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SUMMARY 
 
Single-cell RNA-sequencing has emerged as a powerful tool to resolve transcriptional heterogeneity. 
However, its application to study cancerous tissues is currently hampered by the lack of coverage 
across key mutation hotspots in the vast majority of cells, which prevents correlation of genetic and 
transcriptional readouts from the same single cell. To overcome this, we developed TARGET-seq, a 
method for the high-sensitivity detection of multiple mutations within single-cells from both genomic 
and coding DNA, in parallel with unbiased, high-depth whole transcriptome analysis. We demonstrate 
how this technique uniquely resolves transcriptional and genetic tumor heterogeneity in 
myeloproliferative neoplasm stem/progenitor cells, providing insights into deregulated pathways of 
mutant and non-mutant cells. TARGET-seq provides a powerful tool to resolve molecular signatures 
of genetically distinct subclones of tumor cells. 
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INTRODUCTION 
 
Resolving intratumoral heterogeneity (ITH) is critical for our understanding of tumor evolution and 
resistance to therapies, which in turn is required for the development of effective cancer treatments 
and identification of biomarkers for precision medicine (Alizadeh et al., 2015; McGranahan and 
Swanton, 2017). The best characterized source of ITH is at the genetic level, where advances in next 
generation sequencing (NGS) techniques at the bulk and single-cell level have described the genetic 
diversity within tumors with unprecedented resolution (Kandoth et al., 2013; Vogelstein et al., 2013). 
However, a number of other factors beyond somatic mutations contribute to ITH. For example, some 
tumors are hierarchically organised, including the presence of cancer stem cells (CSC), which 
propagate disease relapse. The genetic events underlying tumor evolution originate in CSCs, which in 
some tumors, are rare within the total tumor bulk population (Clevers, 2011; Magee et al., 2012; Woll 
et al., 2014). Furthermore, the normal cellular counterparts of CSCs, which lack genetic mutations, 
can be difficult to distinguish from malignant cells as they may share multiple phenotypic features, but 
can nevertheless be informative for disease biology (Giustacchini et al., 2017). Consequently, 
resolving ITH requires methods that allow these multiple layers of heterogeneity to be teased apart. 

To better understand the functional consequences of ITH, a potentially powerful approach is to link 
genetic ITH with transcriptional signatures of distinct subpopulations of tumour cells. A number of 
studies have begun to apply single-cell RNA-sequencing (scRNA-seq) to characterize the cellular 
landscape of a number of different malignancies (Patel et al., 2014; Tirosh et al., 2016a; Tirosh et al., 
2016b; Venteicher et al., 2017). These pioneering studies have demonstrated the power of scRNA- 
seq to identify the different cell types encompassed within a tumor (Patel et al., 2014; Tirosh et al., 
2016a; Tirosh et al., 2016b), including cells with “stemness” signatures (Tirosh et al., 2016b) and 
characterisation of developmental hierarchies of tumor cells (Tirosh et al., 2016b). However, although 
scRNA-seq approaches can readily resolve such transcriptional heterogeneity, current techniques do 
not allow parallel mutational analysis due to lack of coverage across mutation hotspots (Kiselev et al., 
2017; Patel et al., 2014; Tirosh et al., 2016b). This integration of mutation and transcriptional 
information is crucial in order to link genetic evolution events to the cell of origin, of considerable 
importance as serial mutation acquisition might occur within distinct and developmentally ordered 
stem/progenitor cell types, as described in acute leukemia (Jan et al., 2012). Furthermore, mutation 
analysis would not only be important for the identification of mutant cells, but also to unravel disrupted 
gene expression in non-mutant cells, which may be cell-extrinsically mediated and of clinical 
importance (Giustacchini et al., 2017). In order to overcome this current limitation in single cell 
genomic techniques, we set out to develop a method that would allow combined scRNA-seq with high 
sensitivity mutation analysis. 

DESIGN 

The limitation of current scRNA-sequencing techniques for the detection of mutations in single cells 
partly relates to amplification of only the 3’ or 5’ region of transcripts with commonly used “end- 
counting” scRNA-seq techniques (Hedlund and Deng, 2018). Consequently, most mutations within the 
body of a gene are not covered by sequencing reads. However, scRNA-seq techniques that amplify 
full-length transcripts, such as Smart-seq2 (Hedlund and Deng, 2018; Picelli et al., 2013), also have 
very poor sensitivity to detect expression of most genes in most cells (Figure 1a and 1b), which 
precludes high sensitivity mutational analysis. Furthermore, the vast majority of mutations identified in 
cancer are single nucleotide variants (SNV) and small indels, which may be either heterozygous or 
associated with loss of heterozygosity (LOH) (Vogelstein et al., 2013), with important functional 
consequences (Kharazi et al., 2011). Therefore, a key challenge in the field is to minimize allelic 
dropouts (ADO), in order to ensure the detection of both alleles from a single-cell.  

It remains unclear whether the high ADO rates and lack of coverage across mutation hotspots with 
scRNA-seq data is primarily due to technical dropouts due to inefficient reverse transcription (RT) 
and/or PCR amplification, or true biological heterogeneity in expression of mutant transcripts across 
single cells. We therefore first optimized the Smart-seq2 reverse transcription and amplification 
enzymatic conditions (SMART-seq+; Table S1), resulting in a significant reduction in dropout rates 
(Figure 1a), particularly for lowly expressed genes (Figure 1b), a 25 % increase in the number of 
genes detected per cell (Figure S1a) and a reduction in library bias (Figure S1b). However, despite 
the improved sensitivity for detection of gene expression with SMART-seq+, ADO rates remained 
exceedingly high for most genes (Figure 1c), which currently precludes reliable mutational analysis 
using scRNA-seq (Povinelli et al., 2018). We therefore concluded that, due to the stochastic nature of 
gene expression in single cells, improving the sensitivity for the analysis of coding DNA (cDNA) alone 
is unlikely to provide sufficient sensitivity for detection of most cancer-associated mutations at the 
single cell level. 
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To overcome this problem, it is required to detect mutations from genomic DNA (gDNA) in parallel with 
cDNA. Techniques to study gDNA and mRNA from the same single cell have been previously 
described (Dey et al., 2015; Hou et al., 2016; Macaulay et al., 2015). However, these techniques either 
require physical separation of gDNA and mRNA (Han et al., 2018; Hou et al., 2016; Macaulay et al., 
2015), inevitably resulting in some loss of genetic material and consequently limiting their sensitivity, or 
rely on the parallel amplification of total gDNA and mRNA with subsequent masking of coding regions 
(Dey et al., 2015). These technical constraints restrict the sensitivity of such techniques for the 
confident detection of specific point mutations. Whole genome amplification also introduces significant 
expense to the method, and has inherently high allelic dropout and  false positive rates (Hosokawa et 
al., 2017; Wang et al., 2014). As a result, up to now, these techniques have not been widely used for 
parallel mutation and scRNA-seq analysis in cancer. Methods that combine targeted single cell gene 
expression and mutation analysis have also been reported (Cheow et al., 2016; Wang et al., 2017), but 
these approaches have the limitation that only the expression of a limited number of pre-selected 
genes can be analyzed per cell. 

Recently, we have described a novel method for the high sensitivity detection of BCR-ABL transcripts 
in parallel with scRNA-seq, which we applied to characterize the molecular signatures of stem cells in 
chronic myeloid leukemia (Giustacchini et al., 2017). Whilst this study highlights the potential power of 
linking mutation and transcriptome information in single-cells, this method is also dependent on the 
expression of the targeted gene/allele in all mutated cells. This approach was effective in the specific 
case of BCR-ABL fusion gene, but for many autosomal genes, expression is undetectable or highly 
allelic biased (Deng et al., 2016) in the majority of transcriptionally active and highly proliferative K562 
cells (Figure 1c) and also in quiescent Lin-CD34+CD38- primary human hematopoietic stem/progenitor 
cells (HSPCs; Figures 1d and 1e), which makes this method unsuitable to profile most mutations found 
in cancer. Moreover, this approach precludes analysis of non-coding mutations, with key roles in 
tumorigenesis (Khurana et al., 2016). We therefore developed a method, named TARGET-seq, which 
dramatically reduces ADO and also enables efficient detection of non-coding mutations by allowing 
parallel, targeted mutation analysis of gDNA and cDNA alongside scRNA-seq from the same single-
cell. 

RESULTS 
 
TARGET-seq dramatically increases the sensitivity of mutation detection in single cells 
 
In order to improve detection of specific mRNA and gDNA amplicons, we extensively modified the 
SMART-seq2 protocol (Hedlund and Deng, 2018; Picelli et al., 2013). To improve release of gDNA, we 
modified the lysis procedure to include a mild protease digestion (Figure 2a; See Detailed Protocol), 
which was subsequently heat-inactivated to avoid inhibiting RT and PCR steps. Target- specific primers 
for cDNA and gDNA were added to cDNA synthesis and PCR amplification steps, which also used 
modified enzymes (Figure 2a, Table S2) providing a more efficient RT and PCR amplification. An 
aliquot of the pre-amplified gDNA/cDNA libraries was used for targeted NGS of specific cDNA and 
gDNA amplicons, and another aliquot, for whole transcriptome library preparation. The targeted 
mutation analysis and scRNA-seq libraries are sequenced and analysed independently. 

TARGET-seq dramatically improved detection of ten mutation hotspots in clonal cell lines, including 
SNV and small indels across both coding and non-coding regions (Figure 2b). Notably, gDNA 
amplicons alone achieved a mean 93 percent biallelic mutation/SNV detection (Figure 2c; schemes of 
the variant calling pipeline and specific examples of variant calling can be found in Figure S2a and 
Figure S2b, respectively). Importantly, mutational analysis from raw RNA-sequencing reads, as 
opposed to targeted re-sequencing, was not possible in almost all cells due to lack of coverage (Figure 
S2c), despite reaching a mean sequencing depth of 2.93 million reads/cell. 

We next tested whether TARGET-seq would improve detection of combinations of mutations in single-
cells. We profiled four different mutations in a clonal T-cell leukemia diploid cell line carrying 
heterozygous mutations in NOTCH1, RUNX1, TP53 and PTEN (JURKAT cells). Using SMART-seq+, 
all 4 mutations were detected in none of the cells analyzed, compared with 38.9% by mRNA targeting, 
87.1% by gDNA targeting and 98.4% by TARGET-seq (combined mRNA+gDNA targeting; Figure 2d). 
Therefore, TARGET-seq provides extremely high sensitivity for the detection of multiple mutations in 
the same single-cell, which is essential for reliable reconstruction of tumor phylogenetic trees. 

 
TARGET-seq produces unbiased transcriptomic readouts from single cells 
 
To determine whether TARGET-seq introduces a bias in the single cell whole transcriptome data, we 
evaluated its performance in two cell lines (JURKAT and SET2) and in primary human HSPCs. Cells 
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clustered by cell type and not by method (Figure 3a, 3b), with no significant differences in the number 
of genes detected between methods (Figure 3c). Sequencing quality controls (QC; Figure S3a), 
numbers of cells passing QC (Figure S3b) and transcript coverage (Figure S3c) was comparable 
between SMART-seq+ and TARGET-seq, with good correlations of gene expression, including genes 
selected for targeted amplification (Figure 3d, Figures S3d, S3e). Similarly, ERCC spike-in controls 
revealed high correlations between methods (Figure 3e, Figures S3f, S3g) and cDNA traces were 
comparable (Figures S3h, S3i and S3j). These results demonstrate that TARGET-seq allows accurate 
mutation detection with parallel unbiased scRNA-seq of the same single-cell. 
 

The stem cell compartment of MPN patients is genetically and transcriptionally heterogeneous 
 
We next applied TARGET-seq to analyze 458 HSPCs from five patient samples with myeloproliferative 
neoplasms (MPN), carrying different combinations of JAK2V617F, EZH2 and TET2 mutations (Table 
S3). Two normal donors were also included as controls (Table S3). We isolated Lin- CD34+ cells by 
FACS (Figure S4) and indexed the cells for CD38, CD90, CD45RA and CD123, allowing assessment of 
clonal involvement in different stem-progenitor cell compartments (Majeti et al., 2007). All mutations 
identified in total mononuclear cells (MNCs; Figure S5a) were also detected in single-cells within the 
Lin-CD34+ compartment using TARGET-seq, which was superior to mRNA targeting alone (Figure S5b 
and S5c), and revealed subclonal mutations in all patients analysed with striking inter-patient 
heterogeneity in subclonal architecture. This allowed the order of acquisition of mutations to be 
determined (Figure S5c), of importance for MPN biology (Ortmann et al., 2015). For example, in patient 
SMD32316, we could determine that a TET2 mutation was acquired after the JAK2V617F mutation, 
whereas in patient OX2123, TET2 mutation was acquired before JAK2V617F. In two patients with 
similar JAK2V617F VAF in bulk MNCs, the low percentage of allelic dropout achieved with TARGET-
seq analysis of single cells, revealed that JAK2V617F was heterozygous in most Lin-CD34+CD38- 
cells in one of these patients, with a normal distribution within the different Lin- CD34+CD38- stem-
progenitor fractions (Figure 4a), whereas in the other patient a lower fraction of clonally involved Lin-
CD34+CD38- cells were homozygous, and predominantly with a CD90+CD45RA+ aberrant phenotype 
(Figure 4b), also reported in other myeloid malignancies (Dimitriou et al., 2016). The ability to reliably 
distinguish heterozygous versus homozygous JAK2V617F mutation is of considerable importance for 
MPN biology (Li et al., 2014), and also more broadly in cancer as mutant allele specific imbalance is 
common in malignant disease, particularly during disease progression (Soh et al., 2009). 
TARGET-seq analysis uniquely allowed wild-type HSPCs to be reliably distinguished from JAK2V617F 
mutant cells in the same samples, revealing aberrant expression of biologically relevant genes such as 
LEPR (Jiang et al., 2008) and oncogenes such as MYCN, TP53 or PPP2R5A, as well as biologically 
relevant pathways in heterozygous (Figure 4c,4d) and homozygous (Figure 4e,4f) JAK2V617F mutated 
HSPCs, including upregulation of hedgehog (Figure 4d) and Wnt/beta-catenin (Figure 4f) pathway 
associated transcription (Table S5). Importantly, this analysis allowed us to identify candidate 
biomarkers for JAK2V617F mutations in HSPCs (Figure 4g), two of which have been previously 
identified as candidate biomarkers in chronic myeloid leukemia (RXFP1, GAS2) (Giustacchini et al., 
2017), and a novel candidate gene, WDR86, belonging to the WD-repeat protein family. Interestingly, 
VWF, a marker of platelet-biased stem cells (Sanjuan-Pla et al., 2013), was specifically upregulated in 
JAK2V617F heterozygous mutant cells from patient IF0602, whose disease was characterized by 
abnormal megakaryocytic differentiation and myelofibrosis, but not in JAK2V617F homozygous mutant 
cells from patient IF0111, who had a polycythemia phenotype (Figure 4h). These data support that 
transcriptional lineage priming in the HSPC compartment might be linked to the disease phenotype in 
MPN. 

Crucially, JAK2V617F mutated HSPC could not be identified computationally by dimensionality 
reduction methods or hierarchical clustering (Figure S6a-d), which was not affected by cell cycle phase 
(Figure S6e, S6f). JAK2V617F could not be identified using a recently published single-cell k- means 
clustering method (Kiselev et al., 2017), SC3, previously used to specifically distinguish genetically-
distinct subclones of cells (Figure S6g). JAK2V617F mutant and wild-type cells from the same patient 
could only be identified by hierarchical clustering using differentially expressed genes between mutant 
and wild-type cells (Figure S6h), the identification of which was only possible using TARGET-seq. 

Distinct genetic subclones present unique transcriptional signatures 

TARGET-seq also uniquely allowed global transcriptome comparison of wild-type cells from patient 
samples and normal controls. Intriguingly, this analysis established that wild-type HSPCs from patients 
with MPN were transcriptionally distinct from normal donor HSPCs (Figure 5a), with enrichment of 
inflammatory pathways associated with TNF-alpha and IFN signalling (Figure  4d, Figure 5b). These 
results may indicate effects of the MPN microenvironment on the wild-type cells from the same patient, 
with a similar finding demonstrated to have clinically predictive value in chronic myeloid leukemia 
(Giustacchini et al., 2017). Interestingly, JAK2V617F mutant as well as WT HSPCs from patient IF0111 
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showed strong IFN signaling signatures, corresponding to the ongoing treatment of this particular 
patient with interferon, thus providing an additional layer of validation of the transcriptional signatures 
obtained (Figure 4f, Figure 5b). 
Analysis of combinations of mutations using the top 2000 important genes from random  forest analysis 
(Figure 5c) showed striking clustering of HSPCs of the same genotype from multiple different patients. 
HSPCs carrying mutations in epigenetic modifiers had a highly distinct transcriptomic signature 
whereas cells carrying only JAK2V617F mutations more closely resembled the transcriptome of wild-
type cells (Figure 5c). EZH2 mutant cells showed enrichment in expression of PRC2 targets, and 
pathways previously identified to be correlated with EZH2 mutations such as hypoxia, cell cycle, 
apoptosis and P53 signalling (Figure 5d; Table S6). TET2 mutant cells also showed enrichment in 
HSC-related genes and a negative enrichment in genes downregulated upon TET2 knock-out (Zhang 
et al., 2016) (Figure 5d, Table S6). Moreover, JAK2V617F cells showed dysregulation of STAT5A 
targets in a gene-dosage dependent manner, with JAK2V617F homozygous cells presenting a higher 
enrichment in STAT5A targets than JAK2V617F heterozygous cells (Figure 5e, Table S6). Taken 
together, these data demonstrate that TARGET-seq allows distinct and biologically relevant molecular 
signatures of HSPC subclones in MPN to be unravelled, representing a powerful tool for biomarker and 
therapeutic target discovery. 

DISCUSSION 
 
With the advent of molecularly targeted therapy in cancer (Bible and Ryder, 2016; Longo, 2017; Luke et 
al., 2017), clinical remissions and clonal responses can be readily achieved in many patients. However, 
relapse frequently occurs, often associated with evidence of clonal evolution, likely reflecting ITH 
already present at diagnosis (Smith et al., 2017), with differential response to the targeted therapy in 
distinct tumor subclones. Therefore, to understand mechanisms of disease resistance, it is crucial to 
resolve clonal heterogeneity of tumors, and dissect the molecular signatures of responsive and 
resistant subclones of tumor cells. Whilst scRNA-seq offers great potential to resolve transcriptomic 
signatures of tumor subclones, up to now it has not been possible to correlate scRNA-seq data with 
mutation analysis due to lack of coverage in the scRNA-seq reads for small indels or point mutations, 
although large chromosomal aberrations can be detected (Tirosh et al., 2016a). For example, in an 
analysis of 430 cells from five primary glioblastomas using SMARTer Kit (v1), detection of TP53 point 
mutations was possible in only 3 cells, leading the authors to conclude that “heterogeneity generated 
by focal alterations and point mutations will be grossly underappreciated using this method” (Patel et 
al., 2014). In two more recent study of gliomas, from 22 mutations analyzed, reads spanning the 
position of the mutations were detected in 0.4 to 8.7 % of the cells in the first study (Tirosh et al., 
2016b), whereas scRNA-seq reads covered the exact site of the IDH1 mutation in <40% of the cells, 
achieving detection of both the wild-type and the mutant alleles only in ~5% of the malignant cells in the 
second study, reflecting the limited sensitivity for mutation detection (Venteicher et al., 2017). Although 
methods for the parallel sequencing of the whole- transcriptome and whole-genome of single-cells have 
previously been reported, these methods are not well suited to high-sensitivity mutation detection due 
to high ADO rates (Dey et al., 2015; Macaulay et al., 2015). Furthermore, these approaches are 
relatively costly due to the requirement for whole genome amplification. Consequently, up to now, such 
techniques have not been widely used for tumor analysis. 
 
We herein report a novel single-cell RNA-sequencing and genotyping method that overcomes current 
limitations in available RNA-sequencing techniques by providing a simple, easily implemented and 
customizable protocol for high-sensitivity mutation detection with parallel high-depth, unbiased whole 
transcriptome analysis. TARGET-seq has clear advantages above other available scRNA-seq 
methodologies, providing improved complexity of scRNA-seq libraries and dramatically improved ability 
to detect multiple mutations in the same single cell, primarily attributable to the detection of gDNA 
through modified cell lysis and high sensitivity targeted amplification. The high sensitivity for biallelic 
detection of mutations provided by our technique is also of considerable importance as loss of 
heterozygosity of a number of different mutations is an important driver of disease phenotype as well as 
therapy response (Kharazi et al., 2011). This is also demonstrated in our analysis of MPN patients, 
showing clear transcriptional differences between JAK2 heterozygous and homozygous HSPCs in 
multiple patients with different disease phenotypes. Moreover, TARGET-seq has the advantage of 
combining scRNA-seq data and mutational analysis with index sorting, allowing tracing of cells back to 
canonical stem/progenitor cell hierarchies, revealing an aberrant HSPC phenotype in an MPN patient 
associated with presence of JAK2 homozygous mutation. Furthermore, the reliable identification of 
wild-type cells made possible by TARGET-seq allows analysis of how tumors and treatment disrupt 
normal tissue residing cells. Such microenvironmental factors might underlie many aspects of tumor 
biology and therapy response. The high sensitivity mutation analysis made possible by TARGET-seq 
also allowed order of acquisition of mutations to be resolved, of importance as mutation order has been 
shown to correlate with disease phenotype and response to targeted inhibitors (Ortmann et al., 2015). 
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The throughput of this technique would typically allow the preparation of approximately 400 cells per 
week and of thousands of cells within a few months, in line with the numbers of cells analysed in 
published scRNA-seq datasets of tumors (Giustacchini et al., 2017; Tirosh et al., 2016a; Tirosh et al., 
2016b). Whilst much higher throughput scRNA-seq techniques are available (Macosko et al., 2015; 
Zheng et al., 2017), these typically offer shallow coverage of only the 3’ or 5’ region of transcripts and 
lower molecular capture rates, and are consequently not designed for variant detection. The 
requirement of large numbers of cells would also prevent its use to study rare subpopulations of tumor 
cells such as CSCs. Consequently, there is a very important role for techniques that allow moderate 
throughput scRNA-seq (thousands of cells), generating libraries of high complexity with high- sensitivity 
mutation analysis, particularly when analyzing rare subpopulations of tumor cells. Moreover, analysis 
of alternative splicing patterns is made possible by the full-length scRNA-seq data generated by 
TARGET-seq, which is of paramount importance in most cancerous tissues (David and Manley, 2010) 
as well as many other diseases (Cooper et al., 2009), particularly as components of the spliceosome 
machinery are recurrently mutated in cancer (Kandoth et al., 2013). 

In summary, TARGET-seq provides a powerful tool to resolve distinct molecular signatures of 
genetically distinct subclones of tumor cells and we anticipate this will pave the way for application of 
scRNA-sequencing for the definitive analysis of ITH and the identification and characterization of 
therapy resistant tumor subclones. 

Limitations 
 
A potential limitation of TARGET-seq is that this approach does not support mutation discovery and 
relies on the analysis of known driver mutations, or mutations previously identified by other discovery- 
type methods. However, as the lysate is initially frozen and stored, this will routinely allow for mutational 
analysis from the same sample before subsequent processing of single-cells. Up to now, we have 
multiplexed primers to detect a total of twelve different mutations per single-cell. Whist this will be 
adequate to analyze key driver mutations in many tumors, for more genetically complex tumors, a more 
complex multiplexing strategy might be required. For very genetically complex tumors where potentially 
hundreds of different mutations need to be tracked, a whole genome/whole transcriptome approach 
may be more appropriate (Dey et al., 2015; Macaulay et al., 2015), albeit at the cost of reduced 
sensitivity of detection of those mutations (Hosokawa et al., 2017; Wang et al., 2014). Whilst TARGET-
seq is currently optimized for full-length scRNA-seq analysis, this method could be easily and readily 
adapted to other single-cell RNA-sequencing technologies that are 3’ or 5’ biased such as SCRB-seq 
(Soumillon et al., 2014). Such adaptations could increase scalability and reduce sequencing costs 
associated with full-length techniques. In the current study, we have applied this technique to analyze 
hematopoietic tumors, however, this method could be broadly applied to the analysis of a range of 
cancers, and provides a powerful new tool to link transcriptional signatures with genetic tumor 
heterogeneity. 
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STAR Methods 
 

CONTACT FOR REAGENT AND RESOURCE SHARING 
 
Further information and requests for resources and reagents should be directed to and will be fulfilled 
by Adam Mead (adam.mead@imm.ox.ac.uk). 

 
Cell lines. K562, MOLT4 and JURKAT cells were obtained from the American Type Culture 
Collection (ATCC). NALM6 cells were obtained from the German Collection of Microorganisms and 
Cell Cultures (DSMZ). SET2 cells were kindly provided by Dr. Jacqueline Boultwood and Dr. Andrea 
Pellagatti (Radcliffe Department of Medicine, University of Oxford). All cell lines were maintained in 
culture in RPMI-1640 supplemented with 10 % Fetal Calf Serum (FCS) and antibiotics. Cell lines were 
authenticated by targeted sequencing of known mutations. 

 
Banking and processing of human samples. Patients and normal donors provided written informed 
consent in accordance with the Declaration of Helsinki for sample collection and use in  research 
under the INForMeD Study (REC:199833, University of Oxford). Cryopreserved peripheral blood and 
bone marrow mononuclear cells were thawed and processed for flow cytometry analysis as previously 
described (Woll et al., 2014). A summary of patients and normal donors samples used for analysis 
can be found in Table S3. 

Fluorescent activated cell sorting (FACS) staining and single-cell isolation. Single cell FACS- 
sorting was performed as previously described (Giustacchini et al., 2017), using BD Aria III or BD 
Fusion I instruments (Becton Dickinson). All the experiments involving isolation of human 
hematopoietic stem and progenitor cells (HSPCs) included single color stained controls (CompBeads, 
BD Biosciences) and Fluorescence Minus One controls (FMOs). Lineage-CD34+ cells were sorted 
and indexed for CD38, CD90, CD45RA and CD123 markers, which allowed us to record the 
fluorescence levels of each marker for each single cell. The full list of antibodies used for HSPCs 
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immunophenotyping and isolation can be found in Key Resources; 7- aminoactinomycin D (7-AAD) 
was used for dead cell exclusion. Briefly, single cells directly sorted into 96-well PCR plates 
containing 4-4.2 µL of lysis buffer. K562 cells were sorted into the lysis buffer described in Table S1a. 
JURKAT, MOLT4, NALM6, SET2 and HSPC were sorted into lysis buffers described in Table S1b. 
Flow cytometry profiles of the HSPC compartment of normal donors and patient samples (Figure S4) 
were analyzed using FlowJo software (version 10.1). 

cDNA synthesis. For K562 cells, RT and PCR steps were performed as described in Table S1a, 
using 18 cycles of PCR amplification. For JURKAT, MOLT4, NALM6, SET2 cells and HSPCs, RT and 
PCR steps were performed as described in Table S1b, using 20 cycles of PCR amplification for cell 
lines and 22 cycles of amplification for HSPCs. ERCC Spike-in (Ambion, #4456740) was used at a 
final concentration of 1:40,000,000 in 10 µL of RT mix for cell lines (K562, MOLT4, JURKAT, SET2, 
NALM6) and 1: 200,000,000 for HSPCs. The sequences of the primers used in the RT and PCR 
steps, for whole transcriptome and targeted retrotranscription and cDNA amplification, can be found in 
Table S2a. Primers were designed to amplify amplicons 250-700 bp long and specificity was checked 
against RefSeq and human genome assembly databases using PrimerBlast. mRNA and cDNA 
primers were designed to amplify coding regions whereas gDNA primers were designed to bind at 
least to one intronic region. After PCR, 15 µL from a total of 25 µL cDNA mix were diluted with 11 µL 
of water and purified using 16 µL of Ampure XP Beads (0.6:1 beads to cDNA ratio; Beckman Coulter), 
and resuspended in a final volume of 8 µL of EB buffer (Qiagen). The quality of cDNA traces was 
checked using a High Sensitivity DNA Kit in a Bioanalyzer instrument (Agilent Technologies). The 
remaining 10 µL of the cDNA mix were used for single-cell genotyping or stored at -20 C. 

Targeted NGS single-cell genotyping. After cDNA synthesis, 1 µL aliquot from each single cell 
derived library was used as input to generate a targeted and Illumina-compatible library for single cell 
genotyping. The preparation of single cell genotyping libraries involves 2 PCR steps (See Detailed 
Protocol). In the first PCR step, target specific primers (Table S2b) attached to Access  Array 
adaptors (Fluidigm; Forward adaptor: ACACTGACGACATGGTTCTACA; Reverse adaptor: 
TACGGTAGCAGAGACTTGGTCT) are used to amplify the target regions of interest. Barcoding 
primers were designed to specifically amplify cDNA or gDNA, amplifying annotated coding regions in 
the case of cDNA amplicons and at least one intronic region in the case of genomic DNA amplicons. 
In the second PCR step (See Detailed Protocol), Illumina compatible adaptors containing single- 
direction indexes (Access Array™ Barcode Library for Illumina® Sequencers-384, Single Direction, 
Fluidigm) are attached to pre-amplified amplicons from the first PCR to generate single-cell barcoded 
libraries. All NGS single-cell genotyping library preparation steps are automated in a Biomek FxP 
Workstation. Amplicons were pooled, purified with Ampure XP beads (0.8:1 ratio beads to product), 
quantified using Quant-iT Picogreen (Thermo Fisher Scientific) and pools were diluted to a final 
concentration of 4 nM.  

 
Up to 384 single cells were sequenced on a MiSeq (Illumina) instrument, with 150 bp paired-end 
reads. Reads were aligned to GRCh37/hg19 using STAR with default settings (version 2.4.2a) and 
cDNA/gDNA amplicons were separated into different bam files using a custom Perl script, extracting 
reads matching the different primer sequences used for targeted PCR barcoding. This allowed us to 
obtain independent mutational information from cDNA and gDNA. Variant calling was performed using 
mpileup (samtools version 1.1, options --minBQ 30, --count-orphans, --ignore overlaps) and results 
were summarized with a custom Python script. Thresholds for the detection of each amplicon were 
set based on non-template controls and thresholds for mutation calling were based on WT controls (1- 
5 % of the reads, Figures S2b, S2c). Both non-template and WT controls were routinely processed in 
parallel to test samples. Importantly, none of the tested mutations were detected in any control cells 
(n=112) in any of the experiments, implying that the false positive rate of variant calling with the cut- 
offs used is effectively zero. For experiments involving isolation of HSPCs, single cells where one of 
the targeted amplified genes tested failed to be detected by both gDNA and mRNA were excluded 
from analysis.  

 
Nextera XT library preparation and Illumina whole transcriptome sequencing. Bead-purified 
cDNA libraries were used for tagmentation with Nextera XT DNA Kit (Illumina) using one fourth of the 
original volume as previously described (Giustacchini et al., 2017). 4nM libraries were sequenced on 
a NextSeq instrument with 75 bp single-end reads. 
 
Single cell RNA-sequencing data pre-processing. RNA-sequencing reads were trimmed for 
Nextera adaptors with TrimGalore (version 0.4.1) and aligned to the human genome (hg19) using 
STAR with default settings (version 2.4.2a). RefSeq gene model was used as the reference for gene 
expression quantification. Counts for each RefSeq gene were obtained with FeatureCounts (version 
1.4.5-p1; options --primary) and were normalized to reads per kilobase per million mapped reads 
(RPKM). Genes with RPKM values less or equal than 1 were considered non-detected and 
expression values for these genes were converted to zero. We further normalized RPKM expression 
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values into the log2 scale. QC filtering was performed using the following parameters: percentage of 
reads mapping in exons > 50 %, percentage of mapped reads > 50 % and number of detected genes 
per cell (RPKM>=1) > 6000 for JURKAT and SET2 cells, > 5000 for K562 cells and > 1500 for primary 
HSPCs. For cell lines, we excluded 8 cells after applying these QC filters (5.3 %) and for HSPCs, 33 
cells (6.1 %). 

Whole transcriptome variant calling from single cells. Bam files from 38 single HSPC (Figure 1e) 
or 48 single K562 cells (Figure 1c) were merged using samtools to computationally create a single 
cell ensemble. LoFreq software (Wilm et al., 2012) was used for variant calling in the single cell 
ensemble. Heterozygous regions across the transcriptome (AF> 0.05 of the minor allele, Allele 
Frequency) were used for variant calling in each individual cell, requiring a minimum coverage of 10 
reads and minimum base quality of 30. A SNV was considered heterozygous if AF> 0.05 and 
homozygous if AF<0.05. 

 
Mutational analysis from RNA-sequencing reads. Variant calling from raw RNA-sequencing reads 
was performed using mpileup (samtools version 1.1, options --minBQ 30, --count-orphans, --ignore 
overlaps) and results were summarized with a custom Python script. Thresholds for the detection of 
amplicons were set at 30 reads per position (Figure S2c), in line with variant calling guidelines (Sims 
et al., 2014). 

 
Dropout frequency and library bias calculation. The frequency of dropout for a given gene was 
calculated as the percentage of cells from a specific condition (SMART-seq2 or SMART-seq+) in 
which the gene is not detected (RPKM<1), as compared to the average expression of that gene in 
K562 bulk samples (6 replicates of 100 cells each; 3 replicates per chemistry). Library bias was 
calculated as the ratio between the mean rpkm of the top 10 % expressed genes in the library and the 
mean rpkm of all genes. 

 
Transcript coverage. Normalized transcript coverage was calculated using “geneBody_coverage.py” 
script from RSeQC package (http://rseqc.sourceforge.net), using 4040 housekeeping genes. 

 
Cell cycle phase assignment and correction. Cell cycle phase for HSPCs from patient IF0602 was 
performed using “cyclone” function implemented in the scran package in R (Scialdone et al., 2015), 
using a geneset of cell-cycle associated human genes. Cell cycle effect was removed using limma 
package in R, using cell cycle phase identified by “cyclone” function. 

 
Single cell clustering and dimensionality reduction. Principal component analysis (PCA) was 
performed using log2-transformed RPKM values of 13793 expressed genes (limit of detection 
RPKM>=1) with “prcomp” function in R (Figure S6a). T-distributed stochastic neighbor embedding 
(tSNE) was performed for single cells from patient IF0602 using ‘Rtsne’ package, the implementation 
of the method in R, with “perplexity=20”. We used log2-transformed RPKM values of 13793 
expressed genes with a limit of detection of RPKM>=1 (Figure S6b) or 5129 highly variable genes 
(Figure S6d), identified as previously described (Giustacchini et al., 2017). Unsupervised hierarchical 
clustering of Spearman’s correlations using 5129 highly variable genes was performed using “cor” 
function in R (Figure S6c). Cell cycle labelled (Figure S6e) or cell cycle corrected (Figure S6f) tSNE 
were performed using the same 5129 highly variable genes as in Figure S6d, with “perplexity=20”. 
SC3 software (Kiselev et al., 2017) was also used to analyze the subclonal composition of patient 
IF0602, using default parameters and k=2 (as there are two groups of genetically distinct cells; 
Supplementary Figure 6g). Unsupervised hierarchical clustering of the top 500 differentially expressed 
genes between JAK2 WT and JAK2V617F mutant cells from patient IF0602 was performed using 
‘pheatmap’ package in R (Figure S6h). 

Random forest analysis. Random forest analysis was performed using ‘randomForest’ package in R 
(ntree=2000), trained on the genotypes of single cells. Only genotypes with more than five cells were 
included in this analysis. Expression matrix was batch and donor-corrected using ‘limma’ package in 
R. The top 2000 genes identified by the random forest analysis (MeanDecreaseGini > 0.041) were 
used for the tSNE representation in Figure 5c (perplexity=20). Clustering of cells was stable when 
selecting from 500 to 5000 top genes from the random forest analysis. 

Gene-set enrichment analysis. GSEA was performed using GSEA software 
(http://software.broadinstitute.org/gsea) with default parameters and 1000 permutations on the 
phenotype. Gene sets used for the analysis were downloaded from MSigDB or relevant studies 
(Table S4). Single Sample GSEA (ssGSEA) was performed using ssGSEA Projection Module 
(https://genepattern.broadinstitute.org) with default setttings and combine mode ‘combine.off’. A 
projection of ssGSEA results is shown in Figure 5b. 

Differential expression analysis. Differentially expressed genes were identified using a combination 
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of non-parametric Wilcoxon test and Fisher’s exact test as previously described (Giustacchini et al., 
2017) (Table S5). Significant genes were selected on the basis of adjusted P value < 0.1 and absolute 
log2(fold-change)>0.5. P-values corresponding to Wilcoxon test and Fisher’s exact test are shown on 
the top or each bar in Figures 4c and 4e. Beeswarm plots from selected genes were generated using 
“beeswarm” package in R. 

Statistical analysis. Unpaired Student t-test with Welch’s correction was used for the comparisons in 
Figure 1a, Figure 1b, Figure S1a, Figure S1b and Figure S3a.  

Code availability. R, Perl and Python scripts used for the analysis would be available upon publication. 
 
Data availability. Single cell RNA-sequencing data would be available at the NCBI’s GEO data 
repository upon publication. Single cell targeted sequencing data is available at the NCBI’s SRA data 
repository upon publication. 
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Figure 1. Single-cell RNA-sequencing is associated with high levels of allelic dropout. (a) 

Comparison of dropout frequency between SMART-seq2 and SMART-seq+ methods (n=48 single 

K562 cells) for all genes expressed in K562 bulk samples (RPKM>1; 9096 genes). P-value from two- 

tailed unpaired Student t test is shown on the top of the graph. Points represent the mean for each 

group. (b) Comparison of dropout frequency for lowly expressed genes (2>RPKM>1; 1347 genes) 

between SMART-seq2 and SMART-seq+ methods (n=48 single K562 cells). P-value from two-tailed 

unpaired Student t test is shown on the top of the graph. Points represent the mean for each group. 

(c) Percentage of total (dark blue line) or bi-allelic detection in heterozygous SNVs for Smart-seq2 

(orange dots and red line) or optimized SMART-seq+ (grey dots and black line) chemistries (n=48 

single K562 cells). Lines represent the mean percentage of detection (y-axis) with respect to 

coverage (x-axis) and points represent individual SNVs. (d) Total percentage of detection of selected 

myeloid genes in Lin-CD34+CD38- hematopoietic stem/progenitor cells (HSPC; n=38; y-axis) with 

respect to the average level of expression for each gene (log2(RPKM+1); x-axis). Blue bars represent 

detection of specific gene transcripts that are mutated in myeloid malignancies. The blue line 

represents the average percentage of detection for a certain expression value, and each grey dot 

represents an individual transcript. (e) Total versus bi-allelic percentage of detection of heterozygous 

SNVs in the same single cells as in (d) with respect to the total number of reads spanning that  

position (log2(coverage); x-axis). The blue line and grey points represent the total percentage of 

detection for a certain heterozygous position. The black line and red points indicate the detection of 

both alleles (at least 5% of reads mapping to either of the alleles). 
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Figure 2. TARGET-seq: a method for high sensitivity mutational detection and parallel whole 

transcriptome from the same single cell. (a) Schematic representation of the method. First, single 

cells are isolated by fluorescent-activated cell sorting (FACS) into 96 well plates containing TARGET- 

seq lysis buffer. Plates are then incubated at 72 C in a thermocycler to inactivate the protease 

contained within the lysis buffer. Subsequently, retrotranscription mix is added to the plates, in which 

OligodT-ISPCR is used to prime total polyadenylated mRNA molecules and target-specific primers 

are used to prime molecules of interest. In a subsequent PCR step, ISPCR primers are used to 

amplify polyadenylated cDNA and target specific primers are used to amplify cDNA and gDNA 

molecules of interest. (b) Frequency of detection of heterozygous mutations using TARGET-seq in ten 

coding and non-coding regions, as compared to SMART-seq+ and mRNA targeting approaches 

(n=376 cells, 2-3 independent experiments per amplicon; bar graph represents mean±sd). (c) 

Frequency of detection of heterozygous mutations for the ten validated amplicons from (b), 

showing exclusively results from targeted genomic DNA sequencing. Bar graph represents mean±sd. 

(d) Frequency of detection of heterozygous mutations in JURKAT cells with SMART-seq+ (n=36 

cells), mRNA targeting (n=36 cells), gDNA targeting (n=62 cells) and TARGET-seq (n=62 cells) when 

profiling four different mutations in the same single cell (RUNX1, NOTCH1, PTEN and TP53) in three 

independent experiments. Each slice of the pie chart represents a different combination of mutations 

and each color represents the number of mutations detected per single cell. 
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Figure 3. Unbiased whole transcriptome analysis of single cells using TARGET-seq. (a) 

Unsupervised hierarchical clustering of Spearman’s correlations from 180 single cells  (JURKAT, 

n=56; SET2, n=86 and HSPC, n=38) using 15672 expressed genes (RPKM>=1). (b) Principal 

component analysis of HSPCs, SET2 and JURKAT cells from (a) using SMART-seq+, mRNA 

targeting or TARGET-seq. (c) Number of detected genes per cell (RPKM≥1) in HSPCs, SET2 and 

JURKAT cell lines using SMART-seq+ or TARGET-seq. (d) Whole transcriptome Pearson’s 

correlation between SMART-seq+ and TARGET-seq ensembles (mean RPKM values per condition) 

in HSPCs. The expression values for the genes targeted are highlighted. (e) Pearson’s correlation 

between mean ERCC expression values from SMART-seq+ and TARGET-seq in HSPCs. 
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Figure 4. TARGET-seq reveals genetic and transcriptional heterogeneity in the stem cell 

compartment of MPN patients. (a, b) Variant allele frequency of JAK2V617F mutation (left), as 

identified by traditional bulk sequencing of total MNCs, proportion of single cells that carry the 

mutation in the Lin-CD34+CD38- compartment (center) and integration of index sorting with 

mutational information (right) for patients IF0602 (a) and IF0111 (b). (c-f) Analysis of disrupted gene 

expression associated with JAK2V617F in HSPCs. Beeswarm plots of selected differentially 

expressed genes between (c) JAK2 WT and JAK2V617F heterozygous mutant cells from patient 

IF0602 or (e) JAK2 WT and JAK2V617F homozygous mutant cells from patient IF0111. Expression 

values for single cells from two normal donors (‘NORMAL’) are also shown. Each dot represents the 

expression value for each single cell; red squares represent mean expression values for each group 

and boxes represent median and quartiles. Fisher’s test and Wilcoxon test p-values are shown on the 

top each graph; expression frequencies are shown on the bottom of each bar for each group. Table 

S5a (patient IF0602) and Table S5c (patient IF0111) show all significant differentially expressed 

genes. (d) GSEA analysis of JAK2 WT and JAK2V617F heterozygous mutant cells from patient 

IF0602 or (f) JAK2 WT and JAK2V617F homozygous mutant cells from patient IF0111 as well as cells 

from normal donors (‘NORMAL’). Heatmap is colored according to –log10(FDR q-values) for each 

comparison, using a FDR q-value cut-off <0.25. The white color with ‘ns’ represents non-significance. 

The borders of each square of the heatmap are colored according to the experimental group in which 

a particular pathway is enriched (grey borders, enriched in JAK2 WT cells; blue borders, enriched in 

JAK2V617F mutant cells; black borders, enriched in cells from normal donors). Table S5b (patient 

IF0602) and Table S5d (patient IF0111) show results for all genesets tested with FDR q-value<0.25. 

(g) Beeswarm plots of selected genes (identified as biomarkers of JAK2 mutant cells independently of 

the patient analyzed) expression values across HSPCs from patients IF0602, IF0111 (JAK2 WT and 

JAK2V617F mutant cells) and two normal donors (‘NORMAL’). Expression values and frequencies 

for JAK2 WT and JAK2V617F mutant cells for each patient is shown, as well as cells from normal 

donors (‘NORMAL’). (h) Beeswarm plot of VWF expression values across HSPCs from patients 

IF0602, IF0111 (JAK2 WT and JAK2 V617F mutant cells) and two normal donors (‘NORMAL’). Only 

cells passing both genotyping and RNA-seq QC are shown for each patient.  
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Figure 5. TARGET-seq reveals distinct transcriptional signatures associated with the presence or 

absence of somatic mutations in single HSPCs. (a) tSNE representation of 236 WT cells from the three 

patient samples in which WT cells are present (IF0602, SMD32316, IF0111), and cells from two normal 

donors (HD7650, HD7643), using 5365 highly variable genes. Cells from normal donors are colored in grey, 

cells from MPN patients are colored in orange (SMD32316, IF0602) or red (IF0111; patient being treated with 

interferon). (b) Enrichment of IFN-α (left panel) or IFN-γ (right panel) signalling gene signatures in WT cells 

from 3 patient samples and two normal donors, as a projection of ssGSEA results using the same tSNE 

coordinates from the cells of the specific donors/patients shown in (a). Each shape represents a group of 

donors. (c) tSNE representation of 448 cells from five patient samples and two normal controls, using the top 

2000 genes as measured by the Gini index from the random forest analysis. Only genotypes present in at 

least five cells were analyzed. Gene expression matrix was batch and donor corrected using limma, whilst 

preserving genotypes. (d-e) Enrichment of EZH2 related pathways, TET2 related pathways (d) or JAK/STAT 

pathway (e) in cells carrying mutations in these genes compared to (n=106) single cells from two normal 

donors. Heatmap is colored according to –log10(FDR q-values) for each comparison, using a FDR q-value 

cut-off <0.25. A complete list of all significant genesets can be found in Table S6.  
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Figure S1, related to Figure 1. SMART-seq+ is an optimized single-cell RNA-sequencing chemistry. (a) 

Number of detected genes per cell in K562 cells processed using Smart-seq2 or optimized SMART-seq+ 

chemistry (n=48, 24 cells per chemistry from three independent experiments). P-value from two-tailed 

unpaired Student t test is shown on the top of the graph. (b) Library bias  per chemistry, calculated as 

the ratio between the mean rpkm values of the top 10% expressed genes and the mean rpkm for all 

genes expressed in the library, using the same 48 cells as in (a). P-value from two-tailed unpaired 

Student t test is shown on the top of the graph. Points represent the mean for each group. 
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Figure S2, related to Figure 2. Targeted pre-amplification and sequencing of mRNA and gDNA 

amplicons dramatically increases the sensitivity of mutation detection. (a) Schematic representation of 

the pipeline used for variant calling of targeted next generation sequencing from single cells. (b) 

Representative examples of allelic distributions and mutational cut-offs of RUNX1 p.A149T and TP53 

p.R196* mutations in JURKAT cells. Red lines represent mutation cut-offs (<3% and >97% of reads 

mapping to mutant allele). (c) RNA-sequencing coverage of JAK2 mutation in SET2 cells and TP53, 

NOTCH1, RUNX1 and PTEN mutations in JURKAT cells. The y-axis represents the number of cells 

against their coverage for each mutation in the x-axis. Red line represents a coverage threshold of 30. 
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Figure S3, related to Figure 3. TARGET-seq produces unbiased whole transcriptome data from 

single cells. (a) Sequencing statistics of single cell libraries from HSPCs processed using SMART- 

seq+ or TARGET-seq. The bar graph represents the proportion of reads for each sequencing statistic 

and condition, and error bars represent standard deviation of the mean. P-values from two-tailed 

Student t test and fold change values for each sequencing statistic are shown on the top of each pair 

of bars. (b) Number of cells passing or failing QC per method. The percentage of cells failing QC for 

each method is shown on the top of each bar. (c) Normalized transcript coverage from single HSPCs 

processed using SMART-seq+ or TARGET-seq methods, using a list of 4040 housekeeping genes. 

(d,e) Whole transcriptome Pearson’s correlation between SMART-seq+ and TARGET-seq ensembles 

(mean RPKM values per condition) in JURKAT (d) and SET2 cells (e). The expression values for the 

genes targeted are highlighted in each cell type. (f,g) Pearson’s correlation between mean ERCC 

expression values from SMART-seq+ and TARGET-seq in JURKAT cells (f) and SET2 cells (g). (h-j) 

Bioanalyzer traces of representative cDNA libraries synthetized using SMART-seq+ or TARGET-seq 

in JURKAT (h), SET2 (i) or HSPCs (j). 
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Figure S4, related to Figures 4 and 5. Representative flow cytometry profiles and gating strategies 

for all five patients analyzed and two normal donors. Numbers represent percentage of gated cells. 

Antibodies used for HSPC isolation are listed in Key Resources Table. 
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Figure S5, related to Figures 4 and 5. Single cell sequencing reveals subclonal structures in the 

HSPC compartment that could not be inferred through bulk sequencing. (a) Variant allele frequency of 

mutations identified in each patient by bulk sequencing of total MNCs using a clinically validated 

myeloid  panel.  Patient’s  code  (Table  S3)  indicates  mutations  identified  in  each  patient.  (b,c) 

Subclonal composition of each patient’s HSPC compartment identified by single cell genotyping using 

(b) mutational information from targeted mRNA amplicons (mRNA targeting) or (c) TARGET-seq. 

Total number of cells analysed is shown under the pie chart for each patient, and each patient is 

labeled according to the code provided in Table S3. ND (Not Detected) represents cells in which at 

least one of the amplicons was not detected. Only cells passing genotyping QC for each patient are 

show.
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Figure S6, related to Figure 4. Computational methods commonly used for single cell RNA- 

sequencing analysis are unable to distinguish between genetically distinct JAK2V617F mutant 

subclones. (a,b) PCA (a) or tSNE (b) analysis of JAK2V617F heterozygous mutant and WT cells from 

patient IF0602 using 13793 expressed genes at RPKM>=1. Cells are colored according to genotype. 

(c) Hierarchical clustering of Spearman’s correlations between single cells from patient IF0602 using 

5129 highly variable genes. (d,e) tSNE analysis of patient IF0602 using 5129 highly variable genes, 

coloring cells according to genotype (d) or cell cycle stage (e), (f) tSNE analysis of cells from patient 

IF0602 removing cell cycle phase effect using limma. (g) SC3 k-means clustering of patient IF0602 

using k=2, as this patient has two genetically distinct subclones. (h) Hierarchical clustering of single 

cells from patient IF0602 using the top 500 differentially expressed genes between JAK2 WT and 

JAK2V617F mutant cells. 
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SUPPLEMENTARY TABLES 

Table S1, related to Figure 1, Figure S1, Figure 2 and Figure 3. Reagents and conditions used for 

cDNA synthesis of SMART-seq2, SMART-seq+, mRNA targeting and TARGET-seq libraries. 

Table S2, related to Figure 2. Primers used for amplification of mRNA and gDNA amplicons during 

RT, PCR and barcoding PCR steps. 

Table S3, related to Figures 4 and 5, Figures S4 and S5. Summary of patient samples (n=5) and 

normal donors (n=2) used for the study. 

Sample 
code 

Mutation(s) and 
VAF(s) Diagnosis Treatment Source Age Gender 

OX2123 

JAK2 V617F (36%)+ 
EZH2 

p.Glu249AsnfsTer16 
(44%) + 

TET2 c.3409+1G>C 
(96%) 

CMML None Bone marrow 76 Male 

SMD32316 
JAK2 V617F (22%) + 

TET2 p.Gln958Ter 
(7%) 

ET Aspirin Peripheral blood 68 Male 

IF0602 JAK2 V617F (25%) PMF Momelotinib (JAK1 
and JAK2 inhibitor) Peripheral blood 68 Female 

IF0111 JAK2 V617F (16%) PV IFN alpha-2a Bone marrow 67 Male 

OX4739 JAK2 V617F (93%) PMF Ruxolitinib (JAK1 
and JAK2 inhibitor) Peripheral blood 65 Male 

HD7643 - Normal 
donor - Peripheral blood (CD34 

enriched) 42 Male 

HD7650 - Normal 
donor - Peripheral blood 44 Male 

  Table S4, related to Figure 4 and Figure 5. Genesets used for GSEA and ssGSEA analysis. 
 
Table S5, related to Figure 4. Differentially expressed genes and GSEA analysis of JAK2V617F 

mutant, JAK2 WT cells and cells from normal donors. 
 
Table S6, related to Figure 5. GSEA analysis of EZH2, TET2 and JAK2V617F mutant cells 

compared to cells from normal donors. 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 28, 2018. ; https://doi.org/10.1101/474734doi: bioRxiv preprint 

https://doi.org/10.1101/474734
http://creativecommons.org/licenses/by-nc-nd/4.0/

