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Abstract 37 

Recalcitrant polymers are widely distributed in the environment. This includes natural 38 

polymers, such as chitin, but synthetic polymers are becoming increasingly abundant, for 39 

which biodegradation is uncertain. Distribution of labour in microbial communities commonly 40 

evolves in nature, particularly for arduous processes, suggesting a community may be better 41 

at degrading recalcitrant compounds than individual microorganisms. Artificial selection of 42 

microbial communities with better degradation potential has seduced scientists for over a 43 

decade, but the method has not been systematically optimised nor applied to polymer 44 

degradation. Using chitin as a case study, we successfully selected for microbial communities 45 

with enhanced chitinase activities but found that continuous optimisation of incubation times 46 

between selective generations was of utmost importance. The analysis of the community 47 

composition over the entire selection process revealed fundamental aspects in microbial 48 

ecology: when incubation times between generations were optimal, the system was 49 

dominated by Gammaproteobacteria, main bearers of chitinase enzymes and drivers of chitin 50 

degradation, before being succeeded by cheating, cross-feeding and grazing organisms. 51 

Importance 52 

Artificial selection is a powerful and atractive technique that can enhance the biodegradation 53 

of a recalcitrant polymer and other pollutants by microbial communities.  We show, for the 54 

first time, that the success of artificially selecting microbial communities requires an 55 

optimisation of the incubation times between generations when implementing this method. 56 

Hence, communities need to be transferred at the peak of the desired activity in order to 57 

avoid community drift and replacement of the efficient biodegrading community by cheaters, 58 

cross-feeders and grazers.  59 
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1. Introduction 60 

Recalcitrant compounds are widely distributed in the environment (1–6). These include natural 61 

polymers, such as cellulose, (7) and chitin (1), and, more recently, xenobiotic compounds like plastics 62 

(2, 3, 5, 8), pesticides and detergents (9). Whilst processes to degrade natural compounds have had 63 

time to evolve and adapt, these processes may still require the participation of a consortia of 64 

organisms, each specialised in one of the multiple steps involved in the breakdown of the compound 65 

(10, 11). Laborious biodegradation processes are therefore rarely carried out entirely by a single 66 

microorganism in nature, and it is now well documented that a distribution of labour is favoured in 67 

natural microbial communities (12–16).  68 

 69 

Many xenobiotic compounds have only existed in the last 50-100 years and microbial communities 70 

have had little time to evolve efficient biodegradation pathways to catabolise them. Some novel 71 

enzymes have, however, been discovered for new xenobiotic compounds, such as the recent 72 

discovery of an esterase involved in the degradation of poly(ethylene terephthalate) (PET) (17). This 73 

enzyme, termed “PETase”, is thought to have evolved from other esterases i.e. lipases and cutinases. 74 

Hence, although this enzyme shares considerable sequence homology with other enzymes capable 75 

of PET degradation (17–19), it has developed a higher hydrolytic activity against this polymer than 76 

any other tested esterase but, still, there is room for evolutionary improvement (18). The bacterium 77 

encoding this enzyme was isolated from a PET-degrading consortia of microorganisms and is capable 78 

of metabolising PET to its monomers, terephthalic acid and ethylene glycol (17). Similarly to the 79 

generation of toxic phenolic intermediates during lignin degradation (20), terephthalic acid can 80 

become toxic at high concentrations (21, 22) which suggests that degradation could be more efficient 81 

if carried out by a consortium rather than an individual organism. There are a number of examples 82 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted November 20, 2018. ; https://doi.org/10.1101/474742doi: bioRxiv preprint 

https://doi.org/10.1101/474742


5 

 

of microbial consortia assembled to degrade recalcitrant xenobiotic compounds e.g. phthalic acid 83 

esters, benzene, xylene and toluene (23); polychlorinated biphenyls (24); polystyrene (25); and 84 

polyethylene (26) but, due to adverse biotic and abiotic conditions (e.g. temperature, humidity, 85 

competition and predation), the natural evolutionary development of novel biodegrading pathways 86 

and/or microbial consortia may be hampered in the environment (27). 87 

 88 

Faster evolution can be achieved through artificial selection. A whole microbial community may be 89 

used as a unit of selection (artificial ecosystem selection) so that it becomes progressively better at 90 

a selective process over successive generations (28–31). The artificial selection of a measurable and 91 

desired trait is thought to outperform traditional enrichment experiments as it bypasses community 92 

bottlenecks and reduces stochasticity (31). Artificial ecosystem selection has been implemented for 93 

developing a microbial community capable of degrading the toxic environmental contaminant 3-94 

chloroaniline (29) as well as to lower carbon dioxide emissions during growth (31) and generating a 95 

microbial community adapted to low or high soil pH (28). However, to our knowledge, it has not been 96 

previously used for improving polymer degradation and nor have the growth parameters involved 97 

(e.g. incubation time) been systematically optimised to enhance the selectivity of a desired process.  98 

 99 

In the present study we aimed to optimise the artificial selection process of a marine microbial 100 

community for polymer degradation, using chitin as a case study. Chitin is one of the most abundant 101 

polymers on Earth (i.e. the most abundant polymer in marine ecosystems) constituting a key 102 

component in oceanic carbon and nitrogen cycles (1). Many microorganisms are already known to 103 

degrade chitin, and the enzymes and pathways used to do so are well characterised (10). We found 104 

that a microbial community could be artificially evolved to achieve higher chitinase activities, but 105 

there were certain methodological caveats to this selection process. We found that the incubation 106 
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time between generations needed to be continuously optimised in order to avoid community drift 107 

and decay. Microbial community composition was evaluated and we confirmed that, if generation 108 

times are not continuously optimised, efficient biodegrading communities are rapidly taken over by 109 

cross feeders and predators with a subsequent loss of degrading activity.110 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted November 20, 2018. ; https://doi.org/10.1101/474742doi: bioRxiv preprint 

https://doi.org/10.1101/474742


Results 111 

First artificial selection experiment; process optimisation 112 

Our first artificial selection experiment highlighted the need to sub-culture each generation when the 113 

desired trait/chitinase activity was at its peak and not at a pre-defined incubation time, as done 114 

previously (28, 29, 31). Initially, we set a standardised nine-day incubation time for each generation 115 

because this was the time it took for chitinase activity to peak in a preliminary enrichment 116 

experiment (data not shown). After 14 generations we did not observe a strong increase in chitinase 117 

activity (Fig. 2A, and Supplementary Fig. S1) and, intriguingly, in nine out of the 14 generations we 118 

observed a lower activity in the positive selection than in the randomly selected control (Fig. 2A), 119 

suggesting that a random selection of microcosms is more effective in enhancing chitinase activity 120 

than actively selecting for the best communities. To further investigate the reasons behind this low 121 

efficiency, we took regular enzymatic activity measurements within generation 15 (Fig. 2B). As 122 

suspected, the chitinase activity was peaking much earlier within the generation, i.e. at day four, and 123 

by the end of the nine days the chitinase activity had dropped below the activities registered for the 124 

random selection experiment (Fig. 2B). Attending to this result, at generation 16 we set up an 125 

additional experiment, run in parallel, where the incubation time per generation was shortened to 126 

four days. Shortening the incubation time led to a selection of higher chitinase activities during 127 

generations 16 and 17, but the progressive increase in activity stalled by generations 18 and 19 (Fig. 128 

2A). Chitinase activity was again measured daily within the final generation 20 and we found that the 129 

enzymatic activity was almost nine times higher on day two than day four (Fig. 2C), indicating that 130 

the optimal incubation time had again been reduced. While the nine-day incubation experiment gave 131 

an overall negative trend, shortening the incubation times to the chitinase maxima drastically 132 

increased the benefits of artificial community selection (Fig. 2A). 133 
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 134 

Microbial community succession 135 

We carried out MiSeq amplicon sequencing of the 16S and 18S rRNA genes to characterise the 136 

microbial community succession that occurred within the first selection experiment and, by this way, 137 

gain insight into the strong variability in chitinase activity observed over time. We sequenced the 138 

communities that were used as the inoculum of each of the 20 generations, both nine and four-day 139 

long experiments, as well as the community obtained from the daily monitoring of generation 20. 140 

This data was processed using both Mothur (32) and DADA2 workflows (33, 34), obtaining similar 141 

results (Supplementary Figs. S2 and S3). DADA2 results are presented here as this workflow retains 142 

greater sequence information, better identifies sequencing errors and gives higher taxonomic 143 

resolution (35). Unique taxa are therefore called amplicon sequence variants (ASVs) rather than 144 

operational taxonomic units (OTUs). 145 

 146 

Community succession over the four-day incubation period within generation 20. 147 

The daily microbial community analysis over the four days at generation 20 showed a progressive 148 

increase in prokaryotic diversity (from 0.83 to 0.93, according to Simpsons index of diversity) whereas 149 

a strong decrease in diversity was observed amongst the eukaryotic community (from 0.93 to 0.38; 150 

Fig. 3A). SIMPER analyses were carried out to identify those 16S and 18S rRNA gene ASVs that were 151 

contributing most to the differences over the four successive days observed in Fig. 3B. The top five 152 

ASVs in these analyses were responsible for 50% and 60% of variation for the 16S and 18S rRNA 153 

genes, respectively (Fig. 3C). 154 

 155 

For the 16S rRNA gene, the most important ASVs were: ASV3 (Thalassotalea, contributing to 16% of 156 

the community variation between the four days, p=0.025), ASV4 (Cellvibrionaceae, 15% variation, 157 
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p=0.033), ASV5 (Crocinitomix, 8% variation, p=0.033), ASV7 (Terasakiella, 6% variation, p=0.094) and 158 

ASV2 (Spirochaeta, 5% variation, p=0.022) (Fig. 3C). ASVs 3 and 4 (both Gammaproteobacteria) 159 

represented over 50% of the prokaryotic community abundance on day 2, when chitinase activity 160 

was highest, and their abundances followed a similar pattern to the chitinase activity over the four 161 

days (Fig. 2C), suggesting that these ASVs may be the main drivers of chitin hydrolysis.  On the other 162 

hand, ASVs 7 and 2 both showed a progressive increase over time (i.e. from a combined relative 163 

abundance of 5% on day 1 to 23% on day 4; Fig. 3C), suggesting that these ASVs could be cross-164 

feeding organisms that benefit from the primary degradation of chitin. Interestingly, the overall 16S 165 

rRNA gene analysis also showed a strong succession over time at higher taxonomic levels (Fig. 4). 166 

While Gammaproteobacteria pioneered and dominated the initial colonisation and growth, 167 

presumably, via the degradation of chitin (i.e. with 73% relative abundance during the first two days), 168 

all other taxonomic groups became more abundant towards the end of the incubation period (e.g. 169 

Clostridia, Bacteroidia and Alphaproteobacteria increased from an initial relative abundance of 0.1, 170 

2.8 and 12% on day one to 13.5, 22 and 21% on day four, respectively; Fig. 4). Microbial isolates 171 

confirmed Gammaproteobacteria as the main contributors of chitin-biodegradation (as discussed 172 

below). 173 

 174 

The SIMPER analysis of the 18S rRNA gene highlighted ASV2 (Cafeteria sp., contributing to 34% of the 175 

community variation between the four days, p=0.016), ASV4 (Paraphysomonas, 10% variation, 176 

p=0.023), ASV1 (Cafeteria sp., 6% variation, p=0.392), ASV6 (Apsidica, 5% variation, p=0.040) and 177 

ASV3 (Incertae Sedis, 5% variation, p=0.059) as the five main ASVs contributing to 60% of the 178 

community variation over the four days (Fig 3C). ASV2, which was 96% similar to the bactivorous 179 

marine flagellate Cafeteria sp., was by far the most striking Eukaryotic organism, showing an increase 180 

in relative abundance from 2% on day 1 up to over 76% on day 4 (Fig. 3B and 3C). As observed in 181 
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prokaryotes, Eukaryotic phylogenetic groups also showed a large variation between the beginning 182 

and the end of the incubation period, mainly due to the increase of Bicosoecophyceae over time (i.e. 183 

from 2.6 to 89% relative abundance driven by both ASV1 and ASV2; Supplementary Fig. S4). 184 

 185 

Community succession over the entire artificial selection experiment. 186 

We analysed the 16S and 18S rRNA gene community composition (Supplementary Fig. S5) at the end 187 

of each generation in order to determine the effect that positive or random selection of communities 188 

had across the 20 generations, both for the nine-day incubation experiment (i.e. generations 0 to 20) 189 

and shortened four-day incubation experiment (i.e. generations 16 to 20). Most interestingly, the 190 

overall community variability across all generations (16S and 18S rRNA gene nMDS analysis; Fig. 5A) 191 

showed that only the positive selection of the shortened four-day incubations differentiated the 192 

community from the random selection, which was confirmed by a PerMANOVA test using Bray-Curtis 193 

distance (16S rRNA gene p=0.001; 18S rRNA gene p=0.002; Supplementary Table S2), while the nine-194 

day selection mostly clustered with the random control communities. This is a clear explanation as 195 

to why the nine-day incubation time was not allowing a progressive selection of a community with 196 

better chitinase activities than those obtained randomly and, only when the time was shortened, did 197 

we observe an effect of the positive selection over the random selection. 198 

 199 

SIMPER analyses were carried out to determine the ASVs that most strongly contributed to the 200 

differences between groups (i.e. positive versus random selections and nine-day versus four-day 201 

incubation times; Fig. 5B). For the 16S rRNA gene, the top five ASVs identified by the SIMPER analysis 202 

contributed to 35% of the community variation, while for the 18S rRNA gene, they accounted for 61% 203 

(Fig. 5B). The 16S rRNA gene ASVs 5, 7 and 11 (Crocinitomix, Terasakiella and Carboxylicivirga flava, 204 

respectively) presented a much higher abundance in the four-day positive selection than in any other 205 
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selection (13%, 11% and 8%, respectively), suggesting that these species were the major contributors 206 

to the differentiation of these communities, as seen in Fig. 5A. As observed above for the four-day 207 

incubation analysis, Cafeteria sp. (18S rRNA gene ASV1 and ASV2, both 96% similar) was again the 208 

most conspicuous Eukaryotic organism. ASV2 was more abundant in the positive four-day selection 209 

(32% of the relative abundance), while ASV1 was highest in the three other selections (70% and 82% 210 

in the positive and random nine-day selection, respectively, and 16% in the random four-day 211 

selection; Fig. 5B).  212 

 213 

Chitinase gene copies in artificially-assembled metagenomes  214 

Artificially-assembled metagenomes, generated by PICRUSt (36) from the 16S rRNA gene amplicon 215 

sequences, were used to search for enzymes involved in chitin degradation: KEGG orthologs K01183 216 

for chitinase, K01207 and K12373 for chitobiosidase, K01452 for chitin deacetylase, and K00884, 217 

K01443, K18676 and K02564 for the conversion of GlcNAc to Fructose-6 phosphate (Supplementary 218 

Fig. S6) (37–39). As expected from the measured chitinase activities, the shortened four-day 219 

incubation experiment showed over 30 times more chitinase (K01183) gene copies than the nine-day 220 

incubation experiment (i.e. an average of 0.66 copies per bacterium were observed in the four-day 221 

incubation experiment while only 0.025 copies per bacterium were observed over the same 222 

generations in the nine-day experiment). Also, from the daily analysis of generation 20, the chitinase 223 

activity was positively correlated with the normalised chitinase gene copy number (r2=0.57), with a 224 

peak in chitinase activity and chitinase gene copies on day 2 (i.e. over one chitinase gene copy per 225 

bacterium). The most striking result from this analysis was the strong bias of taxonomic groups that 226 

contributed to the chitinase and chitin deacetylase genes; chitinase genes were mainly detected in 227 

Gammaproteobacteria and some Bacteroidia, whereas the chitin deacetylase genes were almost 228 

exclusively present in Alphaproteobacteria. It is worth highlighting that the chitosanase gene 229 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted November 20, 2018. ; https://doi.org/10.1101/474742doi: bioRxiv preprint 

https://doi.org/10.1101/474742


12 

 

(K01233), the enzyme required to hydrolyse the product from chitin deacetylation, chitosan, was not 230 

detected in any of the artificial metagenomes. Chitobiosidases (K01207 and K12373) and enzymes 231 

involved in the conversion of GlcNAc to Fructose-6 Phosphate (K00884, K01443, K18676 and K02564) 232 

were more widespread. Nevertheless, this data needs to be taken with caution as these were not 233 

real metagenomes. 234 

 235 

Isolation and identification of chitin degraders  236 

Bacterial isolates were obtained from the end of the artificial selection experiments to confirm the 237 

ability of the identified groups to degrade chitin. From the 50 isolates obtained, 20 were unique 238 

according to their 16S rRNA gene sequences. From these, 18 showed at least 98% similarity with one 239 

or more of the MiSeq ASVs (Supplementary Table S3) although, unfortunately, none belonged to the 240 

most abundant ASVs detected during the community analysis. The ability for chitin and GlcNAc 241 

degradation by each one of the isolates was assessed. We found that 16 of these isolates could grow 242 

using GlcNAc as the sole carbon source, but only 11 of these strains could grow on chitin (Fig. 4). The 243 

four remaining bacteria from the 20 isolated could not grow using chitin or GlcNAc. Most 244 

interestingly, all isolates from the class Gammaproteobacteria (n=7) were capable of chitin 245 

degradation whereas only a smaller subset of isolates had this phenotype in other abundant 246 

taxonomic groups, such as Bacteroidia (1 out of 3) or Alphaproteobacteria (1 out of 8; Fig. 4).  247 

 248 

Second artificial selection experiment; implementing an improved selection process 249 

A second selection experiment showed an extremely rapid boot in chitinase activity i.e. reaching 250 

almost 90 µM day-1 in only 7 generations (Figs. 6, and S7), when the maximum activity achieved in 251 

the first experiment was 0.9 µM day-1 (Fig. 2C), demonstrating that implementing an optimised 252 

incubation time between generations largely enhances the selection of a desired trait. Chitinase 253 
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activity was measured daily until a peak in chitinase activity was observed. The communities with 254 

highest chitinase activity on this day were used to start the next generation.  255 

 256 
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Discussion  257 

Artificial selection of microbial communities is, in principle, a powerful and atractive technique which 258 

has surprisingly been used in only a limited number of studies to date (28, 29, 31), possibly due to 259 

the lack of success as a consequence of poor process optimisation. Here, using chitin degradation as 260 

a case study and a detailed analysis of the community succession, we show that artificial selection of 261 

microbial communities can be largely improved by controlling the incubation times between 262 

generations. The rapid succession of microbial community structure means generations need to be 263 

transferred at the peak of the selected phenotypic activity (e.g. chitinase activity) or these get rapidly 264 

replaced by less efficient communities of cross-feeding microorganisms (i.e. bacteria and grazers). 265 

Previous studies that have artificially selected microbial communities for a particular phenotype did 266 

not report optimisation of the incubation time between generations (28, 29, 31) which, in our hands, 267 

would have resulted in a negative selection (Fig. 2). In agreement with our results, Penn and Harvey 268 

(2004) (40) suggested that the observed phenotype in artificial ecosystem selection experiments 269 

could be significantly affected by community structure.  270 

 271 

An understanding of microbial ecology helps explain the importance of the timing during generation 272 

transfer. Datta et al. (2016) (42) observed three distinct stages of community structure during the 273 

colonisation of chitin particles: (a) attachment; (b) selection, and; (c) succession. Each phase was 274 

characterised by having relatively higher abundances of organisms that were: (a) good at attaching 275 

to chitin particles; (b) good at degrading chitin particles, and; (c) not able to degrade chitin, but able 276 

to benefit from others that could, i.e. “cheaters” and cross-feeders (43, 44). During our first 277 

experiment, as communities become better and faster at degrading chitin, we were measuring the 278 

chitinase actvity when the communities were in the succession rather than in the selection stage and, 279 
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therefore, the active chitinolytic community had decayed and was dominated by cheaters and cross-280 

feeders (Figs. 3 and 4). Hence, it was only when selecting at phenotypic time optima when chitinase 281 

activity improved and the overall community differentiated from the random control communities 282 

(Fig. 5 and 6). It is also interesting to note the selection of the grazer Cafeteria sp. (90% of the 283 

Eukaryotic community), a genus of bactivorous marine flagellates that are commonly associated with 284 

marine detritus (45). The predator-prey dynamics postulated by Lotka–Volterra’s equations would 285 

also support the need to shorten generation times to favour the prey’s growth i.e. chitinolytic 286 

bacteria (46, 47).  287 

 288 

Interestingly, a strong successional pattern was observed at a higher taxonomic level. While 289 

Gammaproteobacteria dominated during the initial stages when chitinase activity was at its peak 290 

(accounting for over 70% of the prokariotic community), other groups increased in abundance during 291 

the later stages (i.e. Alphaproteobacteria, Bacteroidia and Clostridia), similarly to the pattern 292 

previously observed by Datta et al. (2016) (42). 293 

 294 

The fact Gammaproteobacteria are major contributors to chitin degradation is not new (48–53). All 295 

Gammaproteobacteria isolates obtained from the end of the experiments were able to grow using 296 

chitin as the only source of carbon and energy (Fig. 4) confirming that this class is likely responsible 297 

for most of the chitinase activity observed. On the other hand, Alphaproteobacteria, the numerically 298 

dominant class of heterotrophic bacteria in surface oceans (54, 55), follow a cross-feeding and/or 299 

cheating life-strategy as five out of eight Alphaproteobacterial isolates could only use N-acetyl-D-300 

glucosamine (GlcNAc) and only one could use chitin. This was confirmed by the PICRUSt metagenome 301 

analysis (Fig. S6), where almost all chitinase enzymes copies were encoded by Gammaproteobacteria 302 

(i.e. 90%; encoding almost one gene copy per bacterium) and, to a lesser extent, by some Bacteroidia. 303 
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Chitin is made up of molecules of GlcNAc linked by (1,4)--glycosidic bonds, and it has previously 304 

been found that initial degradation of chitin takes place predominantly by: i) chitinases which 305 

depolymerise the (1,4)--glycosidic bonds either at the ends or in the middle of chains, or ii) 306 

chitobiosidase enzymes which also hydrolyse (1,4)--glycosidic bonds but only at the ends of chitin 307 

chains. Genes for the intracellular enzymes involved in GlcNAc utilisation (i.e. transformation of 308 

GlcNAc to Fructose-6-phosphate) were much more widespread amongst different taxonomic groups, 309 

highlighting the broader distribution of cross-feeding or cheating organisms which can benefit from 310 

the extracellular depolymerisation of chitin which generates freely available GlcNAc to the 311 

community. Alternative degradation of chitin may also occur by deacetylation and deamination of 312 

the GlcNAc amino sugar, transforming chitin into chitosan and cellulose, respectively, after which 313 

they can be depolymerised by a range of other enzymes (e.g. chitosanases or cellulases) (10, 56, 57). 314 

While Alphaproteobacteria did not contribute to chitinase enzymes, it did potentially encode for 315 

most of the chitin deacetylases in the system, although no chitosanases were detected. 316 

 317 

Chitinolytic organisms have previously been found to make up between 0.1 and almost 6% of 318 

prokaryotic organisms in aquatic ecosystems (43, 58), while over a third of the organisms in these 319 

habitats can utilise only the products of chitin hydrolysis (i.e. GlcNAc) (43, 59–61). With 320 

Gammaproteobacteria being primarily responsible for the degradation of chitin here, the success of 321 

the artificial selection for an enhanced chitinolytic community was possibly achieved by the selective 322 

enrichment of this group between the beginning (5% of the prokaryotic community, within the 323 

expected range of Gammaproteobacteria found within natural environments) (43, 58) and end of the 324 

experiment (75% of the community).  325 

 326 
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Here we have proven the validity of artificially selecting a natural microbial community to better 327 

degrade a recalcitrant polymer, but have highlighted the caveats for achieving this goal, which 328 

require a better understanding of the ecology of the system. We found that optimisation of 329 

incubation times is essential in order to successfully implement this process, as optimal communities 330 

enter rapid decay due to their replacement by cheaters and cross-feeders, as well as the increase of 331 

potential predators such as grazers and, although not tested here, viruses. Hence, future artificial 332 

selection experiments should adjust generation incubation times to activity maxima to successfully 333 

evolve enhanced community phenotypes.  334 

  335 
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Materials and methods 336 

Microbial inoculum 337 

The microbial community used as an inoculum was obtained from bulk marine debris collected during 338 

boat tows from both Plymouth Sound (Devon, UK; June 2016) and Portaferry (Northern Ireland, UK; 339 

August 2016). 340 

 341 

Chitinase activity measurements 342 

Chitinase activity was measured as the liberation of the fluorogescent molecule 4-methylumbelliferyl 343 

(MUF) from three chitinase substrates (MUF-N-acetyl--D-glucosaminide, MUF--D-N,N’-344 

diacetylchitobioside and MUF--D-N,N’,N’’-triacetylchitotrioside; Sigma Aldrich, UK), following the 345 

previously described method (49, 62, 63) (Supplementary information). Standards curves were 346 

obtained using chitinase from Streptomyces griseus (Sigma Aldrich, UK) dissolved in sterile phosphate 347 

buffered saline solution (pH 7.4; 0.137 M) with a highest concentration of 0.1 U mL-1 (activity 348 

equivalent to 144 µM day-1). Samples were diluted prior to measurement if they were expected to 349 

be above this range. 350 

 351 

Artificial selection 352 

The process for artificial selection is depicted in Figure 1. Briefly, 30 individual microcosms per 353 

treatment and generation were incubated in the dark under the conditions described below. At the 354 

end of each generation the three microcosms with the highest chitinase activities (or three random 355 

microcosms in the case of the control) were pooled and used as the inoculum for the next generation 356 

of microcosms (n=30). This was repeated across multiple generations. Two artificial selection 357 
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experiments were performed, the first to optimise the process, and the second to implement optimal 358 

conditions and achieve a high-performing chitinolytic microbial community: 359 

 360 

First artificial selection experiment. 361 

Incubations were carried out at 23˚C in 22 mL glass vials (Sigma Aldrich), each containing 20 mL of 362 

autoclaved seawater (collected from outside Plymouth Sound, Devon, UK; June 2016) supplemented 363 

with NaH2PO4, F/2 trace metals (64) (Supplementary information) and 100 mg of chitin powder (from 364 

shrimp shells; Sigma Aldrich) as the sole source of carbon and nitrogen.  Generation 0 was started 365 

with 200 µL of microbial inoculum. The efficiency of the selection process was assessed by comparing 366 

a ‘positive selection’ (where the three communities with highest activity were pooled and 200 µL was 367 

used to inoculate each one of the 30 microcosms of the next generation) against a ‘random selection’ 368 

(where three communities were chosen at random, using a random number generator within the 369 

Python module Random, to inoculate the following generation) to give a control against 370 

uncontrollable environmental variation (65). Each treatment was repeated across 20 generations 371 

with incubation times of nine days. In parallel, treatments where incubation times were shortened 372 

to four days were setup after generation 15. Samples were taken from each community and stored 373 

in 20% glycerol at -80˚C for further microbial isolation, and pellets from 1.5 ml of culture were 374 

collected by centrifugation (14,000 x g for 5 mins) and stored at -20˚C for final DNA extraction and 375 

community analysis. 376 

 377 

Second artificial selection experiment. 378 

A second selection experiment was setup implementing optimal generation times. Microcosms were 379 

incubated in 2 mL 96-well plates (ABgene , ThermoFisher Scientific) covered by Corning® 380 

Breathable Sealing Tapes to stop evaporation and contamination while allowing gas exchange. Each 381 
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well contained 1.9 mL of a custom mineral media containing MgSO4, CaCl2, KH2PO4, K2HPO4, 0.52 M 382 

NaCl and artificial seawater trace metals (Supplementary information), supplemented with 10 mg of 383 

chitin powder. The microbial inoculum was 100 µL (i.e. initial inoculum and transfer between 384 

generations). Chitinase activity was measured daily. Transfer between generations was carried out 385 

just after the peak of chitinase activity had occurred, calculated as the average chitinase activity 386 

across the 30 microcosms of the positive selection treatment. Plates were incubated in the dark at 387 

30˚C with constant shaking (150 rpm). Eight days was the maximum incubation time allowed to reach 388 

maximum chitinase activity due to volume constraints. 389 

 390 

DNA extraction and amplicon sequencing  391 

DNA was extracted using the DNeasy Plant Mini Kit (Qiagen) protocol, with modifications as follows 392 

(adapted from 66): 300 µL 1 x TAE buffer was used to resuspend cell pellets and these were added to 393 

~0.4 g of sterile 0.1 mm Biospec zirconia silica beads in 2 mL screw cap microtubes (VWR 394 

international). Bead beating was carried out for 2 x 45 s and 1 x 30 s at 30 Hz using a Qiagen Tissue 395 

Lyser. Cell lysates were then processed in accordance with the manufacturer’s instructions, with an 396 

extra centrifugation step to ensure all liquid was removed (1 min, 13,000 x g) directly before elution 397 

of samples. A Qubit® HS DNA kit (Life Technologies Corporation) was used for DNA quantification 398 

after which they were diluted to equalise the concentrations across samples. A Q5® Hot Start High-399 

Fidelity 2X Master Mix (New England Biolabs® inc.) was used to amplify the 16S rRNA gene v4-5 400 

regions using primers 515F-Y and 926R (67), and the 18S rRNA gene v8-9 regions using primers V8F 401 

and 1510R (68) (Supplementary information). PCR products were purified using Ampliclean magnetic 402 

beads (Nimagen, The Netherlands). Index PCR was carried out using Illumina Nextera Index Kit v2 403 

adapters. Samples were normalised using a SequelPrep Normalisation Plate Kit (ThermoFisher 404 

Scientific). Samples were pooled and 2 x 300 bp paired-end sequencing was carried out using the 405 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted November 20, 2018. ; https://doi.org/10.1101/474742doi: bioRxiv preprint 

https://doi.org/10.1101/474742


21 

 

MiSeq system with v3 reagent kit. Negative and chitin only DNA extraction controls and library 406 

preparation negative controls were processed and sequenced alongside samples. 407 

 408 

Microbial community structure determination 409 

Two different workflows were used to analyse the sequencing data: DADA2 (33, 34) and Mothur (32). 410 

DADA2 delivers better taxonomic resolution than other methods (e.g. Mothur) as it retains unique 411 

sequences and calculates sequencing error rates rather than clustering to 97% similarity (35). The 412 

resultant taxonomic units are referred to as amplicon sequence variants (ASVs) rather than 413 

operational taxonomic units (OTUs from Mothur). For the DADA2 analysis, sequencing data were 414 

processed following the DADA2 (version 1.8.0) pipeline (33). Briefly, the data were filtered, i.e. 415 

adapter, barcode and primer clipped, and the ends of sequences with high numbers of errors were 416 

trimmed. The amplicons were denoised based on a model of the sequencing errors and paired end 417 

sequences were merged. Only sequences between 368 - 379 for the 16S rRNA gene and 300 - 340 for 418 

the 18S rRNA gene were kept and chimeras were removed. The resulting ASVs were classified using 419 

the SILVA reference database (v132) (69). For the Mothur analysis (32), sequencing data were filtered 420 

i.e. adapter, barcode and primer clipped, sequence length permitted was 450 bp for the 16S rRNA 421 

gene and 400 bp for the 18S rRNA gene, maximum number of ambiguous bases per sequence = 4, 422 

maximum number of homopolymers per sequence = 8. Taxonomy assignment was performed using 423 

the SILVA reference database (Wang classification, v128) (69) and operational taxonomic units 424 

(OTUs) set at 97% similarity. For both processing workflows, chloroplasts, mitochondria and 425 

Mammalia were removed from the 16S rRNA gene and 18S rRNA gene datasets, eukaryotes were 426 

removed from the 16S rRNA gene dataset, and bacteria and archaea from the 18S rRNA gene dataset. 427 

The average number of reads per sample was approximately 12,500 for the 16S rRNA gene and 428 

20,000 (Mothur) or 34,000 (DADA2) for the 18S rRNA gene. Samples with less than 1,000 total reads 429 
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were excluded from downstream analyses. Although most analyses were carried out using relative 430 

abundance, each sample was subsampled at random to normalise the number of reads per sample, 431 

and the resulting average coverage was 92% (Mothur) or 94% (DADA2) for the 16S rRNA gene and 432 

99% (Mothur and DADA2) for the 18S rRNA gene.  433 

 434 

Microbial isolation and characterisation 435 

Microbes were isolated from the final generation of positive selection experiments by plating serial 436 

dilutions on Marine Broth 2216 (BD Difco) and mineral medium plates (i.e. custom medium; 437 

Supplementary information) supplemented with 0.1% N-acetyl-D-glucosamine (GlcNAc) and 1.5% 438 

agar. Colonies were re-streaked on fresh agar plates until pure isolates were obtained. The 439 

identification of isolates was carried out by sequencing the partial 16S rRNA gene (GATC BioTech, 440 

Germany) using primers 27F and 1492R (70) (Supplementary information). 441 

 442 

Isolates were grown in custom mineral medium supplemented with either 0.1% chitin or 0.1% GlcNAc 443 

(w/v), as sources of carbon and nitrogen, to test for chitinase activity and chitin assimilation, 444 

respectively. Growth was monitored over 14 days by measuring: i) chitinase activity (as described 445 

above), ii) optical density at 600 nm, and iii) protein content (following manufacturer’s instructions; 446 

QuantiPro™ BCA Assay Kit, Sigma Aldrich, UK). Isolates were also tested on custom mineral medium 447 

agar plates made with the addition of 0.1% chitin and 0.8% agarose. Plates were incubated at 30˚C 448 

for 21 days to allow the formation of halos indicative of chitinase activity.  449 

 450 

Statistical analyses 451 

All analyses of chitinase activity and most MiSeq data analyses were carried out using custom Python 452 

scripts (Python versions 2.7.10 and 3.6.6) using the modules: colorsys, csv, heapq, matplotlib, numpy, 453 
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os, pandas, random, scipy, scikit-bio, sklearn (71), and statsmodels. SIMPER analyses and plotting of 454 

phylogenetic trees were performed in R (R version 3.3.3) (72) using the following packages: ape (73), 455 

dplyr, ggplot2, gplots, ggtree (74), lme4, phangorn (75), plotly, tidyr, vegan (76), phyloseq (77). The 456 

top 5 ASVs identified in each SIMPER analyses were classified to their closest relative using a BLAST 457 

search of the GenBank database with a representative sequence. Hypothetical community functions 458 

were obtained using PICRUSt in QIIME1 (36, 78). Sequences used for phylogenetic trees were aligned 459 

using the SILVA Incremental Alignment (www.arb-silva.de) (79) and mid-point rooted maximum 460 

likelihood trees were constructed using QIIME1 (78). All scripts can be found at https://github.com/R-461 

Wright-1/ChitinSelection.git. All sequences have been deposited in the NCBI Short Read Archive 462 

(SRA) database under Bioproject PRJNA499076.463 
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Figure 1. Method used for artificial selection of microbial communities. Briefly, 30 microcosms are 

inoculated with a natural community found in seawater (1). At the end of the incubation period, the 

enzymatic activity for a desired trait (e.g. chitinase activity) is measured for each microcosm (2). 

The three microcosms with the highest enzymatic activities are selected and pooled (3), and used 

to inoculate the next generation (4). This process is repeated over n generations (5). 
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Figure 2. Chitinase activity in artificial selection experiment 1. (A) Enzymatic activity measured over 

20 generations. Each point represents the mean of the positive selection communities (n=30) to 

which the mean of the randomly selected controls (n=30) was subtracted. The black dotted line 

(zero) represents where chitinase activity of the positive selection is equal to that of the random 

selection. Coloured dotted lines show the general trend for the respective incubation times 

generated by a linear regression model within Pythons’ statsmodels package (green and orange for 

nine- and four-day incubations, respectively). The r2 and p-values for Pearson’s correlation 

coefficients between generation number and normalised chitinase activity are shown. (B) Chitinase 

activity measured within generation 15 of the 9-day incubation. (C) Chitinase activity measured 

within generation 20 of the 4-day incubation. In panels B and C, each point represents absolute 

chitinase activity measured in the positive (red) and random selection (blue). 
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Figure 3. Daily microbial community analysis over the four day incubation period within generation 

20. The analysis was performed on the three communities that showed highest chitinase activity by 

the end of the four days and which would have been used to inoculate the next generation. (A) 

Simpsons index of diversity of the 16S (left) and 18S rRNA gene (right) amplicon analysis. Scale 

ranges between 0.38 (low) and 0.93 (high). (B) Community relative abundance over the 4 day 

incubation period. Only ASVs with abundance above 1% in at least one time point are shown. The 

abundance for each ASV is a mean value from the three communities. ASVs were classified to genus 

level by SILVA. Names in brackets were not identifiable with the standard analysis pipeline and 

were identified through a BLAST search of the NCBI database. (C) Five 16S and 18S rRNA gene ASVs 

that contributed the most to the community variations over time according to a SIMPER analysis. 

The percentage of variation to which each ASV contributes is indicated. Error bars represent the 

standard deviations of three communities used to inoculate the next generation.   
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Figure 4. Phylogenetic analysis and relative abundance of the major 16S rRNA gene ASVs (i.e. with 

relative abundance above 0.5% in at least one of the four days) and bacterial isolates obtained at 

the end of the artificial selection experiment. Phylogenetic grouping is represented by a mid-point 
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rooted maximum likelihood phylogenetic tree. The 36 ASVs represented in the figure (out of the 

6605 total ASVs detected) accounted for 92% of all 16S rRNA gene relative abundance. The 

heatmap represents the relative abundance of each ASV over the four days, with darker red 

showing the day at which the ASV showed maximum abundance. Black circles on the right of the 

heatmap represent the maximum relative abundance for that ASV amongst the entire community. 

The 20 isolates are coloured depending on their ability to grow on chitin and the monomer, GlcNAc 

(green), the GlcNAc only (orange), or neither (red).  
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Figure 5. Microbial community variation over the entre artificial selection experiment. (A) nMDS 

plot showing Bray-Curtis distance of 16S (left) and 18S communities (right). Distance between the 

community composition obtained from nine-day (red circles) and four-day incubations (blue 

squares) of the positive selection, and nine-day (green stars) and four-day incubations (purple 

triangles) of the random controls are shown. Marker colour intensity correlates to generation 

number, where progressive darker colours represent later generations. Each point represents the 

mean of the three communities selected from one generation used to inoculate the following one. 

Ellipses show the mean plus the standard deviation of each group of samples. Stress values are 

0.175 for the 16S rRNA gene and 0.063 for the 18S rRNA gene. (B) Five 16S (top panel) and 18S 

rRNA gene ASVs (bottom panel) that contributed the most towards community variations between 

the nine-day (generations 0-20) and four-day (generations 16-20) positive (+) and random (R) 
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selections according to SIMPER analyses. The percentage of variation to which each ASV 

contributes is indicated. ASVs were classified to the species level with the standard analysis pipeline 

using the SILVA database where possible. Names in brackets were not identifiable and were 

identified through a BLAST search of the NCBI database. Relative abundances and error bars shown 

are the mean and standard deviations of all generations within that treatment. 
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Figure 6. Chitinase activity of artificial selection experiment 2. Graph show the mean chitinase 

activity of the positive selection, from which the mean random selection was subtracted. The 

means of all communities within the generation (n=30; red) and those of only the three 

communities that were pooled for the inoculum of the next generation (yellow) are shown. The r2 

and p-values are for Pearson’s correlation coefficients and lines of best fit (dotted lines) were 

determined using linear regression models within Pythons’ statsmodels package. 
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