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Abstract (250 words) 14 

Information transmission in neural networks is influenced by both short-term synaptic plasticity 15 
(STP) as well as non-synaptic factors, such as after-hyperpolarization currents and changes in 16 
excitability. Although these effects have been widely characterized in vitro using intracellular 17 
recordings, how they interact in vivo is unclear. Here we develop a statistical model of the short-18 
term dynamics of spike transmission that aims to disentangle the contributions of synaptic and 19 
non-synaptic effects based only on observed pre- and postsynaptic spiking. The model includes a 20 
dynamic functional connection with short-term plasticity as well as effects due to the recent history 21 
of postsynaptic spiking and slow changes in postsynaptic excitability. Using paired spike 22 
recordings, we find that the model accurately describes the short-term dynamics of in vivo spike 23 
transmission at a diverse set of identified and putative excitatory synapses, including a 24 
thalamothalamic connection in mouse, a thalamocortical connection in a female rabbit, and an 25 
auditory brainstem synapse in a female gerbil. We illustrate the utility of this modeling approach 26 
by showing how the spike transmission patterns captured by the model may be sufficient to account 27 
for stimulus-dependent differences in spike transmission in the auditory brainstem (endbulb of 28 
Held). Finally, we apply this model to large-scale multi-electrode recordings to illustrate how such 29 
an approach has the potential to reveal cell-type specific differences in spike transmission in vivo. 30 
Although short-term synaptic plasticity parameters estimated from ongoing pre- and postsynaptic 31 
spiking are highly uncertain, our results are partially consistent with previous intracellular 32 
observations in these synapses. 33 

Significance Statement (120 words) 34 

Although synaptic dynamics have been extensively studied and modeled using intracellular 35 
recordings of post-synaptic currents and potentials, inferring synaptic effects from extracellular 36 
spiking is challenging. Whether or not a synaptic current contributes to postsynaptic spiking 37 
depends not only on the amplitude of the current, but also on many other factors, including the 38 
activity of other, typically unobserved, synapses, the overall excitability of the postsynaptic 39 
neuron, and how recently the postsynaptic neuron has spiked. Here we developed a model that, 40 
using only observations of pre- and postsynaptic spiking, aims to describe the dynamics of in vivo 41 
spike transmission by modeling both short-term synaptic plasticity and non-synaptic effects. This 42 
approach may provide a novel description of fast, structured changes in spike transmission.  43 

Introduction (650 words) 44 

In response to a presynaptic input, the amplitudes of elicited postsynaptic potentials (PSPs) can 45 
increase or decrease dramatically due to short-term synaptic plasticity (Zucker and Regehr, 2002; 46 
Regehr, 2012). The probability that a postsynaptic neuron spikes in response to a presynaptic spike 47 
can also increase or decrease depending on the recent history of pre- and postsynaptic activity 48 
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(Usrey et al., 2000; Swadlow and Gusev, 2001). Although many models exist to describe 49 
intracellular observations of short-term synaptic plasticity (Costa et al., 2013; Hennig, 2013; Barri 50 
et al., 2016; Bird et al., 2016), most models of functional connections between neurons based on 51 
extracellular spike observations assume that connections are fixed over time  (Truccolo et al., 2005; 52 
Pillow et al., 2008). Unlike intracellular PSP observations, where the amplitude of each individual 53 
presynaptic spike can be measured (subject to noise), extracellular spike observations are sparse, 54 
typically all-or-none binary events. Modeling dynamic, functional connections from spike 55 
observations, especially in the presence of uncontrolled, ongoing neural activity, presents a major 56 
statistical challenge (Ghanbari et al., 2017). Here we further develop a model-based approach that, 57 
given only pre- and postsynaptic spike observations, estimates the contributions of short-term 58 
synaptic plasticity and several non-synaptic factors to the probability of spike transmission. 59 

Traditionally, the influence of presynaptic spikes on postsynaptic spiking is measured using cross-60 
correlation (Perkel et al., 1967; Fetz et al., 1991; Csicsvari et al., 1998; Barthó et al., 2004). If two 61 
neurons are monosynaptically connected, the probability of the postsynaptic neuron spiking will 62 
briefly increase or decrease following a presynaptic spike, which appears as a fast-onset, short-63 
latency peak or trough in the cross-correlation, depending on whether the synapse is excitatory or 64 
inhibitory (Perkel et al., 1967; Barthó et al., 2004). Just as synaptic potentials depress or facilitate 65 
due to short-term synaptic plasticity, this spike transmission probability might also depend on the 66 
recent history of presynaptic activity. By subdividing cross-correlograms to characterize the 67 
specific effects of different presynaptic spike patterns, previous studies have found that certain, 68 
putative synaptic connections show reduced spike transmission probability following recent 69 
presynaptic spikes (Swadlow and Gusev, 2001; English et al., 2017), while others show increased 70 
probability (Usrey et al., 2000), as might be expected of depressing or facilitating synapses, 71 
respectively.  72 

Here, rather than subdividing correlograms, we use a likelihood-based modeling approach that 73 
extends previous static models of functional connectivity (Harris et al., 2003; Pillow et al., 2008; 74 
Stevenson et al., 2008). This dynamic model describes not only the sign and strength of synaptic 75 
connections, but also whether the dynamics are depressing or facilitating. In addition to describing 76 
differences in responses to specific presynaptic spike patterns, the model-based approach also 77 
allows us to predict how the postsynaptic neuron will respond to arbitrary patterns of presynaptic 78 
activity. In previous work, we evaluated this type of dynamical functional connectivity model on 79 
simulated and in vitro experiments where the ground-truth dynamics were known (Ghanbari et al., 80 
2017). These results demonstrated that, at least in a controlled setting, short-term synaptic 81 
plasticity can be inferred from spike observations, even in the presence of sources of error, such 82 
as spike sorting errors, stochastic vesicle release, and common input from unobserved neurons. 83 
Here we build on this model and examine how well it can account for excitatory spike transmission 84 
dynamics observed in vivo where the true synaptic currents are unknown. 85 
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A key element of our dynamical functional connectivity model is the inclusion of both synaptic 86 
and non-synaptic contributions to spike transmission. For each individual presynaptic spike, our 87 
model predicts postsynaptic spiking by taking into account synaptic coupling with STP, synaptic 88 
summation, post-spike history effects, and slow fluctuations of excitability. Although these effects 89 
do not include all factors that may influence spiking statistics (Herz et al., 2006), together they can 90 
account for wide variety of phenomena, including subthreshold membrane integration (Carandini 91 
et al., 2007) and slower fluctuations in the overall excitability of the postsynaptic neuron, such as 92 
observed during neuromodulation (Henze and Buzsáki, 2001). The interaction between synaptic 93 
and non-synaptic effects, as well as the degree to which each factor contributes is likely to lead to 94 
diverse patterns of spike transmission. Here we show how models of dynamical functional 95 
connectivity with short-term synaptic plasticity can capture these patterns of spike transmission 96 
and disentangle the multiple factors that shape postsynaptic response.  97 

Material and methods 98 

Neural Data 99 

All data analyzed here were obtained from previous studies (see below). Animal use procedures 100 
were approved by the institutional animal care and use committees at University of Connecticut 101 
(VB-Barrel),  University of Leipzig  (ANF-SBC), or University College London (MEA), 102 
respectively, and conform to the principles outlined in the Guide for the Care and Use of 103 
Laboratory Animals (National Institutes of Health publication no. 86-23, revised 1985). 104 

To illustrate how synaptic dynamics can be estimated from spikes, we first examined a set of three 105 
strong putative or identified synapses with diverse spike transmission probability patterns: (i) a 106 
local, excitatory connection from one neuron in mouse thalamus to another detected from a larger 107 
multi-electrode array (MEA) recording, (ii) a ventrobasal thalamus projection to primary 108 
somatosensory cortex (VB – Barrel) in a rabbit, and (iii) an in vivo loose-patch (juxtacellular) 109 
recording of an auditory nerve projection onto a spherical bushy cell (ANF-SBC) in the auditory 110 
brainstem of a gerbil. We then use this auditory brainstem connection to explore how synaptic 111 
transmission probability depends on the stimulus and compare the results with a model without 112 
short-term synaptic plasticity. Next, we applied our model more generally to analyze a large 113 
sample of putative synaptic connections recorded from the MEA dataset. The data from these three 114 
identified strong synapses and the MEA data have been collected from different species, regions, 115 
cell-types, under different stimulation and show a diverse pattern of postsynaptic spiking 116 
probability. In all cases we deduce short-term synaptic dynamics on the basis of only pre- and 117 
postsynaptic spike observations. 118 

For the first putative synapse, we use in vivo data from simultaneous extracellular recordings in 119 
ventrobasal (VB) thalamic barreloids and topographically aligned, somatosensory cortical barrel 120 
columns (VB-Barrel) in awake, unanesthetized, adult rabbits. Detailed surgical and physiological 121 
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methods have been described previously (Swadlow and Gusev, 2002). Spike-triggered averages 122 
of the cortical spikes following spiking of the VB neuron was used to identify connected S1 123 
neurons. Based on the presence of high frequency discharge (3+ spikes, > 600 Hz) following 124 
electrical stimulation of the thalamus, and narrow spike waveforms, the S1 neuron in this recording 125 
was identified as a putative inhibitory neuron (Kawaguchi, 2001). These recordings identified 126 
several putative thalamocortical projections. The putative synapse that we model here is 127 
particularly clear, with 68,345 pre- and 128,096 postsynaptic spikes recorded over the course of 128 
92 minutes of spontaneous activity and has been previously studied in (Swadlow and Gusev, 2001; 129 
Swadlow, 2002). 130 

For the second synapse, we examined in vivo loose-patch recordings at the Endbulb of Held in 131 
young adult female gerbils. Detailed surgical and physiological methods have been previously 132 
described (Keine et al., 2017). Briefly, the glass electrode was positioned in the anterior portion of 133 
the ventral cochlear nucleus (AVCN) and single-units were recorded during varying acoustic 134 
stimulation. Single units were classified when recording a positive action potential amplitude of at 135 
least 2 mV and showing the characteristic complex waveform identifying them as large spherical 136 
bushy cells (SBC) of the rostral AVCN. This recording included a mixture of juxtacellular 137 
waveforms: an isolated excitatory PSP (EPSP) or an EPSP followed by a postsynaptic action 138 
potential. For both cases the timing of EPSPs and spikes and rising slope of the EPSPs were 139 
extracted. The timing and slope of the EPSPs were identified using a slope threshold for the rising 140 
part of EPSPs as previously described (Keine et al., 2016). We then modeled spike transmission 141 
probability patterns for two recordings: (i) during randomized pure tone acoustic stimulation and 142 
(ii) during multiple stimuli, i.e. randomized frequency-level pure tone stimulation interspaced with 143 
spontaneous activity, natural sounds, and also during spontaneous activity. Using this second 144 
dataset, we characterized how variable presynaptic spike patterns evoked by different stimuli 145 
affected the patterns of spike transmission at the same synapse. 146 

We also use MEA spiking data to study the factors shaping spike transmission probability patterns 147 
in a large-scale recording with multiple cell-types. Here we use a previously collected, publicly 148 
available recording from the Cortex Lab at UCL (Jun et al., 2017; Mora Lopez et al., 2017) with 149 
data from two Neuropixels electrode arrays recorded simultaneously, each with 960 sites (384 150 
active) with lengths of 10-mm and spacing of 70 × 20-μm (http://data.cortexlab.net/dualPhase3/). 151 
The two electrode arrays span multiple brain areas and ~90 min of data was collected in an awake, 152 
head-fixed mouse on a rotating rubber wheel during visual stimulus presentations. Spikes were 153 
automatically detected and sorted using Kilosort (Pachitariu et al., 2016) on the broadband (0.3–154 
10 kHz) signal and then manually curated. If two clusters of spikes had similar waveforms, cross-155 
correlogram features, and spike amplitudes, they were merged into a single cluster and assigned 156 
to a single neuron. In total, 831 well-isolated single neurons where identified from the two probes 157 
in several different brain areas: visual cortex (n=74), hippocampus (n=64), thalamus (n=244), 158 
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motor cortex (n=243), and striatum (n=200). Due to the large number of simultaneously recorded 159 
neurons in this dataset, there are many potential synapses (~8312). 160 

Synapse Detection 161 

To identify putative monosynaptic connections between well-isolated single neurons, we looked 162 
for specific patterns in the cross-correlograms (Moore et al., 1970). If two neurons are 163 
monosynaptically connected, the probability of postsynaptic spiking increases/decreases rapidly 164 
following a presynaptic spike. In spiking data, this rapid, transient change can be seen in cross-165 
correlograms as an asymmetric bump/dip in the number of postsynaptic spikes following 166 
presynaptic spikes (Barthó et al., 2004). For each connection we calculated the cross-correlogram 167 
in a 5 ms window before and after presynaptic spikes with bin-size of 0.1 ms. To avoid aliasing in 168 
the cross-correlograms, we added a small, random shift to each postsynaptic spike drawn 169 
uniformly between −Δt/2 and Δt/2 where Δt is the spike time resolution (0.01 ms in most cases). 170 
Here we used a model-based approach using the cross-correlograms to decide whether two 171 
synapses are monosynaptically connected. To fit the cross-correlogram we used a baseline rate 𝜇, 172 
a linear combination of B-spline bases 𝐁(t), and a weighted alpha function to model the synapse, 173 
𝑤	𝛼(t), all passed through an output nonlinearity; 𝜆(𝑡) = exp3𝜇 + 𝒓𝐁(t) + 𝑤	𝛼(t)6. The alpha 174 
function, 𝛼(t) = 	 (t − 𝑡!)/𝜏" 	exp(1 − (t − 𝑡!)/𝜏"), describes the shape of the synaptic potential 175 
where 𝑡! is the synaptic delay and 𝜏" is the synaptic time-constant (Carandini et al., 2007). For 176 
individual connections, we estimate these parameters by maximizing the penalized Poisson log-177 
likelihood 𝑙(𝜇, 𝒓, 𝑤, 𝑡! , 𝜏") = Σy#𝑙𝑜𝑔𝜆$ − Σ𝜆$ + ϵ‖𝒓‖%  where 𝑦$  is the number of postsynaptic 178 
spikes observed in the 𝑖-th bin of the correlogram and ‖𝒓‖% regularizes the model to penalize B-179 
spline bases for capturing sharp increases in the cross-correlogram. 𝜖 is a regularization hyper-180 
parameter which we set to 1 based on manual search. Due to the parameterization of 𝛼(t), the log-181 
likelihood is not concave. However, since the gradient of the log-likelihood can be calculated 182 
analytically, we efficiently optimize the likelihood using a gradient-based pseudo-Newton method 183 
(LBFGS) (Boyd and Vandenberghe, 2004). During the optimization, the delay and time-constant 184 
parameters are log-transformed, allowing us to use unconstrained optimization, even though they 185 
are strictly positive. We used random restarts to avoid local maxima. To identify putative 186 
monosynaptic connections in the large-scale multi-electrode array data, we compared this model 187 
with a smooth model with slow changes in cross-correlogram and without the synapse, 𝜆&(t) =188 
exp(𝜇′ + 𝒓′𝐁(t)), using the log-likelihood ratio (LLR) test between our full model with synapse 189 
and the nested smooth model. Since low values of the likelihood ratio mean that the observed result 190 
was better explained with full model as compared to the smooth model, we then visually screened 191 
pair-wise connections with lowest ratios (LLR <-6) compared to the null model to find putative 192 
synapses. Out of ~8312 possible connections in this dataset we find ~200 putative synapses 193 
(0.03%). We handpicked a strong putative synapse between two thalamic neurons to study its 194 
efficacy pattern in detail alongside the VB-Barrel and ANF-SBC synapses. 195 
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In addition to this single strong synapse, we also categorize putative pre- and postsynaptic cell 196 
types for the connections detected in the MEA dataset. For this purpose, we assessed single units 197 
based on their cross-correlograms, firing rates, and spike waveforms. We categorized units as 198 
excitatory or inhibitory if, in accordance with Dale’s law, all outgoing cross-correlograms showed 199 
transient, short-latency (<4ms) increase/decrease in spiking probability. We then looked into 200 
identified inhibitory neurons and categorized them into to putative fast-spiking (FS) and regular-201 
spiking (RS) inhibitory neurons. Using these putative Excitatory-FS and Excitatory-RS synapses, 202 
we then examine how the spike transmission patterns differ for these two subtypes of inhibitory 203 
neurons. 204 

Extending a Generalized Linear Model to Account for Short-term Plasticity (TM-GLM) 205 

Short-term synaptic plasticity causes the amplitude of postsynaptic potentials (PSP) to vary over 206 
time depending on the dynamics of synaptic resources and utilization and can be modeled using 207 
the pattern of presynaptic spiking (Markram et al., 1998; Tsodyks et al., 1998). However, changes 208 
in the overall postsynaptic spiking probability cannot be uniquely attributed to changes in 209 
amplitudes of postsynaptic potentials. To accurately describe the dynamics of spike transmission, 210 
we also need to account for the membrane potential summation, the excitability of the postsynaptic 211 
neuron (e.g. slow changes in the presynaptic firing rate) and the dynamics of postsynaptic spiking 212 
(e.g. refractory period, after hyperpolarization current). We developed an extension of a 213 
generalized linear model, which we call a TM-GLM to describe each of these effects. Concretely, 214 
the probability of a postsynaptic spike shortly after each presynaptic spike accounts for the full 215 
sequence of previous presynaptic spiking and the recent history of postsynaptic spiking. We define 216 
the conditional intensity of the postsynaptic neuron after the 𝑖-th presynaptic spike, t'

(#), so that the 217 
probability of observing a postsynaptic spike in the 𝑗-th time bin after the 𝑖-th presynaptic spike is 218 
given as: 219 

𝜆$3t*6 = σ G𝛽& + 𝐗+Jt'
(#)K𝜷, +M 	𝐗-Jt'

(#) − t.
(/)K𝜷0

1!
(#)21%

(&)
	+ 	𝐴3	𝑤$ 	𝛼(t*)	O 220 

where t.
(/) are the postsynaptic spike times preceding t'

(#). For each presynaptic spike, our model 221 
decomposes the firing rate of the postsynaptic neuron into four effects: a baseline firing rate, 𝛽&, 222 
slow fluctuations in postsynaptic firing rate 𝐗𝐜𝜷𝒄, history effects from the recent postsynaptic 223 
spikes (prior to t'

(#) ), 𝐗𝐡𝜷𝒉 , and a time-varying coupling effect from the presynaptic input, 224 
𝐴3𝑤	𝛼(𝑡) (Fig. 1).  225 
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 226 
Fig. 1: TM-GLM. Postsynaptic spiking probability before passing the spiking nonlinearity 227 
(yellow) changes as a linear combination of presynaptic coupling term with STP dynamics (blue), 228 
postsynaptic spiking history (green), the postsynaptic excitability (red). Transparent red curves 229 
show the bases of slow changes in postsynaptic probability at presynaptic spike times (𝑋,). 230 

Here we model slow fluctuations in the postsynaptic rate 𝐗𝐜𝛽, with a linear combination of B-231 
splines with equally spaced knots every 50 seconds of recording time. In the history term, splines 232 
(𝐗𝐡) span a period of 10 ms prior to each presynaptic spike with 4 logarithmically-spaced knots. 233 
By scaling 𝛼(t*) with a multiplicative factor, 𝑤$, the strength of a synapse can vary over time and, 234 
in this case, depends on the detailed sequence of presynaptic spiking and their corresponding inter-235 
spike intervals. 𝐴3 is the magnitude of the synaptic strength. In this case we use a model for short-236 
term synaptic plasticity that allows both depression (where the 𝑤$ decreases for shorter presynaptic 237 
ISIs) and facilitation (where the 𝑤$  increases for shorter presynaptic ISIs), and incorporates 238 
membrane summation. To model these effects, 𝑤$ is determined by a nonlinear dynamical system 239 
based on the Tsodyks and Markram (TM) model (Tsodyks and Markram, 1997; Markram et al., 240 

1998) where: 𝑤$ = 𝑤$89 	exp Q−
:'
(()8:'

(()*)

;%
R 𝜋$ + R#u# , where 𝜏3  is the membrane time-constant 241 

and the first term of the equation describes how postsynaptic membrane potential summation 242 
increases the probability of postsynaptic spiking. This membrane summation will be ignored if 243 
there is a postsynaptic spike: 𝜋$ = V0	if	t'

(#89) < t.
(#89) < t'

(#); 1	otherwisea. In the second term of 244 

this equation, 𝑅 represents the dynamics of resources and 𝑢 describes their utilization.  245 

R# = 1 − [1 − R#89(1 − u#89)] expf−
t'
(#) − t'

(#89)

𝜏!
g 246 

u# = 𝑈 + [	u#89 + 𝑓(1 − u#89) + 𝑈] exp f−
t'
(#) − t'

(#89)

𝜏<
g 247 
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where 𝜏! and 𝜏< are the depression and facilitation time-constants. 𝑈 is the release probability, and 248 
𝑓 is the magnitude of facilitation. To make the estimation more tractable, we approximate the full 249 
optimization problem and estimate synaptic delay, 𝑡!, and time-constant, 𝜏", by fitting 𝛼(𝑡) using 250 
the full cross-correlogram, as above. We fix these parameters for the rest of the optimization 251 
process. We then maximize a penalized, Bernoulli log-likelihood log	(𝑙(𝜽)) = ΣΣ my#*𝜆$3t*6 −252 

31 − y#*6 J1 − 𝜆$3t*6Kn + 𝛾p𝜽′31=p% where 𝛾 = 1 is the regularization hyperparameter to estimate 253 

the parameters: 𝜽 = q𝛽&, 𝜷,>9:@ 	, 𝜷0>9:A , 𝐴3, 𝜽31=r,	𝜽31= = {	𝜏! , 𝜏< , 𝑈, 𝑓, 𝜏3}.  254 

As with previous applications of GLMs, we assume that bins are conditionally independent given 255 
the covariates, but unlike many other GLMs, here we only calculate the log-likelihood during short 256 
intervals (5ms) after presynaptic spikes. With y#* being a binary value representing the presence of 257 
a postsynaptic spike in the 𝑗 -th time bin after the 𝑖 -th presynaptic spike. We again used a 258 
logarithmic transformation for the time-constants to avoid negative values and logit transformation 259 
for 𝑈  and 𝑓  to bound their values in the interval [0, 1] ; 𝜽′31= =260 
{log	(𝜏!), log	(𝜏<), logit(𝑈), logit(𝑓), log	(𝜏3)}. By modeling STP this model is no longer a strict 261 
GLM, and the log-likelihood may have local maxima. Here we use random restarts to avoid local 262 
maxima in our optimization process. The parameters of each restart {𝛽&, 𝜷,>9:	@ 	, 𝜷0>9:	A , 𝐴3} are 263 
initialized by adding noise (∼ 𝑁(0,1)) to the corresponding parameters in a standard GLM. We 264 
initialize the log-transformed plasticity parameters with 𝜏′!

(&)~𝑁(−1,5) , 𝜏′<
(&)~𝑁(−1,5) , 265 

𝑈′(&)~𝑁(0,5), 𝑓′(&)~𝑁(0,5), 𝜏′3
(&)~𝑁(−3,5). We then use an LBFGS algorithm to optimize the 266 

log-likelihood where we calculate all derivatives analytically except for derivatives of 𝜃31= which 267 
we calculate numerically. To estimate the uncertainty of the parameters, we bootstrap the data 268 
from each of the strong synapses by chunking the whole recording time into samples of 50 seconds 269 
then resampling the chunks to generate a new spike train with the same original length. 270 

Calculating spike transmission probability 271 

To demonstrate how the probability of postsynaptic spiking changes according to the 272 
corresponding presynaptic inter-spike intervals, we estimated spike transmission probabilities 273 
from the cross-correlograms directly instead of using a model. To calculate this probability, we 274 
focused on a transmission interval after the presynaptic spike where the conditional intensity (when 275 
corrected for the baseline rate) goes above 10% of the maximum of 𝜶(𝑡) (horizontal bars in Fig 276 
2A). We split the presynaptic inter-spike interval distribution into log-spaced intervals, and, for 277 
each interval, we calculate the ratio between numbers of postsynaptic spikes in the transmission 278 
interval to the number of presynaptic spikes. Unlike previous studies (Swadlow and Gusev, 2001, 279 
2002) we do not correct this probability for the baseline postsynaptic rate. The uncorrected 280 
probability allows us to more directly compare the model predictions to the empirical spike 281 
transmission probabilities. Since our model gives an estimate of the postsynaptic probability after 282 
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each individual presynaptic spike, we can average over the same transmission interval. However, 283 
we know if there is a postsynaptic spike in the transmission interval, probability of a postsynaptic 284 
spike goes to ~0 for all consecutive bins due to the post-spike dynamics (e.g. refractory period). 285 
Therefore, we measure the predicted probability of a postsynaptic spike in a 5ms window after 𝑖-286 
th presynaptic spike from binned 𝜆$3t*6 as follows: 𝑧$ = ∑ 𝜆$3t*6∏ 31 − 𝜆$(tC)6

D89
E>	9

F
D>9 . Here we 287 

assume conditional independence of the 𝑗-th bin after a presynaptic spike, but we enforce a 288 
refractory period for all bins after a postsynaptic spike in our generative model. Here 𝐿 is the first 289 
bin that 𝑦$D is nonzero. 𝑧$ represents the probability of postsynaptic spiking after each presynaptic 290 
spike and we fit a smooth curve over the distribution of 𝑧$′s and their corresponding inter-spike 291 
intervals to compare with the empirical spike probability patterns. 292 

Modeling the effect of local patterns of pre- and postsynaptic spiking 293 

The observed and modeled spike transmission patterns, as calculated above, reflect the expected 294 
postsynaptic spike probability given a specific presynaptic ISI. However, since the presynaptic 295 
ISIs are not independent and there are serial correlations in ISIs, the detailed sequence of the pre- 296 
and postsynaptic spiking likely affects the shapes of these curves. To quantify the effects of serial 297 
ISI correlations on the model of spike transmission probability we demonstrate how local patterns 298 
of presynaptic spiking modifies spike transmission patterns in the data and the model. For each of 299 
the three strong identified synapses we measure postsynaptic spiking probability in response to 300 
presynaptic spike triplets. Due to the limited number of spikes in our data, we divide the 301 
presynaptic ISI distribution into few log-spaced intervals and measure the postsynaptic spiking 302 
probability for triplets with the two ISIs that fall in those intervals. Similarly, we measure the 303 
predicted postsynaptic probability in response to the presynaptic triplets. After measuring 304 
postsynaptic responses to presynaptic spike triplets in the data and the model, we simulate the 305 
contribution of STP in shaping the transmission pattern in response to these triplets. To factor out 306 
contributions of the postsynaptic history and slow changes in presynaptic firing rate, we fix the 307 
corresponding values in the model to their average values within the model. In these simulations, 308 
we also fix the initial values of the STP dynamics in the TM model for the first spike of the triplets 309 
to the average R and 𝑢 within the model. This approach enables us to illustrate how short-term 310 
synaptic plasticity in triplets of presynaptic spikes changes spike transmission probability and how 311 
serial correlations in presynaptic spiking affect spike transmission probability. 312 

The postsynaptic spike history and the serial correlations between the pre- and postsynaptic spiking 313 
also modify spike transmission probability patterns. To investigate history effects in the local 314 
pattern of pre- and postsynaptic spikes, we measured the postsynaptic spiking probability in 315 
response to two presynaptic spikes and a postsynaptic spike preceding the most recent presynaptic 316 
spike. Due to the limited number of spikes and sparseness of the split cross-correlograms, we again 317 
divided the presynaptic and postsynaptic ISI distributions into a few log-spaced intervals. We then 318 
measure the spike transmission probability for a group of presynaptic spikes that their preceding 319 
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presynaptic ISIs and postsynaptic spike ISIs fall into different combinations of pre- and 320 
postsynaptic log-spaced intervals. After measuring postsynaptic responses to any possible 321 
combination of the two most recent presynaptic spikes and their postsynaptic spikes in the data 322 
and the model, we simulate the contribution of the history and STP together in shaping the 323 
transmission. In our simulation the excitability was set to the model estimates. To measure the 324 
effects of postsynaptic spiking history, for each postsynaptic ISI, we fix the history contribution 325 
to estimated post-spike history filter value at that postsynaptic ISI. We then use the predicted STP 326 
parameters from the data to simulate the STP contribution in response to paired pulses of 327 
presynaptic ISIs where we again fix the initial values of the TM model for the first presynaptic 328 
spike to the average R and 𝑢 within the model. This approach enables us to illustrate how short-329 
term synaptic plasticity in local patterns of two presynaptic spikes and a postsynaptic spike 330 
changes spike transmission probability and quantifies how serial correlations between pre- and 331 
postsynaptic spiking affect spike transmission probability. 332 

Evaluating prediction accuracy 333 

In addition to evaluating the estimated parameters and comparing the model to empirical spike 334 
transmission probabilities, we also assess how accurately the model can predict postsynaptic 335 
spiking. Not only can we predict the probability of a spike given specific presynaptic ISIs, but we 336 
can also predict whether there will be a postsynaptic spike following each individual presynaptic 337 
spike. To quantify how well the predicted postsynaptic spike probability, 𝑧$ , predicts the 338 
postsynaptic spiking activity, we use Receiver Operating Characteristic (ROC) curves. To compute 339 
the ROC curve, we first create a threshold version of 𝑧$ which operates as our prediction: {(�̂�$ =340 
1) if (𝑧$ > thr); 0 otherwise}. Changing the threshold from 0 to 1 traces out a relationship between 341 
the true positive rate (TPR) and false positive rate (FPR). The area under the ROC curve (AUC) 342 
reflects the performance of each model, where a perfect classifier has AUC=1 and a random 343 
classifier has AUC=0.5. Effectively, the AUC is the probability of a randomly chosen spike having 344 
a higher model probability than a randomly chosen non-spike (Hatsopoulos et al., 2007). Here we 345 
calculate the AUC for short intervals (~5ms) after presynaptic spikes and check whether we detect 346 
a postsynaptic spike in the transmission interval where 𝛼(𝑡) is above 10% of its maximum. Here 347 
we compare the AUC for the static model of connectivity without short-term synaptic plasticity 348 
with our dynamical model. 349 

A simplified rate model to simulate effects of synaptic summation and post-spike history 350 

Our TM-GLM’s prediction of the spike transmission pattern is data-driven and depends on the full 351 
history of pre- and postsynaptic spiking. To better understand and illustrate how STP, synaptic 352 
summation, and post-spike history interact to create the observed patterns of spike transmission, 353 
we simulated postsynaptic responses in a simplified voltage model. Namely, we consider PSP 354 
summation in response to a pattern of two presynaptic spikes. We assume that the synapse is 355 
initially fully recovered, and the PSC amplitudes are determined by the 4-paramter TM model with 356 
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𝑈 = 0.7, 𝜏! = 1.7, 𝜏< = 0.02, 𝑓 =0.05 for the depressing synapse and 𝑈 =0.1, 𝜏! = 0.02, 𝜏< =357 
1, 𝑓 =0.11 for the facilitating synapse (Ghanbari et al., 2017). We then convolve the PSCs (delta 358 
function kernel) with a PSP kernel, exp(−t/𝜏G) − exp	(−t/𝜏H), with 𝜏G = .01 and 𝜏H=.001 ms to 359 
describe synaptic summation. We assume that the instantaneous postsynaptic spike probability is 360 
simply a nonlinear function of the distance to a threshold voltage 𝜎35(𝑉(𝑡) − 𝑉10)6 where 𝜎(𝑥) =361 
1/(1 + 𝑒8I)  and 𝑉10 = .5 , . 75 , and 1  correspond to strong, moderate, and weak inputs 362 
respectively. The spike transmission probability sums this instantaneous probability over a 363 
window of 20ms after each presynaptic spike. Finally, we adjust the spike transmission probability 364 
for the second PSP to account for potential post-spike history effects. Namely, we assume that the 365 
adjusted spike transmission probability for the second spike is 𝑝%∗ = (1 − 𝑝9)𝑝% + 𝑝9𝑝%𝑓K0= where 366 
𝑝9 is the transmission probability for the first spike, 𝑝% is the unadjusted probability for the second 367 
spike, and 𝑓K0= is the effect of the after-hyperpolarization. Here we use 𝑓K0=(Δ𝑡) = (𝜎3150(Δ𝑡 −368 
0.02)6 − 𝑐)/𝑑 where Δ𝑡 is the presynaptic ISI, and 𝑐 and 𝑑 are constants ensuring that 𝑓K0=(0) =369 
0  and 𝑓K0=(∞) = 1 . Although this simulation is highly simplified, it demonstrates how the 370 
observed spike transmission pattern depends, not just on the type and timescale of STP, but on the 371 
interaction between STP, synaptic summation, after-hyperpolarization effects, and the spike 372 
nonlinearity. 373 

Simulation of non-connections 374 

The TM-GLM relies on correctly identifying monosynaptic connections. To investigate how our 375 
model performs when there is no actual synapse, we simulated a microcircuit with three neurons 376 
where a presynaptic neuron provides excitatory input to two postsynaptic neurons with different 377 
delays (1 and 3 ms). Here we test how different combinations of STP (depression and facilitation) 378 
in connections between pre- and postsynaptic neurons would impact the overall estimation of spike 379 
“transmission” probability in the spurious connection between the two postsynaptic neurons. Here 380 
the spikes of the presynaptic neuron were simulated from an inhomogeneous Poisson process with 381 
random, smooth rate fluctuations (5Hz average, 4.6Hz sd). The postsynaptic neurons were then 382 
simulated using a leaky integrate-and-fire neuron with spike frequency adaptation (parameters are 383 
from (Ghanbari et al., 2017)) that received a white noise current as input as well as a current-based 384 
synapse from the presynaptic neuron (double exponential with rise time 1ms, decay time 10ms). 385 
The PSCs of the input then vary according to the Tsodyks-Markram model (parameters for 386 
depression/facilitation are as in (Ghanbari et al., 2017)). 387 

Results 388 

Short-term synaptic plasticity directly affects synaptic information processing by altering the 389 
amplitude of presynaptic currents (Abbott and Regehr, 2004). However, in most neural systems it 390 
remains unclear how these presynaptic effects translate to modified postsynaptic spike probability. 391 
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Postsynaptic spiking is affected by many factors including short-term plasticity, postsynaptic spike 392 
history, summation of PSPs, and slow fluctuations in excitability. Here we develop a statistical 393 
model that includes each of these factors and allows their effects to be estimated solely using pre- 394 
and postsynaptic spiking activity. We examined the model’s ability to capture the observed 395 
patterns of spike transmission probability for three strong putative or identified synapses. We then 396 
use one of these systems (the endbulb of Held synapse in the auditory brainstem), to explore how 397 
the short-term dynamics of spike transmission depend on an external stimulus and compare the 398 
results with a model without short-term synaptic plasticity. Finally, we apply our model to spiking 399 
data from a large-scale, multi-electrode array recorded from multiple areas in an awake mouse. 400 
Here we investigate the STP dynamics in putative synapses from excitatory neurons onto two 401 
putative inhibitory neuron subtypes. We find that these two types of connections have distinct 402 
patterns of spike transmission, consistent with previous experimental observations. 403 

Spike transmission probability varies strongly as a function of presynaptic ISIs 404 

Cross-correlograms of excitatory monosynaptic connections show a rapid, transient increase in the 405 
postsynaptic spiking probability shortly after the presynaptic spike, with a latency of ~2-4ms  406 
(Perkel et al., 1967; Fetz and Gustafsson, 1983; Fetz et al., 1991; Poliakov et al., 1996). The timing 407 
and shape of the cross-correlogram depends on the presynaptic axonal conduction delay, the 408 
synaptic delay, and the strength of the connection. However, in the overall cross-correlogram the 409 
effects of all presynaptic spikes are averaged and any variations in spike transmission, such as 410 
dependence on the history of presynaptic spiking, are hidden (Fig. 2A). To quantify how the history 411 
of presynaptic spiking influences spike transmission probability, the probability of observing a 412 
postsynaptic spike shortly after a presynaptic spike, previous studies have compared the cross-413 
correlograms for specific subsets of presynaptic spikes. For instance, comparing the cross-414 
correlograms calculated for presynaptic spikes within defined inter-spike intervals (ISI) 415 
demonstrates how spike transmission probability varies depending on recent presynaptic spiking 416 
(Swadlow and Gusev, 2001; English et al., 2017). Here, to illustrate the diversity of short-term 417 
dynamics in spike transmission, we examine three strong synapses from three distinct neural 418 
systems: (i) a pair of neurons in thalamus in a male mouse, (ii) a projection from ventrobasal 419 
thalamus to somatosensory barrel cortex (VB-Barrel) in a female rabbit, and (iii) the auditory nerve 420 
fiber to spherical bushy cell projection in a female gerbil (ANF-SBC), the endbulb of Held. The 421 
short-term synaptic dynamics of thalamocortical projections, have been extensively characterized 422 
in vivo (Swadlow and Gusev, 2001; Stoelzel et al., 2008, 2009). Similarly, ANF-SBC synapses 423 
have been extensively studied in previous experiments and are well-characterized in vitro 424 
(Thomson et al., 2002; Yang and Xu-Friedman, 2008, 2009). The presynaptic neurons in each of 425 
these pairs have distinct ISI distributions (Fig. 2B), and, after splitting the spikes into ISI quantiles 426 
and calculating the correlogram for each quantile, we find that postsynaptic responses differ 427 
following short and long presynaptic ISIs (Fig. 2C). For the pair of thalamic neurons, spike 428 
transmission probability is increased at short and long intervals and reduced for mid-range ISIs 429 
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(based on n=62661 presynaptic spikes). For the VB-Barrel connection, transmission probability is 430 
higher for longer ISIs (based on n=68345 presynaptic spikes), while for ANF-SBC the highest 431 
transmission probability occurs at intermediate intervals (based on n=20547 presynaptic spikes). 432 
These three cases illustrate that the short-term dynamics of spike transmission can be highly 433 
diverse between neurons and brain regions. 434 

  435 

Fig. 2: Spike transmission probability depends on the presynaptic ISI and differs between synapses. 436 
A) Cross-correlograms between pre- and postsynaptic spiking at three different synapses show an increase 437 
in the postsynaptic spike count (or probability) after a short latency, indicative of a monosynaptic 438 
connection. The efficacy (Eff.) for each synapse is calculated as the ratio between the number postsynaptic 439 
spikes that are above baseline in the transmission interval (denoted by the horizontal bar) and the number 440 
of presynaptic spikes. B) Inter-spike interval distributions (log-scale) for the presynaptic neurons. The 441 
distributions are color-coded into 5 quantiles with equal numbers of presynaptic spikes. C) We calculate a 442 
separate cross-correlogram using the subset of presynaptic spikes where the preceding spike fell within 443 
each ISI range. Colors correspond to (B) going from shorter presynaptic ISIs (left) to longer ISIs (right). 444 
Note that both the baseline firing rate and the synaptic peak for each connection change as a function of 445 
presynaptic ISI.  446 

The shape of spike transmission patterns depends on multiple factors 447 

One potential explanation for the diverse dynamics of short-term spike transmission (Fig. 2) may 448 
be that some synapses are depressing while others are facilitating. Short-term synaptic plasticity 449 
directly alters postsynaptic currents such that the response after each presynaptic spike depends on 450 
the recent history of presynaptic spiking (Markram et al., 1998; Ghanbari et al., 2017). However, 451 
many factors can influence spike timing in addition to the dynamics of a single synapse. At short 452 
presynaptic ISIs, membrane potential summation can lead to larger PSPs and increased spike 453 
probability, even in absence of short-term synaptic plasticity (Carandini et al., 2007). Additionally, 454 
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the spiking nonlinearity and the history of postsynaptic spiking can alter how a given pattern of 455 
presynaptic input is transformed into postsynaptic spiking (Pillow et al., 2008; Huang et al., 2016). 456 
To illustrate how STP, synaptic summation, and postsynaptic history interact to create a particular 457 
spike transmission pattern we performed simulations using a simplified spiking model with linear 458 
voltage summation, short-term plasticity, a soft spiking nonlinearity, and an after-459 
hyperpolarization (Fig. 3). 460 

Similar to experimental data (Markram et al., 1998; Ghanbari et al., 2017), the spike transmission 461 
probability in this simplified model depends on the presynaptic ISI as well as the type of STP. For 462 
depressing synapses, the spike transmission probability increases for longer presynaptic ISIs while 463 
for facilitating synapses it increases for mid-range ISIs. Independent of STP type, PSPs sum at 464 
short ISIs (Fig. 3A). However, in this model, the exact shape of transmission probabilities also 465 
depends on the strength of the synapse and the history of postsynaptic spiking. An after-466 
hyperpolarization current following each postsynaptic spike, for instance, can briefly decrease the 467 
probability of subsequent spikes. In our simulation, we find that “spike interference” from previous 468 
postsynaptic activity can counteract membrane potential summation (Fig. 3B). This type of 469 
postsynaptic spike interference generally decreases the spike probability for shorter presynaptic 470 
ISIs, but the magnitude of this decrease depends on the synaptic strength and type of STP (Fig. 471 
3C). Together, these simulations illustrate how patterns of spike transmission probability are the 472 
result of, not just STP, but of the complex interaction between the membrane potential, the spike 473 
nonlinearity, the post-spike history, and short-term synaptic plasticity. 474 

 475 

 476 

Fig. 3: A simulation of a simplified spiking model shows how spike transmission probability depends 477 
on multiple factors. A: For different types of short-term synaptic plasticity, postsynaptic summation 478 
increases the amplitudes of the postsynaptic potentials (PSP) at shorter ISIs. Lines denote the membrane 479 
potential of a postsynaptic neuron in a simplified model as it responds to short (dark traces) and long (light) 480 
paired presynaptic pulses. Relative amplitudes of excitatory PSPs increase or decrease under the simplified 481 
model depending on the type of STP. B: Spike generation changes with synaptic strength. In this paired-482 
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pulse stimulation paradigm, stronger synapses are more likely to generate a spike following the first 483 
presynaptic impulse which can then decrease the spiking probability following the second impulse if there 484 
are post-spike history effects. As in (A) traces denote postsynaptic membrane potential responses to short 485 
(dark) and long (light) presynaptic ISIs. Dashes denote example postsynaptic spiking, with “spike 486 
interference” occurring for strong synapses and short ISIs. C: The pattern of spike transmission probability 487 
under the simplified model changes depending on the type of STP, the coupling strength, and presence of 488 
post-spike interference. Dashed lines show transmission probability without interference from previous 489 
postsynaptic spikes, while solid lines show how post-spike history effects can decrease the spike 490 
transmission probability. 491 

Spike transmission patterns are diverse across regions and species 492 

The combination of synaptic and non-synaptic factors could be one explanation for the diversity 493 
of spike transmission patterns in experimental data. Here we aim to model these contributions and 494 
extend a previously developed generalized linear model (GLM) framework for static functional 495 
connections (Harris et al., 2003; Truccolo et al., 2005; Pillow et al., 2008). In the previous, static 496 
GLM the probability of postsynaptic spiking is modeled as a linear combination of a baseline firing 497 
rate parameter, a post-spike history filter to capture the postsynaptic spike dynamics, such as 498 
refractoriness and burstiness, and a coupling filter describing the fixed influence of presynaptic 499 
spikes. The sum of these effects is then passed through a spiking non-linearity. In our extended 500 
model we added a linear term that allows changes in the excitability of the postsynaptic neuron as 501 
a function of time (timescale >1 min) and allow the coupling term to change for each presynaptic 502 
spike according to the Tsodyks and Markram (TM) model of STP (Markram et al., 1998). We fit 503 
the parameters of this TM-GLM using only the pre- and postsynaptic spike observations and obtain 504 
parameters for each effect using approximate maximum likelihood estimation (see Methods). This 505 
provides estimates of the history and coupling filters, as in a static GLM, as well as additional 506 
parameters for the dynamical synapse (TM model), including facilitation, depression, membrane 507 
time-constants, and release probability. Given these parameters, this TM-GLM model provides 508 
estimates of the postsynaptic spiking probability following each observed presynaptic spike and 509 
can also predict spike transmission probabilities in response to arbitrary patterns of presynaptic 510 
inputs.  511 

After fitting the model to pre- and postsynaptic spike-trains, we compared its behavior to 512 
experimentally observed patterns of spike transmission probability. In particular, we compare 513 
peaks in the split cross-correlograms to the average model prediction for the same sets of 514 
presynaptic spikes (see Methods). We find that our model is flexible enough to explain the changes 515 
in spiking transmission probability observed in spiking statistics for all three synapses above 516 
(Fig. 4A). Moreover, using the model-based approach, the contributions of the synaptic and non-517 
synaptic component can be disentangled. Our results suggest that the pattern of spike transmission 518 
probability for the thalamus connection is dominated by a combination of membrane potential 519 
summation and short-term depression. Although depression decreases spike transmission 520 
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probability at shorter ISIs, membrane summation acts to increase postsynaptic spiking. The ANF-521 
SBC synapse, in contrast, shows an increase in spike transmission probability for a medium range 522 
of ISIs that is explained by a model dominated by short-term facilitation. Lastly, the VB-Barrel 523 
connection shows a higher postsynaptic response for spikes following longer ISIs (isolated) that is 524 
explained by the model as an effect of short-term synaptic depression. 525 

In addition to estimating the contributions of synaptic and non-synaptic factors that affect spike 526 
transmission, the model also improves the prediction of postsynaptic spiking.  Although the cross-527 
correlogram provides an average efficacy for spike transmission, our models provide detailed 528 
predictions of the postsynaptic spike probability following each presynaptic spike. Here we 529 
measure the Receiver Operating Characteristics (ROC curves) of our models during this short 530 
window of time following a presynaptic spike (see Methods). We compare the prediction of 531 
postsynaptic spiking activity in the full, dynamic synapse model and a static synapse model 532 
containing all components except STP. In all three datasets, a model with short-term synaptic 533 
plasticity provides substantially better predictions of the postsynaptic spiking activity. For the 534 
model with short-term synaptic plasticity accuracies were AUC=0.75±0.005, 0.69±0.002, and 535 
0.79 ± 0.011 (mean ± SE) for the Thalamus pair, VB-Barrel, and ANF-SBC connections, 536 
respectively; compared to a model without STP where the model accuracies were 537 
AUC=0.54±0.003, 0.48±0.002, and 0.56±0.003 (mean±SE, bootstrapping over presynaptic 538 
spikes). Note that, although static synapse models do account for the average increased probability 539 
of spiking following a presynaptic spike, the fact that the AUC values are near chance (0.5) 540 
indicates that they do not accurately predict which presynaptic spikes will lead to a postsynaptic 541 
response and which will not. 542 

In our model, the short-term dynamics of spike transmission are described by two coupled 543 
differential equations with five parameters: 𝜃31= = {	𝜏! , 𝜏< , 𝑈, 𝑓, 𝜏3}  (see Methods). Here we 544 
estimate values for depression, facilitation, and membrane time-constants along with release 545 
probability, 𝑈, and magnitude of facilitation, 𝑓, (Fig. 4B). Since these values are estimated from 546 
spikes and in observational settings rather than controlled experiments, the parameter estimates 547 
are likely to be biased by omitted variables (Stevenson, 2018). However, the parameter estimates 548 
do provide accurate predictions of postsynaptic spiking during natural, ongoing pre- and post-549 
synaptic spiking, and may provide an initial, approximate description of synaptic dynamics. 550 
Comparing the estimates for the three model synapses – the thalamus pair has the highest release 551 
probability (0.29±0.04 SE) and the largest membrane (14±2 ms) and depression time-constants 552 
(410±107 ms). The VB-Barrel connection has a small membrane time-constant (0.3±0.003 ms) 553 
and a larger depression (182±8 ms) time-constant than facilitation time-constant (105±9 ms). The 554 
ANF-SBC synapse has the lowest release probability of the three connections (0.068±0.006) and 555 
small depression (67±6 ms) and membrane time-constant (0.25±0.02 ms). Due to the potential 556 
for omitted variable bias and differences in experimental preparations comparing these values 557 
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directly to measurements from intracellular recordings is difficult. However, the values estimated 558 
from ongoing spiking and the results from intracellular recordings are generally in agreement. For 559 
instance, previous in vitro studies of thalamocortical projections found that paired-pulse ratios 560 
ranged from 0.3-0.9 consistent with depressing VB-Barrel synapses (Gil et al., 1997). 561 
Additionally, in vitro observations of ANF-SBC connections report depression time-constants on 562 
the order of 2-25 ms in response to a 100 Hz stimulus train (Wang and Manis, 2005, 2008). These 563 
previous estimates are substantially faster than the time-constants estimated by the TM-GLM for 564 
the ANF-SBC connection here. However, different patterns of presynaptic input (e.g. regular, 565 
Poisson, natural) or differences in calcium concentration and temperature may make it difficult to 566 
compare in vitro and in vivo STP parameters directly. One parameter that may be more readily 567 
comparable across preparations is the membrane time-constant. We find that the estimated 568 
membrane time-constant from the TM-GLM for the thalamus pair is consistent with thalamus relay 569 
cells observed intracellularly (12.2 ±	1.1 ms, n=8) (Paz et al., 2007), and the estimated membrane 570 
time-constant for ANF-SBC is close to in vitro measurements (1.05 ± 0.09 ms) as well (Wang and 571 
Manis, 2005). 572 

The TM-model used here is one of many possible parametric descriptions of short-term plasticity 573 
(Hennig, 2013). Previous work modeling intracellular recordings suggests that the full TM model 574 
may not be necessary to explain STP at some, purely depressing synapses (Costa et al., 2013). 575 
Therefore, we explored how simplified TM models of STP, with fewer parameters, compare with 576 
the full model using the Akaike information criterion (AIC; see Methods and Fig 4C). AIC 577 
evaluates model accuracy (log-likelihood) penalized by the number of parameters, and lower AIC 578 
may indicate that a simplified model with fewer parameters is preferred over a more complex 579 
model. Generally, the synaptic dynamics in this class of models can be described by four 580 
parameters: a time-constant for depression 𝜏!, a time-constant for facilitation 𝜏<, a baseline release 581 
probability 𝑈, and facilitation parameter 𝑓. When modeling spike transmission we additionally 582 
include a parameter for the membrane time-constant 𝜏3  and consider the possibility that the 583 
membrane potential “resets” following a post-synaptic spike (see Methods). For each of these 584 
models, it is important to note there may be many possible parameter settings that are consistent 585 
with the data, particularly when the recording time is limited (Costa et al., 2013). These 586 
redundancies are present even in simple quantal analysis methods (Bykowska et al., 2019). Here, 587 
altogether, we compare our full model to five reduced models: 1) a model with only membrane 588 
integration, without dynamic release probability and resources, 2) a facilitation only model, 3) a 589 
depression only model, 4) a 3-parameter TM model where the magnitude of facilitation is fixed, 590 
and 5) the full TM model, but without post-spike reset of integration (Table 1). The full TM model 591 
performs competitively in all cases, but, for some synapses, just as with previous results modeling 592 
PSPs (Costa et al., 2013), the full model may be overly flexible and simpler models, with fewer 593 
parameters, may be preferred. For the thalamus pair and VB-Barrel projection, the 3-parameter 594 
TM-model with fixed magnitude of facilitation has the lowest AIC (p<10-9 and p=0.07 compared 595 
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to model 6 with a paired t-test). For the ANF-SBC connection the full model gives the lowest AIC 596 
(p<10-6 compared to model 4). For all three connections, models 4-6 perform statistically 597 
significantly better than both the model without STP (e.g. Δ𝐴𝐼𝐶<0, Bonferroni-corrected paired t-598 
test p<0.001) and model 1 (Bonferroni-corrected paired t-test, p<0.001). These results provide 599 
further evidence for STP-like changes in spike transmission at these connections.  600 

 601 

 602 

Fig. 4 Including short-term dynamics substantially improves the model of spike transmission. A: 603 
Spike transmission patterns are diverse across different connections. For three different connections 604 
(between a pair of neurons in thalamus, a projection from ventrobasal thalamus to somatosensory cortex, 605 
and an auditory nerve fiber projection onto a spherical bushy cell) transmission patterns are modeled by a 606 
combination of different factors. For each synapse, top panels show the presynaptic ISI distributions (log-607 
spaced). In the second/third row, the observed spike transmission probability (red data points) and model 608 
predictions (blue with 95% confidence bands) for training and test set (2-fold cross-validation). We then 609 
used the estimated TM parameters for each synapse and simulated responses to paired presynaptic pulses. 610 
Blue curves denote the PPRs of the full model, and gray lines denote PPRs by taking synaptic summation 611 
out. (bottom row) TM-GLM (blue) are superior in predicting individual postsynaptic transmission events 612 
compared to GLM (orange, without STP) for each synapse type. For each individual presynaptic spike, we 613 
compare the model transmission probability with the observed binary outcome. ROC curves show the 614 
prediction accuracy with positive deviations from the diagonal indicating better performance. B: Estimates 615 
for the four STP parameters of the model for each synapse. Dots represent estimates from bootstrap sampled 616 
data. C: Model comparison for 6 different models (Akaike information criteria, AIC, relative to a model 617 
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without plasticity). Models: 1) Integration only, 2) Facilitation only, 3) Depression only, 4) 3-parameter 618 
TM, 5) 4-parameter TM without resetting integration, and 6) Full model. Boxplots denote the difference in 619 
AIC values for bootstrap samples in (B). 620 

 621 

 622 
Model Description 𝝉𝒅 𝝉𝒇 𝒇 𝑼 Reset 

1 Integration only 0 0 1 1 Yes 

2 Facilitation only 0 No constraints Yes 

3 Depression only No constraints 0 No constraints Yes 

4 3-parameter TM No constraints 𝑓 = 	𝑈 Yes 

5 TM without reset No constraints No 

6 Full model No constraints Yes 

 623 

Table 1: Parameters included each model. Note that 𝜏3 is not constrained in any of the 6 models. 624 
 625 

Recent patterns of pre- and postsynaptic spiking shape the synaptic transmission probability 626 

Although previous studies have focused largely on how spike transmission probability varies as a 627 
function of the single ISI preceding the most recent presynaptic, synaptic dynamics depend on the 628 
full sequence of presynaptic spiking. Unlike in vitro experiments where the state of the synapse 629 
can, to some extent, be controlled before studying responses to a specific presynaptic pattern, in 630 
vivo measurements of spike transmission can be heavily influenced by higher-order correlations 631 
between successive ISIs (Stoelzel et al., 2008). Additionally, it is difficult to assess the effects of 632 
multi-spike patterns empirically by splitting the correlograms, since the number of observations 633 
for any given presynaptic spike pattern rapidly decreases with the number of spikes in the pattern. 634 
Here we examine how spike transmission depends, not just on the preceding presynaptic ISI, but 635 
on triplets of spikes. We compare the empirically observed spike transmission probability 636 
following triplets to the estimated spike transmission probability from the TM-GLM. Using the 637 
model fits for TM-GLM, we then simulate postsynaptic responses to isolated patterns of spikes 638 
and determine to what extent the observed spike transmission patterns are influenced by higher-639 
order correlations between successive ISIs. 640 

First, in addition to the timing of the two preceding presynaptic spikes (separated by the interval 641 
ISI1), we split correlograms based on the timing of the three preceding presynaptic spikes (Fig. 642 
5A), separated by the most recent interval and the one before (ISI2). Since the TM-GLM provides 643 
estimates of the post-synaptic spike probability following every presynaptic spike, we can split 644 
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both the data and model fits the same way (Fig. 5C). We find that the spike transmission patterns 645 
clearly depend on the triplet patterns of presynaptic spikes in ongoing spiking activity. That is, the 646 
spike transmission probability is influenced by both ISI1 and ISI2, and the interaction between the 647 
two ISIs differs between synapses. However, as with spike transmission as a function of ISI1 alone, 648 
the TM-GLM accurately captures the patterns of spike transmission for triplets of presynaptic 649 
spikes for the three synapses. In the thalamus pair, spike transmission probability is most 650 
influenced by ISI1, and the effect of ISI2 appears to be weak or, at least, does not appear to be 651 
monotonic. Spike transmission probability at the VB-Barrel connection depends on both ISI1 and 652 
ISI2, with higher spike transmission probability for longer ISI2, consistent with recovery from 653 
depression. Lastly, for the ANF-SBC connection, transmission probabilities decrease for shorter 654 
ISI2, but there also appears to be a strong interaction between ISI1 and ISI2, where transmission 655 
probability is high for multiple combinations of these two intervals (e.g. intervals of 10 ms then 656 
100 ms and intervals of 100 ms then 10 ms both result in high probability transmission). 657 

Although these empirical results suggest that spike transmission probability is influenced by triplet 658 
patterns of presynaptic spikes, these triplets are not isolated events but are embedded in longer 659 
sequences of spikes with higher-order correlations between successive ISIs. To examine to what 660 
extent the model predictions are affected by higher-order correlations between successive ISIs, we 661 
again use the estimated parameters in the TM-GLM to simulate postsynaptic responses to 662 
hypothetical, isolated triplets of presynaptic spikes (Fig. 5C, bottom). In these simulations we fix 663 
the post-spike history effect and the excitability in the model to their average values from model 664 
fits, and we fix the initial STP state (initial values of 𝑅 and 𝑢 in TM model) for the first spike in 665 
triplets to the average 𝑅 and 𝑢 values from the model fits. Although the initial states of the pre- 666 
and postsynaptic neurons in the experimental data are not matched for different values of ISI1 and 667 
ISI2, by simulating, we can assess the isolated influence of different triplets (ISI1 and ISI2) on the 668 
model. Here we find that for the thalamus pair, although the empirical data showed no clear effect 669 
for ISI2, the simulated spike transmission probability increases with short ISI2, consistent with 670 
strong synaptic summation. One reason that this effect may be masked in the empirical 671 
transmission probabilities is that post-spike history effects could act to decrease the probability of 672 
future postsynaptic spikes. For the VB-Barrel simulations, we find that short ISI2 decreases 673 
transmission probability, consistent with the empirical transmission patterns, although less 674 
pronounced. Serial correlations in the sequence of presynaptic spikes (such as long bursts) could 675 
act to accentuate the depression in the empirical observations beyond what we see with the 676 
simulated responses to isolated triplets. Finally, for the ANF-SBC, although the empirical 677 
transmission probability showed decreased transmission for short ISI2, the simulated responses to 678 
isolated patterns have increasing transmission at short ISI2 (due to synaptic summation). This 679 
difference is likely due to the post-spike history filter, which has been fixed for the simulations, 680 
but can have a large effect in the experimental data. Since the overall efficacy of this synapse is 681 
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quite high (>0.7), is likely that a postsynaptic spike follows the first or second presynaptic spike 682 
which then influences the response to the third spike. 683 

To better understand the effects of post-spike history, we examined how the postsynaptic spiking 684 
history changes the spike transmission patterns with a similar approach. In addition to splitting the 685 
correlograms based on ISI1, we also split based on the previous postsynaptic ISI, ISIpost (Fig. 5D). 686 
Here, as with the triplets of presynaptic spikes, we find that the spike transmission patterns depend 687 
on the triplet patterns of 2 pre- and 1 postsynaptic spike in data and that the TM-GLM accurately 688 
captures the patterns of spike transmission at our three synapses (Fig. 5F). Here, for both thalamus 689 
and VB-Barrel pairs, synaptic transmission probability decreases after a long postsynaptic ISI for 690 
all values of ISI1. In contrast, the ANF-SBC connection shows decreased transmission probability 691 
at short postsynaptic ISIs. 692 

As with the triplets of presynaptic spikes, we then simulate (Fig. 5F, bottom) how patterns of 2 693 
pre- and 1 postsynaptic spike change spike transmission probability when the neurons start from 694 
the same initial conditions (average values of excitability, post-spike history, 𝑅 and 𝑢). For the 695 
thalamus and VB-Barrel pairs, the simulations of isolated patterns match the general trends of 696 
empirical spike transmission. However, for the VB-Barrel synapse, the effect of ISIpost in the 697 
empirical transmission patterns is stronger than in the simulations, suggesting that serial 698 
correlations in ISIs could again play a role and amplify the effects of isolated patterns.  699 
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 700 
Fig. 5: Pre- and postsynaptic spiking history determine transmission probability. A) Schematic 701 
of 4 different patterns of presynaptic spike triplets with a fixed interval between the two most recent 702 
presynaptic spikes (spikes denoted by black lines separated by ISI1). B) We then split the presynaptic ISI 703 
distribution into 8 quantiles, denoted by the different colors. C) We then assess how ISI2 influences the 704 
spike transmission previously described for ISI1. Using the natural occurrence of different ISI1 and ISI2 in 705 
the data, each data point shows the observed spike transmission probability for each pattern (colors 706 
correspond to ISI2 quantiles). Lines denote the average estimated transmission probability for each pattern 707 
under the model (based on the natural sequence of observed spikes). To examine the influence of serial 708 
correlations, we then simulate model responses to the isolated triplet pattern, assuming the synapse is 709 
initially in an average state (bottom panels). D) Synaptic transmission patterns change depending on the 710 
history of postsynaptic spiking, as well. E) Note that the postsynaptic ISI distributions need not match the 711 
presynaptic distributions. F) Here each data point in the scatter plots shows the spike transmission 712 
probability following different combinations of ISI1 and ISIpost. Here, colors denote quantiles of the 713 
postsynaptic ISI distribution. Solid lines show the estimated transmission probability for each pattern under 714 
the model (based on the natural sequence of observed spikes). The bottom panels show model responses to 715 
isolated patterns using the estimated STP parameters and fixing the excitability from the model fits to their 716 
average values.  717 

Spike transmission patterns change depending on stimulus type 718 

The results above suggest that the presynaptic spike pattern has a complex effect on spike 719 
transmission probability. In sensory systems, one factor that affects the presynaptic spike pattern 720 
is the external stimulus. To examine how differences in stimulus statistics might alter spike 721 
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transmission, we fitted our model to a dataset recorded juxtacellularly from an ANF-SBC synapse, 722 
presented with natural sounds, a range of randomized frequency-level pure-tones (tuning stimuli), 723 
and spontaneous activity in the absence of acoustic stimulation. Note that this dataset was partially 724 
(tuning stimuli) used in the first section of the results. We merged these three datasets and fitted 725 
the model to the merged dataset. As with the previous fits of the ANF-SBC connection (based on 726 
a different set of tuning stimuli), the transmission probability under all three conditions exhibits a 727 
bandpass-like pattern in mid-range ISIs suggesting facilitation and little to no synaptic summation. 728 
However, spike transmission during natural stimuli was markedly different from that during pure 729 
tone stimulation. During natural sounds, transmission probability is maximized at 100 ms rather 730 
than 10 ms found in the tuning stimuli and during spontaneous activity. Further, natural stimuli 731 
have much lower transmission probability at short ISIs. Interestingly, the TM-GLM captures the 732 
overall facilitation, but also captures differences due to the different stimuli (Fig 6A). In contrast, 733 
a static GLM captures almost none of the variations in spike transmission probability. Together, 734 
these results suggest that the combination of STP, synaptic summation, history, and excitability is 735 
sufficient to explain the observed differences spike transmission between stimuli, without 736 
requiring any additional adaptation or plasticity. 737 

Since these recordings were performed juxtacellularly, we also have access to the slope of 738 
individual (extracellularly observed) PSPs, which are correlated with the intracellular PSP 739 
amplitudes. We compared patterns of individual PSP slopes for each stimulus type and examine 740 
how these slopes correlate with the estimated coupling amplitude following individual presynaptic 741 
spikes in our model (Fig. 6B, 6C). Note that patterns of PSP slopes do not have the same pattern 742 
as spike transmission probability, since there are other factors (e.g. postsynaptic spiking history) 743 
contributing to postsynaptic spiking. However, as with spike transmission, we find that the PSP 744 
amplitudes are stimulus-dependent and that a static GLM without STP cannot account for these 745 
variations. Additionally, although the correlation is not perfect, the individual coupling effects in 746 
the model do correlate with the measured PSP slope, even though the model is only fit to spikes. 747 
By modeling dynamic functional connectivity, we can approximately reconstruct the amplitude of 748 
individual synaptic events. 749 

We then analyze how much the TM-GLM can generalize to other stimulus types when fit to one 750 
stimulus type. We find that, although the model can describe the spike transmission patterns for 751 
all three stimuli when fit to all stimuli, the model does not generalize to natural stimuli when fit 752 
exclusively to one of the other stimulus types (and vice versa, Fig. 6D). The parameters from each 753 
of these models are distinct – occupying different regions of the parameter space. Notably, the 754 
model fit to all stimuli has a lower release probability and a higher facilitation time-constant 755 
compared to the models fit to individual stimuli (Fig. 6E). 756 
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 757 
Fig. 6: The TM-GLM captures stimulus-dependent changes in spike transmission 758 
probability at the ANF-SBC synapse. A) The TM-GLM captures stimulus-dependent spike 759 
transmission probability patterns better than a static model without short-term synaptic plasticity. Dots 760 
show spike transmission probability for (log-spaced) presynaptic ISIs during two types of auditory stimuli 761 
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and during spontaneous activity: Natural Sounds (yellow), Spontaneous Activity (red), and Tuning Stimuli 762 
(blue). Solid lines and 95% confidence bands show model predictions for each stimulus type. 763 
Corresponding inter-spike interval distributions are shown on the right. B) The TM-GLM captures changes 764 
in extracellularly recorded PSPs. Here the observed PSP slope (dots) approximately matches the coupling 765 
term in the TM-GLM (solid lines) for each three stimuli. Although the spike transmission probability of the 766 
static GLM can vary as a function of presynaptic ISI due to non-synaptic factors, the coupling term is fixed. 767 
C) Estimates of individual PSP amplitudes predicted by the model and their PSP slopes in the juxtacellular 768 
recording. Black lines denote linear fits and the bar plot shows the corresponding Spearman correlations. 769 
D) After fitting each stimuli condition separately, in each column we plotted the estimated spike 770 
transmission probability of each type using the estimated STP parameters of others. E) Distribution of 771 
parameters from bootstrap samples with the TM-GLM fit for individual stimuli and all stimuli combined. 772 

 773 

 774 

Postsynaptic cell-type specific changes in spike transmission patterns 775 

We also applied our model to spiking data from a large-scale multi-electrode array recording to 776 
investigate the spike transmission dynamics in synapses from putative excitatory neurons to two 777 
different putative inhibitory subtypes. We detected putative synapses using the log-likelihood ratio 778 
(LLR < -6, ~200 synapses) between a full model of the correlogram that includes the synaptic 779 
effect and smooth model of the correlogram that only captures the slow structure (see Methods). 780 
We then found excitatory-inhibitory microcircuits where putative excitatory neurons (based on the 781 
cross-correlogram and spike waveform) give inputs to putative inhibitory neurons (41 excitatory 782 
synapses onto 9 inhibitory neurons in total). To identify inhibitory neurons as inhibitory, we 783 
required the neuron to have an outgoing connection to a third neuron with a fast, transient decrease 784 
in the cross-correlogram. Each of the 9 putative inhibitory neurons here had at least one outgoing 785 
connection where the spiking probability of a downstream neuron decreases >18% relative to 786 
baseline following its spiking (Fig. 7A). We then categorized each neuron as a putative fast-spiking 787 
(FS, n=5) or regular-spiking (RS, n=4) unit based on the spike waveform and firing rate (Fig. 7B). 788 
Putative FS units had narrow-width spike waveforms (half-width of the trough = 0.08±0.02 ms) 789 
and higher firing rates (26.07±9.6 Hz) compared to putative RS neurons (n=4) with broader 790 
waveforms (half-width = 0.14±0.02 ms) and lower firing rate (10.18±10.01 Hz). 791 

We identified these microcircuits in different regions with 4 putative excitatory-inhibitory 792 
microcircuits recorded in hippocampus (depth differences: 77.2± 49.4 𝜇m), 3 in thalamus 793 
(49.4±26.2 𝜇m), and 2 in motor cortex (36.4±23.5 𝜇m). Putative excitatory neurons showed a 794 
wide spike waveform (half-width = 0.18± 0.04 ms) similar to the putative regular-spiking 795 
inhibitory neurons, but these two classes can be distinguished by their outgoing connection types 796 
(e.g. inhibitory/excitatory) (Moore and Wehr, 2013) (Fig. 7B). Average efficacies from putative 797 
excitatory-FS connections (0.22±0.12, n=22) were larger, on average, compared to putative 798 
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excitatory-RS efficacies (0.13±0.13, n=19). We then fit the TM-GLM to data from these 41 799 
putative synapses, similar to the three identified synapses analyzed above. Again, due to omitted 800 
variable bias, the interpretation of the parameter values for the model fits is not necessarily straight-801 
forward. However, we find that there is substantial overlap between the estimated STP parameters 802 
for excitatory connections onto these two inhibitory subtypes (Fig. 7C). The depression time-803 
constant for excitatory-RS connections is 215±219 ms (mean±SD, median 96 ms) and for 804 
excitatory-FS is 411±459 ms (median 191 ms). The facilitation time-constant for excitatory-RS 805 
connections is 820±745 ms (median 588 ms) and 406±552 ms (median 236 ms) for excitatory-806 
FS connections. And the membrane time-constant for excitatory-RS connection is 84±116 ms 807 
compared to 72±196 ms for excitatory-FS. Interestingly, the estimates for membrane time-808 
constant (median 10 ms for FS, 45 ms for RS) are similar to the parameters measured using 809 
intracellular recordings in vitro (Perrenoud et al., 2013). 810 

Previous in vitro studies of postsynaptic cell-type specific STP concluded that putative excitatory-811 
RS connections show facilitation and putative excitatory-FS connections show depression 812 
(Thomson and Lamy, 2007). Moreover, few in vivo studies characterized stimulated activities in 813 
these connections (Pala and Petersen, 2015, 2018; Sedigh-Sarvestani and Vigeland, 2017). A cell-814 
type-specific study of somatosensory connections in vivo using 50Hz optogenetic stimulation 815 
found little short-term plasticity in connections to Parvalbumin-expressing neurons (putative 816 
excitatory-FS here), while excitatory to Somatostatin-expressing neurons (putative excitatory-RS 817 
here) showed facilitation (Pala and Petersen, 2015). However, we are not aware of any in vivo 818 
experiments that measured depression or facilitation time-constants for these systems during 819 
ongoing spiking activity. Here we find that both connection types are somewhat facilitating but 820 
excitatory-FS connections having a slightly shorter facilitation time-constant. However, unlike 821 
what would be expected if excitatory-FS connections were depressing, the release probability of 822 
excitatory-FS connections is lower than excitatory-RS connections (Fig. 7C, 0.34±0.19 for FS, 823 
0.46±0.17 for RS). To better understand synaptic transmission in vivo it is important to consider 824 
not just the parameters of the synapse but the full history of presynaptic spiking in the individual 825 
presynaptic neurons. We use the estimated model parameters to simulate responses to a train of 826 
regular presynaptic spikes with the frequency matched to the average firing rate of the 827 
corresponding excitatory input. In simulating postsynaptic responses to the spike train, we fix the 828 
excitability and postsynaptic history to their average values from model fits and set the initial STP 829 
state of the first spike in the train to the average 𝑅 and 𝑢 values from model fits. With these input-830 
matched simulations, excitatory-RS connections show higher amplitude postsynaptic potentials 831 
compared to excitatory-FS connections (Fig. 7D, the effect of membrane potential integration is 832 
included). This is in accordance with the previously observed small degree of facilitation in 833 
connections to Somatostatin-expressing neurons and small degree of short-term plasticity in 834 
connections to Parvalbumin cells in (Pala and Petersen, 2015).  835 
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We also calculated spike transmission probabilities for all connections. On average, connections 836 
to regular-spiking inhibitory neurons show a higher spike transmission probability across 837 
interspike intervals (Fig. 7E). For all connections, we then evaluated the spike prediction accuracy 838 
of a model without STP (e.g. static GLM) with our TM-GLM using the Area Under the ROC 839 
Curve (Fig. 7F). The model with STP (TM-GLM) gives more accurate predictions for which 840 
presynaptic spikes will lead to postsynaptic spiking for our population of 41 putative excitatory-841 
inhibitory connections (AUC=.69±.05) in comparison with the static GLM (AUC=.50±.03). 842 
Altogether, these results illustrate how a dynamic model of functional connectivity, such as the 843 
TM-GLM, can provide a detailed functional description of the short-term dynamics of spike 844 
transmission in awake, behaving animals. 845 
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Fig. 7: Distinctive short-term dynamics for spike transmission in connections between excitatory 847 
neurons to putative Regular-Spiking (RS) and Fast-Spiking (FS) inhibitory neurons. A) Here we 848 
examine putative synapses between excitatory neurons and inhibitory neurons (identified by their cross-849 
correlations) and separate the putative inhibitory neurons into two classes: fast-spiking, which have narrow 850 
spike waveforms and high rates (left), and regular-spiking (right), which have wide waveforms and lower 851 
rates. Identifying these synapses requires both finding both a putative excitatory input and a putative 852 
inhibitory output for the same neuron. B) Half-widths (of the trough) of the spike waveforms and firing 853 
rates for the FS (orange) and RS (blue) inhibitory neurons, as well as, their excitatory inputs (grey). 854 
Individual blue and orange waveforms (maximum amplitude across the MEA) are shown for all 9 putative 855 
inhibitory neurons. C) Estimated depression, facilitation, and membrane time-constants for excitatory-RS 856 
and excitatory-FS connections, along with the release probability (right). The purple error-bar next to the 857 
membrane time-constant estimations show the median and standard deviations from in vitro experiments 858 
(Perrenoud et al., 2013). D) Simulated postsynaptic potential amplitudes estimated from Tsodyks-Markram 859 
model of short-term synaptic plasticity using estimated parameters. For each synapse, PSPs are estimated 860 
in response to a pulse train with inter-pulse intervals set to their corresponding average presynaptic inter-861 
spike intervals. Dots and error bars denote the median and inter-quartile range for excitatory-RS (blue) and 862 
excitatory-FS (red) connections. These responses include the effect of membrane potential integration. E) 863 
Spike transmission probability patterns for individual synapses of excitatory-RS (blue) and excitatory-FS 864 
(red) connections normalized by long interval probabilities as a function of the presynaptic ISI. F) Area 865 
Under the Curve (AUC) of postsynaptic spiking prediction using the static GLM without short-term 866 
synaptic plasticity (green) and the TM-GLM with short-term synaptic plasticity (blue). G-H) Spike-867 
transmission probabilities (left) and corresponding cross-correlograms (right) of 4 putative excitatory inputs 868 
to putative FS (G) and RS (H) inhibitory neurons show cell-type specific similarities. 869 

 870 

Synapse n 𝝉𝒔 (ms) 𝝉𝒅 (ms) 𝝉𝒇 (ms) 𝑼 

Thalamus 1 14±2 410±107 37±12 0.29±0.04 

VB-Barrel 1 0.3±0.003 182±8 105±9 0.10±0.05 

ANF-SBC 1 0.25±0.02 67±6 71±3 0.068±0.006 

excitatory-RS 19 84±116 215±219 820±745 0.46±0.17 

excitatory-FS 22 72±196 411±459 406±552 0.34±0.19 
Table 2: Summary of parameter estimates from the full TM-GLM. Sample size (𝑛), membrane 871 
time-constant (𝜏3), depression time-constant (𝜏!), and facilitation time-constant (𝜏<), and release 872 
probabilities (𝑈) for the identified and putative synapses from our three case studies and multi-873 
electrode recordings. For the cases studies, the mean±standard deviation is shown for the bootstrap 874 
samples. For the MEA data, the mean±sd is shown across putative connections. In all cases, the 875 
parameters are estimated from ongoing, in vivo spiking activity. 876 
 877 
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Spike “transmission” patterns between unconnected pairs of neurons 878 

It is important to note that the dynamic functional connectivity model presented here assumes that, 879 
before fitting the model, we have accurately identified a monosynaptic connection. In some 880 
settings, it is possible to identify connections using optogenetic stimulation (English et al., 2017) 881 
or juxtacellular recording, however, in cases where we can only identify putative connections, it 882 
is important to consider the possibility that we are modeling a spurious correlation between 883 
neurons that are not actually monosynaptically connected. In general, the detection of 884 
monosynaptic connections from multielectrode spiking activity is far from perfect (Kobayashi et 885 
al., 2019). 886 

To examine how the TM-GLM might be influenced by spurious correlations, we first simulated a 887 
small circuit with common drive that would likely lead to a falsely detected monosynaptic 888 
connection (Fig 8A). Here an unobserved presynaptic (inhomogeneous Poisson process) neuron 889 
provides strong excitatory input to two leaky integrate-and-fire postsynaptic neurons. Due to a 890 
difference in the latencies of these connections, there is a spurious peak in the correlogram between 891 
the two postsynaptic neurons where one postsynaptic neuron appears to excite the other. We find 892 
that when we measure the amplitude of this spurious peak, there are some variations as a function 893 
of the presumed presynaptic neuron’s ISI, and the spike “transmission” pattern varies depending 894 
on whether the projections from the true presynaptic are both depressing, both facilitating, or a 895 
mixture of depressing and facilitating (Fig 8B). However, the TM-GLM is nearly constant (~0.1% 896 
variation) and does not accurately fit the observed variation. Despite a spurious correlation, the 897 
detailed pattern of spikes between the two postsynaptic neurons is unstructured and not well 898 
described by the TM model. 899 

We also fit the TM-GLM to several (n=38) pairs of neurons from the MEA data all with average 900 
firing rates in range of 3-15 Hz and where there was no clear peak in the cross-correlogram (0-901 
5ms following the spikes of one neurons). In these cases, although the coupling filter is likely 902 
fitting noise and does not describe a realistic synaptic effect (median latency 0.7 ms, median time-903 
constant 0.02 ms), the TM-GLM does describe small variations in the ISI-dependent pattern of 904 
spike “transmission” probability (Fig 8C). These patterns are not as pronounced as the patterns 905 
observed in the identified and putative monosynaptic connections described above, but they also 906 
appear to have structure that the TM-GLM can account for. Altogether, these results illustrate how 907 
the TM-GLM simply aims to account for short-term dynamics in the spiking probability of one 908 
neuron in reference to the spikes of another neuron. Correctly identifying monosynaptic 909 
connections is a necessary first step before the short-term dynamics can be meaningfully 910 
interpreted. 911 
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 912 

 913 

Fig. 8: Short-term changes in spike probability for neurons that are not monosynaptically 914 
connected. A) In a simulated circuit, we generated a spurious connection between two neurons 915 
(Post1 and Post2) receiving common excitatory drive from a single presynaptic neuron (Pre) with 916 
different delays (orange cross-correlogram) B) Scatter plots show normalized spike “transmission” 917 
probabilities from different sets of simulations where the true connections to the postsynaptic 918 
neurons have different types of short-term synaptic plasticity (both Depressing, both Facilitating, 919 
and one Depressing; one Facilitating). Lines with same colors as scatter plots show the estimated 920 
spike probability from the TM-GLM. Here the data and model fits are averaged across 150 rounds 921 
of simulations (50 for each combination) and are normalized in order to have a spiking probability 922 
of 1 for the longest ISIs C) We then fit spike “transmission” probability for 38 pairs of neurons 923 
from the multi-electrode array (MEA) recording where there was no clear monosynaptic 924 
connection (putative non-connections). Observed (left) spike transmission probabilities show 925 
relatively little variation as a function of one neuron’s ISIs, but the TM-GLM (right) does describe 926 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted April 4, 2020. ; https://doi.org/10.1101/475178doi: bioRxiv preprint 

https://doi.org/10.1101/475178


 

 

33 

what variation there is. Insets show example cross-correlograms from two of these putative non-927 
connections. 928 

 929 

Discussion 930 

Here we developed a dynamic model of functional connectivity, the TM-GLM, and applied this 931 
model to disentangle synaptic and nonsynaptic contributions to excitatory spike transmission in 932 
vivo. Short-term synaptic plasticity (STP) has been extensively studied with intracellular 933 
recordings where the amplitudes of individual postsynaptic potential/currents (PSP/PSCs) can be 934 
directly measured. However, the relationship between STP and in vivo spike transmission patterns 935 
is complex. Patterns of postsynaptic spike transmission are highly diverse and multiple factors 936 
beyond STP shape these patterns (Swadlow and Gusev, 2001; English et al., 2017). Here, using a 937 
model-based approach, we characterized these diverse spike transmission patterns at identified and 938 
putative excitatory synapses and attribute this diversity to different combinations of short-term 939 
synaptic plasticity, synaptic summation, and post-spike history effects. We then showed how this 940 
modeling framework has the potential to capture stimulus-specific and cell-type-specific changes 941 
in spike transmission in vivo. 942 

Estimating static functional connectivity using spike times has revealed network structure in the 943 
retina (Pillow et al., 2008) and hippocampus (Harris et al., 2003), can reconstruct true 944 
physiological circuitry (Gerhard et al., 2013), and improves encoding and decoding (Truccolo et 945 
al., 2005; Pillow et al., 2008; Stevenson et al., 2012). However, synaptic weights can change 946 
dramatically over time and can also depend on external stimuli and behavior (Fujisawa et al., 947 
2008). Although, standard GLMs can partially capture the first-order effects of recent presynaptic 948 
spikes on postsynaptic spiking probability, they fail to capture the nonlinear dynamics of synaptic 949 
transmission affected by longer sequences of presynaptic spikes. With a static coupling term the 950 
GLM can account for the average change in the postsynaptic spiking probability following a 951 
presynaptic spike, but it does not make detailed predictions about the variations in this probability. 952 
Here we show that, by including a dynamical model of short-term plasticity, we can capture diverse 953 
pattern of spike transmission probability and substantially improve prediction of postsynaptic 954 
spiking. In a recording from the endbulb of Held (ANF-SBC) we further found that spike 955 
transmission patterns differed between stimuli, and that these differences were well-described by 956 
a single TM-GLM. Although the STP-parameters were the same for all stimuli, the different 957 
presynaptic spike patterns yield different patterns of spike transmission. Since spike transmission 958 
probability in the TM-GLM depends on the full history of presynaptic spiking, this model can 959 
account for changes on behavioral timescales even in the absence of adaptation or other forms of 960 
plasticity (e.g. STDP, LTP). Using the models for the short-term dynamics of spike transmission 961 
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estimated in one setting we may also be able to more accurately predict responses to novel 962 
presynaptic patterns and, in sensory systems, novel stimuli. 963 

Previous in vitro studies have shown that STP dynamics depend on both presynaptic and 964 
postsynaptic cell-types (Thomson and Lamy, 2007). Using a large multi-electrode recording from 965 
a freely behaving mouse, we investigated the dynamics of synaptic connections from putative 966 
excitatory neurons to two different subtypes of putative inhibitory neurons: putative fast-spiking 967 
(FS) and putative regular-spiking (RS). Using only spike times, we find that spike transmission 968 
shows slightly higher facilitation for excitatory-RS compared to the excitatory-FS connections. 969 
Although drawing strong conclusions about the parameters of the model is difficult due to potential 970 
confounds, the STP dynamics reflect this same pattern and are in line with previous in vitro 971 
findings (Thomson and Lamy, 2007). Including short-term dynamics into the model also 972 
significantly improves the prediction of postsynaptic spiking. As large-scale extracellular 973 
recording techniques advance, models such as the TM-GLM may allow us to characterize and 974 
compare the short-term dynamics of spike transmission of many different cell types, brain regions, 975 
and species. 976 

Several details of the model may impact our results. Here we employed an extended GLM with a 977 
logistic spike nonlinearity, since it appears to better describe strong connections, such as the ANF-978 
SBC, better than the traditional exponential nonlinearity. However, other nonlinearities may be 979 
better for other neurons (McFarland et al., 2013). There are also alternatives to the Tsodyks-980 
Markram model for modeling synaptic dynamics (Hennig, 2013). Although the TM model is 981 
biologically plausible, it only tracks average, deterministic dynamics of postsynaptic potentials, 982 
while ignoring the stochasticity of synaptic release (Barri et al., 2016; Bird et al., 2016). Finally, 983 
there are many covariates that could be added to improve model performance, including local field 984 
potentials (Kelly et al., 2010), connections to other simultaneously observed presynaptic neurons 985 
(Harris et al., 2003), higher-order history or coupling terms (Robinson et al., 2016; Song et al., 986 
2018), and covariates related to other types of plasticity (Stevenson et al., 2011; Linderman et al., 987 
2014; Robinson et al., 2016; Amidi et al., 2018; Bayat Mokhtari et al., 2018). Despite these 988 
simplifying assumptions and the fact that we only observe a fraction of inputs to the neuron, the 989 
TM-GLM captures a wide diversity of in vivo, excitatory spike transmission patterns. 990 

Although our model provides a tool to characterize the dynamics of spike transmission, there may 991 
be fundamental limitations to how well true synaptic dynamics can be estimated from spike 992 
observations. Firstly, functional connections inferred from spikes do not necessarily guarantee 993 
anatomical connections. A peak in the cross-correlogram does not conclusively indicate the 994 
presence of a monosynaptic connection (Moore et al., 1970). In most cases, we assume that the 995 
transient, short-latency increase in postsynaptic spiking activity following a presynaptic spike 996 
indicates the presence of an excitatory monosynaptic connection (Perkel et al., 1967). 997 
Nevertheless, verifying connections using optogenetics (English et al., 2017), juxtacellular 998 
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recordings (Pinault, 2011), or imaging (Weiler et al., 2008) may provide more confidence in 999 
determining true monosynaptic connections. Secondly, we employ a spiking model that does not 1000 
explicitly account for the detailed membrane potential of the postsynaptic neuron. Although there 1001 
are links between the GLM and voltage-based models (Latimer et al., 2014, 2018), other 1002 
approaches to modeling synaptic transmission with realistic spike-generation mechanisms, 1003 
currents, and even dendritic morphology may more accurately reflect subthreshold dynamics 1004 
(Ladenbauer et al., 2018). Thirdly, long-term changes in the synaptic weight may alter the short-1005 
term dynamics. Experiments show that short-term depression may be reduced after long-term 1006 
depression and increased after long-term potentiation (Markram and Tsodyks, 1996; Sjöström et 1007 
al., 2007; Costa et al., 2015, 2017). Accounting for these long-term changes in synaptic strength 1008 
may allow for more accurately estimation of STP.  Finally, there are many other factors that are 1009 
likely to affect short-term spike transmission dynamics including, dendritic spikes (Bono and 1010 
Clopath, 2017), receptors nonlinearities (Magee, 2000), such as those in NMDA receptors, changes 1011 
in spike threshold due to sodium inactivation (Naud et al., 2011) or coupled to the subthreshold 1012 
activity (Mensi et al., 2016), feed-forward inhibition (Pouille and Scanziani, 2001), feedback 1013 
inhibition (Suzuki and Bekkers, 2012), or disinhibition (Letzkus et al., 2015). With intracellular 1014 
observations these effects can generally be separated from the synaptic dynamics based on the 1015 
timing of the signals. However, since these effects directly alter spike timing, they may act as 1016 
confounders for models based on spike observations. Although they could potentially be 1017 
incorporated in future models, omitting these effects from the model presented here may result in 1018 
biased parameter estimates for both the synaptic and non-synaptic effects that are included 1019 
(Stevenson, 2018). 1020 

Intracellular observations in controlled settings have found that short-term synaptic dynamics vary 1021 
depending on the pre- and postsynaptic cell type (Thomson and Lamy, 2007; Lee et al., 2019) as 1022 
well as brain region (Dittman et al., 2000; Wang et al., 2006), age (Reyes et al., 1998), and species 1023 
(Testa-Silva et al., 2014). Additionally, short-term synaptic dynamics appear to vary with stimulus 1024 
type and the larger computational function of the neural circuit (Karmarkar and Buonomano, 1025 
2007). To link synaptic dynamics to circuit-level neural computations we will need to study these 1026 
dynamics during natural ongoing activity (Klyachko and Stevens, 2006) and ultimately during 1027 
natural behavior. Since short-term synaptic plasticity affects not only the postsynaptic membrane 1028 
potential but also the probability of postsynaptic spiking (Markram et al., 1998; Swadlow and 1029 
Gusev, 2001; London et al., 2002; English et al., 2017), it may be possible to indirectly observe 1030 
the effects of synaptic dynamics on spike transmission. Here we examined this possibility by 1031 
including the effects of short-term synaptic plasticity in models of functional connectivity. Using 1032 
this approach, we characterized diverse, stimulus-dependent, and cell-type-specific patterns of 1033 
excitatory spike transmission using spike observations alone. 1034 

Data and software availability 1035 
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All data and software central to the conclusion of this study are available at 1036 
https://github.com/abedghanbari2/TM-GLM. 1037 
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