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2	
	

Abstract 20	

Climate change will decrease average precipitation and increase rainfall 21	

variability in Eastern Mediterranean regions. This may affect the performance of 22	

many plant species either directly or via altered biotic interactions in ways that are 23	

hard to predict. In such highly fluctuating climates, year-to-year community variation 24	

may override long-term selection processes, thus masking directional community 25	

responses to climate change. 26	

Here we tested short-term responses of dryland plant communities to sharp 27	

changes in climatic conditions, by means of whole community reciprocal transplants 28	

of soil and seed banks. We exposed annual plant communities to two very different 29	

climates (Mediterranean and semi-arid) and measured changes in community 30	

composition, total biomass, plant density, and species diversity. In addition, we 31	

grouped species into dry-adapted and wet-adapted species in each community.  32	

Our results revealed that climate played a large role in determining community 33	

assembly. For both community origins, we observed a relative increase of dry-adapted 34	

species when exposed to the drier climate, and a relative increase in wet-adapted 35	

species in the wetter climate. However, the compositional shifts were much larger in 36	

semi-arid origin communities. At the same time community density, biomass and 37	

species richness remained remarkably stable across climates, indicating that 38	

community stability was maintained between climates by predictable asynchronous 39	

shifts of species. Similar but smaller shifts were present in the Mediterranean origin 40	

communities, where exposure to the drier climate reduced biomass and species 41	

richness.  42	

Our study suggests that large asynchronous variation in species abundances, 43	

matching high year-to-year rainfall variability, may provide a mechanism for 44	
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3	
	

community homeostasis, and slow down selection processes in response to climate 45	

change. However, increased occurrence of extreme droughts exceeding the climatic 46	

fluctuations to which species are adapted may, in the long-term, lead to loss of wet-47	

adapted species.  48	

	 	49	
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4	
	

Introduction  50	

Understanding how climate may alter overall available resources (Sardans et al. 51	

2008, Garcia et al. 2014) and impact upon community structure (Tilman and Downing 52	

1994, Gilman et al. 2010) is a major challenge in current ecological research (Maestre 53	

et al. 2012, Parmesan and Hanley 2015). In cold regions for example, warming is 54	

likely to improve growing conditions and thus increase plant community biomass by 55	

increasing nutrient mobilization and expanding the length of the growing season 56	

(Garcia et al. 2014). In contrast, decreased rainfall in drier regions will likely have 57	

negative impacts on primary productivity, community composition, and their 58	

corresponding ecosystem services (Sala and Lauenroth 1982, Peñuelas et al. 2007, 59	

Miranda et al. 2011). These effects may be particularly strong in those dryland 60	

ecosystems for which climate predictions indicate increasing incidents of droughts 61	

(Cubasch et al. 1996, Smiatek et al. 2011). Here, droughts and increasing 62	

temperatures will increase evapotranspiration, shorten the growing season and limit 63	

access to nutrients, thereby decreasing total community biomass (Peñuelas et al. 2007, 64	

Doblas-Miranda et al. 2015, Harrison et al. 2015). In extreme cases, this may lead to 65	

the collapse of entire ecological communities (Forey et al. 2010).  66	

One of the predicted impacts of climate change is a re-assembly of plant 67	

communities (Hobbs et al. 2006, Williams and Jackson 2007, Alexander et al. 2016) 68	

due to the differential ability of single species to either track their climatic niche or to 69	

survive under changed conditions, by means of adaptation or plasticity (Fernandez-70	

Going et al. 2013, Shi et al. 2015). Such community reshuffling may be expressed in a 71	

loss or gain of certain species, a shift in species relative abundance or both. In plant 72	

communities already exposed to large inter-annual variations in climate, immediate 73	

rearrangement of community assembly in response to climate extremes may be an 74	
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inherent property of plant communities, and may promote community stability in the 75	

long-term. This effect is particularly pronounced when species numbers are large and 76	

population sizes vary asynchronously (Doak et al. 1998, Schindler et al. 2015). 77	

Indeed, ecological theory and models support the idea that high inter-annual variation 78	

in species response to climate can lead to community-level stability (Anderson et al. 79	

1982, Tilman et al. 1998, Thompson et al. 2015, Abbott et al. 2017). This may be an 80	

important mechanism for maintaining dryland communities' stability in response to 81	

large year-to-year variation in rainfall, and for slowing down ongoing selection 82	

processes due to climate change (Bonebrake and Mastrandrea 2010, Bilton et al. 83	

2016).  84	

Although long-term climate manipulations are the gold standard in ecological 85	

climate impact research and are fundamental to understanding long-term community 86	

shifts (Brown et al. 2001, Rinnan et al. 2007, Blume-Werry et al. 2016), they are very 87	

costly to set up and maintain, often outliving funding cycles and scientific research 88	

positions (Lindenmayer et al. 2012). The monitoring of communities for short-term 89	

responses may be a useful complement to long-term experiments, as besides being 90	

less costly, can be vitally important for parsing mechanistic information about plant 91	

responses to large inter-annual variation, as well as extreme events (De Dato et al. 92	

2006, Barbosa et al. 2014, Blume-Werry et al. 2016). Reciprocal transplants represent 93	

a promising approach for indirectly studying plant responses to climate change on a 94	

short temporal scale. These manipulative experiments have been widely adopted in 95	

single species (e.g. Link et al. 2003, Casper and Castelli 2007, Macel et al. 2007, 96	

Alexander et al. 2015, Tomiolo et al. 2015) for studying local adaptation and, more 97	

recently, for studying their responses to a climate that matches conditions predicted 98	

by climate change scenarios (the so called "space-for-time approach"). Reciprocal 99	
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transplants have also been applied to entire communities in studies of soil 100	

microbiomes (Waldrop and Firestone 2006, Lazzaro et al. 2011), leaf litter (Ayres et 101	

al. 2009, Allison et al. 2013), and occasionally to whole plant communities in 102	

different habitats ranging from wetlands to alpine grasslands  (Maranon and 103	

Bartolome 1993, Wetzel et al. 2004, Wu et al. 2012, Alexander et al. 2015). However, 104	

the potential for using whole community reciprocal transplants to study plant 105	

community response to climate change has not been fully exploited, particularly in 106	

dryland systems, which often provide ideal conditions.  107	

Dryland ecosystems are often dominated by annual plants that survive the dry 108	

season as a permanent seed bank (Cohen 1966). Therefore, the community (i.e. the 109	

seed bank) can be conveniently transplanted as a whole during the dry season without 110	

any harm to the plants. In addition, by transplanting seed banks with their associated 111	

soil, it is possible to evaluate plant communities' response to climate while preserving 112	

soil abiotic and biotic interactions. To test the response of dryland annual plant 113	

communities characterized by very different climates, we transplanted home soil with 114	

seed bank among three sites situated along a steep aridity gradient in the Eastern 115	

Mediterranean region, ranging from an arid to Mediterranean climate. In this region, 116	

rainfall is the main limiting factor to plant growth (Ziv et al. 2014) and differs up to 5-117	

fold between the driest and wettest site(Holzapfel et al. 2006). The study sites used 118	

for our reciprocal transplant also hosted a long-term climate manipulation experiment 119	

(Tielbörger et al. 2014). This allowed for a comparison between long-term dynamics, 120	

resulting from consistently imposed climate change, and the short-term responses 121	

observed in our transplant experiment. Finally, we classified species based on their 122	

climatic requirements, adopting the Climatic Niche Group approach (CNG; sensu 123	

Bilton et al. 2016) that has been successfully employed for the species in our study 124	
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region (Bilton et al. 2016) and in other dryland ecosystems (Liu et al. 2018). By 125	

identifying those species responsive to drier or wetter conditions, the CNG approach 126	

provided us with testable predictions about shifts in community assembly across 127	

climates within the reciprocal transplants. 128	

  We predicted that the community emerging from the reciprocal soil transplants 129	

would be greatly determined by community origin, with less individuals emerging 130	

from drier origins than wetter origins. Secondly, we hypothesized that the climate (i.e. 131	

rainfall availability) at the transplant site would affect the emerging communities, 132	

resulting in less biomass and less individuals emerging from community origins 133	

exposed to drier climates. We also predicted that climate would select the emerging 134	

community from the species pool of each origin in a predictable manner, with more 135	

wet adapted species emerging in communities exposed to wetter climates, and more 136	

dry-adapted species in drier climates. 137	

 138	

Methods 139	

Study area 140	

This study was conducted in Israel at three fenced sites (area approximately 100 m 141	

x 400 m) with respectively Mediterranean (M) semi-arid (SA), and arid (A) climate.  142	

The three study sites share the same calcareous bedrock, southern aspect, altitude and 143	

mean annual temperatures, so that they differ chiefly in mean and variance of annual 144	

rainfall, and vegetation. The M site is located southwest of Jerusalem (N 31° 42’ E 145	

35° 3’) at 620 masl, on Terra Rossa soil. The climate is characterized by 550 mm 146	

average annual rainfall with 20% inter-annual variation. The SA site (N 31° 23’ E 34° 147	

54’) is located in the northern portion of the Negev Desert near the city of Beersheba, 148	

at 590 masl, on Light Brown Rendzina. Average annual rainfall is 270 mm with 149	
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approximately 30% inter-annual variation. The A site is located in the central Negev 150	

near Sde Boqer (N 30º52' E 34º46') at 470 masl, on desert Lithosol. Average annual 151	

rainfall amounts to 90 mm with 43% inter-annual variation (Holzapfel et al. 2006). 152	

The plant communities at the three sites are semi-natural shrublands dominated by 153	

Sarcopoterium spinosum (L.) Spach, and winter annuals (approx. 85% of all species) 154	

that persist during summer in the form of dormant seed banks stored in the soil (Noy-155	

Meir 1973, Alon and Steinberger 1999). The species pool is overlapping among sites, 156	

and annual plant cover amounts to 25% at the M site, 10% at the SA site, and < 1% at 157	

the A site (Tielbörger et al. 2014).  158	

Experimental set up 159	

During the summer of 2010, we collected soil with seed bank from forty square 160	

plots (20cm x 20cm, depth: 5cm) at the M and A sites and sixty plots at the SA site. 161	

Within each site, plots were situated at least 20 cm apart from each other and away 162	

from rocks and shrubs. Following Tomiolo et al. (2015) soil collected from each site 163	

was pooled to produce a baseline community as there is substantial small-scale 164	

heterogeneity in the seed bank (Siewert and Tielbörger 2010). The soil was stored in a 165	

net-house at the University of Rehovot, Israel, where it experienced summer 166	

temperatures necessary for breaking seed dormancy (Baskin et al. 1993). In 167	

September 2010, twenty of the previously excavated plots at each site were randomly 168	

selected and filled with home soil, while the remaining plots were filled with soil 169	

from the closest away-from-home site (i.e. M site received M and SA soil; SA site 170	

received M, SA and A soil; A site received SA and A soil, Supplementary Material 171	

Appendix 1 Fig. A1). Transplanted soil was separated from the surrounding soil by a 172	

layer of absorbent paper that provided initial isolation between soils, while not 173	

impeding water percolation. After transplanting, we placed patches of organza (a thin 174	
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transparent fabric) over the surface of each plot to avoid contamination from seed 175	

dispersal or seed predation (Petrů and Tielbörger 2008), and we removed them at the 176	

time of germination.  177	

Because the transplants were carried out during the dormant season we could 178	

relocate the community of dormant seeds and soil biota with minimum damage. By 179	

transplanting communities with their maternal soil we could test direct effects of 180	

climate (e.g. decreasing rainfall) while preserving biotic interactions with 181	

neighbouring plants and soil biota, which are also affected by the novel climate 182	

(Emmett et al. 2004). At peak development (spring 2011), we recorded the identity 183	

and number of individuals of the emerging species in each plot. In order to minimize 184	

edge effects, we excluded plants growing in the outer 1 cm margin of each plot. After 185	

species identification, aboveground biomass was collected, oven-dried at 70°C for 48 186	

hours and weighed.  187	

Unfortunately, the season of recording was very dry and the arid site received 188	

only 30% of the average annual rainfall. Therefore, only a handful of seedlings of two 189	

desert species (Stipa capensis, Erodium touchyanum) emerged at the arid site. As a 190	

result, there was no home arid community to be compared to the transplants, and we 191	

had to restrict our subsequent analyses to the reciprocal transplants between the SA 192	

and M community origins.  193	

 194	

Climatic Niche Groups (CNG) 195	

Each species within the target communities was assigned to a Climatic Niche 196	

Group (Bilton et al. 2016) classified by their distribution range in relation to rainfall. 197	

A similar method has been employed for defining thermal niches of species in high 198	

elevation and tundra habitats (Gottfried et al. 2012, Elmendorf et al. 2015), and 199	
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ideologically similar for Ellenberg values, which determine species habitat 200	

requirements based on several abiotic parameters (Ellenberg 1974). 201	

The rationale for the CNG grouping is that rainfall is the main driver of 202	

community composition in the region, therefore species sharing similar climate 203	

adaptations (approximated by the realized climatic rainfall niche) are likely to co-204	

occur in the same community by virtue of habitat filtering (García-Camacho et al. 205	

2017). Species realized climatic niche values were derived as in Bilton et al. (2016). 206	

For each single species the observed occurrences within Israel (distribution range) 207	

were overlaid with mean annual rainfall climate data, and the mean value was taken 208	

(obtained from BioGIS 2012, available at http://www.biogis.huji.ac.il/). Boundaries 209	

between climatic niche groups spanned similar ranges of average annual rainfall 210	

(approximately 130 mm) and resulted in four groups that ranked species with respect 211	

to their hypothesized response to climate. Climatic Niche Group 1 (CNG1) 212	

represented species associated with the lowest rainfall extremes of the gradient, 213	

conversely CNG4 gathered species distributed in areas with high rainfall. Species 214	

from all four CNGs were present in both communities (Supplementary Material, 215	

Appendix 2 Table A1), but varied in their proportional representation at each site, and 216	

could therefore be compared across sites and climates (Bilton et al. 2016).  217	

 218	

Statistical analyses  219	

We first analyzed how total density (number of individuals per plot), biomass, 220	

species richness (number of species per plot), evenness (Simpson’s evenness) and 221	

diversity (Shannon-Wiener Index) varied in response to climate, community origin 222	

and their interaction. In addition, we analyzed how the number of individuals 223	

belonging to each climatic niche group per plot (i.e. CNG density) varied in response 224	
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to climate, community origin, with respect to the four-level categorical explanatory 225	

variable CNG identity (i.e. CNG1 – CNG4), including all two-way and three-way 226	

interactions. We applied generalized linear models with negative binomial 227	

distribution to total individual, CNG density and species richness using the MASS 228	

package (Venables et al. 2002) within the R software version 2.14 (R Development 229	

Core Team 2014). Biomass, species diversity and evenness were analyzed using 230	

linear models. To meet model requirements, evenness was log transformed and 231	

biomass square root transformed. The significance of the models was assessed with a 232	

Type 3 ANOVA, using the “car” package (Fox and Weisberg 2011). Post-hoc tests 233	

were conducted using Tukey HSD test. Visual representation of the CNG density 234	

interactions was done using log-ratios (log(SA density + 1) - log(M density +1)). 235	

For testing how species composition varied with community origin and climate 236	

we used Redundancy Analysis (RDA, (Legendre et al. 2011)) in the R package 237	

‘vegan’ (Oksanen et al. 2015). The interaction term was included in a full model and 238	

confirmed using a step-wise approach. The data were Hellinger transformed 239	

(Legendre and Gallagher 2001) and scaled within plots. Significance of the model 240	

was tested using 999 permutations. To test if species composition could be explained 241	

by rainfall distribution range we regressed the resulting RDA ‘species mean scores’ 242	

against the ‘climatic niche value’ of each species, both for individual species and for 243	

the CNG classifications. Furthermore, we performed an RDA on the community-244	

weighted means (Garnier et al. 2007) using the species ‘climatic niche value’ as a 245	

pseudo-trait.  246	

 247	

Results   248	
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Overall, 97 species were recorded, among which 12.3% were grasses, 23.7% 249	

legumes and 64% belonged to other families (Supplementary Material, Appendix 2 250	

Table A1). In total, 68 species emerged from the semi-arid soil seed bank, 81 from the 251	

Mediterranean origin, and 53 species were shared between the two origins. Fourteen 252	

of these appeared in all four combinations of community origin and climate.  253	

 254	

Diversity, richness and biomass 255	

Total biomass, plant density, number of species and species diversity (Fig. 1b, 2a, 256	

b, Table 1) were all significantly higher for communities of M origin rather than SA 257	

origin. Additionally, for the M community origins, plant biomass, species richness, 258	

diversity (Fig.1a, b, d) and total density (Fig 2.a, b) were significantly lower when 259	

communities were exposed to the drier SA climates compared to their home climate, 260	

whereas evenness remained the same across climates (Fig. 1c). For the SA 261	

community origins, climate had no significant effect on any of the whole community 262	

parameters total density (Fig. 2a, b, Table 2), biomass, species richness or diversity 263	

(Fig.1, Table 1).  Higher evenness was found in SA community origins exposed to M 264	

climate compared to M community origins exposed to SA climate (Fig. 1c, Table 1).  265	

 266	

Relative abundance of CNG across sites and community origins  267	

Relative density of individuals changed considerably across community 268	

origins and CNG groups (Table 2). In particular, the relative abundance of CNGs 269	

shifted significantly across climates and community origins as indicated by the 270	

significant two-way interactions (Table 2, Fig. 2a-d, Supplementary Material 271	

Appendix 2 Table A2). In SA community origins, the mean abundance of individuals 272	

belonging to dry CNGs (CNG 1and 2) was halved in M climate compared to SA 273	
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climate; on the other hand individuals belonging to CNG 4, the wettest adapted group, 274	

were 6.5 times more abundant in M climate (Fig. 2a, c). In M communities, the shift 275	

in CNG relative abundances was less strong but the relative hierarchical response of 276	

the CNGs was in the same order (densities of CNG1 and 2 higher in SA climate; 277	

CNG3 and 4 higher in M climate). The largest shift was seen in CNG4 that counted 278	

twice as many individuals in home vs. away from home climate (Fig. 2b, d). The 279	

different magnitude in CNG shifts across community origins and climates was 280	

confirmed by a significant 3-way interaction (CNG x community origin x climate, 281	

Table 2, Fig. 2e, f).  282	

The RDA indicated four distinct communities emerging from the respective 283	

treatments, with a significant effect of community origin and climate on species 284	

assembly, as well as a significant interaction between these terms (Fig. 3a, b). Using 285	

simple correlations we assessed which plots/species scores changed and had most 286	

impact on each axis. We obtained three main RDA axes describing the species 287	

composition. For plot mean scores: RDA1 (9.2% explained) was highly correlated to 288	

overall differences between community origins, whereas the constrained RDA2 289	

(3.3%; explained) and RDA3 (1.7%; explained) distinguished the climate x 290	

community origin interaction term. For species mean scores, RDA1 was positively 291	

correlated to species Climatic Niche values, and the correlation was positive but less 292	

strong for RDA2 and RDA3 (Fig. 3c). Results were further validated by an RDA on 293	

the community weighted mean traits using species Climatic Niche values as a trait, 294	

and showed significant community origin and climate effects (p<0.05). In 295	

combination, these results suggest that rainfall niche strongly explained variation in 296	

species composition across treatments. 297	

 298	
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Discussion  299	

Our results revealed that climate played a large role in determining the species 300	

assemblages in our whole community transplant experiment, and that such changes 301	

were predictably related to possible species-specific climatic adaptations. One of our 302	

most notable findings was that large shifts in species composition occurred when 303	

transplants were exposed to vastly different climates, whereas total community 304	

parameters such as biomass, density, and diversity remained remarkably stable.  305	

Perhaps unsurprisingly, and as predicted from previous observations across the 306	

rainfall gradient (Tielbörger et al. 2014), communities establishing from the 307	

Mediterranean (M) origin soil had higher individual density and total biomass than 308	

semi-arid (SA) origins. This is also similar to other dryland systems, where rainfall 309	

acts as a limiting resource (Guo and Brown 1997, Cleland et al. 2013). Consistently, 310	

all four CNGs had higher densities of individuals establishing from the M origin 311	

compared to SA origin. However, the wetter species groups (CNG 3 & 4) were 312	

proportionally more represented in M community origins, and the drier species groups 313	

(CNG 1 & 2) were more abundant in SA community origins. This, consistently with 314	

the findings of Bilton et al. (2016), suggests that CNGs are representative of species 315	

rainfall requirements and possibly climatic adaptations at the different sites. All 316	

communities rapidly matched the concomitant climate with shifts in community 317	

composition across climates that were strikingly well explained by hierarchical 318	

switches in relative CNG abundances. Plants establishing from both community 319	

origins showed a relative increase of species assumed to be most dry adapted when 320	

exposed to the drier (SA) climate. Accordingly, wet adapted species were more 321	

abundant in both communities when exposed to the wetter (M) climate. Therefore, 322	

CNGs revealed species responses to short-term climate effects in a predictable way, 323	
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suggesting potential short-term selection mechanisms that act on the communities in 324	

response to yearly or extreme differences in rainfall. 325	

Our most intriguing finding was that climate not only selected for predictable 326	

species groups, but that the community origins differed greatly in the magnitude of 327	

the community shifts. The SA origin, with the more variable rainfall regime – both 328	

between and within years (Tielbörger et al. 2014) – also experienced the greater shifts 329	

in community composition. This result matches other studies showing that 330	

communities from drier climates often have higher inter-annual turnover of species 331	

composition (Guo and Brown 1997, Cleland et al. 2013). Fascinatingly, the 332	

magnitude of the compositional shifts between transplanted community origins was 333	

inversely related to changes in total community parameters across climates. Namely, 334	

in SA community origins total density, biomass and species richness remained 335	

constant. Conversely, for the M origin transplants, which had smaller compositional 336	

shifts, total density, biomass and richness decreased when exposed to the drier SA 337	

climate. Large inter-annual variation in species abundances often leads to higher 338	

community stability across time (Bai et al. 2004, Grime et al. 2008). Similar patterns 339	

have been previously explained in plant community studies, albeit in a different 340	

context, by the portfolio effect (Doak et al. 1998, Schindler et al. 2015). The portfolio 341	

effect predicts that greater numbers of species in a community lead both 342	

mathematically and ecologically to a greater chance of asynchronous relationships 343	

forming year-to-year. Here we show, consistent with a previous study (Cleland et al. 344	

2013), that in the community with the lower species richness (SA origin), greater 345	

asynchrony and greater species turnover led to greater stability across climates. This 346	

asynchrony is not random, but directly linked to species-specific climatic adaptations. 347	

Thus, asynchronous shifts in relative abundance of species according to their climate 348	
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adaptations may allow for fast responses to year-to-year climatic variation in dryland 349	

annual communities (Abbott 2017).  350	

In the short-term, high species turnover may assure community stability, by 351	

maintaining stable biomass and density, but in the long-term, such processes may also 352	

lead to greater resistance and stability of dry (SA) communities to rainfall fluctuations 353	

by favoring species adapted to more arid conditions. The high turnover is possible 354	

without immediate loss of species because in dryland environments subject to large 355	

year-to-year climatic variability, plants often display bet-hedging strategies such as 356	

long-lived seed banks and seed dormancy that can buffer against inter-annual 357	

fluctuations (Petrů and Tielbörger 2008, Tielbörger et al. 2012). Delayed germination 358	

of dormant seeds during unfavorable years decreases the risk of extinction over time 359	

and also promotes coexistence of species with different climatic requirements via 360	

storage effects (Chesson and Grubb 1990, Pake and Venable 1995). Interestingly, the 361	

findings from this short-term community transplant study are consistent with those of 362	

a parallel long-term experiment conducted at the M and SA sites (Tielbörger et al. 363	

2014), where community composition was monitored for 10 years in permanent plots 364	

receiving respectively ambient rainfall, experimental drought (-30% rainfall) or 365	

increased rainfall (+30% rainfall). Plant communities exposed to the long-term 366	

climate manipulation treatments showed no detectable long-term effect on total 367	

density, species richness and community biomass (Tielbörger et al. 2014). This 368	

unexpected community resistance may be attributable to the large variability in 369	

rainfall to which plant species in both community origins are pre-adapted (Tielbörger 370	

et al. 2014, Tomiolo et al. 2015). Also at the two time-scales, selection of species in 371	

relation to their CNG was observed (Bilton et al. 2016). However, while in the current 372	

study we found stronger short-term selection for SA origin communities, long-term 373	
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selection patterns were found to be weaker in SA and stronger for M communities 374	

(Bilton et al. 2016), suggesting that high inter-annual fluctuations result in stable 375	

composition in the long run, whereas low species turnover across years results in long 376	

term loss of wet-adapted species. 377	

Finally, the observation of the community-level responses among climates 378	

prompts an interesting parallel with well-known concepts of population ecology. High 379	

environmental variability may select for a high degree of phenotypic plasticity (Sultan 380	

1987, Pratt and Mooney 2013, Lazaro-Nogal et al. 2015, Spence et al. 2016). Thus, 381	

when exposed to novel climates, individuals will display a large plasticity in adaptive 382	

traits (Reed et al. 2011, Liancourt et al. 2015, Mathiasen and Premoli 2016). A better 383	

match between the new trait value and the novel climate (Valladares et al. 2014) 384	

confers an adaptive advantage and may result in stable fitness across home and away 385	

environments, i.e. fitness homeostasis (Richards et al. 2006, Nicotra et al. 2010) and 386	

may eventually assure the persistence of a species in changing climates. We propose 387	

an analogy to that concept on a community level, where relative species abundances 388	

(rather than trait values) shift across years (and sites) in order to better match the 389	

current climate. Here, we show that the SA community origin, which is historically 390	

exposed to larger year-to-year climatic variability (Holzapfel et al. 2006, Tielbörger et 391	

al. 2014), experienced a greater compositional fluctuation (or "compositional 392	

plasticity"), and this led to greater "community homeostasis" (i.e. maintenance of 393	

stable density and biomass) across climates.  394	

 Our overall findings allow some careful conclusions about the potential 395	

response of these communities to climate change. It should be noted that the variation 396	

in rainfall experienced by the community origins in our study approximated the 397	

extremes of climatic variability at each site, but exceeded the decrease in rainfall 398	
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predicted by climate change scenarios for the next 50-80 years (Smiatek et al. 2011, 399	

Tomiolo et al. 2015). These results suggest that, as long as inter-annual climatic 400	

fluctuations keep within the limits of climatic variability commonly experienced by 401	

these communities, and rainy years that replenish the seed bank periodically occur, 402	

wet adapted species will persist within the communities. However, with increasing 403	

drought and unpredictability, communities are likely to experience species loss that 404	

will affect primarily species with high rainfall requirements (Tielbörger et al. 2014, 405	

Bilton et al. 2016). The similar results from the long-term experiment with our 406	

reciprocal transplant indicate that the latter may be a powerful complement to long-407	

term field experiments. However, it should be noted that annual communities are 408	

particularly suited for this approach and the same may not hold for long-lived 409	

communities. Moreover, the fast response observed in our communities is uncommon 410	

compared to temperate systems, where a lag between shifts in climatic conditions and 411	

subsequent changes in community structure is often observed (Adler and Levine 412	

2007, Jones et al. 2016). This suggests a higher resistance and resilience of dryland 413	

ecosystems to extreme events compared to temperate ecosystems (Ruppert et al. 414	

2015). 415	
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 654	

Figures and tables	655	

	656	
Table 1: Type III ANOVA table results for the models applied to individual density, species 657	

richness, species diversity, evenness and total biomass. Lines correspond to response variables 658	

and columns to explanatory variables of each model. In each column the first value represent 659	

Chi-square test values and the second the p-value. Probability values for significant terms are 660	

reported in bold.  661	

 Origin Climate Origin x Climate 

Density 312.86; <0.001 0.12; 0.72 0.59; 0.44 

Species richness 281.29; <0.001 12.99; <0.001 0.085; 0.77 

Evenness 11.96; <0.001 7.18; 0.009 0.028; 0.86 

Species diversity 130.41; <0.001 10.40; 0.001 1.36; 0.24 

Total biomass 103.86; 0.001 2.34; 0.13 4.66; 0.03 

 662	

  663	
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Table 2: Type III ANOVA table of results for Generalized Linear Models determining the effect 664	

of community origin, climate and Climatic Niche Group (CNG) on plant community densities 665	

establishing from seed banks. N=320. 666	

Effect DF LR Chi-sq. P-value 

Origin 1 236.93  <0.00001 

Climate 1 2.35  0.12540 

CNG 3 343.21  <0.00001 

Origin x Climate 1 0.07  0.78714 

Origin x CNG 3 83.55  <0.00001 

Climate x CNG 3 50.09  <0.00001 

Origin x Climate x 

CNG 3 16.85  0.00076 

 667	

 668	
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 675	
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Figure Captions:  683	

Figure 1: Mean ±1SE A) species richness (i.e. number of species per plot), B) total biomass, C) 684	

evenness, D) diversity, of annual plant communities established from two community origins 685	

(‘M’ Mediterranean; ‘SA’ Semi-Arid) grown in two sites (i.e. climates: ‘M’ Mediterranean; ‘SA’ 686	

Semi-Arid). 	687	

 688	

Figure 2: Impact of community origin, climate and Climatic Niche Group (CNG) on plant 689	

densities establishing from seed banks in home vs. away-from-home climate. Each Climatic Niche 690	

Group (CNG) aggregates species with similar climatic adaptation, ranging from dry climates 691	

(CNG 1) to wetter climates (CNG 4). Fig. 2 a, b: Total mean individuals density across climates is 692	

broken down according to CNG relative abundance. Fig. 2 c-f: Differences in relative densities of 693	

CNG groups are expressed as log ratios, where positive values indicate higher CNG relative 694	

abundances in SA community origins or sites, whereas negative values indicate higher CNG 695	

relative abundances in M community origins and climate. Community composition shifts are 696	

represented across community origins (2c), climates (2d) and the combination of the two (2 e,f).  697	

 698	

 699	

Figure 3: Redundancy Analysis (RDA) of species compositional change in community origins 700	

emerging in home vs. away-from-home climates. Indicated are the 95% confidence intervals for 701	

the groupings/categories (ellipses). Fig. 3 a, b represents the plot centroids of each community 702	

origin-climate combination. Lines are vectors from the centre of a category to each site score 703	

(points). RDA-axis 1: correlated to distance between origins, RDA-axis 3: the effect of climate on 704	

SA community origins, and RDA-axis 2 the effect of climate on M community origins.  In red: SA 705	

community origins - SA climate; yellow: SA origins - M climate; blue: M origins- M climate; 706	

green: M origins -SA climate.  Fig. 3c represents the species centroids for each species group. 707	

Lines are vectors connecting the centre of each group with species scores.  In red: CNG1, yellow: 708	

CNG2, green: CNG3, blue: CNG4.  709	

 710	
 711	
	 712	
 713	
 714	
 715	
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 716	
Figure	1	717	
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