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Abstract  The nucleus reuniens (NR) is an important anatomical and functional relay 30 

between the medial prefrontal cortex (mPFC) and the hippocampus (HPC). Whether the 31 

NR controls neuronal assemblies - a hallmark of information exchange between the HPC 32 

and mPFC for memory transfer/consolidation - is not known. Using simultaneous LFP 33 

and unit recordings in NR, HPC and mPFC in rats during slow oscillations under 34 

anesthesia, we identified a reliable sequential activation of NR neurons at the beginning 35 

of UP states, which preceded mPFC ones. NR sequences were spatially organized, from 36 

dorsal to ventral NR. Chemical inactivation of the NR disrupted mPFC sequences at the 37 

onset of UP states as well as HPC sequences present during sharp-wave ripples. We 38 

conclude that the NR contributes to the coordination and stabilization of mPFC and HPC 39 

neuronal sequences during slow oscillations, possibly via the early activation of its own 40 

sequences.   41 
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Introduction 42 

 Information exchange between the hippocampus (HPC) the medial prefrontal cortex (mPFC) is 43 

essential for different memory processes, including consolidation (Siapas and Wilson, 1998, 44 

Frankland and Bontempi, 2005, Maingret et al., 2016, Eichenbaum, 2017, Kitamura et al., 45 

2017, Latchoumane et al., 2017, Preston and Eichenbaum, 2013). In both regions, the 46 

representation of information is supported by the recruitment of cell assemblies of neurons 47 

which fire in a fine time-resolved manner (Lee and Wilson, 2002, Euston et al., 2007, Luczak 48 

et al., 2007, Pastalkova et al., 2008, Luczak et al., 2015, Peyrache et al., 2009, Battaglia et 49 

al., 2011, Skaggs and McNaughton, 1996, Nadasdy et al., 1999). These neuronal assemblies 50 

display a precise temporal sequential activation, which reflects the encoded information 51 

(Pfeiffer, 2017, Marre et al., 2009, Davidson et al., 2009, Foster and Wilson, 2006, Ji and 52 

Wilson, 2007, Nádasdy, 2000). Such activity occurs mainly during sleep, particularly during 53 

non-REM sleep, and is organized in space and time by a set of oscillations, such as hippocampal 54 

sharp-wave ripples, cortical slow oscillations and spindles (Sirota et al., 2003, Sirota and 55 

Buzsáki, 2005, Maingret et al., 2016, Staresina et al., 2015). Yet, how these cells assemblies 56 

are finely coordinated between HPC and mPFC to support memory consolidation is not well 57 

understood. The thalamic nucleus reuniens (NR), which bi-directionally connects the HPC and 58 

mPFC (Herkenham, 1978, Van der Werf et al., 2002, Vertes, 2006, Varela et al., 2014), plays 59 

a key role in memory consolidation (Loureiro et al., 2012, Cassel et al., 2013, Pereira de 60 

Vasconcelos and Cassel, 2015), and synchronizes gamma bursts between HPC and mPFC 61 

during non-REM sleep (Ferraris et al., 2018). The NR is therefore ideally posed to orchestrate 62 

the dynamics of cell assemblies in both regions.   63 
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Results 64 

Cell assemblies are recruited in NR at UP state onset 65 

We first assessed the behavior of NR (n=166 cells, n=5 rats), mPFC (n=496, n=7) and HPC 66 

(n=163, n=4) neurons during slow oscillations (SO) in anesthetized rats. Slow oscillations during 67 

anesthesia share similar features as non-REM sleep (Ferraris et al., 2018) and offer the 68 

advantages of long duration stable recordings necessary to identify statistically significant 69 

sequences. Neighboring thalamic neurons (antero-median and ventro-median nuclei) were also 70 

recorded as a control group ("TH", 89 neurons, n=4).  71 

During SO, most of the neurons fired at the onset of the UP states, mainly in mPFC and NR 72 

(Figure 1A) (Ferraris et al., 2018). To identify any ordering in this firing activity, we ranked 73 

each neuron according to its mean preferred SO phase (Figure 1Ba). Neurons were organized 74 

in increasing order of average preferred phase, defining a template order (Figure 1Bb). With this 75 

ordering, we found a robust recruitment of neuronal sequences at the UP state onset in NR 76 

(median percentage of recruited neurons per UP state 70.35 %, min/max: 61.13 / 85.85 %), and 77 

mPFC (median: 62.9 %, min/max: 42.06 / 70.02 %). In comparison, HPC neurons showed less 78 

sequential activation (median: 33.82 %, min/max: 29.26 / 46.42 %, Figure 1B). However, HPC 79 

neurons displayed better sequential activation during sharp wave ripples (SPW-Rs), which tend 80 

to occur at the end of the SO cycle (Sirota et al., 2003, Isomura et al., 2006, Buzsáki, 2015, 81 

Khodagholy et al., 2017, Battaglia et al., 2004, Maingret et al., 2016) (median: 45 %, 82 

min/max: 35 / 64 %). Sequences in NR always preceded mPFC ones (Figure 1B). As a negative 83 

control, we analyzed the activity of neighboring thalamic nuclei (TH) neurons. Although TH 84 

neurons displayed a strong entrainment by SO (Ferraris et al., 2018), there was poor sequential 85 

activity (Figure 1B). The sequential activity at UP state onset therefore appears to be specific of 86 

NR and mPFC neurons in the areas investigated here. As a further control, we analyzed the 87 
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activity of NR neurons during epochs dominated by theta (4-6 Hz) oscillations. We did not find 88 

stable sequential neuronal assemblies during theta (data not shown). Together, these results 89 

show that, at the beginning of UP states, cell assembly formation occurs first in NR, then in 90 

mPFC and marginally in the HPC and neighboring thalamic nuclei. 91 

We then quantified the reliability of these sequences. To do so, we computed at each UP state 92 

the activation latency of each neuron relative to the population peak activity (see Methods). The 93 

local activation order of the cell assembly was determined from the ascending sorting of the 94 

activation latencies. We then measured the Spearman rank correlation between the local 95 

activation order and the template order. A rank correlation r = 1 indicates that the sequential 96 

activation follows exactly the template order determined previously by the average phase 97 

preferences. For NR neurons, the template order was significantly expressed in 32% of the total 98 

number of UP states (min = 15%, max = 37 %, Spearman test, p < 0.01), while mPFC reliable 99 

sequences were found in only 25 % of the UP states (min/max = 5 / 31 %, Figure 1C). In 100 

contrast, reliable HPC sequences were only detected in 2 % of UP states (min/max = 1 / 6 %) 101 

and in 2 % for sequences in TH neurons (min/max = 1 / 14 %). Although the proportion of 102 

reliable sequences in NR and mPFC were not significantly different (KS-test, p = 0.15), the 103 

average Spearman correlation values of the reliable sequences were significantly larger in NR 104 

than in mPFC (KS-test, p < 0.01, Figure 1D), indicating that the NR cell assembly sequential 105 

organization is the most consistent. To estimate the participation of neurons in sequence 106 

generation, we calculated a participation index, defined as the probability for a given neuron to 107 

be involved in a given sequence (see Methods). The participation index was consistently larger 108 

across experiments in NR (median: 0.63, min/max: 0.55 / 0.81) than in mPFC (median: 0.52, 109 

min/max: 0.36 / 0.60; KS-test, p < 0.05).  Thus, mPFC and NR are characterized by highly stable 110 
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patterns of sequential neuronal activations at the onset of the UP state, with NR sequences 111 

being more reproducible. 112 

NR cell assemblies are spatially distributed 113 

We also investigated the spatial distribution of the NR and mPFC cells assemblies. For each UP 114 

state, we correlated the local activation order of each neuron to their anatomical dorso-ventral 115 

localization (Figure 2A). The slope of a linear fit of such correlation provides the information on 116 

whether the activity is propagating in a given direction (Luczak et al., 2007) (see Methods, 117 

Figure 2B). Even though both NR and mPFC can show some degree of propagation in a 118 

preferential direction, NR average slopes were consistently larger than mPFC ones (KS-test, p < 119 

0.05, Figure 2C), reflecting a dorsal-to-ventral direction of propagation of the neuronal 120 

activations. To assess the consistency of the preferential direction of propagation, we calculated 121 

the Spearman rank correlation between the rank of the template order and the anatomical 122 

location of the corresponding recording site. We found a highly significant correlation in NR 123 

recordings in most cases (n = 4 out of 5, median | r | value across all n:  0.65, p < 0.001), 124 

whereas it was virtually absent in mPFC (n = 1 out of 7, |r| = 0.35, p < 0.01) (Figure 2D). There 125 

are thus more spatially organized sequences in NR as compared to mPFC (z-test, p < 0.05, 126 

Figure 2E).  127 

Altogether, these results demonstrate that NR displays at the UP state onset robust sequential 128 

activations which are spatially organized in a dorso-ventral stream. This is particularly surprising 129 

as it suggests a topical spatial organization of the neuronal output in the NR. 130 

NR activity is necessary to the mPFC and HPC sequences stability 131 

The fact that NR cell assemblies are generated before mPFC and HPC ones raises the 132 

possibility that NR neurons may control mPFC and HPC sequences. To test this hypothesis, we 133 
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performed chemical inactivation of NR using Muscimol (see Methods) and recorded the activity 134 

of mPFC neurons (n=140, n=3) and HPC (n=71, n=3) neurons. Following NR inactivation, mPFC 135 

neurons showed a less rich activity during the UP state as compared to non-inactivation, control 136 

recordings (Figure 3A) (Ferraris et al., 2018). A hallmark of highly active, long-lasting firing of 137 

cells in control conditions is the broad distribution of inter-spike intervals (ISI) smaller than 0.5 s. 138 

The distribution was much narrower in inactivation conditions (Figure 3B). We then calculated 139 

the distribution of the pooled variability of the activity peak triggered histogram (APTH, see 140 

methods and Figure 3C insert) in control and NR inactivation conditions. The median APTH 141 

variability across experiments was consistently lower when NR is inactivated (control median: 142 

9.62, min/max: 8.98 / 10.60, NR inactivation median: 8.92, min/max: 8.67 / 9.02, KS-test, p<0.05), 143 

as shown in Figure 3C. Moreover, the UP state duration was slightly shorter (control: 0.55 s, NR 144 

inactivation: 0.48 s, Mann-Whitney test, p < 0.001), as revealed by the extra peak in UP state 145 

duration distribution around 0.25 s, which did not exist in control data (Figure 3D). We then 146 

evaluated the outcome of the mPFC sequences in such conditions. First, NR activity suppression 147 

resulted in a reduced capacity of mPFC to generate reliable sequences as compared to control 148 

condition since only 6.5% of them (min = 4.0% max =8.4%) were reliable (as compared to 149 

control median: 25%, min/max: 5 / 30 %, KS-test, p<0.05 Figure 3E). Moreover, the fraction of 150 

participating neurons in reliable sequences decreased in such condition (control: 53%; 151 

inactivation: 38%; KS-test, p < 1e-5; Figure 3F).  These results support the proposal that NR 152 

controls the stability and reliability of mPFC sequences. 153 

The UP state of the SO poorly modulates the activity of HPC neurons and the formation of timely 154 

organized cell assemblies, however, SPW-Rs are more likely to trigger a sequential activation of 155 

HPC firing (Buzsáki, 2015). We therefore investigated the consequences of NR inactivation on 156 

HPC sequences during SPW-Rs. NR inactivation did not affect HPC neurons firing rate (control 157 
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median: 70 Hz, min/max:  41 / 85 Hz, NR inactivation median: 52.59 Hz, min/max:  33 / 71 Hz, 158 

KS-test, p=0.97, Figure 4A). In addition, NR inactivation did not alter the frequency of SPW-Rs 159 

occurrence (median control: 0.087 Hz, min/max:  0.043 / 0.11 Hz, NR inactivation: 0.029 Hz, 160 

min/max:  0.022 / 0.049 Hz, KS-test, p=0.32, Figure 4B). Similarly, neither their power (mean 161 

normalized power control: 157 ± 2, NR inactivation: 144 ± 5, T-test, p=0.295; Figure 4C bottom 162 

panel) nor their inner frequency (mean frequency control: 193 ± 1 Hz, NR inactivation: 213 ± 3 163 

Hz, T-test, p=0.084, Figure 4C top panel) were modified. In contrast, the number of reliable 164 

sequences found within SWP-Rs was drastically reduced (control median: 20%, NR inactivation 165 

median: 2%, z-test, p<0.001; Figure 4D). Besides, the remaining cell assemblies recruited a 166 

significantly lower number of neurons (control median: 37.5 %, min/max: 12.5% / 80%, NR 167 

inactivation median: 8.3 %, min/max: 0% / 66.7%, KS-test, p<0.001, Figure 4E). These findings 168 

support the proposal that NR also controls the sequential organization of neuronal firing in HPC 169 

during SWP-Rs. 170 

Discussion  171 

In this study, we showed that ⅔ of NR neurons fire within robustly spatially and temporally 172 

organized cell assemblies at UP state onset; and that NR activity controls cell assemblies' 173 

stability in mPFC at UP state onset and in HPC during SPW-Rs. These results further support the 174 

concept that the NR is a key functional hub in memory networks involving the medial prefrontal 175 

cortex and hippocampus. 176 

The sequential activation of neuronal assemblies constitutes a core feature of information 177 

processing in the brain (Tonegawa et al., 2018). Cell assemblies are found in archicortical (Lee 178 

and Wilson, 2002, Pastalkova et al., 2008, Villette et al., 2015, Malvache et al., 2016, Harris 179 

et al., 2003, Dragoi and Buzsáki, 2006) and cortical areas (Euston et al., 2007, Luczak and 180 
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Maclean, 2012, Luczak et al., 2007, Kenet et al., 2003, MacLean et al., 2005, Ferezou et al., 181 

2006) (as well as in striatum (Lansink et al., 2009)). They constitute a way to code/encode/store 182 

information (Maass, 2016, Kitamura et al., 2017). During non-REM sleep, cortical activity is 183 

dominated by the sequential activation of cortical neurons at the onset of the UP state, while, in 184 

the hippocampus, the sequential activation mostly occurs during SPW-Rs at the end on the slow 185 

oscillation cycle (Sirota et al., 2003, Battaglia et al., 2004, Maingret et al., 2016, Khodagholy 186 

et al., 2017, Peyrache et al., 2009). Similar sequential firing occurs during the slow oscillations 187 

measured during anesthesia (Luczak et al., 2007), supporting the view that such brain state 188 

shares many features with non-REM sleep (Tung and Mendelson, 2004, Clement et al., 2008, 189 

Isomura et al., 2006, Quilichini et al., 2010, Hutt, 2011, Ferraris et al., 2018). Whether 190 

sequences represent internally generated representations or preconfigured cell assemblies 191 

(Pastalkova et al., 2008, Dragoi and Tonegawa, 2012, Liu et al., 2018) or a functional 192 

template of offline replay in the framework of memory consolidation (Buzsáki, 2015, Lee and 193 

Wilson, 2002, Pfeiffer, 2017) still remains to be elucidated, yet this work shows that they can 194 

also be recorded during anesthesia in this thalamic nucleus  (Bermudez Contreras et al., 195 

2013). The way mPFC and HPC sequences are generated remains poorly understood. Our 196 

results demonstrate that NR activity is a key regulator of mPFC and HPC sequence stability. 197 

Although the basic dynamical properties of UP states and SPW-Rs were mostly not affected by 198 

NR activation, mPFC and HPC sequences were considerably disrupted. The NR is ideally 199 

located for this, as it is bi-directionally connected to the mPFC and HPC (Vertes, 2006, Cassel 200 

et al., 2013, Varela et al., 2014). The fact that NR sequences always precede mPFC ones at UP 201 

state onset suggests that NR cells may directly drive mPFC cells. In keeping with this proposal, 202 

NR neurons have an excitatory action on HPC and mPFC  (Dolleman-Van der Weel et al., 203 

1997, Dolleman-Van der Weel and Witter, 2000, Di Prisco and Vertes, 2006) by 204 
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modulating/activating both interneurons and principal cells. However, the control of sequences 205 

during hippocampal SPW-Rs is more difficult to explain as SPW-Rs occur at variable times after 206 

UP state onset (Sirota et al., 2003, Battaglia et al., 2004). 207 

The presence of sequences specifically in the NR is quite remarkable (sequences were not 208 

found in neighboring thalamic nuclei). Since NR neurons are involved in reference memory 209 

consolidation (Loureiro et al., 2012) and in spatial memory (Jankowski et al., 2014, Ito et al., 210 

2015, Jankowski et al., 2015, Ali et al., 2017, Cholvin et al., 2018), NR sequences may 211 

constitute an activity template used to organize information at the beginning of the UP state (i.e. 212 

a default activity in a default mode (Sanchez-Vives and Mattia, 2014)), in order to transmit it to 213 

the target areas in a packet-based manner (Luczak et al., 2015).  214 

Another remarkable feature of NR sequences is that their dorso-ventral organization, suggesting 215 

a precise topological organization in terms of afferences and efferences, despite the fact that NR 216 

does not have a layered organization (Jones, 1985, Bokor et al., 2002, Van der Werf et al., 217 

2002). Studies report topographically (dorso-ventral) organized inputs to NR (from subiculum 218 

(Van der Werf et al., 2002, McKenna and Vertes, 2004), but most of the differences involve 219 

the rostro-caudal axis (Cassel et al., 2013). However, a fuzzy dorso-ventral gradient has been 220 

reported on the NR output to the temporal lobe (Dolleman-Van Der Weel and Witter, 1996, 221 

Vertes et al., 2006). There is also no available information on the local connectivity among NR 222 

neurons, except a caudal to rostral pathway (Dolleman-Van der Weel et al., 1997). The NR 223 

includes difference cell types, but the lack of specific molecular markers prevents, so far, a 224 

proper optogenetic investigation (Bokor et al., 2002, Walsh et al., 2017). 225 

In conclusion, our results further support the concept that the NR plays a key role as an 226 

anatomical and functional hub between the mPFC and HPC. The control it exerts on mPFC and 227 

HPC information packets suggests that it strongly participates in the organization of information 228 
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in both regions but also in the transfer of information from the HPC to mPFC. Its internal 229 

organization allows the genesis of information packet sequences, which may represent similar 230 

features as those coded in the mPFC and HPC. 231 

Materials and Methods  232 

Contact for Reagent and Resource Sharing 233 

Further information and requests for resources may be directed to and will be fulfilled by the 234 

Lead Contact, Dr. Pascale P. Quilichini (pascale.quilichini@univ-amu.fr). 235 

Key Resources Table 236 

Reagent type (species) 

or resource 

Source Identifier 

Animals   

Wistar Han IGS rats Charles River RRID:RGD_2308816 

Chemicals   

Urethane Sigma-Aldrich Cat#U2500; 

CAS: 51-79-6 

Isoflurane Baxter CAS: 26675-46-7 

Ketamine Renaudin Cip: 3400957854195 

Xylazine CENTRAVET Cat#ROM001 

CAS: 7361-61-7 

Sodium pentobarbital CEVA CAS: 76-74-4 

Paraformaldehyde Carlo Erba Cat#387507 

CAS: 30525-89-4 

NeuroTrace 500/5225  

Green Fluorescent Nissl Stain 

Invitrogen Cat#N21480 

Muscimol BODIPY TMR-X  

Conjugate 

Invitrogen Cat#M23400 

DiIC18(3) Interchim Cat#46804A 

CAS: 41085-99-8 

Software and Algorithms   

MATLAB v2013b MathWorks RRID:SCR_001622 

MATLAB v2015b MathWorks RRID:SCR_001622 
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Circular Statistics Toolbox https://philippberens.wordpress.

com/code/circstats/ 

Berens, P. (2009). 

KlustaKwik http://klustakwik.sourceforge.net 

Harris et al., 2000 

RRID:SCR_008020 

RRID:SCR_014480 

Klusters http://neurosuite.sourceforge.net 

Hazan et al., 2006 

RRID:SCR_008020 

NeuroScope http://neurosuite.sourceforge.net 

Hazan et al., 2006 

RRID:SCR_008020 

NDManager http://neurosuite.sourceforge.net 

Hazan et al., 2006 

RRID:SCR_008020 

Other   

Digital Neuralynx recording system 

(32 kHz sampling) 

Neuralynx Model: 64-channel 

Digital Lynx  

Pulse oximeter Starr life sciences MouseOx 

Motorized manipulator Scientifica Scientifica IVM single 

Silicon probe 

32 aligned sites (177µm2), 20µm 

spacing, 50µm thick,10mm long  

NeuroNexus A1x32-Edge-10mm-

20-177-H32-50 

Silicon probe 

32 aligned sites (177µm2), 20µm 

spacing, 15µm thick, 5mm long  

NeuroNexus A1x32-Edge-5mm-20-

177-H32-15 

Silicon probe 

32 aligned sites (177µm2), 50µm 

spacing, 15µm thick, 6mm long  

NeuroNexus A1x32-6mm-50-177-

H32-15 

Vibratome Leica VT1000S 

Stereotaxic frame Kopf #962 

Syringe 75RN 5µl Hamilton Cat#87930 

Needle 33 gauge Hamilton Cat#7803-05 

UltraMicroPump World precision instrument UMP3-1 

Experimental Model and Subject Details 237 

All experiments were performed in accordance with experimental guidelines approved by Aix-238 

Marseille University Animal Care and Use Committee. A total of 16 rats were used in this study. 239 

Part of these data (14 Wistar Han rat data) were used in a previously published study (Ferraris 240 

et al., 2018), and 2 Wistar Han rats are original data. They include local field potentials (LFPs) 241 

and single-unit recordings made in the mPFC, HPC and NR of anesthetized rats. 242 
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Animal surgery 243 

Wistar Han IGS male rats (250-400g; Charles River) were anesthetized with urethane (1.5 g/kg, 244 

i.p.) and ketamine/xylazine (20 and 2 mg/kg, i.m.), additional doses of ketamine/xylazine (2 and 245 

0.2 mg/kg) being supplemented during the electrophysiological recordings. The heart rate, 246 

breathing rate, pulse distension and the arterial oxygen saturation were also monitored with an 247 

oximeter (MouseOx, Starr Life Science) during the entire duration of the experiment to ensure 248 

the stability of the anesthesia and monitor the vital constants. The head was secured in a 249 

stereotaxic frame (Kopf, Phymep) and the skull was exposed and cleaned. Two miniature 250 

stainless-steel screws, driven into the skull, served as ground and reference electrodes. Up to 251 

three craniotomies were performed to target, from bregma: the pre-limbic area of the medial 252 

prefrontal cortex (mPFC) at +3 mm AP and +0.8 mm ML; the CA1 field of the intermediate 253 

hippocampus (HPC) at -5.6 mm AP and +4.3 mm ML; and the nucleus reuniens (NR) at -1.8 mm 254 

AP and -2 mm ML. Silicon probes (NeuroNexus) were used to record from these structures: a 255 

A1x32-Edge-5mm-20-177-H32-15 probe placed at [-2.5 -3.1] mm from brain surface to reach 256 

mPFC layer 5; a A1x32-Edge-10mm-20-177-H32-50 32-site probes placed at -7.2 mm from 257 

brain surface to reach the NR; a HPC A1x32-6mm-50-177-H32-15 probe placed at [-2.8 -3.0] 258 

mm  perpendicularly to the CA1 field from stratum oriens to stratum lacunosum moleculare in 259 

the HPC. All the probes were lowered inside the brain with a motorized manipulator (Scientifica). 260 

For the NR inactivation experiments (n = 3 rats), a local injection of a fluorophore-conjugated 261 

muscimol (BODIPY-MSCI TMR-X Conjugate, Invitrogen) was performed in the NR and data from 262 

the mPFC and the HPC (CA1) were simultaneously acquired. The injection needle (33 gauge, 263 

Hamilton) was inserted in the NR (using the same depth coordinates as the probes and mounted 264 

on the same micromanipulator) and 0.70 nmol of muscimol in 0.3 µl of PBS (Ferraris et al., 265 

2018) was delivered over 60s through a micropump (UltraMicroPump, WPI). The needle was left 266 
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in place for 3 additional minutes to allow for adequate diffusion of the drug, then carefully 267 

removed.  268 

At the end of the recording, the animals were injected with a lethal dose of Pentobarbital Na 269 

(150mk/kg, i.p.) and perfused intracardially with 4% paraformaldehyde solution in phosphate 270 

buffer (0.12M). The position of the electrodes (DiIC18(3), InterChim) was applied on the back of 271 

the probe before insertion) was confirmed histologically on Nissl-stained 60 µm sections 272 

(NeuroTrace 500/5225 Green Fluorescent Nissl Stain, Invitrogen). Only experiments with 273 

appropriate position of the probe were used for analysis (Figure 2A). 274 

Data collection and initial analysis 275 

Extracellular signal recorded from the silicon probes was amplified (1000x), bandpass filtered (1 276 

Hz to 5 kHz) and acquired continuously at 32 kHz (64-channel DigitalLynx; NeuraLynx) at 16-bit 277 

resolution. Raw data were preprocessed using a custom-developed suite of programs 278 

(Csicsvari et al., 1999). After recording, the signals were downsampled to 1250 Hz for the local 279 

field potential (LFP). Spike sorting was performed automatically, using KLUSTAKWIK (Harris et 280 

al., 2002), followed by manual adjustment of the clusters, with the help of autocorrelogram, 281 

cross-correlogram and spike waveform similarity matrix (KLUSTERS software, (Hazan et al., 282 

2006). After spike sorting, the spike features of units were plotted as a function of time, and the 283 

units with signs of significant drift over the period of recording were discarded. Moreover, only 284 

units with clear refractory periods and well-defined cluster were included in the analyses. 285 

Recording sessions were divided into brain states of theta and slow oscillation periods. The 286 

epochs of stable slow oscillations (SO) periods were visually selected respectively from the 287 

ratios of the whitened power in the slow oscillations band (1-2 Hz) and the power of the 288 
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neighboring band (20-30 Hz) of mPFC or NR LFP and assisted by visual inspection of the raw 289 

traces (Quilichini et al., 2010). 290 

Neurons were assigned as "NR neurons" by determining the approximate location of their 291 

somata relative to the recording sites, the known distances between the recording sites, the 292 

histological reconstruction of the recording electrode tracks and subsequent estimation of the 293 

recording sites. All the neurons recorded from sites located near the close contour of the NR 294 

were discarded. Neurons located at a minimal distance of 200µm of NR border and located 295 

within contours of the ventro-median, submedian or antero-median thalamic nuclei were 296 

classified as "other thalamic neurons" and used in the analysis (Ferraris et al., 2018). 297 

Data post-processing 298 

From the spike times, the instantaneous firing rates of each cell was calculated by counting the 299 

number of spikes inside a window of 50 ms, in overlapping intervals of 10 ms. The population 300 

firing rate was estimated averaging the single cell firing rates at each 10ms interval. Both the 301 

population rate and the single cell firing rate were smoothed with a Gaussian kernel of 5ms 302 

width. Peaks of population activity (AP) were identified as the points where the population rate 303 

amplitude was larger than the average rate plus 1 standard deviation. A separation between two 304 

consecutive peaks of at least 600 ms was imposed on the peak detection algorithm to avoid 305 

multiple peaks of activity within one up-state. For visualization purposes, all firing rate’s heat 306 

maps were normalized with the peak firing rate for each cell to guarantee a variation between 307 

[0:1]. 308 

Phase analysis and sequence identification 309 

LFP signals (from mPFC or NR) during slow oscillation phase were band-pass filtered between 310 

0.5 Hz and 2 Hz with a second order Butterworth filter to extract only the UP/DOWN transitions. 311 
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The time evolution of the phase during the UP/DOWN cycle was extracted performing the 312 

Hilbert transform of the filtered LFP. We used Rayleigh circular statistics (Ferraris et al., 2018, 313 

Berens, 2009) to compute the mean phase at which each neuron fires ("preferred phase") and 314 

to build their firing-phase histograms (Figure 1Ba). For visualization purposes, the resulting 315 

histograms depicted in the heat maps were normalized with the peak value of the distribution. 316 

For each cell, we then calculated a resultant vector characterized by an angle describing the 317 

average preferred phase and a magnitude with values between [0 1], quantifying the coherence 318 

of the phases. The template order was obtained by organizing the average preferred phase in 319 

increasing order (0 to 2π). 320 

Sequence reliability, sequence velocity and participation index 321 

We extracted the UP state duration as described in (Ferraris et al., 2018). At each UP state, the 322 

local activation order was calculated by measuring the time lag between the first activation of 323 

each neuron relative to the AP in a +/- 200ms window. Ordering the latencies in increasing order 324 

resulted in the local activation order. The reliability of a given sequence within a population peak 325 

was quantified as the Spearman rank correlation of the template order and the local activation 326 

order in that particular UP state. Sequences were considered reliable above 99% significance 327 

level. For each reliable sequence, the velocity of sequential activation was computed as the 328 

slope of a robust fit between the local activation order and the activation latency. To assess 329 

whether a neuron participated in a given sequence, the outliers in the robust fit were identified 330 

as those whose residual value were larger than twice the standard deviation of the residuals in 331 

the robust fit. The participation index is then calculated as the mean fraction of neurons that 332 

participated in the sequences of a recording session. A second linear fit between the local 333 

activation latency and the site of the linear probe closest to the neuron gives a measure of the 334 
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directionality of the sequence activation. A slope of the fit different than 0 implies an activation 335 

towards a given direction. Since this slope has units of time/electrode site, we multiplied the 336 

resulting value by 32 (the number of sites in the electrode) to account for the time required for a 337 

sequence to travel along the electrode. 338 

Activity peak triggered histogram (APTH)  339 

Storing the values of activation time lag relative to the AP at each UP state allows us to compute 340 

the so-called activity peak triggered histogram for each cell. With the APTH it is possible to 341 

assess the statistics of the firing latencies in the neighborhood of the UP state (+/- 200 ms). 342 

Once the APTH is obtained, one can calculate the variability of the activation lags as a measure 343 

of the firing extent around the peak reported in Figure 3C. Variability of the APTH can be 344 

calculated in analogy to the variance of a probability distribution function where τ is the mean 345 

value of the APTH (See Figure 3C insert). 346 

 SPW-Rs detection and analysis  347 

The procedure of SPW-Rs detection in the HPC stratum pyramidale LFP was based on those 348 

described previously (Ferraris et al., 2018, Isomura et al., 2006). Briefly, the LFP was digitally 349 

bandpass filtered [80 250] Hz, and the power (root-mean-square) of the filtered signal was 350 

calculated. The mean and SD of the power signal were calculated to determine the detection 351 

threshold. Oscillatory epochs with a power of 5 or more SD above the mean were detected. The 352 

beginning and the end of oscillatory epochs were marked at points where the power fell 0.5 SD. 353 

Once the SPW-Rs were detected, the SPW-R half time was calculated as the average between 354 

the start and the end of it. Then, the APTH for each cell was computed, taking each SPW-R half 355 

time as the activity peak. To test whether a cell robustly participates in the SPW-Rs, we 356 

compared the APTH against a uniform distribution with identical mean and standard deviation. 357 
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Cells whose APTH were different from the flat distribution above a 95% level were considered 358 

as robustly participating in the SPW-Rs. Cell participation ratio was obtained dividing the number 359 

of robustly participating neurons by the total number of recorded neurons for that session. 360 

Organizing the average time lag for robustly participating neurons in increasing order defined 361 

the template order for the ripple. For each SPW-R, the reliability of activation respect to the 362 

template was calculated via the Spearman rank correlation between the activation order of that 363 

SPW-R and the template order. To calculate this correlation, only the neurons that belong to the 364 

template order were considered. A correlation above 95% confidence interval was considered 365 

reliable. 366 

 Statistics 367 

All results reported are based on a significance threshold α=0.05, otherwise stated, and all 368 

groups included enough samples to enable rejection of the null hypothesis at that level. We used 369 

two sample Kolmogorov-Smirnov test to assess differences between distributions, and t-370 

Student’s test to evaluate differences in the mean of distributions. Correlation tests involving 371 

ranked variables (neuron indices and electrode sites) were performed via a Spearman rank 372 

correlation. We tested significant differences between percentages with a two proportion Z-test. 373 
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FIGURES & FIGURE LEGENDS 576 

Figure 1. Sequential dynamics of cell assemblies.  577 

A) Two template heat maps of normalized NR unit activities (top) with (a) mPFC or (b) HPC 578 

normalized unit activities showing the repetition of neuronal assemblies particularly in NR and 579 

mPFC.  The upper trace depicts the [0.5-2] Hz filtered LFP in (a) mPFC and (b) NR, where the 580 

UP states correspond to troughs in the LFP signal.  581 

B) (a) Phase distribution of the NR, mPFC, HPC and TH population firing (grouped data) as a 582 

reference to SO phase (depicted by the dashed curve). (b) Heat maps of normalized distribution 583 

of neurons preferred SO phase for NR, mPFC, HPC and TH. The activation order for each 584 

neuron is calculated as the average preferred phase. Heat maps are ordered according to the 585 

increasing value of average preferred phase (colored circles), defining the sequential activation 586 

template.  587 

C) Percentage of reliable sequences detected in the NR, mPFC, HPC and TH.  588 

D) Average Spearman correlation of reliable sequences only found in NR and mPFC. 589 
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Figure 1. Sequential dynamics of cell assemblies.   591 
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Figure 2. Spatial organization of NR and mPFC cell assemblies.  592 

A) Representation of the position of a linear silicon probe with 32 recording sites in (a) the NR 593 

and (b) mPFC. NR and mPFC contours (and layers) are delimited by the white dashed line over 594 

the green fluorescent Nissl staining (fmi: forceps minor of the corpus callosum; 3rd V: third 595 

ventricle; PrL: prelimbic area; IL: infralimbic area). The red-orange staining corresponds to the 596 

DiI that was deposited at the back of the silicon probe before insertion (D: dorsal; L: lateral).  597 

B) Relationship between anatomical dorso-ventral location of NR (left panel) and mPFC (right 598 

panel) neurons (location defined by the site of the probe recording the maximum amplitude of 599 

the action potentials) and the template rank showing a linear correlation for NR neurons but not 600 

for mPFC ones in a template experiment.  601 

C) Distribution of spatial propagation velocities across the probe for a template simultaneous 602 

recording of mPFC (red) and NR (blue) neurons.  603 

D) Mean propagation time across experiments for NR and mPFC.  604 

E) Percentage of spatially propagating cases found in NR and mPFC. 605 
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Figure 2. Spatial organization of NR and mPFC cell assemblies.    607 
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Figure 3. Inactivation of NR impairs reliable sequential activation of mPFC neurons 608 

at the beginning of the UP state.  609 

A) Two template heat maps of normalized mPFC unit activities in control and during NR 610 

inactivation condition showing less stable cell assemblies. The upper traces depict the [0.5-2] Hz 611 

filtered LFP in mPFC, where the UP states correspond to troughs in the LFP signal.  612 

B) Inter-spike interval distribution of mPFC neurons grouped data for control (red) and NR 613 

inactivation condition (purple).  614 

C) Grouped data of the variability of the APTH for control (CTR) and NR inactivation conditions 615 

(MSCI). Insert: APTH: the activity peak triggered histogram quantifies the lag distribution with 616 

respect to the population activity peak for each neuron. 617 

D) Distribution of the duration of the UP state in control (red) and NR inactivation (purple) 618 

condition, where a peak at short values indicates the emergence of shorter UP states.  619 

E) Number of reliable sequences found in mPFC when NR is inactivated (MSCI) as compared to 620 

control (CTR) condition (grouped data, n=3 experiments).  621 

F) Neurons participation to the reliable sequences (MSCI versus CTR, grouped data).   622 
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 Figure 3. Inactivation of NR impairs reliable sequential activation of mPFC neurons at 624 

the beginning of the UP state.  625 
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Figure 4: Inactivation of NR impairs reliable sequential activation of HPC neurons 626 

during SPW-Rs.  627 

A) Two template heat maps of normalized HPC unit activities in control (CTR) and NR 628 

inactivation (MSCI) condition. The upper traces depict the [0.5-2] Hz filtered LFP in mPFC, 629 

where the UP states correspond to troughs in the LFP signal, and the black arrow mark the 630 

presence of a SPW-R event.  631 

B) SPW-Rs occurrence is not changed when NR is inactivated (grouped data, n=3 experiments, 632 

n=913 SPW-R events in CTR, n=89 SPW-R events in MSCI).  633 

C) SPW-R events normalized power and inner frequency in control versus NR inactivation 634 

conditions.  635 

D) Proportion of reliable cell assemblies during SPW-Rs in control (CTR) and NR inactivation 636 

(MSCI) condition.  637 

E) Fraction of reliably participating HPC neurons to sequences during SPW-R events in control 638 

and NR inactivation conditions. 639 
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