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Abstract 12 

Fast information transmission in neural networks is heavily influenced by short-term synaptic 13 
plasticity (STP), and the type and timescale of STP varies by cell-type and brain region. Although 14 
STP has been widely characterized in vitro from recordings of postsynaptic potentials or currents, 15 
characterizing STP in in vivo in behaving animals is difficult due to the lack of large-scale 16 
intracellular recordings. Here, we use paired extracellular observations to estimate the short-term 17 
dynamics of synaptic transmission from spikes alone. We introduce an augmented generalized 18 
linear model (GLM) that includes a dynamic functional connection as well as several, non-synaptic 19 
factors that alter spike transmission probability. Our model captures the diverse short-term 20 
dynamics of in vivo spike transmission at identified synapses and accurately captures the effects 21 
of local pre- and postsynaptic spike patterns. We applied this model to large-scale multi-electrode 22 
recordings to describe stimulus-dependent shifts in spike transmission and cell-type specific 23 
differences in STP. 24 

Introduction 25 

Neural information processing is largely governed by synapses and their dynamics [1,2]. Short-26 
term synaptic plasticity (STP) alters synaptic transmission on timescales from a few milliseconds 27 
to several seconds depending on the sequence of presynaptic spiking. Presynaptic STP arises from 28 
a mixture of two main processes: depletion of neurotransmitter-containing vesicles, which causes 29 
depression, and the elevation of residual Ca2+ in the presynaptic terminal, which causes facilitation 30 
by increasing vesicle release probability [3]. This can be observed in intracellular recordings 31 
where, following repetitive stimulation of the presynaptic terminal, the amplitudes of postsynaptic 32 
potentials (PSPs) or currents (PSCs) will either decrease (depression) or increase (facilitation) 33 
[3,4]. The degree of STP differs depending on the pre- and postsynaptic cell type [5] and brain 34 
region [6,7]. Functionally, STP can act as a temporal filter [8], can allow neural circuits to 35 
specialize for specific tasks [9,10], and may also underlie gain control [11], network stability [12], 36 
and long-term synaptic plasticity [13]. Here we focus on understanding how STP-induced changes 37 
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in PSP/PSC amplitudes shape postsynaptic spiking. In vivo studies have shown that postsynaptic 38 
spiking probability, similar to the amplitude of PSP/PSCs, depends on the recent history of 39 
presynaptic spiking [14,15]. Just as PSP/PSCs show diverse patterns of depression and facilitation, 40 
the postsynaptic spiking probability also appears to have complex patterns depending on the brain 41 
region and cell-types [16]. However, postsynaptic spiking probability is modified by many 42 
additional variables besides STP at a single synaptic input. Here we aim to understand how the 43 
pattern of presynaptic spiking activity and short-term synaptic plasticity shape postsynaptic 44 
spiking probability. 45 

To do so, we use simultaneously recorded pre- and postsynaptic spiking activity to detect and study 46 
putative monosynaptic connections. When an excitatory, monosynaptic connection is present, 47 
cross-correlations between the spiking of a pre- and postsynaptic neuron often show a rapid, 48 
transient increase in postsynaptic spikes following the presynaptic spike. This occurs at an interval 49 
reflecting the presynaptic axonal conduction time plus the synaptic delay (usually < 4 ms) [17,18]. 50 
However, this cross-correlation is not static. Previous studies have found that the cross-correlation 51 
often differs for presynaptic spikes that are part of a burst compared to isolated spikes [14]. Spike 52 
transmission probability appears to depend on the timing of previous presynaptic spikes, and one 53 
factor influencing spike probability may be STP [19,20]. For example, depressing synapses would 54 
have more reliable synaptic transmission in response to isolated presynaptic spikes following long 55 
inter-spike intervals (ISIs) compared to shorter intervals (in bursts) [14,16]. On the other hand, 56 
facilitating synapses would show a stronger response to presynaptic spikes following shorter ISIs 57 
(bursts) compared to the presynaptic spikes following longer ISIs (isolated) [21]. By looking at 58 
the corresponding cross-correlograms from a subset of presynaptic spikes with specific ISIs, 59 
previous studies have found highly diverse, non-monotonic spike transmission patterns for 60 
different synapses [16]. This diversity in patterns of spike transmission probability, however, is 61 
not solely attributable to STP. When two presynaptic spikes occur in close succession, the 62 
membrane time-constant may cause postsynaptic potentials (PSP) to sum and increase the spike 63 
probability even if the individual PSPs were sub-threshold [22]. Moreover, the history of 64 
postsynaptic spiking also affects spike probability such that even if the PSP is strong, it may not 65 
trigger a spike if it falls within the refractory period or during an after-hyperpolarization (IAHP) 66 
current [23]. Finally, slow fluctuations in the overall excitability of the postsynaptic neuron, due 67 
to neuro-modulation, for instance, could also change synaptic transmission probability [24]. In 68 
different synapses the degree that each factor contributes varies and leads to diverse patterns of 69 
postsynaptic spike transmission probability. 70 

The overall correlation structure in spiking data can often be estimated by generalized linear 71 
models (GLMs) [25,26]. However, previous models have treated these interactions as static, and, 72 
thus, cannot capture dynamic changes in spike transmission probability. Here we extend these 73 
GLMs to describe dynamic interactions between neurons and account for the diversity of spike 74 
transmission patterns [26–28]. For each individual presynaptic spike, our model aims to predict 75 
postsynaptic spikes accounting for the postsynaptic neuron’s baseline firing rate, slow fluctuations 76 
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of the postsynaptic firing rate, the effect of postsynaptic spiking history, and a coupling term 77 
affected by synaptic summation and short-term synaptic plasticity. The conditional intensity of our 78 
model provides estimates of postsynaptic spiking probability following every single presynaptic 79 
event based on the previously observed sequence of pre- and postsynaptic spiking. The split cross-80 
correlogram only describes the average response conditioned on the ISI preceding the most recent 81 
presynaptic spike. By using a model-based approach we can incorporate the full sequence of 82 
presynaptic spikes beyond the most recent one, explicitly account for factors such as postsynaptic 83 
history, and link the observed patterns of spike transmission to the underlying dynamics of vesicle 84 
depletion and release probability. 85 

To evaluate the model, we first examined its ability to capture the observed patterns of spike 86 
transmission probability for three well-studied, strong putative synapses using pre- and 87 
postsynaptic spike observations from: 1) a pair of neurons in the mouse thalamus, 2) an auditory 88 
nerve projection onto a spherical bushy cell (ANF-SBC) in the gerbil, and 3) a neuron in 89 
ventrobasal (VB) thalamus of the rabbit projecting to a putative fast-spike inhibitory neuron in 90 
primary somatosensory (S1) barrel cortex (VB – Barrel). Short-term synaptic dynamics of this 91 
latter system have been extensively characterized in vivo [14,29,30]. Similarly, ANF-SBC 92 
synapses have been extensively studied in previous experiments and are well-characterized in vitro 93 
[31–33]. Using the auditory brainstem connection, we explore how synaptic transmission 94 
probability changes depending on the stimulus. Our result suggests that a simplified model, 95 
without considering short-term plasticity, is insufficient to explain how patterns of spike 96 
transmission change as the pattern of presynaptic input changes. Finally, we apply our model to 97 
spiking data from a large-scale, multi-electrode array recorded from multiple areas in an awake 98 
mouse. Here we investigate the STP dynamics in putative synapses from excitatory neurons onto 99 
two putative inhibitory subtypes (e.g. FS: fast-spiking, RS: regular-spiking). We find that these 100 
two types of connections have distinct patterns of spike transmission, where excitatory-FS 101 
connections appear to be slightly more depressing than excitatory-RS connections. Together, these 102 
results illustrate the diversity of spike transmission patterns in vivo and present one potential 103 
approach to studying short-term synaptic dynamics in behaving animals. 104 

Most previous approaches to describing interactions between neurons using spiking activity have 105 
focused on static functional connectivity. These models improve both encoding and decoding 106 
accuracy and have been shown to capture physiological network structure in some cases [34]. Here 107 
we model dynamic functional connectivity where the effect of each presynaptic spike on the 108 
probability of postsynaptic spiking depends on the previously observed sequence of presynaptic 109 
spiking. This augmented GLM can be directly compared with the observed spike transmission 110 
probability and also allows us to disentangle the contributions of short-term synaptic plasticity, 111 
synaptic summation, presynaptic firing rate fluctuations, and spike history. Moreover, we find that 112 
modeling dynamic functional connections allows us to better predict postsynaptic responses 113 
compared to the static models. Since modeling static functional connectivity can improve decoding 114 
[25,26,35], modeling dynamic functional connectivity may improve decoding further as well. As 115 
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multi-electrode arrays improve, and the number of simultaneously recorded neurons increases, 116 
models of dynamic functional connectivity may provide insight into not just network structure, but 117 
also the extent of depression or facilitation in these networks, as well as differences in network 118 
dynamics across multiple brain areas and under different behavioral conditions. Here, our findings 119 
suggest that, at least in some cases, in vivo spike transmission dynamics differ substantially for 120 
different stimuli and different cell-types.  121 

Results 122 

Short-term synaptic plasticity directly affects synaptic information processing by altering the 123 
amplitude of presynaptic currents [2], but in most neural systems it remains unclear how these 124 
presynaptic effects translate to altered postsynaptic spike probability. Postsynaptic spiking is 125 
affected by many factors including short-term plasticity, postsynaptic spike history, summation of 126 
PSPs, and slow fluctuations in presynaptic firing rate. Here we developed a statistical model that 127 
includes each of these factors and allows their effects to be estimated solely using pre- and 128 
postsynaptic spiking activity. In this approach, working with spikes rather than PSC/PSPs enables 129 
us to understand the short-term changes in synaptic transmission probability in vivo where large-130 
scale intracellular recordings have not been achieved. 131 

Spike transmission probability varies strongly as a function of presynaptic ISIs 132 

Here we define spike transmission probability as the probability of postsynaptic spiking in a 133 
window shortly after each presynaptic spike. One conventional approach to study spike 134 
transmission and changes in transmission probability are cross-correlograms. Cross-correlograms 135 
of excitatory monosynaptic connections show a rapid, transient increase in the postsynaptic spiking 136 
probability shortly (usually < 4ms, although this depends on the presynaptic axonal conduction 137 
delay) after the presynaptic spike [17]. The timing and shape of the cross-correlogram depends on 138 
the synaptic delay, the strength of the connection and varies between synapses. However, in the 139 
overall cross-correlogram since all presynaptic ISIs are averaged, the dependence of spike 140 
transmission probability on the presynaptic ISIs remains hidden (Fig. 1A). To determine the effect 141 
of presynaptic ISI on spike transmission probability we can calculate the cross-correlogram for a 142 
subset of presynaptic spikes with a specific ISI. and previous studies showed that transmission 143 
probabilities can vary for different ISIs within the same synapse [14,16]. Moreover, the short-term 144 
dynamics of spike transmission probability can differ for different synapses as a function of 145 
presynaptic ISIs. To illustrate this diversity, we examined three strong synapses from three distinct 146 
neural systems: (i) a pair of neurons in thalamus in a mouse, (ii) a projection from ventrobasal to 147 
somatosensory barrel cortex (VB-Barrel) in a rabbit, and (iii) the auditory nerve fiber to spherical 148 
bushy cell projection in a gerbil (ANF-SBC). Although the presynaptic neurons have diverse ISI 149 
distributions (Fig. 1B), splitting the spikes into ISI quantiles and calculating the correlogram for 150 
each quantile, demonstrates how postsynaptic responses differ following short and long 151 
presynaptic ISIs. For the pair of neurons in thalamus, spike transmission has a higher probability 152 
at short and long intervals and a lower probability for mid-range ISIs. For VB-Barrel transmission 153 
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probability is higher for longer ISIs, while for ANF-SBC the highest transmission probability 154 
occurs at intermediate intervals (Fig. 1C). 155 

 156 

Fig. 1: Spike transmission probability depends on the presynaptic ISI and differs between synapses. 157 
A) Cross-correlograms between pre- and postsynaptic spiking show an increase in the postsynaptic spike 158 
count (or probability) after a short latency, indicative of a monosynaptic connection. Efficacy (Eff.) for 159 
each synapse denotes the ratio between numbers of postsynaptic spikes in the synaptic peak (horizontal 160 
bars) corrected for the baseline number of expected postsynaptic spikes to number of presynaptic spikes. 161 
B) Inter-spike interval distributions (log-scale) for the presynaptic neuron for three different synapses. The 162 
distributions are color-coded into 5 quantiles with equal number of presynaptic spikes. C) For each ISI 163 
quantile, we calculate a separate cross-correlogram. Colors correspond to (B) going from shorter 164 
presynaptic ISIs (left) to longer ISIs (right). Note that both the baseline firing rate and the synaptic peak for 165 
each connection change as a function of presynaptic ISI. Solid lines overlaying the cross-correlograms 166 
illustrate model fits used to estimate the synaptic effect and the smooth baseline.  167 

The shape of spike transmission patterns depends on multiple factors 168 

In synapses exhibiting short-term synaptic plasticity the postsynaptic response after each 169 
presynaptic spike changes according to the recent history of presynaptic spiking [28,36]. However, 170 
besides synaptic dynamics there are additional factors that alter spike timing. At short presynaptic 171 
ISIs, membrane potential summation can lead to larger PSPs and increased spike probability, even 172 
in absence of short-term synaptic plasticity [22]. The spiking nonlinearity and the history of 173 
postsynaptic spiking can also alter how a given pattern of presynaptic input is transformed into 174 
postsynaptic spiking [26,37].  175 

To illustrate how STP, synaptic summation, and postsynaptic history interact to create the observed 176 
spike transmission pattern we simulated from a simplified rate model with linear voltage 177 
summation, short-term plasticity, a soft spiking nonlinearity, and an after-hyperpolarization (Fig. 178 
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2). Similar to experimental data, the spike transmission probability in this simplified model 179 
depends on the presynaptic ISI as well as the type of STP. For depressing synapses, the spike 180 
transmission probability increases for longer presynaptic ISIs while for facilitating synapses it 181 
increases for mid-range ISIs [28,36]. Independent of STP type, PSPs sum at short ISIs (Fig. 2A). 182 
However, the exact shape of transmission probabilities also depends on the strength of the synapse 183 
and, possibly, the history of postsynaptic spiking. An after-hyperpolarization current following 184 
each postsynaptic spike, for instance, can briefly decreases the probability of subsequent spikes. 185 
In our simulation, we find that “spike interference” from previous postsynaptic activity can 186 
counteract membrane potential summation (Fig. 2B). This type of postsynaptic spike interference 187 
generally decreases the spike probability for shorter presynaptic ISIs, but the magnitude of this 188 
decrease depends on the synaptic strength and type of STP (Fig. 2C). These simulations illustrate 189 
how the pattern of spike transmission probability results from the complex interaction between the 190 
membrane potential, the spike nonlinearity, the post-spike history, and short-term synaptic 191 
plasticity. 192 

 193 

Fig. 2: A simulation of a simplified rate model shows how spike transmission probability 194 
depends on multiple factors. A: For different types of short-term synaptic plasticity, postsynaptic 195 
summation increases the amplitudes of the postsynaptic potentials (PSP) at shorter ISIs. Lines 196 
denote the membrane potential of a postsynaptic neuron in a simplified model as it responds to 197 
short (dark traces) and long (light) paired presynaptic pulses. Relative amplitudes of excitatory 198 
postsynaptic potentials increase under the simplified model depending on the type of STP (right 199 
panel). B: Spike generation changes with synaptic strength. In this paired-pulse stimulation 200 
paradigm, stronger synapses are more likely to generate a spike following the first presynaptic 201 
impulse which can then decrease the spiking probability following the second impulse if there are 202 
post-spike history effects. As in (B) traces denote postsynaptic membrane potential responses to 203 
short (dark) and long (light) presynaptic ISIs. Dashes denote example postsynaptic spiking, with 204 
“spike interference” occurring for strong synapses and short ISIs. C: The pattern of spike 205 
transmission probability under the simplified model changes depending on the type of STP, the 206 
coupling strength, and presence of post-spike interference. Dashed lines show transmission 207 
probability without interference from previous postsynaptic spikes, while solid lines show how 208 
post-spike history effects can decrease the spike transmission probability. 209 
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Spike transmission patterns are diverse across regions and species 210 

The combination of these factors could be one explanation for to the diversity of spike transmission 211 
patterns in experimental data. To account for STP, postsynaptic history effects, and slow changes 212 
of firing rate we extend a previously developed GLM framework for static functional connections 213 
[26] to include short-term dynamics. In the previous, static GLM the probability of postsynaptic 214 
spiking is modeled as a linear combination of a baseline firing rate parameter, a post-spike history 215 
filter to capture the postsynaptic spike dynamics, such as refractoriness and burstiness, and a 216 
coupling filter describing the fixed influence of presynaptic spikes. The sum of these effects is 217 
then passed through a spiking non-linearity [26]. In our extended model we added a linear term 218 
that allows changes in excitability of the postsynaptic neuron as a function of the presynaptic firing 219 
rate (timescale >1min) and allow the coupling term to change for each presynaptic spike according 220 
to the Tsodyks and Markram (TM) model of STP [36]. We fit the parameters of this TM-GLM 221 
using only the pre- and postsynaptic spike observations and obtain parameters for each effect using 222 
approximate maximum likelihood estimation (see Methods). This provides estimates of the history 223 
and coupling filters, as in a static GLM, as well as additional parameters for the dynamical synapse 224 
(TM model) including facilitation, depression, membrane time constants, and release probability. 225 
Given these parameters, the model estimates the postsynaptic spiking probabilities following each 226 
observed presynaptic spike and predicts spike transmission probabilities in response to arbitrary 227 
patterns of presynaptic inputs.  228 

After fitting the model to real pre- and postsynaptic spike-trains, we compared its behavior to 229 
experimentally observed patterns of spike transmission probability. In particular, we compare 230 
peaks in the split cross-correlograms to the average model prediction for the same sets of 231 
presynaptic spikes (see Methods). We find that our model is flexible enough to explain the changes 232 
in synaptic transmission probability observed in spiking statistics for all three synapses above 233 
(Fig. 3A). Moreover, using the model-based approach, the contributions of each model component 234 
can be disentangled. Our results suggest that the pattern of spike transmission probability for the 235 
thalamus connection is dominated by a combination of membrane potential summation and short-236 
term depression. Although depression decreases spike transmission probability at shorter ISIs, 237 
membrane summation acts to increase postsynaptic spiking. The ANF-SBC synapse, in contrast, 238 
shows an increase in spike transmission probability for a medium range of ISIs that is explained 239 
by a model dominated by short-term facilitation. Lastly, the VB-Barrel connection shows a higher 240 
postsynaptic response for spikes following longer ISIs (isolated) that is explained by the model as 241 
an effect of short-term synaptic depression. 242 

In addition to separating the factors affecting spike transmission, the model also improves the 243 
prediction of postsynaptic spike timing. To evaluate how spike prediction accuracy is influenced 244 
by STP, we compare the prediction of postsynaptic spiking activity after each presynaptic spike 245 
for our model with a static model containing all components except STP. In all three datasets, a 246 
model with short-term synaptic plasticity provides substantially better predictions of the 247 
postsynaptic spiking activity, assessed by Receiver Operating Characteristics (ROC) curves. For 248 
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the model with short-term synaptic plasticity accuracies were AUC=0.76, 0.70, and 0.79 for the 249 
Thalamus pair, VB-Barrel, and ANF-SBC connections, respectively; compared to a model without 250 
STP where the model accuracies were AUC=0.54, 0.48, and 0.56. 251 

In our model, STP is described by two coupled differential equations with five parameters: 𝜃"#$ =252 
{	𝜏), 𝜏+, 𝑈, 𝑓, 𝜏"} (see Methods). Here we estimate values for depression, facilitation, and 253 
membrane time-constants along with release probability, 𝑈, and magnitude of facilitation, 𝑓, (Fig. 254 
3B). Our result for the thalamus pair shows a higher release probability and depression time-255 
constant with a larger membrane time constant. The VB-Barrel connection shows a higher 256 
depression compared to facilitation time constant with a lower membrane time constant. The ANF-257 
SBC synapse shows a lower release probability compared to the other two connections and a lower 258 
depression and membrane time constant. Although here we estimate these parameters from pre- 259 
and postsynaptic spiking alone, they could also be estimated from intracellular measurements [38]. 260 
We are not aware of any in vivo experiments that measured depression or facilitation time-261 
constants for these systems. However, previous in vitro studies found a wide range of paired-pulse 262 
ratios (0.3 to 0.9) in thalamocortical projections [39], consistent with the depressing VB-Barrel 263 
synapse here. Additionally, in vitro observations of ANF-SBC connections report depression time-264 
constants on the order of 2-25ms in response to a 100 Hz stimulus train [40,41]. These previous 265 
estimates are substantially faster than the time-constants estimated by the TM-GLM for the ANF-266 
SBC connection here. However, as mentioned in [40], different patterns of presynaptic input (e.g. 267 
regular, Poisson, natural) can result in different time constants, which makes it difficult to compare 268 
in vitro and in vivo STP parameters directly. One parameter that may be more readily comparable 269 
across preparations is the membrane time-constant. We find that the estimated membrane time-270 
constant from the TM-GLM for the thalamus pair is consistent with thalamus relay cells observed 271 
intracellularly (12.2 ±	1.1 ms (n=8)) [42], and the estimated membrane time-constant for ANF-272 
SBC is approximately consistent with in vitro measurements (1.05 ± 0.09 ms) [40], as well. 273 

Previous work modeling intracellular recordings suggests that the full TM model may not be 274 
necessary to explain STP at some, purely depressing synapses [38]. Therefore, we explored how 275 
simplified TM models of STP, with fewer parameters, compare with the full model using the 276 
Akaike information criterion (AIC; see Methods). AIC evaluates model accuracy (log-likelihood) 277 
penalized by the number of parameters and determines if a simplified model with fewer parameters 278 
is preferred over a more complex model. We compare the full model to five reduced models: 1) a 279 
model with only integration, without dynamic release probability and resources (𝜏), 𝜏+ 	= 0 and 280 
𝑓, 𝑈 = 1), 2) a facilitation only model (𝜏) = 0), 3) a depression only model (𝜏+ = 0), 4) a 3-281 
parameter TM model where the magnitude of facilitation is fixed (𝑓 = 𝑈), and 5) a full TM model 282 
without resetting integration when a postsynaptic spike occurs (𝜋3 = 1). For the thalamus pair and 283 
VB-Barrel, a model with fixed magnitude of facilitation (𝑓 = 𝑈) performs better while for the 284 
ANF-SBC connection the full model gives a better prediction. The full TM model performs well 285 
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in all cases, but, for some synapses, as previous results suggested [38], there may be ambiguity 286 
with parameter identifiability where many parameter settings explain the data. 287 

 288 

Fig. 3: Model predictions of spike transmission dynamics. A: Spike transmission patterns are 289 
diverse across different connections. For three different connections (a pair in thalamus, 290 
ventrobasal thalamus to somatosensory cortex, auditory nerve fiber to spherical bushy cell) 291 
transmission patterns are explained by a combination of different factors. For each synapse, top 292 
panels show the presynaptic ISI distributions (log-spaced). In the second row, the observed spike 293 
transmission probability (red data points) and model predictions (blue with 95% confidence 294 
bands). We then used the estimated TM parameters for each synapse and simulated responses to 295 
for paired presynaptic pulses. Blue curves denote the PPRs of the full model, and gray lines denote 296 
PPRs for a model without synaptic summation. In the fourth row, we evaluate how accurately the 297 
TM-GLM can prediction individual postsynaptic transmission events. For each individual 298 
presynaptic spike, we compare the model transmission probability with the observed binary 299 
outcome. ROC curves show the prediction accuracy for the TM-GLM (blue) and a standard GLM 300 
without STP (orange). B: Estimates for the four STP parameters of the model for each synapse. 301 
Each dot represents estimation from a distinct bootstrap sample. C: Model comparison for 6 302 
different models (Akaike information criteria relative to a model without plasticity). Models: 1) 303 
Integration only (𝜏), 𝜏+ 	= 0 and 𝑓, 𝑈 = 1), 2) Facilitation only (𝜏) = 0), 3) Depression only (𝜏+ =304 
0), 4) 3-parameter TM (𝑓 = 𝑈), 5) 4-parameter TM without resetting integration (𝜋3 = 1), 6) 4-305 
parameter TM. 306 

Recent patterns of pre- and postsynaptic spiking shape the synaptic transmission probability 307 

Although previous studies have focused largely on how spike transmission probability varies as a 308 
function of the single preceding presynaptic ISI, synaptic dynamics depend on the full sequence 309 
of presynaptic spiking. Unlike in vitro experiments where the state of the synapse can, to some 310 
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extent, be controlled before studying responses to a specific presynaptic pattern, in vivo 311 
measurements of spike transmission can be heavily influenced by higher-order correlations 312 
between successive ISIs [29]. Additionally, it is difficult to assess the effects of multi-spike 313 
patterns empirically by splitting the correlograms, since the number of observations for any given 314 
presynaptic spike pattern rapidly decreases with the number of spikes in the pattern. Here we 315 
examine how spike transmission depends, not just on the preceding presynaptic ISI, but on triplets 316 
of spikes. We compare the empirically observed spike transmission probability following triplets 317 
to the estimated spike transmission probability from the TM-GLM. Then, after fitting the TM-318 
GLM, we simulate postsynaptic responses to isolated, local patterns of spikes and determine to 319 
what extent the observed spike transmission patterns are influenced by higher-order correlations 320 
between successive ISIs. 321 

First, in addition to the timing of the two preceding presynaptic spikes (ISI1), we split correlograms 322 
based on the timing of the three preceding presynaptic spikes using both ISI1 and ISI2. Since the 323 
TM-GLM provides estimates of the post-synaptic spike probability following every presynaptic 324 
spike, we can split both the data and model fits the same way (Fig. 4A). We find that the spike 325 
transmission patterns clearly depend on the triplet patterns of presynaptic spikes. That is, the spike 326 
transmission probability is influenced by both ISI1 and ISI2, and their interaction differed between 327 
synapses, as expected from the TM-GLM model. However, similar to the descriptions of spike 328 
transmission as a function of ISI1, the TM-GLM accurately captures the patterns of spike 329 
transmission for triplets of presynaptic spikes at those three synapses. In the thalamus pair, spike 330 
transmission was dominated by ISI1, and the effect of ISI2 appears to be weak or, at least, doesn’t 331 
appear to be monotonic. Spike transmission at the VB-Barrel connection depends strongly on both 332 
ISI1 and ISI2, with higher spike transmission probability for longer ISI2, consistent with recovery 333 
from depression. Lastly, for the ANF-SBC connection, transmission probabilities decrease for 334 
shorter ISI2, but there also appears to be a strong interaction between ISI1 and ISI2, where 335 
transmission probability is high for multiple combinations of these two intervals (e.g. intervals of 336 
10ms then 100ms and intervals of 100ms then 10ms both result in high probability transmission). 337 

To examine to what extent the empirical observations of spike transmission are affected by higher-338 
order correlations between successive ISIs, we again use the estimated parameters in the TM-GLM 339 
to simulate postsynaptic responses to hypothetical, isolated triplets of presynaptic spikes. In these 340 
simulations we fix the post-spike history effect and the excitability in the model to their average 341 
values from model fits, and we fix the initial STP state (initial values of 𝑅 and 𝑢 in TM model) for 342 
the first spike in triplets to the average 𝑅 and 𝑢 values from the model fits. In experimental data, 343 
the initial state of the pre- and postsynaptic neurons before the triplets occur can wildly differ 344 
between different values of ISI1 and ISI2. By simulating, we can compare the influence of different 345 
triplets (ISI1 and ISI2) when the pre- and postsynaptic neurons start at the same state. Here we find 346 
that for the thalamus pair, although the empirical data showed no clear effect for ISI2, the simulated 347 
spike transmission probability increases with short ISI2, consistent with strong synaptic 348 
summation. One reason that this effect may be masked in the empirical transmission probabilities 349 
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is that post-spike history effects could act to decrease the probability of future postsynaptic spikes. 350 
For the VB-Barrel simulations, we find that short ISI2 decreases transmission probability, 351 
consistent with the empirical transmission patterns, although less pronounced. Serial correlations 352 
in the sequence of presynaptic spikes (such as long bursts) could act to accentuate the depression 353 
in the empirical observations beyond what we see with the simulated responses to isolated triplets. 354 
Finally, for the ANF-SBC, although the empirical transmission probability showed decreased 355 
transmission for short ISI2, the simulated responses to isolated patterns have increasing 356 
transmission at short ISI2 (due to synaptic summation). This difference is likely due to the post-357 
spike history effects, which has been fixed for the simulations, but can have a large effect in the 358 
experimental data. Since the overall efficacy of this synapse is quite high (>0.7), is likely that a 359 
postsynaptic spike follows the first or second presynaptic spike which then influences the response 360 
to the third spike. 361 

To better understand the effects of post-spike history, we examined how the postsynaptic spiking 362 
history changes the spike transmission patterns with a similar approach. In addition to splitting the 363 
correlograms based on ISI1, we also split based on the previous postsynaptic ISI, ISIpost (Fig. 4B). 364 
Here, as with the triplets of presynaptic spikes, we find that the spike transmission patterns depend 365 
on the triplet patterns of 2 pre- and 1 postsynaptic spike, and the TM-GLM accurately captures the 366 
patterns of spike transmission at our three synapses (Fig. 4B). Here, for both thalamus and VB-367 
Barrel pairs, synaptic transmission probability decreases after a long postsynaptic ISI for all values 368 
of ISI1. In contrast, the ANF-SBC connection shows decreased transmission probability at short 369 
postsynaptic ISIs. 370 

As with the triplets of presynaptic spikes, we then simulate how these local patterns of 2 pre- and 371 
1 postsynaptic spike change spike transmission probability when the neurons start from the same 372 
initial conditions (average values of excitability, post-spike history, 𝑅 and 𝑢). For the thalamus 373 
and VB-Barrel pairs, the simulations of isolated, local patterns match the general trends of 374 
empirical spike transmission. However, for the VB-Barrel synapse, the effect of ISIpost in the 375 
empirical transmission patterns is stronger than in the simulations, suggesting that serial 376 
correlations in ISIs could again play a role and does decrease transmission probability for isolated 377 
patterns. However, as with the responses to triplets of presynaptic spikes, these local patterns alone 378 
are insufficient to explain the empirically observed patterns of spike transmission.  379 
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 380 
Fig. 4: Effects of pre- and postsynaptic spiking patterns. A: Synaptic transmission patterns 381 
change based on the full sequence of presynaptic spiking. Top panel shows a schematic of 4 382 
different patterns of presynaptic spike triplets with a fixed ISI between the two most recent 383 
presynaptic spikes (black dashed lines). We split the presynaptic ISI distribution into 8 quantiles. 384 
Each data point shows the observed spike transmission probability corresponding to the ISI2 385 
quantile with the same color. Solid lines are the average estimated probability for each pattern 386 
under the model (based on the full sequence of observed spikes). To examine the influence of 387 
serial correlations, we then stimulate model responses to the isolated triplet pattern, assuming the 388 
synapse is initially in an average state. B: Synaptic transmission patterns change depending on the 389 
history of postsynaptic spiking, as well. Here each data point in the scatter plots shows the spike 390 
transmission probability of the corresponding to the postsynaptic ISIs of the same color in the ISI 391 
distribution. Colors represent the corresponding time difference between presynaptic and previous 392 
postsynaptic spike. Solid lines are the average predicted probability for quantiles with 393 
corresponding colors. Last row shows simulations of the model using estimated STP parameters 394 
and fixing the excitability from the model fits to their average values. Here the history effect for 395 
each ISI interval is set to the post-spike history filter value on that interval.  396 

Spike transmission patterns change depending on stimulus type 397 

These results suggest that the presynaptic spike pattern has a complex effect on spike transmission 398 
probability. In sensory systems, one variable that affects the presynaptic spike pattern is the 399 
external stimulus. To examine how differences in stimulus statistics might alter spike transmission, 400 
we fitted our model to a dataset recorded juxtacellularly from an ANF-SBC synapse, presented 401 
with natural sounds, a range of randomized frequency-level pure-tones (tuning stimuli), and 402 
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spontaneous activity in the absence of acoustic stimulation. We merged these three datasets and 403 
fitted the model to the merged dataset. As with the previous fits of the ANF-SBC connection (based 404 
on a different set of tuning stimuli), the transmission probability under all three conditions exhibits 405 
a bandpass-like pattern suggesting facilitation and little to no synaptic summation. However, spike 406 
transmission during natural stimuli was markedly different from that during pure tone stimulation. 407 
During natural sounds, transmission probability is maximized at 100 ms rather than 10 ms in the 408 
tuning stimuli and during spontaneous activity. Further, natural stimuli have much lower 409 
transmission probability at short ISIs. Interestingly, the TM-GLM captures the overall facilitation, 410 
but also captures differences due to the different stimuli. In contrast, a static GLM captures almost 411 
none of the variations in spike transmission probability suggesting that a fixed coupling term, 412 
postsynaptic history, and, slow fluctuations of presynaptic spiking are not sufficient to capture 413 
patterns of spike transmission probabilities (Fig. 5A). Together, these results suggest that the 414 
combination of STP, synaptic summation, history, and excitability is sufficient to explain the 415 
observed differences between stimuli, without requiring any additional adaptation or plasticity. 416 

Since these recordings were performed juxtacellularly, we also have access to the slope of 417 
individual (extracellular) PSPs, which correlates with the intracellular PSP amplitude. We 418 
compared patterns of individual PSP slopes for each stimulus type and how they correlate with the 419 
estimated coupling amplitude following individual presynaptic spikes in our model (Fig. 5B, 5C). 420 
Note that patterns of PSP slopes do not have the same pattern as spike transmission probability, 421 
since there are other factors (e.g. postsynaptic spiking history) contributing to postsynaptic spiking. 422 
These results show the stimulus-dependence of PSP amplitudes and a static GLM without STP 423 
cannot account for these variations. Although the correlation is not perfect, the model does 424 
correlate with the measured PSP slope, even though the model only has access to spikes. By 425 
modeling dynamic functional connectivity, we can approximately reconstruct the amplitude of 426 
individual synaptic events. 427 
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 428 
Fig. 5: The TM-GLM captures stimulus-dependent changes in spike transmission 429 
probability at the ANF-SBC synapse. A) The TM-GLM captures stimulus-dependent spike 430 
transmission probability patterns better than a static model without short-term synaptic plasticity. 431 
Asterisks show spike transmission probability for (log-spaced) presynaptic ISIs during two types 432 
of auditory stimuli and during spontaneous activity: Natural Sounds (yellow), Spontaneous 433 
Activity (red), and Tuning Stimuli (blue). Solid lines and 95% confidence bands show model 434 
predictions for each stimulus type. Corresponding inter-spike interval distributions are shown on 435 
the right. B) The TM-GLM captures changes in extracellularly recorded PSPs. Here the observed 436 
PSP slope (dashed lines) approximately matches and coupling term in the TM-GLM (solid lines) 437 
for each three stimuli. Although the spike transmission probability of the static GLM can vary as 438 
a function of presynaptic ISI due to non-synaptic factors, the coupling term is fixed. C) Estimates 439 
of individual PSP amplitudes predicted by the model and their PSP slopes in the juxtacellular 440 
recording. Black lines denote linear fits and the bar plot shows the corresponding Spearman 441 
correlations. 442 

Postsynaptic cell-type specific changes in spike transmission patterns 443 

We applied our model to spiking data from a large-scale multi-electrode array recording to 444 
investigate the spike transmission dynamics in synapses from putative excitatory neurons to two 445 
different putative inhibitory subtypes. We detected putative synapses using the log-likelihood ratio 446 
(LLR < -6, ~200 synapses) between a full model of the correlogram that includes the synaptic 447 
effect and smooth model of the correlogram that only captures the slow structure (see Methods). 448 
We then found excitatory-inhibitory microcircuits where putative excitatory neurons (based on the 449 
cross-correlogram and spike waveform) give inputs to putative inhibitory neurons (41 excitatory 450 
synapses onto 9 inhibitory neurons in total). To identify inhibitory neurons as inhibitory, we 451 
required the neuron to have an outgoing connection to a third neuron with a fast, transient decrease 452 
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in the cross-correlogram. Each of the 9 putative inhibitory neurons here had at least one outgoing 453 
connection where the spiking probability of a downstream neuron decreases >18% relative to 454 
baseline following its spiking (Fig. 6A and supplementary figures for individual cross-455 
correlograms). We then categorized each neuron as a putative fast-spiking (FS, n=5) or regular-456 
spiking (RS, n=4) unit based on the spike waveform and firing rate (Fig. 6B). Putative FS units 457 
had narrow-width spike waveforms (half-width of the trough = .08±.02 ms) and higher firing rates 458 
(26.07±9.6 Hz) compared to putative RS neurons (n=4) with broader waveforms (half-width = 459 
.14±.02 ms) and lower firing rate (10.18±10.01 Hz). 460 

We identified these microcircuits in different regions with 4 putative excitatory-inhibitory 461 
microcircuits recorded in hippocampus (depth differences: 77.2±49.4 𝜇m), 3 in thalamus 462 
(49.4±26.2 𝜇m), and 2 in motor cortex (36.4±23.5 𝜇m). Putative excitatory neurons showed a 463 
wide spike waveform (half-width = .18±.04 ms) similar to the putative regular-spiking inhibitory 464 
neurons, but these two classes can be distinguished by their outgoing connection types (e.g. 465 
inhibitory/excitatory) [43] (Fig. 6B). Average efficacies from putative excitatory-FS connections 466 
(.22±.12, n=22) were larger, on average, compared to putative excitatory-RS efficacies (.13±.13, 467 
n=19). We then fit the TM-GLM to data from these 41 putative synapses, similar to the three 468 
identified synapses above. We find that the STP parameters for these two types of synapses largely 469 
overlap, except for the membrane time-constant. Interestingly, the membrane time-constants 470 
measured for these inhibitory subtypes in vitro overlap with our estimates here (Fig. 6C) [44]. 471 
Although in vitro studies have not explored the same TM model used here, there is evidence of 472 
postsynaptic cell-type specific STP where putative excitatory-RS connections show facilitation 473 
and putative excitatory-FS connections show depression [5]. Here we find that both connection 474 
types are somewhat facilitating but excitatory-FS connections having a slightly shorter facilitation 475 
time constant. However, unlike what would be expected if excitatory-FS connections were 476 
depressing, the release probability of excitatory-FS connections is lower than for excitatory-RS 477 
connections (Fig. 6C). 478 

To better understand synaptic transmission in vivo it is important to consider not just the 479 
parameters of the synapse but the full history of presynaptic spiking in the individual presynaptic 480 
neurons. We use the estimated model parameters to simulate responses to a train of regular 481 
presynaptic spikes with the frequency matched to the average firing rate of the corresponding 482 
excitatory input. In simulating postsynaptic responses to the spike train, we fix the excitability and 483 
postsynaptic history to their average values from model fits and set the initial STP state of the first 484 
spike in the train to the average 𝑅 and 𝑢 values from model fits. With these input-matched 485 
simulations, excitatory-RS connections show a higher postsynaptic potential compared to 486 
excitatory-FS connections (Fig. 6D). Similarly, we simulated the paired-pulse ratio (PPR) at 487 
different inter-stimulus intervals in our TM model following the average state. On average, 488 
connections to regular-spiking inhibitory neurons show a higher PPR (Fig. 6E). For all 489 
connections, we then evaluated the spike prediction accuracy of a model without STP (e.g. static 490 
GLM) with our TM-GLM using the Area Under the ROC Curve (Fig. 6F). The model with STP 491 
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(TM-GLM) gives more accurate predictions when the postsynaptic neuron spikes following a 492 
presynaptic spike for our population of 41 putative excitatory-inhibitory connections 493 
(AUC=.69±.05) in comparison with the static GLM (AUC=.50±.03). Altogether, these results 494 
illustrate how a dynamic model of functional connectivity, such as the TM-GLM, may allow us to 495 
investigate cell-type-specific differences in short-term synaptic dynamics in behaving animals 496 
using only pre- and postsynaptic spiking. 497 

 498 

Fig. 6: Distinctive short-term synaptic plasticity dynamics in connections between excitatory 499 
neurons to putative Regular-Spiking (RS) and Fast-Spiking (FS) inhibitory neurons. A) Here 500 
we examine putative synapses between excitatory neurons and inhibitory neurons (identified by 501 
their cross-correlations) and separate the putative inhibitory neurons into two classes: fast-spiking, 502 
which have narrow spike waveforms and high rates (left), and regular-spiking (right), which have 503 
wide waveforms and lower rates. Identifying these synapses requires both finding both a putative 504 
excitatory input and a putative inhibitory output for the same neuron. B) Half-widths (of the 505 
trough) of the spike waveforms and firing rates for the FS (orange) and RS (blue) inhibitory 506 
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neurons, as well as, their excitatory inputs (grey). Individual blue and orange waveforms 507 
(maximum amplitude across the MEA) are shown for all 9 putative inhibitory neurons. C) 508 
Estimated depression, facilitation, and membrane time-constants for excitatory-RS and excitatory-509 
FS connections, along with the release probability (right). The purple error-bar next to the 510 
membrane time-constant estimations show the median and standard deviations from in vitro 511 
experiments [44]. D) Simulated postsynaptic potential amplitudes estimated from Tsodyks-512 
Markram model of short-term synaptic plasticity using estimated parameters. For each synapse, 513 
PSPs are estimated in response to a pulse train with inter-pulse intervals set to their corresponding 514 
average presynaptic inter-spike intervals. Dots and error bars denote the median and inter-quartile 515 
range for excitatory-RS (blue) and excitatory-FS (red) connections. E) Simulated Paired-Pulse 516 
Ratio for individual synapses of excitatory-RS (blue) and excitatory-FS (red) connections as a 517 
function of the presynaptic ISI. F) Area Under the Curve (AUC) of postsynaptic spiking prediction 518 
using the static GLM without short-term synaptic plasticity (green) and the TM-GLM with short-519 
term synaptic plasticity (blue). 520 

Discussion 521 

Short-term synaptic plasticity (STP) has been extensively studied in vitro and with intracellular 522 
recordings where the amplitudes of individual postsynaptic potential/currents (PSP/PSCs) can be 523 
directly measured. By using controlled experiments with specific, structured presynaptic spike 524 
patterns these studies established how short-term synaptic dynamics can be described by the 525 
interactions between release probability and vesicles/resource dynamics [36]. These alterations in 526 
PSP/PSP amplitudes can affect the statistics of postsynaptic spiking. Thus, STP could, explain 527 
why the probability of postsynaptic spiking depends not just on the presence of a presynaptic spike, 528 
but on the timing of the most recent presynaptic inter-spike interval [14,16]. However, the 529 
relationship between STP and in vivo spike transmission patterns is complex. Patterns of 530 
postsynaptic spike transmission are highly diverse and multiple factors beyond STP and the most 531 
recent presynaptic ISI shape these patterns. Here we aimed to disentangle the different 532 
contributions to spike transmission by developing an augmented generalized linear model, the TM-533 
GLM that explicitly includes STP dynamics as slow changes in postsynaptic excitability and the 534 
history of postsynaptic spiking. 535 

Synapses with different types of STP can allow the same sequence of presynaptic spikes to 536 
generate different patterns of postsynaptic spiking and thereby control the information flow in the 537 
brain. Here we tracked the observed spike transmission probability of three strong synapses from 538 
different species and brain areas. The dynamical spike transmission model enables us to 539 
disentangle different factors (e.g. slow firing rate changes, postsynaptic spiking history, synaptic 540 
summation, and STP) that shape these diverse patterns. First, we investigate the role of STP and 541 
the full sequence of presynaptic spiking activity in shaping the spike transmission patterns. In three 542 
strong synapses (an intra-thalamic synapse, a thalamocortical synapse, and an auditory brainstem 543 
synapse) we show how models of functional connectivity with short-term synaptic plasticity can 544 
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1) capture diverse pattern of spike transmission probability, 2) disentangle these transmission 545 
patterns to the multiple factors that shape postsynaptic response, 3) extract biologically plausible 546 
synaptic dynamics, and 4) improve prediction of postsynaptic spiking.  547 

Estimating static functional connectivity using spike times has revealed network structure in the 548 
retina [26] and hippocampus [45], can reconstruct true physiological circuitry [34], and improves 549 
encoding and decoding [25,26,35]. However, synaptic weights change over a wide range of 550 
timescales depend on external stimuli and behavior [20]. Additionally, synaptic dynamics can 551 
shape information transmission in different ways for different pattern of presynaptic spiking, e.g. 552 
different behavioral tasks. Although, standard GLMs can partially capture the first-order effects of 553 
recent presynaptic spikes on postsynaptic spiking probability, they fail to capture the nonlinear 554 
dynamics of synaptic transmission affected by the whole sequence. Here, in a recording from the 555 
endbulb of Held (ANF-SBC) we found that spike transmission patterns differed for different 556 
stimuli (natural sound stimuli, varying pure tones and without stimulation - e.g. spontaneous 557 
activity), and these differences were well-described by the TM-GLM. Although the STP-558 
parameters were the same for all stimuli, the different presynaptic spike patterns yield different 559 
synaptic dynamics and different patterns of spike transmission. Since spike transmission 560 
probability in the TM-GLM depends on the full history of presynaptic spiking, this model can 561 
account for changes on behavioral timescales even in the absence of adaptation or other forms of 562 
plasticity (e.g. STDP, LTP).  563 

Cell-type specific interactions in layers and regions of the brain perform different computational 564 
tasks. Previous in vitro studies have shown that STP dynamics depend on both presynaptic and 565 
postsynaptic cell-types [5]. Here in a large multi-electrode array recording of a freely behaving 566 
mouse we investigated STP dynamics of synaptic connections from putative excitatory neurons to 567 
two different subtypes of putative inhibitory neurons: fast-spiking and regular-spiking. Using 568 
inferred short-term dynamics, predicted responses to train of spikes with the same input 569 
frequencies as the presynaptic neuron in those connections show facilitation in excitatory-RS and 570 
depression in excitatory-FS connections which are in line with previous in vitro findings [5]. 571 
Moreover, the model with short-term dynamics significantly improves the prediction of 572 
postsynaptic activity. As large-scale extracellular recordings advance, models such as the TM-573 
GLM are promising to characterize and compare the short-term dynamics of spike transmission of 574 
many different cell types, brain regions, and species. 575 

Although our model provides a tool to characterize the dynamics of spike transmission, there are 576 
limitations on how well TM-GLM can capture true synaptic dynamics. Firstly, functional 577 
connections inferred from spikes do not necessarily guarantee anatomical connections. A peak in 578 
the cross-correlogram does not uniquely indicate the presence of a monosynaptic connection 579 
[46,47]. Here we assume that the transient, short-latency increase in postsynaptic spiking activity 580 
following a presynaptic spike indicates the presence of an excitatory monosynaptic connection 581 
[17]. Nevertheless, verifying connections using optogenetics, juxtacellular recordings [48], 582 
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imaging [49] or anatomical reconstruction provide a more accurate estimate of true anatomical 583 
connections. Secondly, to model short-term dynamics in spiking neurons we employ a rate model 584 
that does not explicitly account for the detailed membrane potential of the postsynaptic neuron. 585 
Other approaches to modeling synaptic transmission with realistic spike-generation mechanisms, 586 
currents, and even dendritic morphology do exist, but are typically less computationally tractable 587 
[50]. Here we employed an augmented GLM with a logistic spike nonlinearity. We chose the 588 
logistic nonlinearity over the conventional exponential function as it appears to better describe 589 
strong connections, such as the ANF-SBC, but other nonlinearities may be better for other neurons 590 
[51]. There are also alternatives to the Tsodyks-Markram model for modeling synaptic dynamics. 591 
The TM model is biologically plausible, but, since it is deterministic, it ignores the stochasticity 592 
of synaptic release and only tracks the dynamics of average postsynaptic potentials. Finally, there 593 
are many covariates that could be added to improve model performance, including local field 594 
potentials, connections to other simultaneously observed presynaptic neurons [35], higher-order 595 
history or coupling terms [52,53], and covariates related to other types of plasticity [52,54–57]. 596 
Despite these simplifying assumptions and the fact that we only observe a fraction of inputs to the 597 
neuron, the TM-GLM captures a wide diversity of in vivo, excitatory spike transmission patterns. 598 

Short-term synaptic plasticity alters information transmission from presynaptic to postsynaptic 599 
neurons by dynamically changing the synaptic efficacy [14,16,36]. Intracellular studies in vitro or 600 
with artificial stimulation patterns have shown that short-term synaptic dynamics depend on cell-601 
types and brain regions [5,58]. However, there is evidence that, in addition to these anatomical 602 
dependencies, short-term synaptic dynamics also depend on stimulus type and the larger 603 
computational function of the neural circuit [59]. To understand how these synaptic dynamics alter 604 
neural computations we will need to study them during natural patterns of presynaptic spiking [60] 605 
and, ultimately, during natural behavior. Since large-scale intracellular recordings are currently 606 
not feasible in vivo, here we examined the possibility of using existing large-scale extracellular 607 
recordings to quantify the dynamics of spike transmission and infer the short-term dynamics of 608 
synaptic responses. We find that including STP in models of spiking neurons can capture diverse 609 
patterns of spike transmission, including patterns that are stimulus-dependent and cell-type-610 
specific. Additionally, these models substantially improve prediction of postsynaptic spiking 611 
following presynaptic spikes and, at least in some cases, can approximately reconstruct individual 612 
PSP amplitudes. 613 

Material and methods 614 

Neural Data 615 

To illustrate how synaptic dynamics can be estimated from spikes, we first examined a set of three 616 
strong putative or identified synapses with diverse spike transmission probability patterns: (i) a 617 
dual-electrode recording of a thalamocortical projection in the barrel system, (ii) an in vivo loose-618 
patch (juxtacellular) recording at the calyceal endbulb of Held synapse in the auditory brainstem, 619 
and (iii) a recording from a pair of neurons in the thalamus detected from a larger multi-electrode 620 
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array (MEA) recording. Next, we applied our model more generally to analyze a large sample of 621 
putative synaptic connections recorded from the MEA dataset. The data from these three identified 622 
strong synapses and the MEA data have been collected from different species, regions, cell-types, 623 
under different stimulation and show a diverse pattern of postsynaptic spiking probability. In all 624 
cases we deduce short-term synaptic dynamics on the basis of only pre- and postsynaptic spike 625 
observations. 626 

For the first putative synapse, we use in vivo data from simultaneous extracellular recordings in 627 
ventrobasal (VB) thalamic barreloids and topographically aligned, somatosensory cortical barrel 628 
columns (VB-Barrel) in awake, unanesthetized, adult rabbits. Detailed surgical and physiological 629 
methods have been described previously [61]. Spike-triggered averages of the cortical spikes 630 
following spiking of the VB neuron was used to identify connected S1 neurons. Based on the 631 
presence of high frequency discharge (3+ spikes, > 600 Hz) following electrical stimulation of the 632 
thalamus, and narrow spike waveforms, the S1 neuron in this recording was identified as a putative 633 
inhibitory neuron [62]. These recordings identified several putative thalamocortical projections. 634 
The putative synapse that we model here is particularly clear, with 68,345 pre- and 128,096 635 
postsynaptic spikes recorded over the course of 92 minutes of spontaneous activity and has been 636 
previously studied in [14,63]. 637 

For the second synapse, we examined in vivo loose-patch recordings at the Endbulb of Held in 638 
young adult gerbils. Detailed surgical and physiological methods have been previously described 639 
[64]. Briefly, the glass electrode was positioned in the anterior portion of the ventral cochlear 640 
nucleus (AVCN) and single-units were recorded during varying acoustic stimulation. Single units 641 
were classified when recording a positive action potential amplitude of at least 2 mV and showing 642 
the characteristic complex waveform identifying them as large spherical bushy cells (SBC) of the 643 
rostral AVCN. This recording included a mixture of juxtacellular waveforms: an isolated 644 
excitatory PSP (EPSP) or an EPSP followed by a postsynaptic action potential. For both cases the 645 
timing of EPSPs and spikes and rising slope of the EPSPs were extracted. The timing and slope of 646 
the EPSPs were identified using a slope threshold for the rising part of EPSPs as previously 647 
described [65]. We then modeled spike transmission probability patterns for two recordings: (i) 648 
during randomized pure tone acoustic stimulation and (ii) during multiple stimuli, i.e. randomized 649 
frequency-level pure tone stimulation interspaced with spontaneous activity, natural sounds, and 650 
also during spontaneous activity. Using this second dataset, we characterized how variable 651 
presynaptic spike patterns evoked by different stimuli affected the patterns of spike transmission 652 
at the same synapse. 653 

We also use MEA spiking data to study the factors shaping spike transmission probability patterns 654 
in a large-scale recording with multiple cell-types. Here we use a previously collected, publicly 655 
available recording from the Cortex Lab at UCL [66,67] with data from two Neuropixels electrode 656 
arrays recorded simultaneously, each with 960 sites (384 active) with lengths of 10-mm and 657 
spacing of 70 × 20-μm (http://data.cortexlab.net/dualPhase3/). The two electrode arrays span 658 
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multiple brain areas and ~90 min of data was collected in an awake, head-fixed mouse on a rotating 659 
rubber wheel during visual stimulus presentations. Spikes were automatically detected and sorted 660 
using Kilosort [68] on the broadband (0.3–10 kHz) signal and then manually curated. If two 661 
clusters of spikes had similar waveforms, cross-correlogram features, and spike amplitudes, they 662 
were merged into a single cluster and assigned to a single neuron. In total, 831 well-isolated single 663 
neurons where identified from the two probes in several different brain areas: visual cortex (n=74), 664 
hippocampus (n=64), thalamus (n=244), motor cortex (n=243), and striatum (n=200). Due to the 665 
large number of simultaneously recorded neurons in this dataset, there are many potential synapses 666 
(~8312). 667 

Synapse Detection: 668 

To identify putative monosynaptic connections between well-isolated single neurons, we looked 669 
for specific patterns in the cross-correlograms [46]. If two neurons are monosynaptically 670 
connected, the probability of postsynaptic spiking increases/decreases rapidly following a 671 
presynaptic spike. In spiking data, this rapid, transient change can be seen in cross-correlograms 672 
as an asymmetric bump/dip in the number of postsynaptic spikes following presynaptic spikes 673 
[18]. For each connection we calculated the cross-correlogram in a 5 ms window before and after 674 
presynaptic spikes with bin-size of 0.1 ms. To avoid aliasing in the cross-correlograms, we added 675 
a small, random shift to each postsynaptic spike drawn uniformly between −Δ𝑡/2 and Δ𝑡/2 where 676 
Δ𝑡 is the spike time resolution (0.01 ms in most cases). Here we used a model-based approach 677 
using the cross-correlograms to decide whether two synapses are monosynaptically connected. To 678 
fit the cross-correlogram we used a baseline rate 𝜇, a linear combination of B-spline bases 𝑩(𝑡), 679 
and a weighted alpha function to model the synapse, 𝑤	𝜶(𝑡), all passed through an output 680 
nonlinearity; 𝜆(𝑡) = expE𝜇 + 𝒓𝑩(𝑡) + 𝑤	𝜶(𝑡)H. The alpha function, 𝜶(𝑡) = 	 (𝑡 − 𝑡))/681 
𝜏I	exp(1 − (𝑡 − 𝑡))/𝜏I), describes the shape of the synaptic potential where 𝑡) is the synaptic 682 
delay and 𝜏I is the synaptic time-constant [22]. For individual connections, we estimate these 683 
parameters by maximizing the penalized Poisson log-likelihood 𝑙(𝜇, 𝒓, 𝑤, 𝑡), 𝜏I) = 𝛴𝑦3𝑙𝑜𝑔𝜆3 −684 
𝛴𝜆3 + 𝜖‖𝒓‖Q where 𝑦3 is the number of postsynaptic spikes observed in the 𝑖-th bin of the 685 
correlogram and ‖𝒓‖Q regularizes the model to penalize B-spline bases for capturing sharp 686 
increases in the cross-correlogram. 𝜖 is a regularization hyper-parameter which we set to 1 based 687 
on manual search. Due to the parameterization of 𝜶(𝑡), the log-likelihood is not concave. 688 
However, since the gradient of the log-likelihood can be calculated analytically, we efficiently 689 
optimize the likelihood using LBFGS. During the optimization, the delay and time-constant 690 
parameters are log-transformed, allowing us to use unconstrained optimization, even though they 691 
are strictly positive. We used random restarts to avoid local maxima. To identify putative 692 
monosynaptic connections in the large-scale multi-electrode array data, we compared this model 693 
with a smooth model with slow changes in cross-correlogram and without the synapse, 𝜆S(𝑡) =694 
exp(𝜇′ + 𝒓′𝑩(𝑡)), using the log-likelihood ratio (LLR) test between our full model with synapse 695 
and the nested smooth model. Since low values of the likelihood ratio mean that the observed result 696 
was better explained with full model as compared to the smooth model, we then visually screened 697 
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pair-wise connections with lowest ratios (LLR < -6) compared to the null model to find putative 698 
synapses. Out of ~8312 possible connections in this dataset we find ~200 putative synapses 699 
(0.03%). We handpicked a strong putative synapse between two thalamic neurons to study its 700 
efficacy pattern in detail alongside the VB-Barrel and ANF-SBC synapses. 701 

In addition to this single strong synapse, we also categorize putative pre- and postsynaptic cell 702 
types for the connections detected in the MEA dataset. For this purpose, we assessed single units 703 
based on their cross-correlograms, firing rates, and spike waveforms. We categorized units as 704 
excitatory or inhibitory if, in accordance with Dale’s law [69], all outgoing cross-correlograms 705 
showed transient, short-latency (<4ms) increase/decrease in spiking probability [35]. We then 706 
looked into identified inhibitory neurons and categorized them into to putative fast-spiking (FS) 707 
and regular-spiking (RS) inhibitory neurons. Using these putative Excitatory-FS and Excitatory-708 
RS synapses, we then examine how the spike transmission patterns differ for these two subtypes 709 
of inhibitory neurons. 710 

Extending a Generalized Linear Model to Account for Short-term Plasticity (TM-GLM) 711 

Short-term synaptic plasticity causes the amplitude of postsynaptic potentials (PSP) to vary over 712 
time depending on the dynamics of synaptic resources and utilization and can be modeled using 713 
the pattern of presynaptic spiking [36,70]. However, changes in the overall postsynaptic spiking 714 
probability cannot be uniquely attributed to changes in amplitudes of postsynaptic potentials. To 715 
accurately describe the dynamics of spike transmission, we also need to account for the membrane 716 
potential summation, the excitability of the postsynaptic neuron (e.g. slow changes in the 717 
presynaptic firing rate) and the dynamics of postsynaptic spiking (e.g. refractory period, after 718 
hyperpolarization current). We developed an extension of a generalized linear model, which we 719 
call a TM-GLM to describe each of these effects. Concretely, the probability of a postsynaptic 720 
spike shortly after each presynaptic spike accounts for the full sequence of previous presynaptic 721 
spiking and the recent history of postsynaptic spiking. We define the conditional intensity of the 722 
postsynaptic neuron after the 𝑖-th presynaptic spike, 𝑡"

(3), so that the probability of observing a 723 
postsynaptic spike in the 𝑗-th time bin after the 𝑖-th presynaptic spike is given as: 724 

𝜆3E𝑡VH = σX𝛽S + 𝑋[\𝑡"
(3)]𝛽[ +^ 	𝑋_\𝑡"

(3) − 𝑡`
(a)]𝛽_

#b
(c)d#e

(f)
	+ 	𝐴"	𝑤3	𝛼(𝑡V)	i 725 

where 𝑡`
(a) are the postsynaptic spike times preceding 𝑡"

(3). For each presynaptic spike, our model 726 
decomposes the firing rate of the postsynaptic neuron into four effects: a baseline firing rate, 𝛽S, 727 
slow fluctuations in presynaptic firing rate 𝑋[𝛽[, history effects from the recent postsynaptic spikes 728 
(prior to 𝑡"

(3)), 𝑋_𝛽_, and a time-varying coupling effect from the presynaptic input, 𝐴"𝑤	𝛼(𝑡) (Fig. 729 
7).  730 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted November 23, 2018. ; https://doi.org/10.1101/475178doi: bioRxiv preprint 

https://doi.org/10.1101/475178


 

 

23 

 731 
Fig. 7: TM-GLM. Postsynaptic spiking probability before passing the spiking nonlinearity 732 
(yellow) changes as a linear combination of presynaptic coupling term with STP dynamics (blue), 733 
postsynaptic spiking history (green), the postsynaptic excitability (red). Transparent red curves 734 
show the bases of slow changes in postsynaptic probability at presynaptic spike times (𝑋[). 735 

Here we model slow fluctuations in the postsynaptic rate 𝑋[𝛽[ with a linear combination of B-736 
splines with equally spaced knots every 50 seconds of recording time. In the history term, splines 737 
(𝑋_) span a period of 10 ms prior to each presynaptic spike with 4 logarithmically-spaced knots. 738 
By scaling 𝜶(𝑡V) with a multiplicative factor, 𝑤3, the strength of a synapse can vary over time and, 739 
in this case, depends on the detailed sequence of presynaptic spiking and their corresponding inter-740 
spike intervals. 𝐴" is the magnitude of the synaptic strength. In this case we use a model for short-741 
term synaptic plasticity that allows both depression (where the 𝑤3 decreases for shorter presynaptic 742 
ISIs) and facilitation (where the 𝑤3 increases for shorter presynaptic ISIs), and incorporates 743 
membrane summation. To model these effects, 𝑤3 is determined by a nonlinear dynamical system 744 

based on the Tsodyks and Markram (TM) model [36,71] where: 𝑤3 = 𝑤3jk 	exp l−
#e
(f)j#e

(fmn)

oe
p 𝜋3 +745 

𝑅3𝑢3, where 𝜏" is the membrane time-constant and the first term of the equation describes how 746 
postsynaptic membrane potential summation increases the probability of postsynaptic spiking. 747 
This membrane summation will be ignored if there is a postsynaptic spike: 𝜋3 =748 

q0	if	𝑡"
(3jk) < 𝑡`

(3jk) < 𝑡"
(3); 1	otherwise|. In the second term of this equation, 𝑅 represents the 749 

dynamics of resources and 𝑢 describes their utilization.  750 

𝑅3 = 1 − [1 − 𝑅3jk(1 − 𝑢3jk)] exp �−
𝑡"
(3) − 𝑡"

(3jk)

𝜏)
� 751 

𝑢3 = 𝑈 + [	𝑢3jk + 𝑓(1 − 𝑢3jk) + 𝑈] exp�−
𝑡"
(3) − 𝑡"

(3jk)

𝜏+
� 752 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted November 23, 2018. ; https://doi.org/10.1101/475178doi: bioRxiv preprint 

https://doi.org/10.1101/475178


 

 

24 

where 𝜏) and 𝜏+ are the depression and facilitation time-constants. 𝑈 is the release probability and 753 
𝑓 is the magnitude of facilitation. To make the estimation more tractable, we approximate the full 754 
optimization problem and estimate synaptic delay, 𝑡), and time-constant, 𝜏I, by fitting 𝛼(𝑡) using 755 
the full cross-correlogram, as above. We fix these parameters for the rest of the optimization 756 
process. We then maximize a penalized, Bernoulli log-likelihood 𝑙(𝜃) = 𝛴𝛴 �𝑦3V𝜆3E𝑡VH −757 

E1 − 𝑦3VH \1 − 𝜆3E𝑡VH]� + 𝛾�𝜃′"#$�Q where 𝛾 = 1 is the regularization hyperparameter to estimate 758 

the parameters: 𝜃 = �𝛽S, 𝛽[�k:�	, 𝛽_�k:�, 𝐴", 𝜃"#$�,	𝜃"#$ = {	𝜏), 𝜏+, 𝑈, 𝑓, 𝜏"}.  759 

As with previous applications of GLMs, we assume that bins are conditionally independent given 760 
the covariates, but unlike many other GLMs, here we only calculate the log-likelihood during short 761 
intervals (5ms) after presynaptic spikes. With 𝑦3V being a binary value representing the presence 762 
of a postsynaptic spike in the 𝑗-th time bin after the 𝑖-th presynaptic spike. We again used a 763 
logarithmic transformation for the time-constants to avoid negative values and logit transformation 764 
for 𝑈 and 𝑓 to bound their values in the interval [0, 1]; 𝜃′"#$ =765 
{log	(𝜏)), log	(𝜏+), logit(𝑈), logit(𝑓), log	(𝜏")}. By modeling STP this model is no longer a strict 766 
GLM, and the log-likelihood may have local maxima. Here we use random restarts to avoid local 767 
maxima in our optimization process. The parameters of each restart {𝛽S, 𝛽[�k:	�	, 𝛽_�k:	�, 𝐴"} are 768 
initialized by adding noise (∼ 𝑁(0,1)) to the corresponding parameters in a standard GLM. We 769 
initialize the plasticity parameters with 𝜏′)

(S)~𝑁(−1,5), 𝜏′+
(S)~𝑁(−1,5), 𝑈′(S)~𝑁(0,5), 770 

𝑓′(S)~𝑁(0,5), 𝜏′"
(S)~𝑁(−3,5). We then use an LBFGS algorithm to optimize the log-likelihood 771 

where we calculate all derivatives analytically except for derivatives of 𝜃"#$ which we calculate 772 
numerically. To estimate the uncertainty of the parameters, we bootstrap the data from each of the 773 
strong synapses by chunking the whole recording time into samples of 50 seconds then resampling 774 
the chunks to generate a new spike train with the same original length. 775 

Calculating spike transmission probability 776 

To demonstrate how the probability of postsynaptic spiking changes according to the 777 
corresponding presynaptic inter-spike intervals, we estimated spike transmission probabilities 778 
from the cross-correlograms directly instead of using a model. To calculate this probability, we 779 
focused on a transmission interval after the presynaptic spike where the conditional intensity (when 780 
corrected for the baseline rate) goes above 10% of the maximum of 𝜶(𝑡). We split the presynaptic 781 
inter-spike interval distribution into log-spaced intervals, and, for each interval, we calculate the 782 
ratio between numbers of postsynaptic spikes in the transmission interval to the number of 783 
presynaptic spikes. Unlike previous studies [14,61] we do not correct this probability for the 784 
baseline postsynaptic rate. The uncorrected probability allows us to more directly compare the 785 
model predictions to the empirical spike transmission probabilities. Since our model gives an 786 
estimate of the postsynaptic probability after each individual presynaptic spike, we can average 787 
over the same transmission interval. However, we know if there is a postsynaptic spike in the 788 
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transmission interval, probability of a postsynaptic spike goes to ~0 for all consecutive bins due to 789 
the post-spike dynamics (e.g. refractory period). Therefore, we measure the predicted probability 790 
of a postsynaptic spike in a 5ms window after 𝑖-th presynaptic spike from binned 𝜆3E𝑡VH as follows: 791 

𝑧3 = ∑ 𝜆3E𝑡VH∏ E1 − 𝜆3(𝑡�)H
Vjk
��	k

�
V�k . Here we assume conditional independence of the 𝑗-th bin 792 

after a presynaptic spike, but we enforce a refractory period for all bins after a postsynaptic spike 793 
in our generative model. Here 𝐿 is the first bin that 𝑦3V is nonzero. 𝑧3 represents the probability of 794 
postsynaptic spiking after each presynaptic spike and we fit a smooth curve over the distribution 795 
of 𝑧3′s and their corresponding inter-spike intervals to compare with the empirical spike probability 796 
patterns. 797 

Modeling the effect of local patterns of pre- and postsynaptic spiking 798 

The observed and modeled spike transmission patterns, as calculated above, reflect the expected 799 
postsynaptic spike probability given a specific presynaptic ISI. However, since the presynaptic 800 
ISIs are not independent and there are serial correlations in ISIs, the detailed sequence of the pre- 801 
and postsynaptic spiking likely affects the shapes of these curves. To quantify the effects of serial 802 
ISI correlations on the model of spike transmission probability we demonstrate how local patterns 803 
of presynaptic spiking modifies spike transmission patterns in the data and the model. For each of 804 
the three strong identified synapses we measure postsynaptic spiking probability in response to 805 
presynaptic spike triplets. Due to the limited number of spikes in our data, we divide the 806 
presynaptic ISI distribution into few log-spaced intervals and measure the postsynaptic spiking 807 
probability for triplets with the two ISIs that fall in those intervals. Similarly, we measure the 808 
predicted postsynaptic probability in response to the presynaptic triplets. After measuring 809 
postsynaptic responses to presynaptic spike triplets in the data and the model, we simulate the 810 
contribution of STP in shaping the transmission pattern in response to these triplets. To factor out 811 
contributions of the postsynaptic history and slow changes in presynaptic firing rate, we fix the 812 
corresponding values in the model to their average values within the model. In these simulations, 813 
we also fix the initial values of the STP dynamics in the TM model for the first spike of the triplets 814 
to the average R and 𝑢 within the model. This approach enables us to illustrate how short-term 815 
synaptic plasticity in triplets of presynaptic spikes changes spike transmission probability and how 816 
serial correlations in presynaptic spiking affect spike transmission probability. 817 

The postsynaptic spike history and the serial correlations between the pre- and postsynaptic spiking 818 
also modify spike transmission probability patterns. To investigate history effects in the local 819 
pattern of pre- and postsynaptic spikes, we measured the postsynaptic spiking probability in 820 
response to two presynaptic spikes and a postsynaptic spike preceding the most recent presynaptic 821 
spike. Due to the limited number of spikes and sparseness of the split cross-correlograms, we again 822 
divided the presynaptic and postsynaptic ISI distributions into a few log-spaced intervals. We then 823 
measure the spike transmission probability for a group of presynaptic spikes that their preceding 824 
presynaptic ISIs and postsynaptic spike ISIs fall into different combinations of pre- and 825 
postsynaptic log-spaced intervals. After measuring postsynaptic responses to any possible 826 
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combination of the two most recent presynaptic spikes and their postsynaptic spikes in the data 827 
and the model, we simulate the contribution of the history and STP together in shaping the 828 
transmission. In our simulation the excitability was set to the model estimates. To measure the 829 
effects of postsynaptic spiking history, for each postsynaptic ISI, we fix the history contribution 830 
to estimated post-spike history filter value at that postsynaptic ISI. We then use the predicted STP 831 
parameters from the data to simulate the STP contribution in response to paired pulses of 832 
presynaptic ISIs where we again fix the initial values of the TM model for the first presynaptic 833 
spike to the average R and 𝑢 within the model. This approach enables us to illustrate how short-834 
term synaptic plasticity in local patterns of two presynaptic spikes and a postsynaptic spike 835 
changes spike transmission probability and quantifies how serial correlations between pre- and 836 
postsynaptic spiking affect spike transmission probability. 837 

Evaluating prediction accuracy 838 

In addition to evaluating the estimated parameters and comparing the model to empirical spike 839 
transmission probabilities, we also assess how accurately the model can predict postsynaptic 840 
spiking. Not only can we predict the probability of a spike given specific presynaptic ISIs, but we 841 
can also predict whether there will be a postsynaptic spike following each individual presynaptic 842 
spike. To quantify how well the predicted postsynaptic spike probability, 𝑧3, predicts the 843 
postsynaptic spiking activity, we use Receiver Operating Characteristic (ROC) curves. To compute 844 
the ROC curve, we first create a threshold version of 𝑧3 which operates as our prediction: {(𝑟̂3 =845 
1) if (𝑧3 > thr); 0 otherwise}. Changing the threshold from 0 to 1 traces out a relationship between 846 
the true positive rate (TPR) and false positive rate (FPR). The area under the ROC curve (AUC) 847 
reflects the performance of each model, where a perfect classifier has AUC=1 and a random 848 
classifier has AUC=0.5. Effectively, the AUC is the probability of a randomly chosen spike having 849 
a higher model probability than a randomly chosen non-spike [72]. Here we calculate the AUC for 850 
short intervals (~5ms) after presynaptic spikes and check whether we detect a postsynaptic spike 851 
in the transmission interval where 𝛼(𝑡) is above 10% of its maximum. Here we compare the AUC 852 
for the static model of connectivity without short-term synaptic plasticity with our dynamical 853 
model. 854 

A simplified rate model to simulate effects of synaptic summation and post-spike history 855 

Our TM-GLM’s prediction of the spike transmission pattern is data-driven and depends on the full 856 
history of pre- and postsynaptic spiking. To better understand and illustrate how STP, synaptic 857 
summation, and post-spike history interact to create the observed patterns of spike transmission, 858 
we simulated postsynaptic responses in a simplified voltage model. Namely, we consider PSP 859 
summation in response to a pattern of two presynaptic spikes. We assume that the synapse is 860 
initially fully recovered, and the PSC amplitudes are determined by the 4-paramter TM model with 861 
𝑈 = 0.7, 𝜏) = 1.7, 𝜏+ = 0.02, 𝑓 =0.05 for the depressing synapse and 𝑈 =0.1, 𝜏) = 0.02, 𝜏+ =862 
1, 𝑓 =0.11 for the facilitating synapse [28]. We then convolve the PSCs (delta function kernel) 863 
with a PSP kernel, exp(−𝑡/𝜏�) − exp	(−𝑡/𝜏`), with 𝜏� = .01 and 𝜏`=.001 ms to describe synaptic 864 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted November 23, 2018. ; https://doi.org/10.1101/475178doi: bioRxiv preprint 

https://doi.org/10.1101/475178


 

 

27 

summation. We assume that the instantaneous postsynaptic spike probability is simply a nonlinear 865 
function of the distance to a threshold voltage 𝜎E5(𝑉(𝑡) − 𝑉#_)H where 𝜎(𝑥) = 1/(1 + 𝑒j¢) and 866 
𝑉#_ = .5, . 75, and 1 correspond to strong, moderate, and weak inputs respectively. The spike 867 
transmission probability sums this instantaneous probability over a window of 20ms after each 868 
presynaptic spike. Finally, we adjust the spike transmission probability for the second PSP to 869 
account for potential post-spike history effects. Namely, we assume that the adjusted spike 870 
transmission probability for the second spike is 𝑝Q∗ = (1 − 𝑝k)𝑝Q + 𝑝k𝑝Q𝑓¥_$ where 𝑝k is the 871 
transmission probability for the first spike, 𝑝Q is the unadjusted probability for the second spike, 872 
and 𝑓¥_$ is the effect of the after-hyperpolarization. Here we use 𝑓¥_$(Δ𝑡) = (𝜎E150(Δ𝑡 −873 
0.02)H − 𝑐)/𝑑 where Δ𝑡 is the presynaptic ISI, and 𝑐 and 𝑑 are constants ensuring that 𝑓¥_$(0) =874 
0 and 𝑓¥_$(∞) = 1. Although this simulation is highly simplified, it demonstrates how the 875 
observed spike transmission pattern depends, not just on the type and timescale of STP, but on the 876 
interaction between STP, synaptic summation, after-hyperpolarization effects, and the spike 877 
nonlinearity. 878 
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Figure 6— figure supplement 1: Spike transmission probabilities patterns and cross-1063 
correlograms for each of the microcircuits identified from the multi-electrode array recording. 1064 
Excitatory inputs (cross-correlograms at left with corresponding transmission probability (Prob.) 1065 
numbers) to the putative inhibitory neurons are shown along with selected outgoing cross-1066 
correlograms used to identify putative inhibitory neurons (right). Spike wave-shapes are shown in 1067 
each circle. Top panel shows the disentangled paired-pulse ratios using simulations following 1068 
model fits – membrane integration (yellow); STP (blue); integration and STP (orange). Numbers 1069 
on each line connecting putative excitatory neurons and the inhibitory neuron corresponds to depth 1070 
differences between recording electrodes.  1071 
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