the topologies, producing a 
total of 84,000 structures.  
 For each candidate structure we used our network to predict the average probability of the 

αβ-barrel architecture over all residues (  where pc,i denotes the probability of 
class c at residue i). We observed that the predicted probabilities correlated with the degree to 
which a structure adopts a TIM-barrel fold (Figure 6a). The distribution of probabilities for the 
generated structures exhibits a bimodal distribution with only ~2% of structures receiving a 
probability prediction greater than 50% (Figure 6b). Collecting the top 2000 designs 
corresponding to the high probability peak, we observed that the majority of the recovered 
structures (1301 models, 65%) belonged to 5E-13H-5B-11H topology, suggesting that our model 
was able to identify the experimentally validated topology as being the most promising. The 
proportions of the topologies found in the top 2000 structures is shown in Figure 6c along with 
the highest probability structures from each. Designs from highly represented topologies tended 
to have fewer structural irregularities relative to under-represented ones. The top four topologies 
shared the common feature of having two helical elements separated by a single E5 element,  
likely due to the fact that the having the second E5 element at either the beginning or end of the 
repeating unit results in near-equivalent structures that are circular permutations of one another. 
It has been experimentally confirmed that circularly permuted TIM-barrel variants fold 
correctly(13). These results suggest that our model can be used in combination with established 
protein backbone generation protocols, such as RosettaRemodel, to automatically select viable 
protein topologies.   
 
Precision and Local Structure Evaluation 
 While the result above suggests that our model may be useful for design, it does not 
provide insight into the sensitivity of our metric. Because unviable topologies largely produce 
models that differ significantly from their target architecture, the task of identifying promising 
topologies is a coarse-grained problem. To stringently test whether our classifier can quantify the 
degree to which a structure adopts a particular fold, we assessed our network’s ability to 
differentiate between highly similar models, using predicted class probabilities and the Shannon 
entropies of the per-residue probability distributions. We test our classifier on structure prediction 
data because these trajectories generate a diverse ensemble of structures that converge towards 
a known structure -- a subset of these structures are highly similar and therefore provide a good 
test of model performance. 
 We generated a structure prediction trajectory for the PDB structure 2chfA using the Ab 
Initio protocol(36) of Rosetta. 2chfA was not included in the training set of the classifier, and has 
an αβα-3-layer-sandwich architecture. For each generated decoy we computed the probability of 
the αβα-3-layer-sandwich class averaged over all residues. With increasing RMSD from the native 
structure, the model predicted a decreasing probability of belonging to the αβα-3-layer-sandwich 
class (Figure 7a). Importantly, the predicted probability of a class was indicative of how consistent 
the features of a decoy were with the features of a target fold, independent of its RMSD to the 
native structure (Figure 7b). Predicted αβα-3-layer-sandwich probabilities correlated with the 
formation of a well-defined central 5-stranded β-sheet, suggesting that our model correctly 
identifies this β-core as a feature of this fold. These results suggest that the predicted class 

pc =
1
nr

Pnr

i=1 pc,i
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probabilities of our network can be used as continuous metrics for selecting decoys assuming a 
specific fold.  
 The entropy H of the class probabilities at each residue ( ), is a 
measure of the certainty inherent to each prediction. We observed that the high entropy regions 
of decoys tended to be structurally ambiguous or deviant from the target fold. This effect is shown 
in Figure 7b, where the normalized spread of entropy values within each structure is shown with 
a blue-to-red color spectrum. In the high probability models (Figure 7b, IV~VI), high entropy 
regions corresponded to loops, and in Figure 7b, III the network correctly identifies the interface 
of unpaired beta strands failing to form a properly assembled core as a low confidence region. In 
Figure 8, we show two other examples in which entropy appeared to be indicative of local model 
quality. The de novo structure in Figure 8a was generated using a αβ-2-layer-sandwich topology 
described by Koga et. al.(14), and the authors report that atom-pair constraints between the two 
C-terminal β-strands are required to obtain properly annealed designs. In an unconstrained 
trajectory, our model identifies the interface of the unpaired strands as being low confidence 
(Figure 8a, red), agreeing with this statement. The structure shown in Figure 8b was generated 
in a structure prediction calculation for the gene NHLRC3, which has an unknown structure 
thought to be a 6-blade-β-propeller. In the model shown, each of the six blades has formed, 
however one of the blades has failed to anneal to the rest; our model identifies this sixth blade as 
being a low-confidence region (Figure 8b, red). 
  
Discussion 
 In recent years, new computational tools have allowed sampling of protein structural 
conformations at unprecedented scales, leading to breakthroughs in structure prediction(37, 38) 
and the creation of de novo designed structures -- an achievement that was considered 
impossible just 30 years ago(10). Nonetheless, for both prediction and design, finding a target 
structure requires large-scale sampling of conformational space before a subset of models with 
the desired features can be found. For structure prediction calculations, promising models can be 
selected based on criteria such as degree of convergence(39) and score function evaluations(36) 
because native structures fold into a minimal-energy state dictated by their sequences(40). For 
de novo design, however, the objectives of a sampling calculation are far less clear as there is no 
longer a sequence to guide the search process. To identify valid structures, designers have relied 
heavily on custom-made heuristics based on hydrogen-bonding patterns, geometric 
parameterizations, modified scoring functions, and other artificially defined constraints. Despite 
these efforts, a generalizable model selection strategy that captures high-level features such as 
topology, and secondary structure organization has yet to be developed.  

Previously reported methods have shown that recurring structural features (motifs) can be 
used to accelerate conformational searches and assist in structure evaluation(30, 41, 42). We 
have developed a novel approach that uses a CNN to capture and quantify such features. Our 
CNN can be implemented in established protocols to significantly improve sampling efficiency in 
both structure prediction and design: first, the Shannon entropies of per-residue probabilities can 
be used as a measure of local model quality. Methods such as Iterative Hybridize(43), which 
iteratively recombines candidate models to obtain improved structures, could benefit greatly from 
using this type of method to identify low quality regions requiring rebuilding and refinement. 

Hi = �
Pnc

i=1 pc,ilog(pc,i)
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Second, full-structure probabilities can be used to quantify the degree to which a structure 
assumes a target fold; this can be used to efficiently screen for models adopting a desired 
architecture in large sampling pools. Finding satisfactory models is comparable to finding a needle 
in a haystack, and is a daunting task in de novo design. Our novel model selection method can 
be used to improve the sampling efficiency by focusing searches around viable candidates in 
structural space. In contrast to the custom heuristics described above, our classifier is unbiased 
in that it is informed by 95% of all unique structural data, and generalizes to the 38 architecture 
classes that comprise this dataset. Our CNN is also fast, and can compute both entropies and 
full-structure probabilities in milliseconds, efficiently processing the millions of candidate 
structures generated during both prediction and design. 

There are two minor limitations to our network. First, albeit by choice, inputs to our current 
model are limited to single chains that are 512 residues or less (95% of all unique chains in the 
PDB). For analysis of longer chains, structures need to be fragmented or truncated. Nonetheless, 
this limitation can be easily remedied by training a new model with a larger input layer. Second, 
our network is trained on the set of architectures defined by CATH. While CATH classifications 
account for the vast majority of observed protein structures, this implies that protein designers 
seeking to build unclassified architectures cannot currently benefit from our model. 

Nonetheless, the novel way in which we apply image segmentation methods to protein 
structure allows us to quantify abstract structural patterns constituting the “environment” of each 
residue. Our results suggest that by combining per-residue information in different ways, it is 
possible to create any number of metrics that describe various characteristics of a protein; this 
approach is powerful in its generalizability and can be used to encode features of proteins that 
are often difficult to assess when building structural models.  
 
Methods 
Dataset 
 Training a CNN for semantic segmentation requires large amounts of densely labelled 
data, which are often expensive and or difficult to obtain. In the case of proteins, this corresponds 
to a large collection of proteins with a class assignment for each residue in every protein. 
Databases such as CATH(26) and SCOPe(31) provide this information in the form of residue-
level domain boundary assignments and classifications. The dataset used in this study was 
obtained from CATH v4.2, which is comprised of 132,380 unique, fully annotated protein chains 
(42 architecture classes, 202,506 domains, 3.3x107 residues). From this set, chains shorter than 
520 residues that did not contain domains belonging to classes with fewer than 10 members were 
selected for use. Structures larger than 512 were center-cropped, and smaller structures were 
zero-padded to 512. The resulting dataset contains 126,069 chains (38 architecture classes, 
181,753 domains, 2.9x107 residues) spanning 95% of all unique chain data. Selection did not 
drastically alter the overall structure of the data (Supplemental Figure S1a-c). Of the selected 
chains, 8,000 were reserved for each the test and development sets and the remaining 110,069 
were used in training. The dataset is highly imbalanced with the largest class containing nearly 7 
million residues and the smallest containing less than 3,500. To address this, the split was 
performed in a stratified manner, but stochastically adjusted so that all sets had at least 650 
residues from each class present (Supplemental Figure. S1d-f). During training, examples were 
weighted to ensure that each class had equal influence. 
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Model Architecture and Implementation 
 Our architecture is comprised of six convolutional layers (“encoding”),  followed by a “pixel-
shuffle” step(44) for upsampling to a 512x512 feature map (“decoding”). Rectangular convolutions 
are then used to reshape the map into a 1x512@38 tensor (Figure 2a, orange) that is passed to 
a Softmax function(32). Each convolutional layer in the encoding phase is followed by a 
BatchNorm(32) and a LeakyReLu(32). The 4x1 convolution is followed only by a LeakyReLu, and 
the final layer passes directly into the Softmax function. 

The model was implemented in the PyTorch deep learning framework(45). Training was 
performed for a total of 160 epochs with a mini-batch(32) size of 64 using the Adam optimization 
algorithm. A learning rate of 0.001 was used for the first 60 epochs, 0.0001 for an additional 100 
epochs. The loss function is a cross entropy loss(32) averaged across every residue in the input 
chain. Importantly, the loss was weighted so that training examples from under-represented 
classes had increased influence on training. Weights were chosen so that each class, in total, 
had equal influence. Dropout regularization(32) was used throughout the convolutional layers in 
the encoding phase with a zeroing-probability of 0.1. All weights were initialized using Xavier 
initialization(46). Model inputs were scaled by -100 and not normalized. The trained classifier and 
code for entropy calculations is available at the GitHub repository, 
egurapha/prot_domain_segmentor. The prerequisites are Python and the packages: PyTorch, 
Numpy, and SciPy. For nice visualizations, the PyMOL command line API is also recommended. 
All other data are available upon request. 
 
Rosetta 
All Rosetta commands and RosettaRemodel blueprints are provided in Supplemental Data, 
available at https://goo.gl/osxG47. 
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Figure 1 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1: Semantic Segmentation of Protein Structures using Contact Maps 
a, A comparison of semantic segmentation for objects in images, and domains in proteins. The 
two-domain protein shown (PDB ID: 1mlaA) contains a 3-layer-αβα-sandwich (cyan), and a 2-
layer sandwich (green). Multiple distal regions in a contact map can correspond to a single domain 
in a protein. The example segmentation and contact maps are real inputs and outputs obtained 
from our model. 
b, Two examples of single-domain proteins colored as chainbows (left), with α-carbons shown as 
spheres. Red indicates the beginning, and blue indicates the end of the chain. The corresponding 
contact maps are shown to the right of each protein with units in Å. Axes correspond to amino 
acid index. 
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Figure 2 
 

 
 
Figure 2: Model Architecture and Training. 
a, The model is comprised of six down-sampling convolutional layers (encoding),  followed by a 
“pixel shuffle” step for up-sampling to a 512x512 map (decoding). Rectangular convolutions are 
used to reshape the feature map into a 1x512@38 which corresponds to a probability distribution 
over the 38 CATH architecture classes for each residue (orange). 
b, Accuracy profiles of the training and development sets during training. The model converges 
within 100 epochs, achieving a residue-wise training accuracy above 90%. The performance 
generalizes to the test set, where the model achieves a per residue accuracy of 90.8%, a per-
class accuracy of 95.0%, and a per-structure accuracy of 87.8%. 
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Figure 3 

 
 
Figure 3: Analysis of Classifier Performance. 
a, A plot of the number of residues in the training set belonging to a specific class, versus the 
class accuracy in the test set. Each point in the plot represents a single class. No obvious 
correlation between the number of examples in the training set and class accuracy on the test set 
is observed. The majority of class accuracies are above 90% even for the rarest classes. 
b, Error rates for each architecture class. The confusion matrix is shown as an insert with 
architectures indexed in the same order as on the horizontal axis of the bar graph. The vertical 
axis of the confusion matrix indicates the correct class. The horizontal axis indicates the class 
predicted by the model. Each column is normalized to the total number of predicted counts for 
each class. 
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Figure 4 
 
 

 
 
Figure 4: Classifications and Corresponding Contact Maps 
Segmented examples from the test set. From the left, each column depicts: the correctly 
segmented structure, the model prediction, protein chain colored in residue order (rainbow order), 
and the input contact map. PDB ID’s for each protein are shown on the left. 3gqyA: 86.9% within-
structure accuracy: beta-barrel (green), alpha-beta barrel (cyan), loop (dark blue), 3-layer-
αβα(magenta). 3sahB: 89.0% within-structure accuracy: orthogonal-bundle (green), 2-layer 
sandwich (cyan), loop (magenta). 4i1eA: 99.2% within-structure accuracy: alpha-horseshoe 
(green), trefoil (cyan). 
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Figure 5 

 

 
 
Figure 5: GDT-TS Predictions for 1,960 submissions for 98 CASP Target Domains 
a, A schematic of the GDT-TS prediction scheme. 
b, A plot of real GDT-TS vs the GDT-TS predicted by the small model. The identity function is 
shown as a black line. Each point corresponds to a single decoy from the test set, which consists 
of 20 randomly chosen submissions for each of the 98 targets (1,960 total decoys). The small 
model was able to accurately predict the GDT-TS of the CASP submissions, yielding an R-
squared value of 0.962 between the real and predicted values. The 98 selected targets were 
exclusively in the free-modeling categories of CASP10~12, and were not in the training set of the 
classifier model.  
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Figure 6 

Figure 6: Identification of Viable TIM Barrel Topologies 
a, Models generated in the de novo design trajectory and their predicted αβ-barrel probabilities.  
b, The distribution of αβ-barrel architecture probabilities for 84,000 structures spanning 12 
topologies. The region corresponding to the 2,000 structures described in c is shown in red. 
c, The proportions of the topologies found in the top 2,000 highest αβ-barrel probability structures. 
The experimentally validated 5E-13H-5B-11H topology constituted 1,301 models (65%) of the top 
scoring structures. The highest probability structure from each topology is shown to the right.  
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Figure 7 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7: Analysis of a Structure Prediction Data 
a, 850 randomly selected structures from a structure prediction calculation generated by Rosetta 
Ab Initio. The vertical axis indicates the energy of each structure as predicted by Rosetta. The 
horizontal axis indicates the RMSD of each decoy relative to the native structure. Each point is 
colored by probability for the αβα-3-layer-sandwich architecture, averaged over all residues in the 
decoy, as predicted by the classifier model. The model generally predicts a decreasing probability 
of belonging to the αβα-3-layer-sandwich class with increasing RMSD. Roman numerals 
correspond to decoys shown in b. 
b, Six examples from the 2chfA structure prediction calculation. The average predicted probability 
of the αβα-3-layer-sandwich class, and RMSD relative to the native 2chfA structure is shown 
below each decoy. The predicted probability of a class was indicative of how closely a decoy 
resembled the target fold, independently of native RMSD. The structures are colored by the 
exponential of the entropies of the predicted probability distributions at each residue. The coloring 
is normalized within each structure; for each decoy, red indicates the highest entropy point, and 
blue indicates the lowest entropy point. 
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Figure 8 

 
 
Figure 8: Entropy as an Indicator of Local Model Quality 
Two structural models colored by the exponential of the entropies of the predicted probability 
distributions at each residue. The coloring is normalized within each structure; for each decoy, 
red indicates the highest entropy point, and blue indicates the lowest entropy point. 
a, A de novo structural model generated using an αβ-2-layer-sandwich topology described by 
Koga et. al. (2012). The interface of an the unannealed β-strands is identified as a high-entropy 
region. 
b, A structural model generated in a structure prediction calculation for the gene NHLRC3, which 
has an unknown structure thought to be a 6-blade-β-propeller. Five of the propeller blades have 
assembled (grey outline), and the un-assembled sixth blade is identified as a high-entropy region 
(magenta outline). 
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Supplemental Information 
Supplemental Information 
Model Extension for Multi-Domain Protein Classification 
 Conventional multi-domain protein classification entails two tasks. The first is parsing, in 
which sets of residues are grouped into domains. The second is classification, in which parsed 
domains are assigned a class label. While the model presented in the main text performs 
classification, it does not indicate which sets of residues comprise distinct domains. Because 
architecture classifications for any set of residues can be obtained by averaging over our 
classifier-predicted probabilities, our model can easily interface with previously reported domain 
parsing algorithms(1–4) . Nonetheless, for completeness, we offer an additional domain-parsing 
CNN to augment this missing functionality. Probabilities predicted by the classifier network can 
be averaged over collections of residues specified by this new parser network to generate 
complete classifications (Supplemental Figure S2).  
 Domain parsing can be formulated as a semantic segmentation problem where each 
residue is assigned to one of k classes each corresponding to a domain instance. Here, k is some 
maximum number of domains allowed by the model. (We choose k=8, although our dataset does 
not contain proteins comprised of more than five domains.) This task is similar to the classification 
approach described in the main text, with the only difference being that the model is required to 
identify the correct sets of residues as opposed to class labels. We therefore trained a model with 
an architecture identical to that of our classifier network, but with the output layer having 8 
channels instead of 38 (Figure 2a, Orange), using the Hungarian algorithm(5) to compute set-
difference losses during training. 
 The parser network converges within 30 epochs of training, achieving test accuracies of 
91.6% per-structure, and 88.4% per-structure averaged over proteins with the same number of 
domains (Supplemental Figure S3a). We achieve average accuracies higher than 80% even for 
proteins with more than four domains (Supplemental Figure S3b). A confusion matrix for the 
predicted number of domains is shown in (Supplemental Figure S3c). Example outputs are 
shown in Supplemental Figure S4.  
  To compare how our network performs against previous algorithms, we benchmarked our 
network on the Islam90(2, 6) and Jones(7) datasets that have been previously used to benchmark 
domain parsing algorithms. Our CNN is able to reproduce CATH domain parsing with accuracy 
comparable to that of previously reported methods (Supplemental Table S5). 
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Supplemental Figures 
 
Figure S1 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure S1: Dataset Structure 
The distribution of data before and after selection are shown in a, b, and c which depict the 
distributions of chain lengths, number of domains per chain, and number of residues per class 
respectively. Selected data are shown in blue and unused data are shown in red. Overall the 
selection does not greatly alter the structure of the data obtained from CATH. The distribution of 
the selected data after splitting into training, development, and test sets is shown in d, e, and f 
which depict the distributions of chain lengths, number of domains per chain, and number of 
residues per class respectively. The split was performed in a stratified manner and stochastically 
adjusted to ensure that each class is represented by at least 650 residues in each set. 
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Figure S2 

 
 
Figure S2: Schematic of a CNN Based Multi-Domain Protein Classifier 
A schematic depicting how the classifier and domain parser networks can be combined to perform 
full classification of multi-domain proteins. Class assignments for residue sets specified by the 
parser network can be assigned an architecture by the classifier network (PDB ID: 5aqgE). The 
parser network can be replaced with previously reported domain parsing algorithms.  
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Figure S3 

 
Figure S3: Parser Training and Performance. 
a, Training accuracy for the parser network. The red line indicates the average development 
accuracy per structure. The blue line indicates the per-structure development accuracy averaged 
across all proteins of the same length. The model converges within 30 epochs of training, 
achieving test accuracies of 91.6% per-structure, and 88.4% per-structure per-structure averaged 
over proteins with the same domain count. 
b, a bar graph showing the average per-structure test accuracies among structures with the same 
number of domains. Accuracies exceed 80% in all cases. The number of proteins with a given 
domain-count (n)  is shown above each bar. 
c, a confusion matrix comparing the number of domains predicted by our model, and the number 
of actual domains in each test case. 
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Figure S4 
 

 
Figure S4: Multi-Domain Classification Examples 
Example outputs from the classifier and parser network. Distinct domains in the predicted 
parsings are shown as unique colors. For both structures, our parser is able to closely reproduce 
CATH domain assignments. The 5aqgE structure is comprised of 4 domains, three of which 
belong to the αβ-complex class (5aqgE, predicted, magenta) and one of which belongs to the 2-
layer sandwich class (5aqgE, predicted, cyan). The 4i1eA structure is comprised of 3 domains, 
two of which belong to the trefoil (4i1eA, predicted, cyan) and one of which belongs to the alpha-
horseshoe class (4i1eA, predicted, green). The parser prediction in combination with per-residue 
classifications allow for full classifications. 
 
Table S5 
 

 
 
 
Table S5: Parser Performance Benchmarks 
A table comparing per-residue accuracies of our method (CNN Parser), Protein Domain Parser 
(PDP), Domain Parser (DP), DDOMAIN, and SWORD. Accuracy values are reported in 
percentages, and were obtained from the study by Postic et. al. (2017). 
 

Dataset CNN Parser DDOMAIN PDP DP SWORD

Jones 96.4 83.6 83.6 80.0 83.6
Islam90 96.0 82.2 90.0 93.3 88.9
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Figure S6 

Figure S6: GDT-TS Score Prediction Profiles by CATH Target 
Plots of real GDT-TS Values versus predicted GDT-TS values for each CATH target. The identity 
function is shown as a black line. Target names are shown in the bottom right corner of each plot, 
and R2 values are shown in the upper left.  
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