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Odor identity is encoded by spatiotemporal patterns of activity in olfactory receptor neurons
(ORNs). In natural environments, the intensity and timescales of odor signals can span several
orders of magnitude, and odors can mix with one another, potentially scrambling the combinato-
rial code mapping neural activity to odor identity. Recent studies have shown that in Drosophila
melanogaster the ORNs that express the olfactory co-receptor Orco scale their gain inversely with
mean odor concentration according to the Weber-Fechner Law of psychophysics. Here we use a
minimal biophysical model of signal transduction, ORN firing, and signal decoding to investigate
the implications of this front-end scaling law for the neural representations of odor identity. We
find that Weber-Fechner scaling enhances coding capacity and promotes the reconstruction of odor
identity from dynamic odor signals, even in the presence of confounding background odors and
rapid intensity fluctuations. We show that these enhancements are further aided by downstream
transformations in the antennal lobe and mushroom body. Thus, despite the broad overlap between
individual ORN tuning curves, a mechanism of front-end adaptation, when endowed with Weber-
Fechner scaling, may play a vital role in preserving representations of odor identity in naturalistic
odor landscapes.

Animals identify and discriminate odors using olfac-
tory receptors (Ors) expressed in olfactory receptor neu-
rons (ORNs) [1–4]. Individual ORNs, which typically
express a single Or, respond to many odorants, while
individual odorants activate many distinct ORNs [5–8].
Odors are thus encoded by the combinatorial patterns
of activity they elicit in the sensing periphery [5–7, 9–
11], patterns decoded downstream into behavioral re-
sponse [12]. Still, ethologically-relevant odors are often
mixed with background ones [13] and intensity can vary
widely and rapidly as odors are carried by the wind [14–
17]. How are odors recognized reliably despite these con-
founds? In Drosophila melanogaster, ORN dose response
curves exhibit similar Hill coefficients but distinct power-
law distributed activation thresholds [6, 18], which to-
gether with inhibitory odorants enhance coding capac-
ity [6, 18–20]. In antennal lobe (AL) glomeruli, mutual
lateral inhibition normalizes population response, reduc-
ing the dependency of activity patterns on odor concen-
tration [21, 22]. Further downstream, sparse connectiv-
ity to the mushroom body (MB) helps maintain neu-
ral representations of odors, and facilitates compressed
sensing and associative learning schemes [23–26]. Fi-
nally, temporal features of neural responses contribute
to concentration-invariant representations of odor iden-
tity [27–30].

Here we examine how short-time ORN adaptation at
the very front-end of the insect olfactory circuit con-
tributes to the fidelity of odor encoding. Our theoret-
ical study is motivated by the recent discovery of in-
variances in the response dynamics of ORNs expressing

the co-receptor Orco. The responses of ORNs to diverse
odorants of the same concentration differ widely, due to
differences in odor-receptor affinities [6, 31, 32] and stim-
ulus dynamics [33]. However, downstream from this in-
put nonlinearity, signal transduction and adaptation dy-
namics exhibit a surprising degree of invariance with re-
spect to odor-receptor identity: reverse-correlation anal-
ysis of ORN response to fluctuating stimuli produces
highly stereotyped, concentration-invariant response fil-
ters [18, 33, 34].

These properties stem in part from an apparently in-
variant adaptive scaling law in ORNs: gain varies in-
versely with mean odor concentration according to the
Weber-Fechner Law of psychophysics [35, 36], irrespec-
tive of the odor-receptor combination [34, 37, 38]. The
invariance of this relatively fast adaptation (∼250 ms)
can be traced back to feedback mechanisms in odor trans-
duction, upstream of ORN firing [34, 37–39], which de-
pend on the activity of the signaling pathway rather than
on the identity of its receptor [39]. The generality of the
adaptive scaling suggests it could be mediated by the
highly conserved Orco co-receptor [40–43]. Indeed, phos-
phorylation sites have been recently identified on Orco,
some being implicated in odor desensitization, albeit over
much longer timescales [43, 44].

While in a simple system such as E. coli chemo-
taxis [45], adaptive feedback via the Weber-Fechner
Law robustly maintains sensitivity over concentration
changes, the implication for a multiple-channel system –
which combines information from hundreds of cells with
overlapping receptive fields – is less straightforward. Here
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FIG. 1: A Simple ORN model. Or/Orco complexes Ca respond to odor concentration s(t) = (s1(t), ..., si(t), ..., sN (t)) by binding
odorant molecules (S in the diagram) of type i and concentration si(t), where t is time. Or/Orco complexes stochastically switch

between active and inactive states, where the steady-state active fraction is determined by the free energy difference (in units of kBT )
between active and inactive conformations in the unbound state, εa(t), and by odorant binding with dissociation constants K∗

ai and Kai

(SI text). Adaptation is mediated by a negative feedback [39] from the activity of the channel onto the free energy difference εa(t) with
timescale τ . ORN firing rates ra(t) are generated by passing Aa(t) through a linear temporal filter h(t) and a nonlinear thresholding

function f . B Odor mixtures are represented by N -dimensional vectors s, whose components si are the concentrations of the individual
molecular constituents of s. C Step-stimulus firing rate of 50 ORNs to the 150-possible monomolecular odors s = si, given power-law

distributed K∗
ai [18]. D Temporal responses of two representative ORNs to a pulse stimulus, for several monomolecular odorants

(colors). E Representative ORN tuning curves (a single row of the response matrix in C, ordered by magnitude). Tuning curves are
diverse, mimicking measured responses [6].

we combine a biophysical model of ORN adaptive re-
sponse and neural firing with various sparse signal de-
coding frameworks to explore how ORN adaptation with
Weber-Fechner scaling affects combinatorial coding and
decoding of odor signals spanning varying degrees of in-
tensity, molecular complexity, and temporal structure.
We find that this front-end adaptive mechanism pro-
motes the accurate discrimination of odor signals from
backgrounds of varying molecular complexity, and aids
other known mechanisms of neural processing in the ol-
factory circuit to maintain representations of odor iden-
tity across environmental changes.

RESULTS

Model of ORN sensing repertoire

We consider a repertoire of M = 50 Orco-expressing
ORN types modeled using a simple extension of a mini-

mal model of odor-to-ORN firing [34] that reproduces the
type of Weber-Fechner adaptation and firing rate dynam-
ics measured in individual Drosophila ORNs in response
to Gaussian and naturalistic signals. Within ORNs of
type a = 1, ...,M , we model Or-Orco complexes as non-
selective cation channels [40] (Fig. 1a) that stochastically
switch between active and inactive states, while simul-
taneously binding to odorants i with dissociation con-
stants, K∗

ai and Kai, respectively [34, 39]. Assuming
these processes are faster than other reactions in the sig-
naling pathway, the quasi-steady state active fraction Aa
of channels in ORNs of type a reads:

Aa(t) =

(
1 + eεa(t)

1 +
∑N
i si(t)/Kai

1 +
∑N
i si(t)/K

∗
ai

)−1

. (1)

si(t) are the time-dependent concentrations of the in-
dividual monomolecular components of the odor signal
s(t) at time t, and N = 150 is the size of the molecu-
lar odorant space (Fig. 1b). Inward currents elicited by
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activating Or-Orco channels [40] eventually result in a
negative feedback onto Aa(t) [34, 38, 39]:

τ
dεa(t)

dt
= Aa(t)−A0. (2)

Here, τ is the adaptation time and εa(t) is the free en-
ergy difference in units of kBT between active and inac-
tive conformations of the unbound Or-Orco channel. We
assume changes in free energy are limited to the finite
range εL,a < εa(t) < εH,a [34]. Firing rate is minimally
modeled by filtering the activity Aa(t) with the bi-lobed
filter h(t) and rectifying nonlinearity f [34]:

ra(t) = f
(
h⊗Aa(t)

)
, (3)

where ⊗ is convolution. When deconvolved from stim-
ulus dynamics, the shapes of the temporal kernels of
Drosophila ORNs that express Orco are largely receptor-
and odor-independent [18, 33, 34]. Moreover, adaptation
is not intrinsic to the receptor [39]. Accordingly, for sim-
plicity τ , A0, h(t), and f are assumed independent of
receptor and odorant identities.

We assume that the lower cutoffs εL,a are receptor-
dependent and choose them from a normal distribu-
tion. This variability ensures that ORNs are activated
above quiescence (set at 5 Hz) at distinct stimulus lev-
els [33, 34]. Diversity among odor-ORN responses arises
mainly from the distribution of chemical dissociation con-
stants (Fig. 1c). For simplicity we only consider agonists,
i.e. K∗

ai > Kai, and assume receptors can only bind one
odorant at a time. The analysis can easily be extended
to include inhibitory odorants, which increases coding ca-
pacity [19]. We choose the dissociation constants from a
power law distribution (α = 0.35) recently found across
ORN-odor pairs in Drosophila larvae [18]. For a handful
of ORNs we choose a very small value for one of the K∗

ai

to mimic high responders to private odorants relevant to
innate responses [32]. These private odors do not affect
the general findings.

While this phenomenological model could be ex-
tended to include further details – e.g. we could re-
lax the quasi-steady-state assumption in Eq. 1 and use
a more complex model for neural firing [34] – this
minimally-parameterized form captures the key dynam-
ical properties of Orco-expressing ORNs relevant to our
study: receptor-independent adaptation [39] with Weber-
Fechner scaling [34, 37, 38] that maintains response time
independent of mean stimulus intensity [33, 34], along
with a diversity of both steady state and temporal firing
patterns in response to a panel of monomolecular odor-
ants [6, 27–29, 31] (Fig. 1d-1e).
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FIG. 2: Front-end adaptation maintains representations of odor
identity across background and intensity confounds. A Abstract

representation of ORN responses in a low-dimensional embedding.
Each point represents the repertoire of ORN firing rates, in

response to an odor environment with both a foreground (point
color) and background (point size) odor. In the adaptive system,

εa are set to their steady state values given odor B alone.
B Similar to A, but now for odors whose concentrations span 4
decades (represented by point size). Here, the background odor

identity is the same for all concentrations.

Concentration-invariant preservation of coding
capacity and abstract representations of odor

identity

To investigate how front-end Weber-Law adaptation
might preserve representations of odor identity within
the repertoire of ORN response, we project the 50-
dimensional firing rates r down to a 2-dimensional space
using t-distributed stochastic neighbor embedding (t-
SNE) [46]. We first perform this embedding for an adap-
tive or non-adaptive system interacting with an odor en-
vironment containing a foreground odor A atop a back-
ground odor B (Fig. 2a). Both odors are sparse mix-
tures, with K < N odorants of similar concentrations,
odor ”identity” being the particular set of odorants in
the mixture. Adaptation to the background is enacted
by setting εa to their steady state values (via Eq. 2) in
response to odor B alone. With adaptation in place,
responses cluster by the identity of odor A, suggesting
that ORN responses appropriately encode the identity
of novel odors irrespective of background signals – once
these backgrounds have been “adapted away” (Fig. 2a).
This is notable, since, due to the combinatorics of ORN
response (Fig. 1c), the adapted εa distributions are them-
selves heavily dependent on background identity. Re-
sponses in the non-adaptive system, meanwhile, exhibit
no such clustering (Fig. 2a). A similar separation by odor
identity is preserved in the adaptive system if we consider
responses across different intensities (Fig. 2b).

Preservation of these representations is enabled by the
preservation of coding capacity. Accordingly, we calcu-
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lated the mutual information between odor and ORN
response in time, verifying that the the adaptive sys-
tem retains coding capacity as it confronts novel odors
(Fig. S1). The non-adaptive system maintains coding
capacity, though in a far more limited range of odor con-
centration.

Front-end adaptation enhances odor discrimination
in complex environments

How well does the preservation of coding capacity
translate to better signal reconstruction? One poten-
tially complicating factor is the disparity between sen-
sor dimension and stimulus dimension: while Drosophila
only express ∼ 60 Or genes [47], the space of odorants
is far greater [25]. However, many naturally-occurring
odors are comprised of a small subset of odorants, which
is suggestive as the theory of compressed sensing (CS)
guarantees their reconstruction [48, 49]. It is unknown
whether CS is implemented in the Drosophila olfactory
circuit [50], and we use it mainly as a tool to quantify
how front-end adaptation potentially affects odor decod-
ing, later verifying our conclusions with other classifica-
tion techniques that incorporate the known architecture
of the olfactory system.

To incorporate the linear framework of CS, we treat
the nonlinear odor encoding exactly but approximate the
decoding to first order (this linearization simplifies the
computation, but is not critical for our general results;
see SI text and Fig. S7-S8). Odors s are assumed sparse,
with K � N nonzero components si with mean con-
centration s0. We first examine how foreground odors
are recognized when mixed with background odors of a
distinct identity but similar intensities, quantifying de-
coding accuracy as the percentage of odors correctly de-
coded within some tolerance (Fig. 3a). Without adapta-
tion, accuracy is maintained within the range of receptor
sensitivity for monomolecular backgrounds, but is virtu-
ally eliminated as background complexity rises (Fig. 3b).
The range of sensitivity is broader in the adaptive system,
and is substantially more robust across odor concentra-
tion and complexity.

In realistic odor environments, the concentration and
duration of individual odor whiffs vary widely [16]. We
wondered how well a front-end adaptation mechanism
with a single timescale τ could promote odor identity
detection in such environments. As inputs to our cod-
ing/decoding framework, we apply a naturalistic stimulus
intensity recorded using a photo-ionization detector [34]
(Fig. 3c) to which we randomly assign sparse identities
from the N -dimensional odorant space. To mimic back-
ground confounds, we combine these signals with static
odor backgrounds, and then calculate the percentage of
decoded whiffs. We assume the decoder has short-term
memory: detected odor signals are only retained for τM

seconds in the immediate past. Without ORN adapta-
tion, sufficiently strong backgrounds eliminate the abil-
ity to reconstruct the identity of individual odor whiffs,
irrespective of the complexity of either the foreground
or background odor (Fig. 3d, blue lines). In the adap-
tive system, this is substantially mitigated (red lines in
Fig. 3d), provided the memory duration τM is at least
as long as the adaptation timescale τ (darker red lines).
Because this short-term adaptation depends on the ac-
tivity of the Or-Orco channel rather than on the identity
of the receptor [33, 34, 39], the values of τ and A0 were
assumed the same for all ORNs; still, our results hold if
these invariances are relaxed (SI, Fig. S4-S5).

Front-end adaptation enhances primacy coding

The primacy coding hypothesis has recently emerged
as an intriguing framework for combinatorial odor
coding. Here, odor identity is encoded by the set
(but not temporal order) of the p earliest responding
glomeruli/ORN types, known as primacy set of order
p [30]. If the activation order of ORNs were invari-
ant to the strength of an odor step or pulse, primacy
sets would in principle form concentration-invariant rep-
resentation of odor identity. Though our coding frame-
work uses the full ORN ensemble in signal reconstruction,
some of these responses may contain redundant informa-
tion, and a smaller primacy subset may suffice. To ex-
amine this, we apply our model to a sigmoidal stimulus
that rises to half-max in 50 ms, calculating decoding ac-
curacy in time. Since ORNs activate sequentially, the
primacy set is defined by the ORN subset active when
the odor is decoded. For simple odors, a limited set of
earliest responding neurons fully accounts for the odor
identity (Fig. 4a), in agreement with primacy coding. As
expected for more complex odor mixtures, the full reper-
toire is required for accurate decoding. Primacy coding
also predicts that for stronger stimuli, responses occur
earlier, since the primacy set is realized quicker, which
our framework replicates (Fig. S2).

Beyond mere consistency, however, front-end adapta-
tion might also enhance primacy coding in different envi-
ronments, such as background odors, which could scram-
ble primacy sets. To investigate this, we considered again
a sigmoidal odor step (odor A), now atop a static back-
ground (odor B) to which the system has adapted. We
compared the primacy sets of odor A for 1000 different
choices of odor B, finding that primacy sets are highly
consistent across background confounds for all but the
smallest primacy orders (Fig. 4b-4c). This also holds
true for backgrounds of different concentrations (Fig. S2),
suggesting a central role for front-end adaptation in re-
inforcing primacy codes across differing environmental
conditions.
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FIG. 3: Front-end adaptation promotes accurate odor decoding in static and naturalistic odor environments. A Odor stimuli produce
ORN responses via odor-binding and activation and firing machinery, as described by Eqs. 1-3. Odors are then decoded using compressed

sensing by linearizing around a background s0 and minimizing the constrained L1 norm of the odor signal. Odors are assumed sparse,
with K nonzero components, K � N . Odors are considered accurately decoded if the K sparse components are estimated within 25%

and the N -K components not in the mixture are estimated below 10% of s0. B Decoding accuracy of foreground odors in the presence of
background odors. C Recorded trace of naturalistic odor signal; whiffs (signal ¿ 4 a.u.) demarcated by purple bars. This signal is added
to static backgrounds of different intensities and complexities. D Individual plots show the percent of accurately decoded odor whiffs as

a function of background odor intensity, for the non-adaptive (blue) and adaptive (red) systems, for different tM (line shades).

Contribution of front-end adaptation for odor
recognition within the Drosophila olfactory circuit

Signal transformations in the sensing periphery are
propagated through the remainder of the olfactory cir-
cuit. How does front-end adaptation interact with
these subsequent neural transformations? ORNs express-
ing the same OR converge to a unique AL glomeru-
lus, where they receive lateral inhibition from other
glomeruli [21, 51]. This inhibition implements a type of
divisive gain control [22], normalizing the activity of out-
put projections neurons, which then synapse onto a large
number of Kenyon cells (KCs) in the mushroom body.
To investigate how odor representations are affected by
interactions between front-end ORN adaptation and this
lateral inhibition and synaptic divergence, we extended
our ORN encoding model by adding uniglomerular con-
nections from ORNs to the antennal lobe, followed by
sparse, divergent connections to 2500 KCs [23, 24, 52].
Inhibition was modeled via divisive normalization, with
parameters chosen according to experiment [22]. We
quantified decoding accuracy by training and testing a
binary classifier on the KC activity output of sparse odors
of distinct intensity and identity, randomly categorized as
appetitive or aversive. For simplicity, odor signals of the
same identity but differing intensity were assigned the
same valence. We trained the classifier on NID sparse

odor identities at intensities chosen randomly over 4 or-
ders of magnitude, then tested the classifier accuracy on
the same odor identities but of differing concentrations.

Classification accuracy degrades to chance level as NID

becomes very large (Fig. 5a). When acting alone, either
divisive normalization or ORN adaptation can help, al-
though the effect of ORN adaptation is stronger. When
both are active, accuracy improves further, suggesting
that these distinct adaptive transformations may act
jointly at different stages of neural processing in preserv-
ing representations of odor identity. As expected, these
gains mostly vanish for the same odors chosen from a
narrower range of concentrations (Fig. S3).

If we train the classifier to distinguish odors by iden-
tity rather than valence, the benefits conferred by divi-
sive normalization do not appear until NID is substantial,
with accuracy below 65% for NID > 50 (Fig. 5b). On
the other hand, with ORN adaptation accuracy remains
above 85% for more than 1000 odor identities, strongly
implicating front-end adaptation as a key player in main-
taining odor identity representations, before signals are
further processed downstream.
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ORNs.

DISCUSSION

We have found that Weber-Law adaptation at the
very front-end of the insect olfactory circuit [34, 37, 38]
may contribute significantly to the preservation of neu-
ral representations of odor identity amid confounding
odors and intensity fluctuations. Drawing on experimen-
tal evidence for a number of ORN-invariant response fea-
tures [18, 20, 33, 34, 39], we have found that this mech-
anism of dynamic adaptation confers significant benefits
in coding fidelity, without the need for ORN-specific pa-
rameterizations. Still, our results hold when these invari-
ances such as adaptation timescale or baseline activity
are relaxed (SI Figs. S4-S5). In the olfactory periphery,
front-end Weber Law adaptation therefore appears fairly
robust, a consequence of controlling gain via feedback
from channel activity [34, 39, 45], rather than through
intrinsic, receptor-dependent mechanisms. While our
framework incorporates many observed features of the
Drosphila olfactory system – Weber-Law adaptation,
power-law distributed receptor affinities, temporal filter
invariance, connectivity topologies – it is minimal. We
considered only one of the chemoreceptor families ex-
pressed in the fly antenna [1] and ignored possible contri-
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FIG. 5: A Accuracy of binary classification by odor valence, as
a function of the number of distinct odor identities classified by

the trained network (concentrations span 4 orders of magnitude),
in systems with only ORN adaptation, only divisive

normalization, both or neither. B Same as (A) but now
classifying odors by identity.

butions of odor binding proteins [53, 54], inhibitory odor-
ants [19], and odorant-odorant antagonism [55], which
could further boost coding capacity and preserve repre-
sentation sparsity. Useful extensions to our nonlinear-
linear-nonlinear model might incorporate ephaptic cou-
pling between ORNs housed in the same sensillum [56],
global inhibition in the mushroom body [57], and the ef-
fects of long-term adaptation [43].

Previous studies have characterized various neural
mechanisms that help preserve combinatorial codes. Lat-
eral inhibition between glomeruli helps tame saturation
and boost weak signals [22]. The sparse degree of connec-
tivity to either the olfactory bulb (vertebrates) or mush-
room body (insects) may also be precisely tuned to opti-
mize the capacity to learn associations [24]. In this work,
we find that some of these downstream features act in
concert with front-end dynamic adaptation in maintain-
ing representations of odor identity.

Other studies have implicated the unique temporal
patterns of neural response as signatures of odor iden-
tity [27–29, 58]. ORN and projection neuron time traces
form distinct trajectories in low-dimensional projections,
and cluster by odor identity, much as we have found here
(Fig. 2). In our framework, temporal coding is implicit:
because the input nonlinearity depends on the diversity
of binding affinities, odor signals are naturally formatted
into temporal patterns that are both odor- and ORN-
specific (Figs. 1d-1e). Further, the short required mem-
ory timescales (τM ∼ τ ∼ 250 ms) suggest that only
brief time windows are needed for accurate odor identifi-
cation, consistent with previous findings [27]. Moreover,
we find that front-end adaptation enhances the robust-
ness of other combinatorial coding schemes, such as pri-
macy coding [30], which relies on the temporal order of
ORN activation but not absolute firing rate (Fig. 4).

In the well-characterized chemosensory system of bac-
terial chemotaxis, Weber Law adaptation is enacted
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through a feedback loop from the output activity of the
receptor-kinase complexes onto the enzymes modifying
receptor sensitivity [45]. It is interesting that some as-
pects of this logic are also present in ORNs: although
the molecular players are different (and still largely un-
known), it has been shown that transduction activity
feeds back onto Or-Orco cation channel opening, en-
abling the Weber-Fechner relation [34, 38, 39]. That this
adaptation mechanism appears to act similarly across
ORNs [33, 34, 38] suggests the possible involvement of
the universal co-receptor Orco, whose role in long-term
adaptation has recently been reported [41–43]. Further,
the identification of 4 subunits comprising the Orco-Or
ion channel suggest that generic Or/Orco complexes may
contain multiple odorant binding sites, which when in-
cluded in our model supports our general findings (Fig.
S6).

Weber Law ensures that sensory systems remain in
the regime of maximum sensitivity, broadening dynamic
range and maintaining information capacity [59]. For a
single-channel system, this requires matching the mid-
point of the dose-response curve to the mean ligand con-
centration [60], a strategy which may fail in multi-channel
systems with overlapping tuning curves: adaptation to
one signal could inhibit identification of others, if the
signals excite some but not all of the same sensors. Our
results show that this strategy is still largely functional.
This can be traced to the observation that in CS, accu-
racy is guaranteed when sufficiently distinct odor identi-
ties produce sufficiently distinct ORN responses, a con-
dition known as the restricted isometry property [49].
Indeed, the Weber-Fechner scaling increases the likeli-
hood that this property is satisfied, beyond that in the
non-adaptive system (SI text and Figs. S7-S8). Still, re-
stricted isometry does not require that response reper-
toires are invariant to environmental changes. That is,
even if the subset of active ORNs were concentration-
dependent, odors could still in principle be fully recon-
structible by CS. Nonetheless, our results in t-SNE clus-
tering (Fig. 2), primacy coding (Fig. 4b-4c), and odor
classification (Fig. 5) suggest that such response invari-
ance is a natural byproduct of front-end adaptation. To-
gether, this implies that Weber Law adaptation, whether
required by the olfactory circuit for precise signal recon-
struction (as in CS) or for developing odor associations
(as in classification), can play an integral part in main-
taining combinatorial codes amid changing environmen-
tal conditions.

METHODS

Equations 1-2 are integrated numerically using the Eu-
ler method with a 2 ms time step. For ORN firing
(Eq. 3), h(t) is bi-lobed [33]: h(t) = ApGam(t;α1, τ1) −
BpGam(t;α2, τ2), A = 190, B = 1.33, α1 = 2, α2 = 3,

τ1 = 0.012, and τ2 = 0.016, where pGam is the pdf of
Gamma(α, 1/τ). Nonlinearity f is modeled as a linear
rectifier with 5 Hz threshold. For t-SNE dimensionality
reduction, ORN responses were generated for odor signal
combinations consisting of 1 (among 10) distinct fore-
ground odors A atop 1 (among 50) distinct background
odors B, each of complexity K = 5, for Fig. 2a. Fig. 2b
plots responses for 10 odors (K = 5) at 40 concentrations
spanning 4 decades, atop a random sparse background
odor (K = 5) of similar magnitude.

For compressed sensing decoding, sparse components
si are chosen as si = s0+∆si where s0 is set as the center
of linearization and ∆si ∼ N (s0/3, s0/9). Reconstructed
signal components ŝi = s0 + ∆si are computed by min-
imizing

∑
i |∆si| subject to ∆ra =

∑
i dra/dsi

∣∣
s0

∆si
where ∆ra = ra(s) − ra(s0) are the “excess ORN firing
rates about the linearization point. For static stimuli, εa
equals the fixed point of Eq. 2 in response to the back-
ground stimulus. For fluctuating stimuli, εa is updated in
time by continuously integrating ra(t), via Eqs. 2 and 3;
thus, only knowledge of ra(t) is needed by the decoder.
The naturalistic odor signal (Fig. 3d) was generated by
randomly varying flow rates of ethyl acetate and mea-
suring the concentration with a photo-ionization detec-
tor [34]. Statistics mirroring a turbulent flow [16] were
verified (Fig. S9).

For the network model, the AL-to-MB connectivity
matrix J1, is chosen such that each KC connects pre-
synaptically to 7 randomly chosen AL glomeruli [23, 24].
The results shown in Fig. 5 are an average of 10 distinct
instantiations of this random topology. The Z = 2500
KCs are then connected by a matrix J2 to a readout layer
of dimension Q, where Q = 2 for binary and Q = NID for
multi-class classification. Both AL-to-MB and MB-to-
readout connections are perceptron-type with rectified-
linear thresholds. The weights of J1 and J2 are chosen
randomly from ∼ N (0, 1/

√
7) and ∼ N (0, 1/

√
Z), re-

spectively. Only the J2 and the MB-to-output thresh-
olds are updated during supervised network training, via
logistic regression (for binary classification) or its higher-
dimensional generalization, the softmax cross entropy
(for multi-class classification).
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Supporting Information Text

Mathematical model

Model of odor binding, Or/Orco activation, and ORN firing. We model an odor as an N -dimensional vector s = [s1, ..., sN ],
where si > 0 are the concentrations of individual volatile molecules (odorants) comprising the odor. The olfactory sensory
system is modeled as a collection of M distinct Or/Orco complexes indexed by the sub index a = 1, ...,M , each of which can
be bound with any one of the odorant molecules, and can be either active (firing) or inactive (quiescent). At first we assume
there is one binding site per complex; this will be generalized to many sites. We consider the binding and activation processes
to be in equilibrium, assigning each state a corresponding Boltzmann weight, where the zero of energy is set by the unbound,
inactive state Ca. These weights are:

Ca 1
C∗a exp(−βεa)
Casi exp(−β(−Eai − µi))
C∗asi exp(−β(−(E∗ai − εa)− µi), [1]

where εa (assumed positive) is the free energy difference between the active and inactive conformation of the unbound receptor,
and Eai and E∗ai are the free energy differences (assumed positive) between the unbound and bound state for the inactive and
active receptor, respectively. µi = µ0 + β−1 log(si/s0) is the chemical potential for odorant species i in terms of a reference
chemical potential µ0 at concentration s0, s0 exp(−βµ0) = si exp(−βµi), which can be traded for the thermodynamic-relevant
disassociation constants Kai = s0e

β(−Eai−µ0). Adding up contributions from all i odorants, the active fraction is:

Aa =
C∗a +

∑
i
C∗asi

Ca +
∑

i
Casi + C∗a +

∑
i
C∗asi

=

(
1 + eεa

1 +
∑N

i
si
Kai

1 +
∑N

i
si
K∗

ai

)−1

, [2]

where we have expressed free energies in units of kBT = β−1 for notational convenience.
This expression can be generalized for the case of multiple, independent binding sites through some simple combinatorial

factors. Consider first an odorant i which can bind one of two locations on receptor a. There are then 4 possible inactive
states: both sites unbound, site 1 bound, site 2 bound, both sites bound. Combined with the active states, there are therefore
8 states for odorant i and receptor a, with energies:

active {1, −Eai − µi, −Eai − µi, −2Eai − 2µi}
inactive {εa, −(E∗ai − εa)− µi, −(E∗ai − εa)− µi, −(2E∗ai − εa)− 2µi} [3]

In the active fraction, Eq. 2, the Boltzmann factors combine through the binomial theorem, giving (for a single odorant
environment i):

Aa(odorant i, 2 binding sites) =

(
1 + eεa

(1 + si
Kai

)2

(1 + si
K∗

ai
)2

)−1

. [4]

This expression generalizes for an arbitrary number of odorants and independent binding sites through the appropriate
combinatorial factors, giving an active fraction of

Aa(N odorants, R binding sites) =

[
1 + eεa

(
1 +

∑N

i
si
Kai

1 +
∑N

i
si
K∗

ai

)R]−1

. [5]

Finally, firing rate dynamics are assumed linear-nonlinear:

ra(t) = f

(∫ t

h(t− τ)A(τ)dτ
)
, [6]

where h(t) and f are a temporal filter and rectifying linear unit (with threshold θ = 5 Hz) as noted in the main text.

Compressed sensing decoding

Compressed sensing decoding of ORN response. Compressed sensing (CS) addresses the problem of determining a sparse
signal from a set of linear measurements, when the number of measurements is less than the signal dimension. Specifically, it is
a solution to

y = Rx, [7]

where x ∈ RN and y ∈ RM are vectors of signals and responses, respectively, and R is the measurement matrix. Since
measurements are fewer than signal components, then M < N , whereby R is wide rectangular and so Eq. 7 cannot be simply
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inverted to produce x. The idea of CS is to utilize the knowledge that x is sparse, i.e.g only K of its components, K � N are
nonzero. Both the measurements and sparsity are thus combined into a single constrained optimization routine:

x̂i = argmin
N∑
i

|xi| such that y = Rs [8]

where x̂i are the optimal estimates of the signal components and the sum, which is known as the L1 norm of x, is a natural
metric of sparsity (1).

The L1 norm is a convex operation and the constraints are linear, so the optimization has a unique global minimum.
To incorporate the nonlinear response of our encoding model into this linear framework, we assume that the responses are
generated through the full nonlinear steady state response, Eq. 2- 6, but that the measurement matrix R needed for decoding
uses a linear approximation of this transformation. Expanding Eq. 6 around s0 = s−∆s gives

∆ra(t) = ra(s(t))− ra(s0(t)) [9]

∆ra(t) =
∫ t

dτh(t− τ)
N∑
i

dAai
ds

∣∣
s0

∆si [10]

ra(s0) =
∫ t

dτh(t− τ)
N∑
i

Aa0 [11]

dAai
ds

∣∣∣∣
s0

= Aa0(1−Aa0)

[
1
Kai

(
1 +

∑
j

s0,j

Kaj

)−1

− 1
K∗ai

(
1 +

∑
j

s0,j

K∗aj

)−1]
[12]

where Aa0 = A(s0) and where Eqs. 10 and 11 hold only for integrands above 5 Hz (and are zero below), as per the linear
rectifier f . We assume that the neural decoder has access to background s0, presumed learned (this assumption can be relaxed;
see below), and to the linearized response matrix, Eq. 12, but must infer the excess signals ∆si from excess ORN firing rates
∆ra(t). Thus, this corresponds to the CS framework (Eq. 8) via ∆r→ y, ∆s→ x, and A′ai

∣∣
s0
→ R. We optimize the cost

function in Eq. 8 using sequential least squares programming, implemented in Python through using the scientific package
SciPy.

Iterative Hard Tresholding (IHT) and the Restricted Isometry Property in compressed sensing. We stress that the purpose of
response linearization is simply to apply compressed sensing reconstruction directly using linear programming, without worrying
about issues of local minima in Eq. 8. This allows us to isolate the impact of Weber Law adaptation from the particularities
of the numerics. An alternate technique for compressed signal reconstruction, iterative hard thresholding (IHT), does not
minimize the constrained L1 norm directly, rather applying a hard threshold to an iteratively updated signal estimate (2).
IHT can be generalized straightforwardly to nonlinear constraints, and would actually dispense with the need for a learned
background s0, simply initializing the iterations from s0 = 0. Remarkably, this technique works quite well even for non-linear
measurements (3). We demonstrate the applicability of the IHT algorithm to our odor decoding system in Fig. S8, which
reproduces qualitatively the findings in the main text. For these calculations, no background odor was assumed, each iterative
decoding being initialized at the zero vector.

IHT provides an alternate computational technique of nonlinear CS, which could be used to both extend and verify our
results. Further, it allows us to illustrate why Weber Law adaptation maintains signal reconstruction fidelity in our olfactory
sensing model. Like CS using L1-norm minimization, IHT exhibits amenable reconstruction and convergence properties under
the guarantee of the so-called restricted isometry property (RIP) (4). Loosely, RIP measures the closeness of matrix operator
to an orthogonal transformation when acting on sparse vectors. The degree to which RIP is satisfied can be understood in
terms of the spectrum of a measurement matrix A. In particular, if λi are the eigenvalues of AT

k Ak, where Ak is any k ×m
submatrix of A, and

1− δk ≤ λmin ≤ λmax ≤ 1 + δk

is satisfied for some δk, then A satisfies the RIP with constant δk. Plainly, the RIP states that the eigenvalues of AT
k Ak, when

acting on k-sparse vectors, are centered around 1. Thus, to intuit why signal reconstruction breaks down in the non-adaptive
sensing system, we can investigate the eigendecomposition of various linearizations of the measurement matrix. We do this
now, starting with a brief description of the IHT.

In the linear setting, IHT seeks sparse signals via the following iterative procedure (2):

xk+1 = HK(xk + µRT (xk + (y−Rxk))) [13]

where xk is the kth estimate of the sparse signal x, µ is a step size for the iterations, and y, R are as defined above. Hk(·) is a
thresholding function which sets all but the largest K values of its argument to zero. The nonlinear extension to IHT is (3):

xk+1 = HK(xk + µAT
xn

(xk + (y−A(xk)))), [14]
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where A is a nonlinear sensing function and Axn is a linearization of A about the point xn. Reconstructibility for k-sparse
signals is guaranteed if Axn satisfies RIP for all xn and all k-sparse vectors (2). To get a sense of how this is preserved in the
adaptive system, we calculate the eigenvalues for 1000 choices of xn, acting on random signals of given sparsity K (Fig. S7).
Since the RIP is sensitive to constant scalings of the measurement matrix (while the actual estimation problem is not), we
scaled all columns of Axn to norm unity (5). This normalizes the eigenvalues of AT

xn
Axn to center near unity before calculating

the eigendecomposition, allowing us to assess the degree to which the RIP is satisfied. This scaled matrix can be used directly
in Eq. 14 (3, 5). The spectra of these matrices indicates that the RIP becomes far more weakly satisifed in the non-adaptive
system than in the adaptive one, for sufficient odor complexity and intensity.
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Fig. S1. Front-end adaptive feedback preserves information capacity of the ORN sensing repertoire. Mutual information between signal s(t) = sA(t) + sB(t) and response
r(t) is calculated at various points in time t for an odor environment consisting of two step odors, A and B. A Odor A, with concentration sA(t), turns on at time tA and a odor
B, with concentration sB(t), turns on at some later time tB . Both odors have similar intensities∼ s0 and similar molecular complexity (k = 4). B Mutual information as a
function of s0 for the non-adaptive system, respectively, at different time points after tA, corresponding to the dots in A. The mutual information carried by distinct ORNs is
represented by the shaded region; their average is plotted by the heavy line. In the non-adaptive system, the mutual information peaks in the regime of high sensitivity after
the arrival of odor A (purple, blue), and shifts leftward with the onset of odor B (teal, green). The leftward shifts occurs since stronger signals are more prone to response
saturation (compromising information transfer) as odor B arrives. C Same as B, now for the adaptive system. The MI mimics the non-adaptive case at the onset of odor A,
before adaptation has kicked in (purple). As the system adapts and responses decrease toward baseline, previously saturating signal intensities now cross the regime of
maximal sensitivity, which therefore shifts rightward to higher s0 (dark blue). Much later, but before the arrival of odor B, the ORNs that responded now fire at a similar adapted
firing rate∼ 30 Hz, irrespective of odor identity, so the mutual information drops to zero. However, having now adjusted its sensitivity to the presence of odor A, the system can
respond appropriately to odor B: the MI at tB is nearly 6 bits across decades of concentration immediately following tB (green).
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Fig. S2. Additional results pertaining to the primacy coding hypothesis. A Percent of active ORNs required for 75% accuracy of a steep sigmoidal odor step, as a function of
odor step intensity and odor complexity. For low complexities, a primacy set of fewer ORNs may be sufficient to decode the full odor signal; for higher complexities, the entire
ORN repertoire is required. B In the primacy coding hypothesis, the primacy set is realized sooner for stronger odor signals, so odors are decoded earlier in time, resulting in a
perceptual time shift with increasing odor concentration (6). We also find this shift in our compressed sensing decoding framework (right plot), which rises monotonically with
step height for various odor complexities, in agreement with primacy coding. C The consistency of a primacy code across changes in background odor concentration, in a
system with Weber Law adaptation. We calculate the primacy set for odor A (step odor; black) in the presence of either a weak, medium, or strong background (dotted lines;
1x, 10x, 100x a.u.), assuming the system has adapted its response to the background as described in the main text. Averaged across odor A identities, primacy sets for
odor A when in the 1x background are nearly identical to those when odor A is in the 10x background (right plot; yellow). The same holds true when comparing the 1x and
100x backgrounds, for sufficiently large primacy order, above 8 or so right plot; purple). This indicates that Weber Law adaptation preserves primacy codes across disparate
environmental conditions.
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Fig. S3. Accuracy of binary classification by odor valence, for odors whose concentrations span a narrow range of concentrations (1 order of magnitude). Accuracy is plotted as
a function of the number of distinct odor identities classified by the trained network, in systems with only ORN adaptation, only divisive normalization, both or neither. Decoding
gains conferred by divisive normalization and/or ORN adaptation are much smaller than when odors span a much larger range of concentrations, as shown in the main text.
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Fig. S4. Decoding accuracy for system with broader distribution of adaptive timescales τ . A Distribution of timescales for all ORNs a (purple dots). Here, τa ∼= 10X where
τ = 250 ms as in the main text and X ∼ N (0, 0.2). B Individual plots show the percent of accurately decoded odor whiffs (same fluctuating odor signal used in the main
text) as a function of background odor intensity, for the non-adaptive (blue) and adaptive (red) systems, for different τM (line shades). Plots are arrayed by the complexity of the
naturalistic signal (column-wise) and the complexity of the background odor (row-wise).
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Fig. S5. Benefits conferred by Weber-Fechner adaptation remain for a broader distribution of baseline firing rates Aa0, now assumed to be ORN-dependent and chosen from a
normal distribution. A Distribution of Aa0. B Decoding accuracy of foreground odors in the presence of background odors.
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Fig. S6. Benefits conferred by Weber-Fechner adaptation remain for 2 binding sites per receptor. This might conceivably occur in insect olfactory receptors, heterotetramers
consisting of 4 Orco/Or subunits that gate a central ion channel pathway (7). Plotted is the decoding accuracy of foreground odors in the presence of background odors.
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Fig. S7. Eigenvalue distribution of AT
xn

Axn , where Axn is a m× k submatrix of the column-normalized linearized ORN response matrix A, evaluated at the linearization
point xn. Note that xn is k-sparse, but its components do not necessarily align with the k columns chosen for the sub-matrix. Eigenvalues are calculated for the adaptive
(orange) and non-adaptive (blue) systems, for 1000 randomly chosen linearization points xn and submatrices. Plots are arranged for various odor sparsities (by row) and odor
intensities (by column). The restricted isometry property is satisfied when the eigenvalues lie between 0 and 2 (black vertical line), and is more strongly satisfied the more
centered the distribution is around unity. The increase in near-zero eigenvalues for the non-adaptive system at higher odor complexities and intensities (lower right plots)
indicates the weaker fulfillment of the restricted isometry property for thhse signals, and leads to higher probability of failure in compressed sensing signal reconstruction.
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Fig. S8. Decoding of odor signals (no background odors) using the IHT algorithm (2, 3) qualitatively reproduces the results from the main text, which used traditional CS with
background linearization. In the adaptive case, IHT actually exhibits superior accuracy to traditional CS, though IHT demands more compute time. The results here show odor
decoding accuracy for sparse odor signals of given complexity and intensity, averaged over 10 distinct identities. Odors are considered accurately decoded if the K sparse
components are estimated within 25% and the components not in the mixture are estimated below 10% of s0. The iterative algorithm was initialized at x̂ = 0 and run forward
until x̂ was stationary, or 10000 iterations were reached. Step size µ in Eq. 14 was set to s0/20. At each step, the linearized response (Axn in Eq. 14) was evaluated at the
result of the previous iteration. IHT also requires an assumption on the number of components in the mixture (which defines HK (·) in Eq. 14); here, that was set to twice the
actual sparsity of true signal.
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Fig. S9. Distribution of whiff durations in naturalistic stimulus, compared to the theoretical prediction (8).
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